mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-27 10:24:22 +03:00
b8738257c2
We've observed that on some highly fragmented pools, most metaslab allocations are small (~2-8KB), but there are some large, 128K allocations. The large allocations are for ZIL blocks. If there is a lot of fragmentation, the large allocations can be hard to satisfy. The most common impact of this is that we need to check (and thus load) lots of metaslabs from the ZIL allocation code path, causing sync writes to wait for metaslabs to load, which can take a second or more. In the worst case, we may not be able to satisfy the allocation, in which case the ZIL will resort to txg_wait_synced() to ensure the change is on disk. To provide a workaround for this, this change adds a tunable that can reduce the size of ZIL blocks. External-issue: DLPX-61719 Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #8865
2768 lines
69 KiB
C
2768 lines
69 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
*
|
|
* ZFS volume emulation driver.
|
|
*
|
|
* Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
|
|
* Volumes are accessed through the symbolic links named:
|
|
*
|
|
* /dev/<pool_name>/<dataset_name>
|
|
*
|
|
* Volumes are persistent through reboot and module load. No user command
|
|
* needs to be run before opening and using a device.
|
|
*
|
|
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* Note on locking of zvol state structures.
|
|
*
|
|
* These structures are used to maintain internal state used to emulate block
|
|
* devices on top of zvols. In particular, management of device minor number
|
|
* operations - create, remove, rename, and set_snapdev - involves access to
|
|
* these structures. The zvol_state_lock is primarily used to protect the
|
|
* zvol_state_list. The zv->zv_state_lock is used to protect the contents
|
|
* of the zvol_state_t structures, as well as to make sure that when the
|
|
* time comes to remove the structure from the list, it is not in use, and
|
|
* therefore, it can be taken off zvol_state_list and freed.
|
|
*
|
|
* The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
|
|
* e.g. for the duration of receive and rollback operations. This lock can be
|
|
* held for significant periods of time. Given that it is undesirable to hold
|
|
* mutexes for long periods of time, the following lock ordering applies:
|
|
* - take zvol_state_lock if necessary, to protect zvol_state_list
|
|
* - take zv_suspend_lock if necessary, by the code path in question
|
|
* - take zv_state_lock to protect zvol_state_t
|
|
*
|
|
* The minor operations are issued to spa->spa_zvol_taskq queues, that are
|
|
* single-threaded (to preserve order of minor operations), and are executed
|
|
* through the zvol_task_cb that dispatches the specific operations. Therefore,
|
|
* these operations are serialized per pool. Consequently, we can be certain
|
|
* that for a given zvol, there is only one operation at a time in progress.
|
|
* That is why one can be sure that first, zvol_state_t for a given zvol is
|
|
* allocated and placed on zvol_state_list, and then other minor operations
|
|
* for this zvol are going to proceed in the order of issue.
|
|
*
|
|
* It is also worth keeping in mind that once add_disk() is called, the zvol is
|
|
* announced to the world, and zvol_open()/zvol_release() can be called at any
|
|
* time. Incidentally, add_disk() itself calls zvol_open()->zvol_first_open()
|
|
* and zvol_release()->zvol_last_close() directly as well.
|
|
*/
|
|
|
|
#include <sys/dataset_kstats.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_rlock.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zvol.h>
|
|
|
|
#include <linux/blkdev_compat.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
|
|
unsigned int zvol_inhibit_dev = 0;
|
|
unsigned int zvol_major = ZVOL_MAJOR;
|
|
unsigned int zvol_threads = 32;
|
|
unsigned int zvol_request_sync = 0;
|
|
unsigned int zvol_prefetch_bytes = (128 * 1024);
|
|
unsigned long zvol_max_discard_blocks = 16384;
|
|
unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
|
|
|
|
static taskq_t *zvol_taskq;
|
|
static krwlock_t zvol_state_lock;
|
|
static list_t zvol_state_list;
|
|
|
|
#define ZVOL_HT_SIZE 1024
|
|
static struct hlist_head *zvol_htable;
|
|
#define ZVOL_HT_HEAD(hash) (&zvol_htable[(hash) & (ZVOL_HT_SIZE-1)])
|
|
|
|
static struct ida zvol_ida;
|
|
|
|
/*
|
|
* The in-core state of each volume.
|
|
*/
|
|
struct zvol_state {
|
|
char zv_name[MAXNAMELEN]; /* name */
|
|
uint64_t zv_volsize; /* advertised space */
|
|
uint64_t zv_volblocksize; /* volume block size */
|
|
objset_t *zv_objset; /* objset handle */
|
|
uint32_t zv_flags; /* ZVOL_* flags */
|
|
uint32_t zv_open_count; /* open counts */
|
|
uint32_t zv_changed; /* disk changed */
|
|
zilog_t *zv_zilog; /* ZIL handle */
|
|
rangelock_t zv_rangelock; /* for range locking */
|
|
dnode_t *zv_dn; /* dnode hold */
|
|
dev_t zv_dev; /* device id */
|
|
struct gendisk *zv_disk; /* generic disk */
|
|
struct request_queue *zv_queue; /* request queue */
|
|
dataset_kstats_t zv_kstat; /* zvol kstats */
|
|
list_node_t zv_next; /* next zvol_state_t linkage */
|
|
uint64_t zv_hash; /* name hash */
|
|
struct hlist_node zv_hlink; /* hash link */
|
|
kmutex_t zv_state_lock; /* protects zvol_state_t */
|
|
atomic_t zv_suspend_ref; /* refcount for suspend */
|
|
krwlock_t zv_suspend_lock; /* suspend lock */
|
|
};
|
|
|
|
typedef enum {
|
|
ZVOL_ASYNC_CREATE_MINORS,
|
|
ZVOL_ASYNC_REMOVE_MINORS,
|
|
ZVOL_ASYNC_RENAME_MINORS,
|
|
ZVOL_ASYNC_SET_SNAPDEV,
|
|
ZVOL_ASYNC_SET_VOLMODE,
|
|
ZVOL_ASYNC_MAX
|
|
} zvol_async_op_t;
|
|
|
|
typedef struct {
|
|
zvol_async_op_t op;
|
|
char pool[MAXNAMELEN];
|
|
char name1[MAXNAMELEN];
|
|
char name2[MAXNAMELEN];
|
|
zprop_source_t source;
|
|
uint64_t value;
|
|
} zvol_task_t;
|
|
|
|
#define ZVOL_RDONLY 0x1
|
|
/*
|
|
* Whether the zvol has been written to (as opposed to ZVOL_RDONLY, which
|
|
* specifies whether or not the zvol _can_ be written to)
|
|
*/
|
|
#define ZVOL_WRITTEN_TO 0x2
|
|
|
|
static uint64_t
|
|
zvol_name_hash(const char *name)
|
|
{
|
|
int i;
|
|
uint64_t crc = -1ULL;
|
|
uint8_t *p = (uint8_t *)name;
|
|
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
|
|
for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
|
|
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
|
|
}
|
|
return (crc);
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the full major+minor dev_t. If found,
|
|
* return with zv_state_lock taken, otherwise, return (NULL) without
|
|
* taking zv_state_lock.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_dev(dev_t dev)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
|
zv = list_next(&zvol_state_list, zv)) {
|
|
mutex_enter(&zv->zv_state_lock);
|
|
if (zv->zv_dev == dev) {
|
|
rw_exit(&zvol_state_lock);
|
|
return (zv);
|
|
}
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the name and hash generated by zvol_name_hash.
|
|
* If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
|
|
* return (NULL) without the taking locks. The zv_suspend_lock is always taken
|
|
* before zv_state_lock. The mode argument indicates the mode (including none)
|
|
* for zv_suspend_lock to be taken.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
|
|
{
|
|
zvol_state_t *zv;
|
|
struct hlist_node *p = NULL;
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
|
|
zv = hlist_entry(p, zvol_state_t, zv_hlink);
|
|
mutex_enter(&zv->zv_state_lock);
|
|
if (zv->zv_hash == hash &&
|
|
strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
|
|
/*
|
|
* this is the right zvol, take the locks in the
|
|
* right order
|
|
*/
|
|
if (mode != RW_NONE &&
|
|
!rw_tryenter(&zv->zv_suspend_lock, mode)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_enter(&zv->zv_suspend_lock, mode);
|
|
mutex_enter(&zv->zv_state_lock);
|
|
/*
|
|
* zvol cannot be renamed as we continue
|
|
* to hold zvol_state_lock
|
|
*/
|
|
ASSERT(zv->zv_hash == hash &&
|
|
strncmp(zv->zv_name, name, MAXNAMELEN)
|
|
== 0);
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
return (zv);
|
|
}
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the name.
|
|
* If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
|
|
* return (NULL) without the taking locks. The zv_suspend_lock is always taken
|
|
* before zv_state_lock. The mode argument indicates the mode (including none)
|
|
* for zv_suspend_lock to be taken.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_name(const char *name, int mode)
|
|
{
|
|
return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
|
|
}
|
|
|
|
|
|
/*
|
|
* Given a path, return TRUE if path is a ZVOL.
|
|
*/
|
|
boolean_t
|
|
zvol_is_zvol(const char *device)
|
|
{
|
|
struct block_device *bdev;
|
|
unsigned int major;
|
|
|
|
bdev = vdev_lookup_bdev(device);
|
|
if (IS_ERR(bdev))
|
|
return (B_FALSE);
|
|
|
|
major = MAJOR(bdev->bd_dev);
|
|
bdput(bdev);
|
|
|
|
if (major == zvol_major)
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
|
|
*/
|
|
void
|
|
zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
|
|
{
|
|
zfs_creat_t *zct = arg;
|
|
nvlist_t *nvprops = zct->zct_props;
|
|
int error;
|
|
uint64_t volblocksize, volsize;
|
|
|
|
VERIFY(nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
|
|
if (nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
|
|
volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
|
|
|
|
/*
|
|
* These properties must be removed from the list so the generic
|
|
* property setting step won't apply to them.
|
|
*/
|
|
VERIFY(nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
|
|
(void) nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
|
|
|
|
error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
|
|
ASSERT(error == 0);
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_OBJSET_STATS entry point.
|
|
*/
|
|
int
|
|
zvol_get_stats(objset_t *os, nvlist_t *nv)
|
|
{
|
|
int error;
|
|
dmu_object_info_t *doi;
|
|
uint64_t val;
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
|
|
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
|
|
if (error == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
|
|
doi->doi_data_block_size);
|
|
}
|
|
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume size.
|
|
*/
|
|
int
|
|
zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
|
|
{
|
|
if (volsize == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (volsize % blocksize != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
#ifdef _ILP32
|
|
if (volsize - 1 > SPEC_MAXOFFSET_T)
|
|
return (SET_ERROR(EOVERFLOW));
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Ensure the zap is flushed then inform the VFS of the capacity change.
|
|
*/
|
|
static int
|
|
zvol_update_volsize(uint64_t volsize, objset_t *os)
|
|
{
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
uint64_t txg;
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
|
|
dmu_tx_mark_netfree(tx);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
return (SET_ERROR(error));
|
|
}
|
|
txg = dmu_tx_get_txg(tx);
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
|
|
&volsize, tx);
|
|
dmu_tx_commit(tx);
|
|
|
|
txg_wait_synced(dmu_objset_pool(os), txg);
|
|
|
|
if (error == 0)
|
|
error = dmu_free_long_range(os,
|
|
ZVOL_OBJ, volsize, DMU_OBJECT_END);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
|
|
* size will result in a udev "change" event being generated.
|
|
*/
|
|
int
|
|
zvol_set_volsize(const char *name, uint64_t volsize)
|
|
{
|
|
objset_t *os = NULL;
|
|
struct gendisk *disk = NULL;
|
|
uint64_t readonly;
|
|
int error;
|
|
boolean_t owned = B_FALSE;
|
|
|
|
error = dsl_prop_get_integer(name,
|
|
zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
|
|
if (error != 0)
|
|
return (SET_ERROR(error));
|
|
if (readonly)
|
|
return (SET_ERROR(EROFS));
|
|
|
|
zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
|
|
|
|
ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
|
|
RW_READ_HELD(&zv->zv_suspend_lock)));
|
|
|
|
if (zv == NULL || zv->zv_objset == NULL) {
|
|
if (zv != NULL)
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
|
|
FTAG, &os)) != 0) {
|
|
if (zv != NULL)
|
|
mutex_exit(&zv->zv_state_lock);
|
|
return (SET_ERROR(error));
|
|
}
|
|
owned = B_TRUE;
|
|
if (zv != NULL)
|
|
zv->zv_objset = os;
|
|
} else {
|
|
os = zv->zv_objset;
|
|
}
|
|
|
|
dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
|
|
|
|
if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
|
|
(error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
|
|
goto out;
|
|
|
|
error = zvol_update_volsize(volsize, os);
|
|
if (error == 0 && zv != NULL) {
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_changed = 1;
|
|
disk = zv->zv_disk;
|
|
}
|
|
out:
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
|
|
if (owned) {
|
|
dmu_objset_disown(os, B_TRUE, FTAG);
|
|
if (zv != NULL)
|
|
zv->zv_objset = NULL;
|
|
} else {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
}
|
|
|
|
if (zv != NULL)
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
if (disk != NULL)
|
|
revalidate_disk(disk);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume block size.
|
|
*/
|
|
int
|
|
zvol_check_volblocksize(const char *name, uint64_t volblocksize)
|
|
{
|
|
/* Record sizes above 128k need the feature to be enabled */
|
|
if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
|
|
spa_t *spa;
|
|
int error;
|
|
|
|
if ((error = spa_open(name, &spa, FTAG)) != 0)
|
|
return (error);
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
|
|
spa_close(spa, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* We don't allow setting the property above 1MB,
|
|
* unless the tunable has been changed.
|
|
*/
|
|
if (volblocksize > zfs_max_recordsize)
|
|
return (SET_ERROR(EDOM));
|
|
|
|
spa_close(spa, FTAG);
|
|
}
|
|
|
|
if (volblocksize < SPA_MINBLOCKSIZE ||
|
|
volblocksize > SPA_MAXBLOCKSIZE ||
|
|
!ISP2(volblocksize))
|
|
return (SET_ERROR(EDOM));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLBLOCKSIZE set entry point.
|
|
*/
|
|
int
|
|
zvol_set_volblocksize(const char *name, uint64_t volblocksize)
|
|
{
|
|
zvol_state_t *zv;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
zv = zvol_find_by_name(name, RW_READER);
|
|
|
|
if (zv == NULL)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
|
|
|
if (zv->zv_flags & ZVOL_RDONLY) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
return (SET_ERROR(EROFS));
|
|
}
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_hold_bonus(tx, ZVOL_OBJ);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
|
|
volblocksize, 0, tx);
|
|
if (error == ENOTSUP)
|
|
error = SET_ERROR(EBUSY);
|
|
dmu_tx_commit(tx);
|
|
if (error == 0)
|
|
zv->zv_volblocksize = volblocksize;
|
|
}
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
|
|
* implement DKIOCFREE/free-long-range.
|
|
*/
|
|
static int
|
|
zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
|
|
{
|
|
zvol_state_t *zv = arg1;
|
|
lr_truncate_t *lr = arg2;
|
|
uint64_t offset, length;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
offset = lr->lr_offset;
|
|
length = lr->lr_length;
|
|
|
|
return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length));
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_WRITE ZIL transaction that didn't get committed
|
|
* after a system failure
|
|
*/
|
|
static int
|
|
zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
|
|
{
|
|
zvol_state_t *zv = arg1;
|
|
lr_write_t *lr = arg2;
|
|
objset_t *os = zv->zv_objset;
|
|
char *data = (char *)(lr + 1); /* data follows lr_write_t */
|
|
uint64_t offset, length;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
offset = lr->lr_offset;
|
|
length = lr->lr_length;
|
|
|
|
/* If it's a dmu_sync() block, write the whole block */
|
|
if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
|
|
uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
|
|
if (length < blocksize) {
|
|
offset -= offset % blocksize;
|
|
length = blocksize;
|
|
}
|
|
}
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
|
|
{
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* Callback vectors for replaying records.
|
|
* Only TX_WRITE and TX_TRUNCATE are needed for zvol.
|
|
*/
|
|
zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
|
|
zvol_replay_err, /* no such transaction type */
|
|
zvol_replay_err, /* TX_CREATE */
|
|
zvol_replay_err, /* TX_MKDIR */
|
|
zvol_replay_err, /* TX_MKXATTR */
|
|
zvol_replay_err, /* TX_SYMLINK */
|
|
zvol_replay_err, /* TX_REMOVE */
|
|
zvol_replay_err, /* TX_RMDIR */
|
|
zvol_replay_err, /* TX_LINK */
|
|
zvol_replay_err, /* TX_RENAME */
|
|
zvol_replay_write, /* TX_WRITE */
|
|
zvol_replay_truncate, /* TX_TRUNCATE */
|
|
zvol_replay_err, /* TX_SETATTR */
|
|
zvol_replay_err, /* TX_ACL */
|
|
zvol_replay_err, /* TX_CREATE_ATTR */
|
|
zvol_replay_err, /* TX_CREATE_ACL_ATTR */
|
|
zvol_replay_err, /* TX_MKDIR_ACL */
|
|
zvol_replay_err, /* TX_MKDIR_ATTR */
|
|
zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
|
|
zvol_replay_err, /* TX_WRITE2 */
|
|
};
|
|
|
|
/*
|
|
* zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
|
|
*
|
|
* We store data in the log buffers if it's small enough.
|
|
* Otherwise we will later flush the data out via dmu_sync().
|
|
*/
|
|
ssize_t zvol_immediate_write_sz = 32768;
|
|
|
|
static void
|
|
zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
|
|
uint64_t size, int sync)
|
|
{
|
|
uint32_t blocksize = zv->zv_volblocksize;
|
|
zilog_t *zilog = zv->zv_zilog;
|
|
itx_wr_state_t write_state;
|
|
|
|
if (zil_replaying(zilog, tx))
|
|
return;
|
|
|
|
if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
|
|
write_state = WR_INDIRECT;
|
|
else if (!spa_has_slogs(zilog->zl_spa) &&
|
|
size >= blocksize && blocksize > zvol_immediate_write_sz)
|
|
write_state = WR_INDIRECT;
|
|
else if (sync)
|
|
write_state = WR_COPIED;
|
|
else
|
|
write_state = WR_NEED_COPY;
|
|
|
|
while (size) {
|
|
itx_t *itx;
|
|
lr_write_t *lr;
|
|
itx_wr_state_t wr_state = write_state;
|
|
ssize_t len = size;
|
|
|
|
if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
|
|
wr_state = WR_NEED_COPY;
|
|
else if (wr_state == WR_INDIRECT)
|
|
len = MIN(blocksize - P2PHASE(offset, blocksize), size);
|
|
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
|
|
(wr_state == WR_COPIED ? len : 0));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
|
|
offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
|
|
zil_itx_destroy(itx);
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
wr_state = WR_NEED_COPY;
|
|
}
|
|
|
|
itx->itx_wr_state = wr_state;
|
|
lr->lr_foid = ZVOL_OBJ;
|
|
lr->lr_offset = offset;
|
|
lr->lr_length = len;
|
|
lr->lr_blkoff = 0;
|
|
BP_ZERO(&lr->lr_blkptr);
|
|
|
|
itx->itx_private = zv;
|
|
itx->itx_sync = sync;
|
|
|
|
(void) zil_itx_assign(zilog, itx, tx);
|
|
|
|
offset += len;
|
|
size -= len;
|
|
}
|
|
}
|
|
|
|
typedef struct zv_request {
|
|
zvol_state_t *zv;
|
|
struct bio *bio;
|
|
locked_range_t *lr;
|
|
} zv_request_t;
|
|
|
|
static void
|
|
uio_from_bio(uio_t *uio, struct bio *bio)
|
|
{
|
|
uio->uio_bvec = &bio->bi_io_vec[BIO_BI_IDX(bio)];
|
|
uio->uio_iovcnt = bio->bi_vcnt - BIO_BI_IDX(bio);
|
|
uio->uio_loffset = BIO_BI_SECTOR(bio) << 9;
|
|
uio->uio_segflg = UIO_BVEC;
|
|
uio->uio_limit = MAXOFFSET_T;
|
|
uio->uio_resid = BIO_BI_SIZE(bio);
|
|
uio->uio_skip = BIO_BI_SKIP(bio);
|
|
}
|
|
|
|
static void
|
|
zvol_write(void *arg)
|
|
{
|
|
int error = 0;
|
|
|
|
zv_request_t *zvr = arg;
|
|
struct bio *bio = zvr->bio;
|
|
uio_t uio = { { 0 }, 0 };
|
|
uio_from_bio(&uio, bio);
|
|
|
|
zvol_state_t *zv = zvr->zv;
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
ASSERT(zv->zv_zilog != NULL);
|
|
|
|
ssize_t start_resid = uio.uio_resid;
|
|
unsigned long start_jif = jiffies;
|
|
blk_generic_start_io_acct(zv->zv_queue, WRITE, bio_sectors(bio),
|
|
&zv->zv_disk->part0);
|
|
|
|
boolean_t sync =
|
|
bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
|
|
|
|
uint64_t volsize = zv->zv_volsize;
|
|
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
|
|
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
|
|
uint64_t off = uio.uio_loffset;
|
|
dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
|
|
|
|
if (bytes > volsize - off) /* don't write past the end */
|
|
bytes = volsize - off;
|
|
|
|
dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
|
|
|
|
/* This will only fail for ENOSPC */
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
break;
|
|
}
|
|
error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
|
|
if (error == 0) {
|
|
zvol_log_write(zv, tx, off, bytes, sync);
|
|
}
|
|
dmu_tx_commit(tx);
|
|
|
|
if (error)
|
|
break;
|
|
}
|
|
rangelock_exit(zvr->lr);
|
|
|
|
int64_t nwritten = start_resid - uio.uio_resid;
|
|
dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
|
|
task_io_account_write(nwritten);
|
|
|
|
if (sync)
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
blk_generic_end_io_acct(zv->zv_queue, WRITE, &zv->zv_disk->part0,
|
|
start_jif);
|
|
BIO_END_IO(bio, -error);
|
|
kmem_free(zvr, sizeof (zv_request_t));
|
|
}
|
|
|
|
/*
|
|
* Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
|
|
*/
|
|
static void
|
|
zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
|
|
boolean_t sync)
|
|
{
|
|
itx_t *itx;
|
|
lr_truncate_t *lr;
|
|
zilog_t *zilog = zv->zv_zilog;
|
|
|
|
if (zil_replaying(zilog, tx))
|
|
return;
|
|
|
|
itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
|
|
lr = (lr_truncate_t *)&itx->itx_lr;
|
|
lr->lr_foid = ZVOL_OBJ;
|
|
lr->lr_offset = off;
|
|
lr->lr_length = len;
|
|
|
|
itx->itx_sync = sync;
|
|
zil_itx_assign(zilog, itx, tx);
|
|
}
|
|
|
|
static void
|
|
zvol_discard(void *arg)
|
|
{
|
|
zv_request_t *zvr = arg;
|
|
struct bio *bio = zvr->bio;
|
|
zvol_state_t *zv = zvr->zv;
|
|
uint64_t start = BIO_BI_SECTOR(bio) << 9;
|
|
uint64_t size = BIO_BI_SIZE(bio);
|
|
uint64_t end = start + size;
|
|
boolean_t sync;
|
|
int error = 0;
|
|
dmu_tx_t *tx;
|
|
unsigned long start_jif;
|
|
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
ASSERT(zv->zv_zilog != NULL);
|
|
|
|
start_jif = jiffies;
|
|
blk_generic_start_io_acct(zv->zv_queue, WRITE, bio_sectors(bio),
|
|
&zv->zv_disk->part0);
|
|
|
|
sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
|
|
|
|
if (end > zv->zv_volsize) {
|
|
error = SET_ERROR(EIO);
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Align the request to volume block boundaries when a secure erase is
|
|
* not required. This will prevent dnode_free_range() from zeroing out
|
|
* the unaligned parts which is slow (read-modify-write) and useless
|
|
* since we are not freeing any space by doing so.
|
|
*/
|
|
if (!bio_is_secure_erase(bio)) {
|
|
start = P2ROUNDUP(start, zv->zv_volblocksize);
|
|
end = P2ALIGN(end, zv->zv_volblocksize);
|
|
size = end - start;
|
|
}
|
|
|
|
if (start >= end)
|
|
goto unlock;
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_mark_netfree(tx);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
zvol_log_truncate(zv, tx, start, size, B_TRUE);
|
|
dmu_tx_commit(tx);
|
|
error = dmu_free_long_range(zv->zv_objset,
|
|
ZVOL_OBJ, start, size);
|
|
}
|
|
unlock:
|
|
rangelock_exit(zvr->lr);
|
|
|
|
if (error == 0 && sync)
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
blk_generic_end_io_acct(zv->zv_queue, WRITE, &zv->zv_disk->part0,
|
|
start_jif);
|
|
BIO_END_IO(bio, -error);
|
|
kmem_free(zvr, sizeof (zv_request_t));
|
|
}
|
|
|
|
static void
|
|
zvol_read(void *arg)
|
|
{
|
|
int error = 0;
|
|
|
|
zv_request_t *zvr = arg;
|
|
struct bio *bio = zvr->bio;
|
|
uio_t uio = { { 0 }, 0 };
|
|
uio_from_bio(&uio, bio);
|
|
|
|
zvol_state_t *zv = zvr->zv;
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
|
|
ssize_t start_resid = uio.uio_resid;
|
|
unsigned long start_jif = jiffies;
|
|
blk_generic_start_io_acct(zv->zv_queue, READ, bio_sectors(bio),
|
|
&zv->zv_disk->part0);
|
|
|
|
uint64_t volsize = zv->zv_volsize;
|
|
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
|
|
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
|
|
|
|
/* don't read past the end */
|
|
if (bytes > volsize - uio.uio_loffset)
|
|
bytes = volsize - uio.uio_loffset;
|
|
|
|
error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
|
|
if (error) {
|
|
/* convert checksum errors into IO errors */
|
|
if (error == ECKSUM)
|
|
error = SET_ERROR(EIO);
|
|
break;
|
|
}
|
|
}
|
|
rangelock_exit(zvr->lr);
|
|
|
|
int64_t nread = start_resid - uio.uio_resid;
|
|
dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
|
|
task_io_account_read(nread);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
blk_generic_end_io_acct(zv->zv_queue, READ, &zv->zv_disk->part0,
|
|
start_jif);
|
|
BIO_END_IO(bio, -error);
|
|
kmem_free(zvr, sizeof (zv_request_t));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
zvol_get_done(zgd_t *zgd, int error)
|
|
{
|
|
if (zgd->zgd_db)
|
|
dmu_buf_rele(zgd->zgd_db, zgd);
|
|
|
|
rangelock_exit(zgd->zgd_lr);
|
|
|
|
kmem_free(zgd, sizeof (zgd_t));
|
|
}
|
|
|
|
/*
|
|
* Get data to generate a TX_WRITE intent log record.
|
|
*/
|
|
static int
|
|
zvol_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
|
|
{
|
|
zvol_state_t *zv = arg;
|
|
uint64_t offset = lr->lr_offset;
|
|
uint64_t size = lr->lr_length;
|
|
dmu_buf_t *db;
|
|
zgd_t *zgd;
|
|
int error;
|
|
|
|
ASSERT3P(lwb, !=, NULL);
|
|
ASSERT3P(zio, !=, NULL);
|
|
ASSERT3U(size, !=, 0);
|
|
|
|
zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
|
|
zgd->zgd_lwb = lwb;
|
|
|
|
/*
|
|
* Write records come in two flavors: immediate and indirect.
|
|
* For small writes it's cheaper to store the data with the
|
|
* log record (immediate); for large writes it's cheaper to
|
|
* sync the data and get a pointer to it (indirect) so that
|
|
* we don't have to write the data twice.
|
|
*/
|
|
if (buf != NULL) { /* immediate write */
|
|
zgd->zgd_lr = rangelock_enter(&zv->zv_rangelock, offset, size,
|
|
RL_READER);
|
|
error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
|
|
DMU_READ_NO_PREFETCH);
|
|
} else { /* indirect write */
|
|
/*
|
|
* Have to lock the whole block to ensure when it's written out
|
|
* and its checksum is being calculated that no one can change
|
|
* the data. Contrarily to zfs_get_data we need not re-check
|
|
* blocksize after we get the lock because it cannot be changed.
|
|
*/
|
|
size = zv->zv_volblocksize;
|
|
offset = P2ALIGN_TYPED(offset, size, uint64_t);
|
|
zgd->zgd_lr = rangelock_enter(&zv->zv_rangelock, offset, size,
|
|
RL_READER);
|
|
error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
|
|
DMU_READ_NO_PREFETCH);
|
|
if (error == 0) {
|
|
blkptr_t *bp = &lr->lr_blkptr;
|
|
|
|
zgd->zgd_db = db;
|
|
zgd->zgd_bp = bp;
|
|
|
|
ASSERT(db != NULL);
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == size);
|
|
|
|
error = dmu_sync(zio, lr->lr_common.lrc_txg,
|
|
zvol_get_done, zgd);
|
|
|
|
if (error == 0)
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
zvol_get_done(zgd, error);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
static MAKE_REQUEST_FN_RET
|
|
zvol_request(struct request_queue *q, struct bio *bio)
|
|
{
|
|
zvol_state_t *zv = q->queuedata;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
uint64_t offset = BIO_BI_SECTOR(bio) << 9;
|
|
uint64_t size = BIO_BI_SIZE(bio);
|
|
int rw = bio_data_dir(bio);
|
|
zv_request_t *zvr;
|
|
|
|
if (bio_has_data(bio) && offset + size > zv->zv_volsize) {
|
|
printk(KERN_INFO
|
|
"%s: bad access: offset=%llu, size=%lu\n",
|
|
zv->zv_disk->disk_name,
|
|
(long long unsigned)offset,
|
|
(long unsigned)size);
|
|
|
|
BIO_END_IO(bio, -SET_ERROR(EIO));
|
|
goto out;
|
|
}
|
|
|
|
if (rw == WRITE) {
|
|
boolean_t need_sync = B_FALSE;
|
|
|
|
if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
|
|
BIO_END_IO(bio, -SET_ERROR(EROFS));
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* To be released in the I/O function. See the comment on
|
|
* rangelock_enter() below.
|
|
*/
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
/*
|
|
* Open a ZIL if this is the first time we have written to this
|
|
* zvol. We protect zv->zv_zilog with zv_suspend_lock rather
|
|
* than zv_state_lock so that we don't need to acquire an
|
|
* additional lock in this path.
|
|
*/
|
|
if (zv->zv_zilog == NULL) {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
rw_enter(&zv->zv_suspend_lock, RW_WRITER);
|
|
if (zv->zv_zilog == NULL) {
|
|
zv->zv_zilog = zil_open(zv->zv_objset,
|
|
zvol_get_data);
|
|
zv->zv_flags |= ZVOL_WRITTEN_TO;
|
|
}
|
|
rw_downgrade(&zv->zv_suspend_lock);
|
|
}
|
|
|
|
/* bio marked as FLUSH need to flush before write */
|
|
if (bio_is_flush(bio))
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
|
|
/* Some requests are just for flush and nothing else. */
|
|
if (size == 0) {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
BIO_END_IO(bio, 0);
|
|
goto out;
|
|
}
|
|
|
|
zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
|
|
zvr->zv = zv;
|
|
zvr->bio = bio;
|
|
|
|
/*
|
|
* To be released in the I/O function. Since the I/O functions
|
|
* are asynchronous, we take it here synchronously to make
|
|
* sure overlapped I/Os are properly ordered.
|
|
*/
|
|
zvr->lr = rangelock_enter(&zv->zv_rangelock, offset, size,
|
|
RL_WRITER);
|
|
/*
|
|
* Sync writes and discards execute zil_commit() which may need
|
|
* to take a RL_READER lock on the whole block being modified
|
|
* via its zillog->zl_get_data(): to avoid circular dependency
|
|
* issues with taskq threads execute these requests
|
|
* synchronously here in zvol_request().
|
|
*/
|
|
need_sync = bio_is_fua(bio) ||
|
|
zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
|
|
if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
|
|
if (zvol_request_sync || need_sync ||
|
|
taskq_dispatch(zvol_taskq, zvol_discard, zvr,
|
|
TQ_SLEEP) == TASKQID_INVALID)
|
|
zvol_discard(zvr);
|
|
} else {
|
|
if (zvol_request_sync || need_sync ||
|
|
taskq_dispatch(zvol_taskq, zvol_write, zvr,
|
|
TQ_SLEEP) == TASKQID_INVALID)
|
|
zvol_write(zvr);
|
|
}
|
|
} else {
|
|
/*
|
|
* The SCST driver, and possibly others, may issue READ I/Os
|
|
* with a length of zero bytes. These empty I/Os contain no
|
|
* data and require no additional handling.
|
|
*/
|
|
if (size == 0) {
|
|
BIO_END_IO(bio, 0);
|
|
goto out;
|
|
}
|
|
|
|
zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
|
|
zvr->zv = zv;
|
|
zvr->bio = bio;
|
|
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
zvr->lr = rangelock_enter(&zv->zv_rangelock, offset, size,
|
|
RL_READER);
|
|
if (zvol_request_sync || taskq_dispatch(zvol_taskq,
|
|
zvol_read, zvr, TQ_SLEEP) == TASKQID_INVALID)
|
|
zvol_read(zvr);
|
|
}
|
|
|
|
out:
|
|
spl_fstrans_unmark(cookie);
|
|
#ifdef HAVE_MAKE_REQUEST_FN_RET_INT
|
|
return (0);
|
|
#elif defined(HAVE_MAKE_REQUEST_FN_RET_QC)
|
|
return (BLK_QC_T_NONE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
|
|
*/
|
|
static void
|
|
zvol_insert(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zvol_state_lock));
|
|
ASSERT3U(MINOR(zv->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
|
|
list_insert_head(&zvol_state_list, zv);
|
|
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
|
|
}
|
|
|
|
/*
|
|
* Simply remove the zvol from to list of zvols.
|
|
*/
|
|
static void
|
|
zvol_remove(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zvol_state_lock));
|
|
list_remove(&zvol_state_list, zv);
|
|
hlist_del(&zv->zv_hlink);
|
|
}
|
|
|
|
/*
|
|
* Setup zv after we just own the zv->objset
|
|
*/
|
|
static int
|
|
zvol_setup_zv(zvol_state_t *zv)
|
|
{
|
|
uint64_t volsize;
|
|
int error;
|
|
uint64_t ro;
|
|
objset_t *os = zv->zv_objset;
|
|
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
|
|
|
|
zv->zv_zilog = NULL;
|
|
zv->zv_flags &= ~ZVOL_WRITTEN_TO;
|
|
|
|
error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
error = dnode_hold(os, ZVOL_OBJ, FTAG, &zv->zv_dn);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
set_capacity(zv->zv_disk, volsize >> 9);
|
|
zv->zv_volsize = volsize;
|
|
|
|
if (ro || dmu_objset_is_snapshot(os) ||
|
|
!spa_writeable(dmu_objset_spa(os))) {
|
|
set_disk_ro(zv->zv_disk, 1);
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
} else {
|
|
set_disk_ro(zv->zv_disk, 0);
|
|
zv->zv_flags &= ~ZVOL_RDONLY;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Shutdown every zv_objset related stuff except zv_objset itself.
|
|
* The is the reverse of zvol_setup_zv.
|
|
*/
|
|
static void
|
|
zvol_shutdown_zv(zvol_state_t *zv)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
|
|
RW_LOCK_HELD(&zv->zv_suspend_lock));
|
|
|
|
if (zv->zv_flags & ZVOL_WRITTEN_TO) {
|
|
ASSERT(zv->zv_zilog != NULL);
|
|
zil_close(zv->zv_zilog);
|
|
}
|
|
|
|
zv->zv_zilog = NULL;
|
|
|
|
dnode_rele(zv->zv_dn, FTAG);
|
|
zv->zv_dn = NULL;
|
|
|
|
/*
|
|
* Evict cached data. We must write out any dirty data before
|
|
* disowning the dataset.
|
|
*/
|
|
if (zv->zv_flags & ZVOL_WRITTEN_TO)
|
|
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
|
|
(void) dmu_objset_evict_dbufs(zv->zv_objset);
|
|
}
|
|
|
|
/*
|
|
* return the proper tag for rollback and recv
|
|
*/
|
|
void *
|
|
zvol_tag(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
return (zv->zv_open_count > 0 ? zv : NULL);
|
|
}
|
|
|
|
/*
|
|
* Suspend the zvol for recv and rollback.
|
|
*/
|
|
zvol_state_t *
|
|
zvol_suspend(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
zv = zvol_find_by_name(name, RW_WRITER);
|
|
|
|
if (zv == NULL)
|
|
return (NULL);
|
|
|
|
/* block all I/O, release in zvol_resume. */
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
|
|
atomic_inc(&zv->zv_suspend_ref);
|
|
|
|
if (zv->zv_open_count > 0)
|
|
zvol_shutdown_zv(zv);
|
|
|
|
/*
|
|
* do not hold zv_state_lock across suspend/resume to
|
|
* avoid locking up zvol lookups
|
|
*/
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
/* zv_suspend_lock is released in zvol_resume() */
|
|
return (zv);
|
|
}
|
|
|
|
int
|
|
zvol_resume(zvol_state_t *zv)
|
|
{
|
|
int error = 0;
|
|
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
|
|
if (zv->zv_open_count > 0) {
|
|
VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
|
|
VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
|
|
VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
|
|
dmu_objset_rele(zv->zv_objset, zv);
|
|
|
|
error = zvol_setup_zv(zv);
|
|
}
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
/*
|
|
* We need this because we don't hold zvol_state_lock while releasing
|
|
* zv_suspend_lock. zvol_remove_minors_impl thus cannot check
|
|
* zv_suspend_lock to determine it is safe to free because rwlock is
|
|
* not inherent atomic.
|
|
*/
|
|
atomic_dec(&zv->zv_suspend_ref);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
static int
|
|
zvol_first_open(zvol_state_t *zv, boolean_t readonly)
|
|
{
|
|
objset_t *os;
|
|
int error, locked = 0;
|
|
boolean_t ro;
|
|
|
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
|
|
/*
|
|
* In all other cases the spa_namespace_lock is taken before the
|
|
* bdev->bd_mutex lock. But in this case the Linux __blkdev_get()
|
|
* function calls fops->open() with the bdev->bd_mutex lock held.
|
|
* This deadlock can be easily observed with zvols used as vdevs.
|
|
*
|
|
* To avoid a potential lock inversion deadlock we preemptively
|
|
* try to take the spa_namespace_lock(). Normally it will not
|
|
* be contended and this is safe because spa_open_common() handles
|
|
* the case where the caller already holds the spa_namespace_lock.
|
|
*
|
|
* When it is contended we risk a lock inversion if we were to
|
|
* block waiting for the lock. Luckily, the __blkdev_get()
|
|
* function allows us to return -ERESTARTSYS which will result in
|
|
* bdev->bd_mutex being dropped, reacquired, and fops->open() being
|
|
* called again. This process can be repeated safely until both
|
|
* locks are acquired.
|
|
*/
|
|
if (!mutex_owned(&spa_namespace_lock)) {
|
|
locked = mutex_tryenter(&spa_namespace_lock);
|
|
if (!locked)
|
|
return (-SET_ERROR(ERESTARTSYS));
|
|
}
|
|
|
|
ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
|
|
error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
|
|
if (error)
|
|
goto out_mutex;
|
|
|
|
zv->zv_objset = os;
|
|
|
|
error = zvol_setup_zv(zv);
|
|
|
|
if (error) {
|
|
dmu_objset_disown(os, 1, zv);
|
|
zv->zv_objset = NULL;
|
|
}
|
|
|
|
out_mutex:
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(-error));
|
|
}
|
|
|
|
static void
|
|
zvol_last_close(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
|
|
zvol_shutdown_zv(zv);
|
|
|
|
dmu_objset_disown(zv->zv_objset, 1, zv);
|
|
zv->zv_objset = NULL;
|
|
}
|
|
|
|
static int
|
|
zvol_open(struct block_device *bdev, fmode_t flag)
|
|
{
|
|
zvol_state_t *zv;
|
|
int error = 0;
|
|
boolean_t drop_suspend = B_TRUE;
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
/*
|
|
* Obtain a copy of private_data under the zvol_state_lock to make
|
|
* sure that either the result of zvol free code path setting
|
|
* bdev->bd_disk->private_data to NULL is observed, or zvol_free()
|
|
* is not called on this zv because of the positive zv_open_count.
|
|
*/
|
|
zv = bdev->bd_disk->private_data;
|
|
if (zv == NULL) {
|
|
rw_exit(&zvol_state_lock);
|
|
return (SET_ERROR(-ENXIO));
|
|
}
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
/*
|
|
* make sure zvol is not suspended during first open
|
|
* (hold zv_suspend_lock) and respect proper lock acquisition
|
|
* ordering - zv_suspend_lock before zv_state_lock
|
|
*/
|
|
if (zv->zv_open_count == 0) {
|
|
if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
mutex_enter(&zv->zv_state_lock);
|
|
/* check to see if zv_suspend_lock is needed */
|
|
if (zv->zv_open_count != 0) {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
drop_suspend = B_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
drop_suspend = B_FALSE;
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(zv->zv_open_count != 0 || RW_READ_HELD(&zv->zv_suspend_lock));
|
|
|
|
if (zv->zv_open_count == 0) {
|
|
error = zvol_first_open(zv, !(flag & FMODE_WRITE));
|
|
if (error)
|
|
goto out_mutex;
|
|
}
|
|
|
|
if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
|
|
error = -EROFS;
|
|
goto out_open_count;
|
|
}
|
|
|
|
zv->zv_open_count++;
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
if (drop_suspend)
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
|
|
check_disk_change(bdev);
|
|
|
|
return (0);
|
|
|
|
out_open_count:
|
|
if (zv->zv_open_count == 0)
|
|
zvol_last_close(zv);
|
|
|
|
out_mutex:
|
|
mutex_exit(&zv->zv_state_lock);
|
|
if (drop_suspend)
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
if (error == -ERESTARTSYS)
|
|
schedule();
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
|
|
static void
|
|
#else
|
|
static int
|
|
#endif
|
|
zvol_release(struct gendisk *disk, fmode_t mode)
|
|
{
|
|
zvol_state_t *zv;
|
|
boolean_t drop_suspend = B_TRUE;
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
zv = disk->private_data;
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
ASSERT(zv->zv_open_count > 0);
|
|
/*
|
|
* make sure zvol is not suspended during last close
|
|
* (hold zv_suspend_lock) and respect proper lock acquisition
|
|
* ordering - zv_suspend_lock before zv_state_lock
|
|
*/
|
|
if (zv->zv_open_count == 1) {
|
|
if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
mutex_enter(&zv->zv_state_lock);
|
|
/* check to see if zv_suspend_lock is needed */
|
|
if (zv->zv_open_count != 1) {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
drop_suspend = B_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
drop_suspend = B_FALSE;
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(zv->zv_open_count != 1 || RW_READ_HELD(&zv->zv_suspend_lock));
|
|
|
|
zv->zv_open_count--;
|
|
if (zv->zv_open_count == 0)
|
|
zvol_last_close(zv);
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
if (drop_suspend)
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
|
|
#ifndef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
|
|
return (0);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
zvol_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
int error = 0;
|
|
|
|
ASSERT3U(zv->zv_open_count, >, 0);
|
|
|
|
switch (cmd) {
|
|
case BLKFLSBUF:
|
|
fsync_bdev(bdev);
|
|
invalidate_bdev(bdev);
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
if (!(zv->zv_flags & ZVOL_RDONLY))
|
|
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
break;
|
|
|
|
case BLKZNAME:
|
|
mutex_enter(&zv->zv_state_lock);
|
|
error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
|
|
mutex_exit(&zv->zv_state_lock);
|
|
break;
|
|
|
|
default:
|
|
error = -ENOTTY;
|
|
break;
|
|
}
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int
|
|
zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg)
|
|
{
|
|
return (zvol_ioctl(bdev, mode, cmd, arg));
|
|
}
|
|
#else
|
|
#define zvol_compat_ioctl NULL
|
|
#endif
|
|
|
|
/*
|
|
* Linux 2.6.38 preferred interface.
|
|
*/
|
|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
|
|
static unsigned int
|
|
zvol_check_events(struct gendisk *disk, unsigned int clearing)
|
|
{
|
|
unsigned int mask = 0;
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
|
|
zvol_state_t *zv = disk->private_data;
|
|
if (zv != NULL) {
|
|
mutex_enter(&zv->zv_state_lock);
|
|
mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
|
|
zv->zv_changed = 0;
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
return (mask);
|
|
}
|
|
#else
|
|
static int zvol_media_changed(struct gendisk *disk)
|
|
{
|
|
int changed = 0;
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
|
|
zvol_state_t *zv = disk->private_data;
|
|
if (zv != NULL) {
|
|
mutex_enter(&zv->zv_state_lock);
|
|
changed = zv->zv_changed;
|
|
zv->zv_changed = 0;
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
return (changed);
|
|
}
|
|
#endif
|
|
|
|
static int zvol_revalidate_disk(struct gendisk *disk)
|
|
{
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
|
|
zvol_state_t *zv = disk->private_data;
|
|
if (zv != NULL) {
|
|
mutex_enter(&zv->zv_state_lock);
|
|
set_capacity(zv->zv_disk, zv->zv_volsize >> SECTOR_BITS);
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Provide a simple virtual geometry for legacy compatibility. For devices
|
|
* smaller than 1 MiB a small head and sector count is used to allow very
|
|
* tiny devices. For devices over 1 Mib a standard head and sector count
|
|
* is used to keep the cylinders count reasonable.
|
|
*/
|
|
static int
|
|
zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
sector_t sectors;
|
|
|
|
ASSERT3U(zv->zv_open_count, >, 0);
|
|
|
|
sectors = get_capacity(zv->zv_disk);
|
|
|
|
if (sectors > 2048) {
|
|
geo->heads = 16;
|
|
geo->sectors = 63;
|
|
} else {
|
|
geo->heads = 2;
|
|
geo->sectors = 4;
|
|
}
|
|
|
|
geo->start = 0;
|
|
geo->cylinders = sectors / (geo->heads * geo->sectors);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct kobject *
|
|
zvol_probe(dev_t dev, int *part, void *arg)
|
|
{
|
|
zvol_state_t *zv;
|
|
struct kobject *kobj;
|
|
|
|
zv = zvol_find_by_dev(dev);
|
|
kobj = zv ? get_disk_and_module(zv->zv_disk) : NULL;
|
|
ASSERT(zv == NULL || MUTEX_HELD(&zv->zv_state_lock));
|
|
if (zv)
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
return (kobj);
|
|
}
|
|
|
|
static struct block_device_operations zvol_ops = {
|
|
.open = zvol_open,
|
|
.release = zvol_release,
|
|
.ioctl = zvol_ioctl,
|
|
.compat_ioctl = zvol_compat_ioctl,
|
|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
|
|
.check_events = zvol_check_events,
|
|
#else
|
|
.media_changed = zvol_media_changed,
|
|
#endif
|
|
.revalidate_disk = zvol_revalidate_disk,
|
|
.getgeo = zvol_getgeo,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
/*
|
|
* Allocate memory for a new zvol_state_t and setup the required
|
|
* request queue and generic disk structures for the block device.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_alloc(dev_t dev, const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
uint64_t volmode;
|
|
|
|
if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
|
|
return (NULL);
|
|
|
|
if (volmode == ZFS_VOLMODE_DEFAULT)
|
|
volmode = zvol_volmode;
|
|
|
|
if (volmode == ZFS_VOLMODE_NONE)
|
|
return (NULL);
|
|
|
|
zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
|
|
|
|
list_link_init(&zv->zv_next);
|
|
|
|
mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
zv->zv_queue = blk_alloc_queue(GFP_ATOMIC);
|
|
if (zv->zv_queue == NULL)
|
|
goto out_kmem;
|
|
|
|
blk_queue_make_request(zv->zv_queue, zvol_request);
|
|
blk_queue_set_write_cache(zv->zv_queue, B_TRUE, B_TRUE);
|
|
|
|
/* Limit read-ahead to a single page to prevent over-prefetching. */
|
|
blk_queue_set_read_ahead(zv->zv_queue, 1);
|
|
|
|
/* Disable write merging in favor of the ZIO pipeline. */
|
|
blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zv->zv_queue);
|
|
|
|
zv->zv_disk = alloc_disk(ZVOL_MINORS);
|
|
if (zv->zv_disk == NULL)
|
|
goto out_queue;
|
|
|
|
zv->zv_queue->queuedata = zv;
|
|
zv->zv_dev = dev;
|
|
zv->zv_open_count = 0;
|
|
strlcpy(zv->zv_name, name, MAXNAMELEN);
|
|
|
|
rangelock_init(&zv->zv_rangelock, NULL, NULL);
|
|
rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
|
|
|
|
zv->zv_disk->major = zvol_major;
|
|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
|
|
zv->zv_disk->events = DISK_EVENT_MEDIA_CHANGE;
|
|
#endif
|
|
|
|
if (volmode == ZFS_VOLMODE_DEV) {
|
|
/*
|
|
* ZFS_VOLMODE_DEV disable partitioning on ZVOL devices: set
|
|
* gendisk->minors = 1 as noted in include/linux/genhd.h.
|
|
* Also disable extended partition numbers (GENHD_FL_EXT_DEVT)
|
|
* and suppresses partition scanning (GENHD_FL_NO_PART_SCAN)
|
|
* setting gendisk->flags accordingly.
|
|
*/
|
|
zv->zv_disk->minors = 1;
|
|
#if defined(GENHD_FL_EXT_DEVT)
|
|
zv->zv_disk->flags &= ~GENHD_FL_EXT_DEVT;
|
|
#endif
|
|
#if defined(GENHD_FL_NO_PART_SCAN)
|
|
zv->zv_disk->flags |= GENHD_FL_NO_PART_SCAN;
|
|
#endif
|
|
}
|
|
zv->zv_disk->first_minor = (dev & MINORMASK);
|
|
zv->zv_disk->fops = &zvol_ops;
|
|
zv->zv_disk->private_data = zv;
|
|
zv->zv_disk->queue = zv->zv_queue;
|
|
snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
|
|
ZVOL_DEV_NAME, (dev & MINORMASK));
|
|
|
|
return (zv);
|
|
|
|
out_queue:
|
|
blk_cleanup_queue(zv->zv_queue);
|
|
out_kmem:
|
|
kmem_free(zv, sizeof (zvol_state_t));
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Cleanup then free a zvol_state_t which was created by zvol_alloc().
|
|
* At this time, the structure is not opened by anyone, is taken off
|
|
* the zvol_state_list, and has its private data set to NULL.
|
|
* The zvol_state_lock is dropped.
|
|
*/
|
|
static void
|
|
zvol_free(void *arg)
|
|
{
|
|
zvol_state_t *zv = arg;
|
|
|
|
ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
|
|
ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(zv->zv_open_count == 0);
|
|
ASSERT(zv->zv_disk->private_data == NULL);
|
|
|
|
rw_destroy(&zv->zv_suspend_lock);
|
|
rangelock_fini(&zv->zv_rangelock);
|
|
|
|
del_gendisk(zv->zv_disk);
|
|
blk_cleanup_queue(zv->zv_queue);
|
|
put_disk(zv->zv_disk);
|
|
|
|
ida_simple_remove(&zvol_ida, MINOR(zv->zv_dev) >> ZVOL_MINOR_BITS);
|
|
|
|
mutex_destroy(&zv->zv_state_lock);
|
|
dataset_kstats_destroy(&zv->zv_kstat);
|
|
|
|
kmem_free(zv, sizeof (zvol_state_t));
|
|
}
|
|
|
|
/*
|
|
* Create a block device minor node and setup the linkage between it
|
|
* and the specified volume. Once this function returns the block
|
|
* device is live and ready for use.
|
|
*/
|
|
static int
|
|
zvol_create_minor_impl(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
objset_t *os;
|
|
dmu_object_info_t *doi;
|
|
uint64_t volsize;
|
|
uint64_t len;
|
|
unsigned minor = 0;
|
|
int error = 0;
|
|
int idx;
|
|
uint64_t hash = zvol_name_hash(name);
|
|
|
|
if (zvol_inhibit_dev)
|
|
return (0);
|
|
|
|
idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
|
|
if (idx < 0)
|
|
return (SET_ERROR(-idx));
|
|
minor = idx << ZVOL_MINOR_BITS;
|
|
|
|
zv = zvol_find_by_name_hash(name, hash, RW_NONE);
|
|
if (zv) {
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
mutex_exit(&zv->zv_state_lock);
|
|
ida_simple_remove(&zvol_ida, idx);
|
|
return (SET_ERROR(EEXIST));
|
|
}
|
|
|
|
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
|
|
|
|
error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
|
|
if (error)
|
|
goto out_doi;
|
|
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
zv = zvol_alloc(MKDEV(zvol_major, minor), name);
|
|
if (zv == NULL) {
|
|
error = SET_ERROR(EAGAIN);
|
|
goto out_dmu_objset_disown;
|
|
}
|
|
zv->zv_hash = hash;
|
|
|
|
if (dmu_objset_is_snapshot(os))
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
|
|
zv->zv_volblocksize = doi->doi_data_block_size;
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_objset = os;
|
|
|
|
set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
|
|
|
|
blk_queue_max_hw_sectors(zv->zv_queue, (DMU_MAX_ACCESS / 4) >> 9);
|
|
blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
|
|
blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
|
|
blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
|
|
blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
|
|
blk_queue_max_discard_sectors(zv->zv_queue,
|
|
(zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
|
|
blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
|
|
blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_queue);
|
|
#ifdef QUEUE_FLAG_NONROT
|
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_queue);
|
|
#endif
|
|
#ifdef QUEUE_FLAG_ADD_RANDOM
|
|
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_queue);
|
|
#endif
|
|
|
|
if (spa_writeable(dmu_objset_spa(os))) {
|
|
if (zil_replay_disable)
|
|
zil_destroy(dmu_objset_zil(os), B_FALSE);
|
|
else
|
|
zil_replay(os, zv, zvol_replay_vector);
|
|
}
|
|
ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
|
|
dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
|
|
|
|
/*
|
|
* When udev detects the addition of the device it will immediately
|
|
* invoke blkid(8) to determine the type of content on the device.
|
|
* Prefetching the blocks commonly scanned by blkid(8) will speed
|
|
* up this process.
|
|
*/
|
|
len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
|
|
if (len > 0) {
|
|
dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
|
|
dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
|
|
ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
|
|
zv->zv_objset = NULL;
|
|
out_dmu_objset_disown:
|
|
dmu_objset_disown(os, B_TRUE, FTAG);
|
|
out_doi:
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
|
|
if (error == 0) {
|
|
rw_enter(&zvol_state_lock, RW_WRITER);
|
|
zvol_insert(zv);
|
|
rw_exit(&zvol_state_lock);
|
|
add_disk(zv->zv_disk);
|
|
} else {
|
|
ida_simple_remove(&zvol_ida, idx);
|
|
}
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Rename a block device minor mode for the specified volume.
|
|
*/
|
|
static void
|
|
zvol_rename_minor(zvol_state_t *zv, const char *newname)
|
|
{
|
|
int readonly = get_disk_ro(zv->zv_disk);
|
|
|
|
ASSERT(RW_LOCK_HELD(&zvol_state_lock));
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
|
|
strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
|
|
|
|
/* move to new hashtable entry */
|
|
zv->zv_hash = zvol_name_hash(zv->zv_name);
|
|
hlist_del(&zv->zv_hlink);
|
|
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
|
|
|
|
/*
|
|
* The block device's read-only state is briefly changed causing
|
|
* a KOBJ_CHANGE uevent to be issued. This ensures udev detects
|
|
* the name change and fixes the symlinks. This does not change
|
|
* ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
|
|
* changes. This would normally be done using kobject_uevent() but
|
|
* that is a GPL-only symbol which is why we need this workaround.
|
|
*/
|
|
set_disk_ro(zv->zv_disk, !readonly);
|
|
set_disk_ro(zv->zv_disk, readonly);
|
|
}
|
|
|
|
typedef struct minors_job {
|
|
list_t *list;
|
|
list_node_t link;
|
|
/* input */
|
|
char *name;
|
|
/* output */
|
|
int error;
|
|
} minors_job_t;
|
|
|
|
/*
|
|
* Prefetch zvol dnodes for the minors_job
|
|
*/
|
|
static void
|
|
zvol_prefetch_minors_impl(void *arg)
|
|
{
|
|
minors_job_t *job = arg;
|
|
char *dsname = job->name;
|
|
objset_t *os = NULL;
|
|
|
|
job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
|
|
FTAG, &os);
|
|
if (job->error == 0) {
|
|
dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
|
|
dmu_objset_disown(os, B_TRUE, FTAG);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mask errors to continue dmu_objset_find() traversal
|
|
*/
|
|
static int
|
|
zvol_create_snap_minor_cb(const char *dsname, void *arg)
|
|
{
|
|
minors_job_t *j = arg;
|
|
list_t *minors_list = j->list;
|
|
const char *name = j->name;
|
|
|
|
ASSERT0(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
/* skip the designated dataset */
|
|
if (name && strcmp(dsname, name) == 0)
|
|
return (0);
|
|
|
|
/* at this point, the dsname should name a snapshot */
|
|
if (strchr(dsname, '@') == 0) {
|
|
dprintf("zvol_create_snap_minor_cb(): "
|
|
"%s is not a shapshot name\n", dsname);
|
|
} else {
|
|
minors_job_t *job;
|
|
char *n = strdup(dsname);
|
|
if (n == NULL)
|
|
return (0);
|
|
|
|
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
|
|
job->name = n;
|
|
job->list = minors_list;
|
|
job->error = 0;
|
|
list_insert_tail(minors_list, job);
|
|
/* don't care if dispatch fails, because job->error is 0 */
|
|
taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
|
|
TQ_SLEEP);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Mask errors to continue dmu_objset_find() traversal
|
|
*/
|
|
static int
|
|
zvol_create_minors_cb(const char *dsname, void *arg)
|
|
{
|
|
uint64_t snapdev;
|
|
int error;
|
|
list_t *minors_list = arg;
|
|
|
|
ASSERT0(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
|
|
if (error)
|
|
return (0);
|
|
|
|
/*
|
|
* Given the name and the 'snapdev' property, create device minor nodes
|
|
* with the linkages to zvols/snapshots as needed.
|
|
* If the name represents a zvol, create a minor node for the zvol, then
|
|
* check if its snapshots are 'visible', and if so, iterate over the
|
|
* snapshots and create device minor nodes for those.
|
|
*/
|
|
if (strchr(dsname, '@') == 0) {
|
|
minors_job_t *job;
|
|
char *n = strdup(dsname);
|
|
if (n == NULL)
|
|
return (0);
|
|
|
|
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
|
|
job->name = n;
|
|
job->list = minors_list;
|
|
job->error = 0;
|
|
list_insert_tail(minors_list, job);
|
|
/* don't care if dispatch fails, because job->error is 0 */
|
|
taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
|
|
TQ_SLEEP);
|
|
|
|
if (snapdev == ZFS_SNAPDEV_VISIBLE) {
|
|
/*
|
|
* traverse snapshots only, do not traverse children,
|
|
* and skip the 'dsname'
|
|
*/
|
|
error = dmu_objset_find((char *)dsname,
|
|
zvol_create_snap_minor_cb, (void *)job,
|
|
DS_FIND_SNAPSHOTS);
|
|
}
|
|
} else {
|
|
dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
|
|
dsname);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create minors for the specified dataset, including children and snapshots.
|
|
* Pay attention to the 'snapdev' property and iterate over the snapshots
|
|
* only if they are 'visible'. This approach allows one to assure that the
|
|
* snapshot metadata is read from disk only if it is needed.
|
|
*
|
|
* The name can represent a dataset to be recursively scanned for zvols and
|
|
* their snapshots, or a single zvol snapshot. If the name represents a
|
|
* dataset, the scan is performed in two nested stages:
|
|
* - scan the dataset for zvols, and
|
|
* - for each zvol, create a minor node, then check if the zvol's snapshots
|
|
* are 'visible', and only then iterate over the snapshots if needed
|
|
*
|
|
* If the name represents a snapshot, a check is performed if the snapshot is
|
|
* 'visible' (which also verifies that the parent is a zvol), and if so,
|
|
* a minor node for that snapshot is created.
|
|
*/
|
|
static int
|
|
zvol_create_minors_impl(const char *name)
|
|
{
|
|
int error = 0;
|
|
fstrans_cookie_t cookie;
|
|
char *atp, *parent;
|
|
list_t minors_list;
|
|
minors_job_t *job;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return (0);
|
|
|
|
/*
|
|
* This is the list for prefetch jobs. Whenever we found a match
|
|
* during dmu_objset_find, we insert a minors_job to the list and do
|
|
* taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
|
|
* any lock because all list operation is done on the current thread.
|
|
*
|
|
* We will use this list to do zvol_create_minor_impl after prefetch
|
|
* so we don't have to traverse using dmu_objset_find again.
|
|
*/
|
|
list_create(&minors_list, sizeof (minors_job_t),
|
|
offsetof(minors_job_t, link));
|
|
|
|
parent = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
(void) strlcpy(parent, name, MAXPATHLEN);
|
|
|
|
if ((atp = strrchr(parent, '@')) != NULL) {
|
|
uint64_t snapdev;
|
|
|
|
*atp = '\0';
|
|
error = dsl_prop_get_integer(parent, "snapdev",
|
|
&snapdev, NULL);
|
|
|
|
if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
|
|
error = zvol_create_minor_impl(name);
|
|
} else {
|
|
cookie = spl_fstrans_mark();
|
|
error = dmu_objset_find(parent, zvol_create_minors_cb,
|
|
&minors_list, DS_FIND_CHILDREN);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
kmem_free(parent, MAXPATHLEN);
|
|
taskq_wait_outstanding(system_taskq, 0);
|
|
|
|
/*
|
|
* Prefetch is completed, we can do zvol_create_minor_impl
|
|
* sequentially.
|
|
*/
|
|
while ((job = list_head(&minors_list)) != NULL) {
|
|
list_remove(&minors_list, job);
|
|
if (!job->error)
|
|
zvol_create_minor_impl(job->name);
|
|
strfree(job->name);
|
|
kmem_free(job, sizeof (minors_job_t));
|
|
}
|
|
|
|
list_destroy(&minors_list);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Remove minors for specified dataset including children and snapshots.
|
|
*/
|
|
static void
|
|
zvol_remove_minors_impl(const char *name)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
int namelen = ((name) ? strlen(name) : 0);
|
|
taskqid_t t, tid = TASKQID_INVALID;
|
|
list_t free_list;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
list_create(&free_list, sizeof (zvol_state_t),
|
|
offsetof(zvol_state_t, zv_next));
|
|
|
|
rw_enter(&zvol_state_lock, RW_WRITER);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
|
|
(strncmp(zv->zv_name, name, namelen) == 0 &&
|
|
(zv->zv_name[namelen] == '/' ||
|
|
zv->zv_name[namelen] == '@'))) {
|
|
/*
|
|
* By holding zv_state_lock here, we guarantee that no
|
|
* one is currently using this zv
|
|
*/
|
|
|
|
/* If in use, leave alone */
|
|
if (zv->zv_open_count > 0 ||
|
|
atomic_read(&zv->zv_suspend_ref)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
continue;
|
|
}
|
|
|
|
zvol_remove(zv);
|
|
|
|
/*
|
|
* Cleared while holding zvol_state_lock as a writer
|
|
* which will prevent zvol_open() from opening it.
|
|
*/
|
|
zv->zv_disk->private_data = NULL;
|
|
|
|
/* Drop zv_state_lock before zvol_free() */
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
/* Try parallel zv_free, if failed do it in place */
|
|
t = taskq_dispatch(system_taskq, zvol_free, zv,
|
|
TQ_SLEEP);
|
|
if (t == TASKQID_INVALID)
|
|
list_insert_head(&free_list, zv);
|
|
else
|
|
tid = t;
|
|
} else {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
/* Drop zvol_state_lock before calling zvol_free() */
|
|
while ((zv = list_head(&free_list)) != NULL) {
|
|
list_remove(&free_list, zv);
|
|
zvol_free(zv);
|
|
}
|
|
|
|
if (tid != TASKQID_INVALID)
|
|
taskq_wait_outstanding(system_taskq, tid);
|
|
}
|
|
|
|
/* Remove minor for this specific volume only */
|
|
static void
|
|
zvol_remove_minor_impl(const char *name)
|
|
{
|
|
zvol_state_t *zv = NULL, *zv_next;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
rw_enter(&zvol_state_lock, RW_WRITER);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
if (strcmp(zv->zv_name, name) == 0) {
|
|
/*
|
|
* By holding zv_state_lock here, we guarantee that no
|
|
* one is currently using this zv
|
|
*/
|
|
|
|
/* If in use, leave alone */
|
|
if (zv->zv_open_count > 0 ||
|
|
atomic_read(&zv->zv_suspend_ref)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
continue;
|
|
}
|
|
zvol_remove(zv);
|
|
|
|
/*
|
|
* Cleared while holding zvol_state_lock as a writer
|
|
* which will prevent zvol_open() from opening it.
|
|
*/
|
|
zv->zv_disk->private_data = NULL;
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
break;
|
|
} else {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
}
|
|
|
|
/* Drop zvol_state_lock before calling zvol_free() */
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
if (zv != NULL)
|
|
zvol_free(zv);
|
|
}
|
|
|
|
/*
|
|
* Rename minors for specified dataset including children and snapshots.
|
|
*/
|
|
static void
|
|
zvol_rename_minors_impl(const char *oldname, const char *newname)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
int oldnamelen, newnamelen;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
oldnamelen = strlen(oldname);
|
|
newnamelen = strlen(newname);
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
|
|
if (strcmp(zv->zv_name, oldname) == 0) {
|
|
zvol_rename_minor(zv, newname);
|
|
} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
|
|
(zv->zv_name[oldnamelen] == '/' ||
|
|
zv->zv_name[oldnamelen] == '@')) {
|
|
char *name = kmem_asprintf("%s%c%s", newname,
|
|
zv->zv_name[oldnamelen],
|
|
zv->zv_name + oldnamelen + 1);
|
|
zvol_rename_minor(zv, name);
|
|
strfree(name);
|
|
}
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
|
|
rw_exit(&zvol_state_lock);
|
|
}
|
|
|
|
typedef struct zvol_snapdev_cb_arg {
|
|
uint64_t snapdev;
|
|
} zvol_snapdev_cb_arg_t;
|
|
|
|
static int
|
|
zvol_set_snapdev_cb(const char *dsname, void *param)
|
|
{
|
|
zvol_snapdev_cb_arg_t *arg = param;
|
|
|
|
if (strchr(dsname, '@') == NULL)
|
|
return (0);
|
|
|
|
switch (arg->snapdev) {
|
|
case ZFS_SNAPDEV_VISIBLE:
|
|
(void) zvol_create_minor_impl(dsname);
|
|
break;
|
|
case ZFS_SNAPDEV_HIDDEN:
|
|
(void) zvol_remove_minor_impl(dsname);
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zvol_set_snapdev_impl(char *name, uint64_t snapdev)
|
|
{
|
|
zvol_snapdev_cb_arg_t arg = {snapdev};
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
/*
|
|
* The zvol_set_snapdev_sync() sets snapdev appropriately
|
|
* in the dataset hierarchy. Here, we only scan snapshots.
|
|
*/
|
|
dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
typedef struct zvol_volmode_cb_arg {
|
|
uint64_t volmode;
|
|
} zvol_volmode_cb_arg_t;
|
|
|
|
static void
|
|
zvol_set_volmode_impl(char *name, uint64_t volmode)
|
|
{
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
|
|
if (strchr(name, '@') != NULL)
|
|
return;
|
|
|
|
/*
|
|
* It's unfortunate we need to remove minors before we create new ones:
|
|
* this is necessary because our backing gendisk (zvol_state->zv_disk)
|
|
* coule be different when we set, for instance, volmode from "geom"
|
|
* to "dev" (or vice versa).
|
|
* A possible optimization is to modify our consumers so we don't get
|
|
* called when "volmode" does not change.
|
|
*/
|
|
switch (volmode) {
|
|
case ZFS_VOLMODE_NONE:
|
|
(void) zvol_remove_minor_impl(name);
|
|
break;
|
|
case ZFS_VOLMODE_GEOM:
|
|
case ZFS_VOLMODE_DEV:
|
|
(void) zvol_remove_minor_impl(name);
|
|
(void) zvol_create_minor_impl(name);
|
|
break;
|
|
case ZFS_VOLMODE_DEFAULT:
|
|
(void) zvol_remove_minor_impl(name);
|
|
if (zvol_volmode == ZFS_VOLMODE_NONE)
|
|
break;
|
|
else /* if zvol_volmode is invalid defaults to "geom" */
|
|
(void) zvol_create_minor_impl(name);
|
|
break;
|
|
}
|
|
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
static zvol_task_t *
|
|
zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
|
|
uint64_t value)
|
|
{
|
|
zvol_task_t *task;
|
|
char *delim;
|
|
|
|
/* Never allow tasks on hidden names. */
|
|
if (name1[0] == '$')
|
|
return (NULL);
|
|
|
|
task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
|
|
task->op = op;
|
|
task->value = value;
|
|
delim = strchr(name1, '/');
|
|
strlcpy(task->pool, name1, delim ? (delim - name1 + 1) : MAXNAMELEN);
|
|
|
|
strlcpy(task->name1, name1, MAXNAMELEN);
|
|
if (name2 != NULL)
|
|
strlcpy(task->name2, name2, MAXNAMELEN);
|
|
|
|
return (task);
|
|
}
|
|
|
|
static void
|
|
zvol_task_free(zvol_task_t *task)
|
|
{
|
|
kmem_free(task, sizeof (zvol_task_t));
|
|
}
|
|
|
|
/*
|
|
* The worker thread function performed asynchronously.
|
|
*/
|
|
static void
|
|
zvol_task_cb(void *param)
|
|
{
|
|
zvol_task_t *task = (zvol_task_t *)param;
|
|
|
|
switch (task->op) {
|
|
case ZVOL_ASYNC_CREATE_MINORS:
|
|
(void) zvol_create_minors_impl(task->name1);
|
|
break;
|
|
case ZVOL_ASYNC_REMOVE_MINORS:
|
|
zvol_remove_minors_impl(task->name1);
|
|
break;
|
|
case ZVOL_ASYNC_RENAME_MINORS:
|
|
zvol_rename_minors_impl(task->name1, task->name2);
|
|
break;
|
|
case ZVOL_ASYNC_SET_SNAPDEV:
|
|
zvol_set_snapdev_impl(task->name1, task->value);
|
|
break;
|
|
case ZVOL_ASYNC_SET_VOLMODE:
|
|
zvol_set_volmode_impl(task->name1, task->value);
|
|
break;
|
|
default:
|
|
VERIFY(0);
|
|
break;
|
|
}
|
|
|
|
zvol_task_free(task);
|
|
}
|
|
|
|
typedef struct zvol_set_prop_int_arg {
|
|
const char *zsda_name;
|
|
uint64_t zsda_value;
|
|
zprop_source_t zsda_source;
|
|
dmu_tx_t *zsda_tx;
|
|
} zvol_set_prop_int_arg_t;
|
|
|
|
/*
|
|
* Sanity check the dataset for safe use by the sync task. No additional
|
|
* conditions are imposed.
|
|
*/
|
|
static int
|
|
zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
int error;
|
|
|
|
error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
|
{
|
|
char dsname[MAXNAMELEN];
|
|
zvol_task_t *task;
|
|
uint64_t snapdev;
|
|
|
|
dsl_dataset_name(ds, dsname);
|
|
if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
|
|
return (0);
|
|
task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
|
|
if (task == NULL)
|
|
return (0);
|
|
|
|
(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
|
|
task, TQ_SLEEP);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Traverse all child datasets and apply snapdev appropriately.
|
|
* We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
|
|
* dataset and read the effective "snapdev" on every child in the callback
|
|
* function: this is because the value is not guaranteed to be the same in the
|
|
* whole dataset hierarchy.
|
|
*/
|
|
static void
|
|
zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
dsl_dataset_t *ds;
|
|
int error;
|
|
|
|
VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
|
|
zsda->zsda_tx = tx;
|
|
|
|
error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
|
|
if (error == 0) {
|
|
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
|
|
zsda->zsda_source, sizeof (zsda->zsda_value), 1,
|
|
&zsda->zsda_value, zsda->zsda_tx);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
|
|
zsda, DS_FIND_CHILDREN);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
}
|
|
|
|
int
|
|
zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
|
|
{
|
|
zvol_set_prop_int_arg_t zsda;
|
|
|
|
zsda.zsda_name = ddname;
|
|
zsda.zsda_source = source;
|
|
zsda.zsda_value = snapdev;
|
|
|
|
return (dsl_sync_task(ddname, zvol_set_snapdev_check,
|
|
zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
|
|
}
|
|
|
|
/*
|
|
* Sanity check the dataset for safe use by the sync task. No additional
|
|
* conditions are imposed.
|
|
*/
|
|
static int
|
|
zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
int error;
|
|
|
|
error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
|
{
|
|
char dsname[MAXNAMELEN];
|
|
zvol_task_t *task;
|
|
uint64_t volmode;
|
|
|
|
dsl_dataset_name(ds, dsname);
|
|
if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
|
|
return (0);
|
|
task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
|
|
if (task == NULL)
|
|
return (0);
|
|
|
|
(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
|
|
task, TQ_SLEEP);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Traverse all child datasets and apply volmode appropriately.
|
|
* We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
|
|
* dataset and read the effective "volmode" on every child in the callback
|
|
* function: this is because the value is not guaranteed to be the same in the
|
|
* whole dataset hierarchy.
|
|
*/
|
|
static void
|
|
zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
dsl_dataset_t *ds;
|
|
int error;
|
|
|
|
VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
|
|
zsda->zsda_tx = tx;
|
|
|
|
error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
|
|
if (error == 0) {
|
|
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
|
|
zsda->zsda_source, sizeof (zsda->zsda_value), 1,
|
|
&zsda->zsda_value, zsda->zsda_tx);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
|
|
dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
|
|
zsda, DS_FIND_CHILDREN);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
}
|
|
|
|
int
|
|
zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
|
|
{
|
|
zvol_set_prop_int_arg_t zsda;
|
|
|
|
zsda.zsda_name = ddname;
|
|
zsda.zsda_source = source;
|
|
zsda.zsda_value = volmode;
|
|
|
|
return (dsl_sync_task(ddname, zvol_set_volmode_check,
|
|
zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
|
|
}
|
|
|
|
void
|
|
zvol_create_minors(spa_t *spa, const char *name, boolean_t async)
|
|
{
|
|
zvol_task_t *task;
|
|
taskqid_t id;
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_CREATE_MINORS, name, NULL, ~0ULL);
|
|
if (task == NULL)
|
|
return;
|
|
|
|
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
|
|
if ((async == B_FALSE) && (id != TASKQID_INVALID))
|
|
taskq_wait_id(spa->spa_zvol_taskq, id);
|
|
}
|
|
|
|
void
|
|
zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
|
|
{
|
|
zvol_task_t *task;
|
|
taskqid_t id;
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
|
|
if (task == NULL)
|
|
return;
|
|
|
|
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
|
|
if ((async == B_FALSE) && (id != TASKQID_INVALID))
|
|
taskq_wait_id(spa->spa_zvol_taskq, id);
|
|
}
|
|
|
|
void
|
|
zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
|
|
boolean_t async)
|
|
{
|
|
zvol_task_t *task;
|
|
taskqid_t id;
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
|
|
if (task == NULL)
|
|
return;
|
|
|
|
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
|
|
if ((async == B_FALSE) && (id != TASKQID_INVALID))
|
|
taskq_wait_id(spa->spa_zvol_taskq, id);
|
|
}
|
|
|
|
int
|
|
zvol_init(void)
|
|
{
|
|
int threads = MIN(MAX(zvol_threads, 1), 1024);
|
|
int i, error;
|
|
|
|
list_create(&zvol_state_list, sizeof (zvol_state_t),
|
|
offsetof(zvol_state_t, zv_next));
|
|
rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
|
|
ida_init(&zvol_ida);
|
|
|
|
zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
|
|
threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
|
|
if (zvol_taskq == NULL) {
|
|
printk(KERN_INFO "ZFS: taskq_create() failed\n");
|
|
error = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
|
|
KM_SLEEP);
|
|
if (!zvol_htable) {
|
|
error = -ENOMEM;
|
|
goto out_taskq;
|
|
}
|
|
for (i = 0; i < ZVOL_HT_SIZE; i++)
|
|
INIT_HLIST_HEAD(&zvol_htable[i]);
|
|
|
|
error = register_blkdev(zvol_major, ZVOL_DRIVER);
|
|
if (error) {
|
|
printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
|
|
goto out_free;
|
|
}
|
|
|
|
blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
|
|
THIS_MODULE, zvol_probe, NULL, NULL);
|
|
|
|
return (0);
|
|
|
|
out_free:
|
|
kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
|
|
out_taskq:
|
|
taskq_destroy(zvol_taskq);
|
|
out:
|
|
ida_destroy(&zvol_ida);
|
|
rw_destroy(&zvol_state_lock);
|
|
list_destroy(&zvol_state_list);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
void
|
|
zvol_fini(void)
|
|
{
|
|
zvol_remove_minors_impl(NULL);
|
|
|
|
blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
|
|
unregister_blkdev(zvol_major, ZVOL_DRIVER);
|
|
kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
|
|
|
|
taskq_destroy(zvol_taskq);
|
|
list_destroy(&zvol_state_list);
|
|
rw_destroy(&zvol_state_lock);
|
|
|
|
ida_destroy(&zvol_ida);
|
|
}
|
|
|
|
/* BEGIN CSTYLED */
|
|
module_param(zvol_inhibit_dev, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
|
|
|
|
module_param(zvol_major, uint, 0444);
|
|
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
|
|
|
|
module_param(zvol_threads, uint, 0444);
|
|
MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
|
|
|
|
module_param(zvol_request_sync, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
|
|
|
|
module_param(zvol_max_discard_blocks, ulong, 0444);
|
|
MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
|
|
|
|
module_param(zvol_prefetch_bytes, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
|
|
|
|
module_param(zvol_volmode, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
|
|
/* END CSTYLED */
|