mirror_zfs/cmd/zfs/zfs_main.c
Umer Saleem a100a195fa
Add support for zfs mount -R <filesystem>
This commit adds support for mounting a dataset along with all of
it's children with '-R' flag for zfs mount. There can be scenarios
where we want to mount all datasets under one hierarchy instead of
mounting all datasets present on system with '-a' flag.

'-R' flag should work on all root and non-root datasets. Usage
information and man page has been updated for zfs mount. A test
for verifying the behavior for '-R' flag is also added.

Reviewed-by: Ameer Hamza <ahamza@ixsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Umer Saleem <usaleem@ixsystems.com>
Closes #16015
2024-04-11 15:10:24 -07:00

9049 lines
221 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
* Copyright 2012 Milan Jurik. All rights reserved.
* Copyright (c) 2012, Joyent, Inc. All rights reserved.
* Copyright (c) 2013 Steven Hartland. All rights reserved.
* Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
* Copyright 2016 Nexenta Systems, Inc.
* Copyright (c) 2019 Datto Inc.
* Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>
* Copyright 2019 Joyent, Inc.
* Copyright (c) 2019, 2020 by Christian Schwarz. All rights reserved.
*/
#include <assert.h>
#include <ctype.h>
#include <sys/debug.h>
#include <errno.h>
#include <getopt.h>
#include <libgen.h>
#include <libintl.h>
#include <libuutil.h>
#include <libnvpair.h>
#include <locale.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <zone.h>
#include <grp.h>
#include <pwd.h>
#include <umem.h>
#include <pthread.h>
#include <signal.h>
#include <sys/list.h>
#include <sys/mkdev.h>
#include <sys/mntent.h>
#include <sys/mnttab.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/fs/zfs.h>
#include <sys/systeminfo.h>
#include <sys/types.h>
#include <time.h>
#include <sys/zfs_project.h>
#include <libzfs.h>
#include <libzfs_core.h>
#include <zfs_prop.h>
#include <zfs_deleg.h>
#include <libzutil.h>
#ifdef HAVE_IDMAP
#include <aclutils.h>
#include <directory.h>
#endif /* HAVE_IDMAP */
#include "zfs_iter.h"
#include "zfs_util.h"
#include "zfs_comutil.h"
#include "zfs_projectutil.h"
libzfs_handle_t *g_zfs;
static char history_str[HIS_MAX_RECORD_LEN];
static boolean_t log_history = B_TRUE;
static int zfs_do_clone(int argc, char **argv);
static int zfs_do_create(int argc, char **argv);
static int zfs_do_destroy(int argc, char **argv);
static int zfs_do_get(int argc, char **argv);
static int zfs_do_inherit(int argc, char **argv);
static int zfs_do_list(int argc, char **argv);
static int zfs_do_mount(int argc, char **argv);
static int zfs_do_rename(int argc, char **argv);
static int zfs_do_rollback(int argc, char **argv);
static int zfs_do_set(int argc, char **argv);
static int zfs_do_upgrade(int argc, char **argv);
static int zfs_do_snapshot(int argc, char **argv);
static int zfs_do_unmount(int argc, char **argv);
static int zfs_do_share(int argc, char **argv);
static int zfs_do_unshare(int argc, char **argv);
static int zfs_do_send(int argc, char **argv);
static int zfs_do_receive(int argc, char **argv);
static int zfs_do_promote(int argc, char **argv);
static int zfs_do_userspace(int argc, char **argv);
static int zfs_do_allow(int argc, char **argv);
static int zfs_do_unallow(int argc, char **argv);
static int zfs_do_hold(int argc, char **argv);
static int zfs_do_holds(int argc, char **argv);
static int zfs_do_release(int argc, char **argv);
static int zfs_do_diff(int argc, char **argv);
static int zfs_do_bookmark(int argc, char **argv);
static int zfs_do_channel_program(int argc, char **argv);
static int zfs_do_load_key(int argc, char **argv);
static int zfs_do_unload_key(int argc, char **argv);
static int zfs_do_change_key(int argc, char **argv);
static int zfs_do_project(int argc, char **argv);
static int zfs_do_version(int argc, char **argv);
static int zfs_do_redact(int argc, char **argv);
static int zfs_do_wait(int argc, char **argv);
#ifdef __FreeBSD__
static int zfs_do_jail(int argc, char **argv);
static int zfs_do_unjail(int argc, char **argv);
#endif
#ifdef __linux__
static int zfs_do_zone(int argc, char **argv);
static int zfs_do_unzone(int argc, char **argv);
#endif
static int zfs_do_help(int argc, char **argv);
/*
* Enable a reasonable set of defaults for libumem debugging on DEBUG builds.
*/
#ifdef DEBUG
const char *
_umem_debug_init(void)
{
return ("default,verbose"); /* $UMEM_DEBUG setting */
}
const char *
_umem_logging_init(void)
{
return ("fail,contents"); /* $UMEM_LOGGING setting */
}
#endif
typedef enum {
HELP_CLONE,
HELP_CREATE,
HELP_DESTROY,
HELP_GET,
HELP_INHERIT,
HELP_UPGRADE,
HELP_LIST,
HELP_MOUNT,
HELP_PROMOTE,
HELP_RECEIVE,
HELP_RENAME,
HELP_ROLLBACK,
HELP_SEND,
HELP_SET,
HELP_SHARE,
HELP_SNAPSHOT,
HELP_UNMOUNT,
HELP_UNSHARE,
HELP_ALLOW,
HELP_UNALLOW,
HELP_USERSPACE,
HELP_GROUPSPACE,
HELP_PROJECTSPACE,
HELP_PROJECT,
HELP_HOLD,
HELP_HOLDS,
HELP_RELEASE,
HELP_DIFF,
HELP_BOOKMARK,
HELP_CHANNEL_PROGRAM,
HELP_LOAD_KEY,
HELP_UNLOAD_KEY,
HELP_CHANGE_KEY,
HELP_VERSION,
HELP_REDACT,
HELP_JAIL,
HELP_UNJAIL,
HELP_WAIT,
HELP_ZONE,
HELP_UNZONE,
} zfs_help_t;
typedef struct zfs_command {
const char *name;
int (*func)(int argc, char **argv);
zfs_help_t usage;
} zfs_command_t;
/*
* Master command table. Each ZFS command has a name, associated function, and
* usage message. The usage messages need to be internationalized, so we have
* to have a function to return the usage message based on a command index.
*
* These commands are organized according to how they are displayed in the usage
* message. An empty command (one with a NULL name) indicates an empty line in
* the generic usage message.
*/
static zfs_command_t command_table[] = {
{ "version", zfs_do_version, HELP_VERSION },
{ NULL },
{ "create", zfs_do_create, HELP_CREATE },
{ "destroy", zfs_do_destroy, HELP_DESTROY },
{ NULL },
{ "snapshot", zfs_do_snapshot, HELP_SNAPSHOT },
{ "rollback", zfs_do_rollback, HELP_ROLLBACK },
{ "clone", zfs_do_clone, HELP_CLONE },
{ "promote", zfs_do_promote, HELP_PROMOTE },
{ "rename", zfs_do_rename, HELP_RENAME },
{ "bookmark", zfs_do_bookmark, HELP_BOOKMARK },
{ "program", zfs_do_channel_program, HELP_CHANNEL_PROGRAM },
{ NULL },
{ "list", zfs_do_list, HELP_LIST },
{ NULL },
{ "set", zfs_do_set, HELP_SET },
{ "get", zfs_do_get, HELP_GET },
{ "inherit", zfs_do_inherit, HELP_INHERIT },
{ "upgrade", zfs_do_upgrade, HELP_UPGRADE },
{ NULL },
{ "userspace", zfs_do_userspace, HELP_USERSPACE },
{ "groupspace", zfs_do_userspace, HELP_GROUPSPACE },
{ "projectspace", zfs_do_userspace, HELP_PROJECTSPACE },
{ NULL },
{ "project", zfs_do_project, HELP_PROJECT },
{ NULL },
{ "mount", zfs_do_mount, HELP_MOUNT },
{ "unmount", zfs_do_unmount, HELP_UNMOUNT },
{ "share", zfs_do_share, HELP_SHARE },
{ "unshare", zfs_do_unshare, HELP_UNSHARE },
{ NULL },
{ "send", zfs_do_send, HELP_SEND },
{ "receive", zfs_do_receive, HELP_RECEIVE },
{ NULL },
{ "allow", zfs_do_allow, HELP_ALLOW },
{ NULL },
{ "unallow", zfs_do_unallow, HELP_UNALLOW },
{ NULL },
{ "hold", zfs_do_hold, HELP_HOLD },
{ "holds", zfs_do_holds, HELP_HOLDS },
{ "release", zfs_do_release, HELP_RELEASE },
{ "diff", zfs_do_diff, HELP_DIFF },
{ "load-key", zfs_do_load_key, HELP_LOAD_KEY },
{ "unload-key", zfs_do_unload_key, HELP_UNLOAD_KEY },
{ "change-key", zfs_do_change_key, HELP_CHANGE_KEY },
{ "redact", zfs_do_redact, HELP_REDACT },
{ "wait", zfs_do_wait, HELP_WAIT },
#ifdef __FreeBSD__
{ "jail", zfs_do_jail, HELP_JAIL },
{ "unjail", zfs_do_unjail, HELP_UNJAIL },
#endif
#ifdef __linux__
{ "zone", zfs_do_zone, HELP_ZONE },
{ "unzone", zfs_do_unzone, HELP_UNZONE },
#endif
};
#define NCOMMAND (sizeof (command_table) / sizeof (command_table[0]))
zfs_command_t *current_command;
static const char *
get_usage(zfs_help_t idx)
{
switch (idx) {
case HELP_CLONE:
return (gettext("\tclone [-p] [-o property=value] ... "
"<snapshot> <filesystem|volume>\n"));
case HELP_CREATE:
return (gettext("\tcreate [-Pnpuv] [-o property=value] ... "
"<filesystem>\n"
"\tcreate [-Pnpsv] [-b blocksize] [-o property=value] ... "
"-V <size> <volume>\n"));
case HELP_DESTROY:
return (gettext("\tdestroy [-fnpRrv] <filesystem|volume>\n"
"\tdestroy [-dnpRrv] "
"<filesystem|volume>@<snap>[%<snap>][,...]\n"
"\tdestroy <filesystem|volume>#<bookmark>\n"));
case HELP_GET:
return (gettext("\tget [-rHp] [-d max] "
"[-o \"all\" | field[,...]]\n"
"\t [-t type[,...]] [-s source[,...]]\n"
"\t <\"all\" | property[,...]> "
"[filesystem|volume|snapshot|bookmark] ...\n"));
case HELP_INHERIT:
return (gettext("\tinherit [-rS] <property> "
"<filesystem|volume|snapshot> ...\n"));
case HELP_UPGRADE:
return (gettext("\tupgrade [-v]\n"
"\tupgrade [-r] [-V version] <-a | filesystem ...>\n"));
case HELP_LIST:
return (gettext("\tlist [-Hp] [-r|-d max] [-o property[,...]] "
"[-s property]...\n\t [-S property]... [-t type[,...]] "
"[filesystem|volume|snapshot] ...\n"));
case HELP_MOUNT:
return (gettext("\tmount\n"
"\tmount [-flvO] [-o opts] <-a|-R filesystem|"
"filesystem>\n"));
case HELP_PROMOTE:
return (gettext("\tpromote <clone-filesystem>\n"));
case HELP_RECEIVE:
return (gettext("\treceive [-vMnsFhu] "
"[-o <property>=<value>] ... [-x <property>] ...\n"
"\t <filesystem|volume|snapshot>\n"
"\treceive [-vMnsFhu] [-o <property>=<value>] ... "
"[-x <property>] ... \n"
"\t [-d | -e] <filesystem>\n"
"\treceive -A <filesystem|volume>\n"));
case HELP_RENAME:
return (gettext("\trename [-f] <filesystem|volume|snapshot> "
"<filesystem|volume|snapshot>\n"
"\trename -p [-f] <filesystem|volume> <filesystem|volume>\n"
"\trename -u [-f] <filesystem> <filesystem>\n"
"\trename -r <snapshot> <snapshot>\n"));
case HELP_ROLLBACK:
return (gettext("\trollback [-rRf] <snapshot>\n"));
case HELP_SEND:
return (gettext("\tsend [-DLPbcehnpsVvw] "
"[-i|-I snapshot]\n"
"\t [-R [-X dataset[,dataset]...]] <snapshot>\n"
"\tsend [-DnVvPLecw] [-i snapshot|bookmark] "
"<filesystem|volume|snapshot>\n"
"\tsend [-DnPpVvLec] [-i bookmark|snapshot] "
"--redact <bookmark> <snapshot>\n"
"\tsend [-nVvPe] -t <receive_resume_token>\n"
"\tsend [-PnVv] --saved filesystem\n"));
case HELP_SET:
return (gettext("\tset [-u] <property=value> ... "
"<filesystem|volume|snapshot> ...\n"));
case HELP_SHARE:
return (gettext("\tshare [-l] <-a [nfs|smb] | filesystem>\n"));
case HELP_SNAPSHOT:
return (gettext("\tsnapshot [-r] [-o property=value] ... "
"<filesystem|volume>@<snap> ...\n"));
case HELP_UNMOUNT:
return (gettext("\tunmount [-fu] "
"<-a | filesystem|mountpoint>\n"));
case HELP_UNSHARE:
return (gettext("\tunshare "
"<-a [nfs|smb] | filesystem|mountpoint>\n"));
case HELP_ALLOW:
return (gettext("\tallow <filesystem|volume>\n"
"\tallow [-ldug] "
"<\"everyone\"|user|group>[,...] <perm|@setname>[,...]\n"
"\t <filesystem|volume>\n"
"\tallow [-ld] -e <perm|@setname>[,...] "
"<filesystem|volume>\n"
"\tallow -c <perm|@setname>[,...] <filesystem|volume>\n"
"\tallow -s @setname <perm|@setname>[,...] "
"<filesystem|volume>\n"));
case HELP_UNALLOW:
return (gettext("\tunallow [-rldug] "
"<\"everyone\"|user|group>[,...]\n"
"\t [<perm|@setname>[,...]] <filesystem|volume>\n"
"\tunallow [-rld] -e [<perm|@setname>[,...]] "
"<filesystem|volume>\n"
"\tunallow [-r] -c [<perm|@setname>[,...]] "
"<filesystem|volume>\n"
"\tunallow [-r] -s @setname [<perm|@setname>[,...]] "
"<filesystem|volume>\n"));
case HELP_USERSPACE:
return (gettext("\tuserspace [-Hinp] [-o field[,...]] "
"[-s field] ...\n"
"\t [-S field] ... [-t type[,...]] "
"<filesystem|snapshot|path>\n"));
case HELP_GROUPSPACE:
return (gettext("\tgroupspace [-Hinp] [-o field[,...]] "
"[-s field] ...\n"
"\t [-S field] ... [-t type[,...]] "
"<filesystem|snapshot|path>\n"));
case HELP_PROJECTSPACE:
return (gettext("\tprojectspace [-Hp] [-o field[,...]] "
"[-s field] ... \n"
"\t [-S field] ... <filesystem|snapshot|path>\n"));
case HELP_PROJECT:
return (gettext("\tproject [-d|-r] <directory|file ...>\n"
"\tproject -c [-0] [-d|-r] [-p id] <directory|file ...>\n"
"\tproject -C [-k] [-r] <directory ...>\n"
"\tproject [-p id] [-r] [-s] <directory ...>\n"));
case HELP_HOLD:
return (gettext("\thold [-r] <tag> <snapshot> ...\n"));
case HELP_HOLDS:
return (gettext("\tholds [-rHp] <snapshot> ...\n"));
case HELP_RELEASE:
return (gettext("\trelease [-r] <tag> <snapshot> ...\n"));
case HELP_DIFF:
return (gettext("\tdiff [-FHth] <snapshot> "
"[snapshot|filesystem]\n"));
case HELP_BOOKMARK:
return (gettext("\tbookmark <snapshot|bookmark> "
"<newbookmark>\n"));
case HELP_CHANNEL_PROGRAM:
return (gettext("\tprogram [-jn] [-t <instruction limit>] "
"[-m <memory limit (b)>]\n"
"\t <pool> <program file> [lua args...]\n"));
case HELP_LOAD_KEY:
return (gettext("\tload-key [-rn] [-L <keylocation>] "
"<-a | filesystem|volume>\n"));
case HELP_UNLOAD_KEY:
return (gettext("\tunload-key [-r] "
"<-a | filesystem|volume>\n"));
case HELP_CHANGE_KEY:
return (gettext("\tchange-key [-l] [-o keyformat=<value>]\n"
"\t [-o keylocation=<value>] [-o pbkdf2iters=<value>]\n"
"\t <filesystem|volume>\n"
"\tchange-key -i [-l] <filesystem|volume>\n"));
case HELP_VERSION:
return (gettext("\tversion\n"));
case HELP_REDACT:
return (gettext("\tredact <snapshot> <bookmark> "
"<redaction_snapshot> ...\n"));
case HELP_JAIL:
return (gettext("\tjail <jailid|jailname> <filesystem>\n"));
case HELP_UNJAIL:
return (gettext("\tunjail <jailid|jailname> <filesystem>\n"));
case HELP_WAIT:
return (gettext("\twait [-t <activity>] <filesystem>\n"));
case HELP_ZONE:
return (gettext("\tzone <nsfile> <filesystem>\n"));
case HELP_UNZONE:
return (gettext("\tunzone <nsfile> <filesystem>\n"));
default:
__builtin_unreachable();
}
}
void
nomem(void)
{
(void) fprintf(stderr, gettext("internal error: out of memory\n"));
exit(1);
}
/*
* Utility function to guarantee malloc() success.
*/
void *
safe_malloc(size_t size)
{
void *data;
if ((data = calloc(1, size)) == NULL)
nomem();
return (data);
}
static void *
safe_realloc(void *data, size_t size)
{
void *newp;
if ((newp = realloc(data, size)) == NULL) {
free(data);
nomem();
}
return (newp);
}
static char *
safe_strdup(const char *str)
{
char *dupstr = strdup(str);
if (dupstr == NULL)
nomem();
return (dupstr);
}
/*
* Callback routine that will print out information for each of
* the properties.
*/
static int
usage_prop_cb(int prop, void *cb)
{
FILE *fp = cb;
(void) fprintf(fp, "\t%-15s ", zfs_prop_to_name(prop));
if (zfs_prop_readonly(prop))
(void) fprintf(fp, " NO ");
else
(void) fprintf(fp, "YES ");
if (zfs_prop_inheritable(prop))
(void) fprintf(fp, " YES ");
else
(void) fprintf(fp, " NO ");
(void) fprintf(fp, "%s\n", zfs_prop_values(prop) ?: "-");
return (ZPROP_CONT);
}
/*
* Display usage message. If we're inside a command, display only the usage for
* that command. Otherwise, iterate over the entire command table and display
* a complete usage message.
*/
static __attribute__((noreturn)) void
usage(boolean_t requested)
{
int i;
boolean_t show_properties = B_FALSE;
FILE *fp = requested ? stdout : stderr;
if (current_command == NULL) {
(void) fprintf(fp, gettext("usage: zfs command args ...\n"));
(void) fprintf(fp,
gettext("where 'command' is one of the following:\n\n"));
for (i = 0; i < NCOMMAND; i++) {
if (command_table[i].name == NULL)
(void) fprintf(fp, "\n");
else
(void) fprintf(fp, "%s",
get_usage(command_table[i].usage));
}
(void) fprintf(fp, gettext("\nEach dataset is of the form: "
"pool/[dataset/]*dataset[@name]\n"));
} else {
(void) fprintf(fp, gettext("usage:\n"));
(void) fprintf(fp, "%s", get_usage(current_command->usage));
}
if (current_command != NULL &&
(strcmp(current_command->name, "set") == 0 ||
strcmp(current_command->name, "get") == 0 ||
strcmp(current_command->name, "inherit") == 0 ||
strcmp(current_command->name, "list") == 0))
show_properties = B_TRUE;
if (show_properties) {
(void) fprintf(fp, "%s",
gettext("\nThe following properties are supported:\n"));
(void) fprintf(fp, "\n\t%-14s %s %s %s\n\n",
"PROPERTY", "EDIT", "INHERIT", "VALUES");
/* Iterate over all properties */
(void) zprop_iter(usage_prop_cb, fp, B_FALSE, B_TRUE,
ZFS_TYPE_DATASET);
(void) fprintf(fp, "\t%-15s ", "userused@...");
(void) fprintf(fp, " NO NO <size>\n");
(void) fprintf(fp, "\t%-15s ", "groupused@...");
(void) fprintf(fp, " NO NO <size>\n");
(void) fprintf(fp, "\t%-15s ", "projectused@...");
(void) fprintf(fp, " NO NO <size>\n");
(void) fprintf(fp, "\t%-15s ", "userobjused@...");
(void) fprintf(fp, " NO NO <size>\n");
(void) fprintf(fp, "\t%-15s ", "groupobjused@...");
(void) fprintf(fp, " NO NO <size>\n");
(void) fprintf(fp, "\t%-15s ", "projectobjused@...");
(void) fprintf(fp, " NO NO <size>\n");
(void) fprintf(fp, "\t%-15s ", "userquota@...");
(void) fprintf(fp, "YES NO <size> | none\n");
(void) fprintf(fp, "\t%-15s ", "groupquota@...");
(void) fprintf(fp, "YES NO <size> | none\n");
(void) fprintf(fp, "\t%-15s ", "projectquota@...");
(void) fprintf(fp, "YES NO <size> | none\n");
(void) fprintf(fp, "\t%-15s ", "userobjquota@...");
(void) fprintf(fp, "YES NO <size> | none\n");
(void) fprintf(fp, "\t%-15s ", "groupobjquota@...");
(void) fprintf(fp, "YES NO <size> | none\n");
(void) fprintf(fp, "\t%-15s ", "projectobjquota@...");
(void) fprintf(fp, "YES NO <size> | none\n");
(void) fprintf(fp, "\t%-15s ", "written@<snap>");
(void) fprintf(fp, " NO NO <size>\n");
(void) fprintf(fp, "\t%-15s ", "written#<bookmark>");
(void) fprintf(fp, " NO NO <size>\n");
(void) fprintf(fp, gettext("\nSizes are specified in bytes "
"with standard units such as K, M, G, etc.\n"));
(void) fprintf(fp, "%s", gettext("\nUser-defined properties "
"can be specified by using a name containing a colon "
"(:).\n"));
(void) fprintf(fp, gettext("\nThe {user|group|project}"
"[obj]{used|quota}@ properties must be appended with\n"
"a user|group|project specifier of one of these forms:\n"
" POSIX name (eg: \"matt\")\n"
" POSIX id (eg: \"126829\")\n"
" SMB name@domain (eg: \"matt@sun\")\n"
" SMB SID (eg: \"S-1-234-567-89\")\n"));
} else {
(void) fprintf(fp,
gettext("\nFor the property list, run: %s\n"),
"zfs set|get");
(void) fprintf(fp,
gettext("\nFor the delegated permission list, run: %s\n"),
"zfs allow|unallow");
(void) fprintf(fp,
gettext("\nFor further help on a command or topic, "
"run: %s\n"), "zfs help [<topic>]");
}
/*
* See comments at end of main().
*/
if (getenv("ZFS_ABORT") != NULL) {
(void) printf("dumping core by request\n");
abort();
}
exit(requested ? 0 : 2);
}
/*
* Take a property=value argument string and add it to the given nvlist.
* Modifies the argument inplace.
*/
static boolean_t
parseprop(nvlist_t *props, char *propname)
{
char *propval;
if ((propval = strchr(propname, '=')) == NULL) {
(void) fprintf(stderr, gettext("missing "
"'=' for property=value argument\n"));
return (B_FALSE);
}
*propval = '\0';
propval++;
if (nvlist_exists(props, propname)) {
(void) fprintf(stderr, gettext("property '%s' "
"specified multiple times\n"), propname);
return (B_FALSE);
}
if (nvlist_add_string(props, propname, propval) != 0)
nomem();
return (B_TRUE);
}
/*
* Take a property name argument and add it to the given nvlist.
* Modifies the argument inplace.
*/
static boolean_t
parsepropname(nvlist_t *props, char *propname)
{
if (strchr(propname, '=') != NULL) {
(void) fprintf(stderr, gettext("invalid character "
"'=' in property argument\n"));
return (B_FALSE);
}
if (nvlist_exists(props, propname)) {
(void) fprintf(stderr, gettext("property '%s' "
"specified multiple times\n"), propname);
return (B_FALSE);
}
if (nvlist_add_boolean(props, propname) != 0)
nomem();
return (B_TRUE);
}
static int
parse_depth(char *opt, int *flags)
{
char *tmp;
int depth;
depth = (int)strtol(opt, &tmp, 0);
if (*tmp) {
(void) fprintf(stderr,
gettext("%s is not an integer\n"), optarg);
usage(B_FALSE);
}
if (depth < 0) {
(void) fprintf(stderr,
gettext("Depth can not be negative.\n"));
usage(B_FALSE);
}
*flags |= (ZFS_ITER_DEPTH_LIMIT|ZFS_ITER_RECURSE);
return (depth);
}
#define PROGRESS_DELAY 2 /* seconds */
static const char *pt_reverse =
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b";
static time_t pt_begin;
static char *pt_header = NULL;
static boolean_t pt_shown;
static void
start_progress_timer(void)
{
pt_begin = time(NULL) + PROGRESS_DELAY;
pt_shown = B_FALSE;
}
static void
set_progress_header(const char *header)
{
assert(pt_header == NULL);
pt_header = safe_strdup(header);
if (pt_shown) {
(void) printf("%s: ", header);
(void) fflush(stdout);
}
}
static void
update_progress(const char *update)
{
if (!pt_shown && time(NULL) > pt_begin) {
int len = strlen(update);
(void) printf("%s: %s%*.*s", pt_header, update, len, len,
pt_reverse);
(void) fflush(stdout);
pt_shown = B_TRUE;
} else if (pt_shown) {
int len = strlen(update);
(void) printf("%s%*.*s", update, len, len, pt_reverse);
(void) fflush(stdout);
}
}
static void
finish_progress(const char *done)
{
if (pt_shown) {
(void) puts(done);
(void) fflush(stdout);
}
free(pt_header);
pt_header = NULL;
}
static int
zfs_mount_and_share(libzfs_handle_t *hdl, const char *dataset, zfs_type_t type)
{
zfs_handle_t *zhp = NULL;
int ret = 0;
zhp = zfs_open(hdl, dataset, type);
if (zhp == NULL)
return (1);
/*
* Volumes may neither be mounted or shared. Potentially in the
* future filesystems detected on these volumes could be mounted.
*/
if (zfs_get_type(zhp) == ZFS_TYPE_VOLUME) {
zfs_close(zhp);
return (0);
}
/*
* Mount and/or share the new filesystem as appropriate. We provide a
* verbose error message to let the user know that their filesystem was
* in fact created, even if we failed to mount or share it.
*
* If the user doesn't want the dataset automatically mounted, then
* skip the mount/share step
*/
if (zfs_prop_valid_for_type(ZFS_PROP_CANMOUNT, type, B_FALSE) &&
zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_ON) {
if (zfs_mount_delegation_check()) {
(void) fprintf(stderr, gettext("filesystem "
"successfully created, but it may only be "
"mounted by root\n"));
ret = 1;
} else if (zfs_mount(zhp, NULL, 0) != 0) {
(void) fprintf(stderr, gettext("filesystem "
"successfully created, but not mounted\n"));
ret = 1;
} else if (zfs_share(zhp, NULL) != 0) {
(void) fprintf(stderr, gettext("filesystem "
"successfully created, but not shared\n"));
ret = 1;
}
zfs_commit_shares(NULL);
}
zfs_close(zhp);
return (ret);
}
/*
* zfs clone [-p] [-o prop=value] ... <snap> <fs | vol>
*
* Given an existing dataset, create a writable copy whose initial contents
* are the same as the source. The newly created dataset maintains a
* dependency on the original; the original cannot be destroyed so long as
* the clone exists.
*
* The '-p' flag creates all the non-existing ancestors of the target first.
*/
static int
zfs_do_clone(int argc, char **argv)
{
zfs_handle_t *zhp = NULL;
boolean_t parents = B_FALSE;
nvlist_t *props;
int ret = 0;
int c;
if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
nomem();
/* check options */
while ((c = getopt(argc, argv, "o:p")) != -1) {
switch (c) {
case 'o':
if (!parseprop(props, optarg)) {
nvlist_free(props);
return (1);
}
break;
case 'p':
parents = B_TRUE;
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
goto usage;
}
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc < 1) {
(void) fprintf(stderr, gettext("missing source dataset "
"argument\n"));
goto usage;
}
if (argc < 2) {
(void) fprintf(stderr, gettext("missing target dataset "
"argument\n"));
goto usage;
}
if (argc > 2) {
(void) fprintf(stderr, gettext("too many arguments\n"));
goto usage;
}
/* open the source dataset */
if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL) {
nvlist_free(props);
return (1);
}
if (parents && zfs_name_valid(argv[1], ZFS_TYPE_FILESYSTEM |
ZFS_TYPE_VOLUME)) {
/*
* Now create the ancestors of the target dataset. If the
* target already exists and '-p' option was used we should not
* complain.
*/
if (zfs_dataset_exists(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM |
ZFS_TYPE_VOLUME)) {
zfs_close(zhp);
nvlist_free(props);
return (0);
}
if (zfs_create_ancestors(g_zfs, argv[1]) != 0) {
zfs_close(zhp);
nvlist_free(props);
return (1);
}
}
/* pass to libzfs */
ret = zfs_clone(zhp, argv[1], props);
/* create the mountpoint if necessary */
if (ret == 0) {
if (log_history) {
(void) zpool_log_history(g_zfs, history_str);
log_history = B_FALSE;
}
ret = zfs_mount_and_share(g_zfs, argv[1], ZFS_TYPE_DATASET);
}
zfs_close(zhp);
nvlist_free(props);
return (!!ret);
usage:
ASSERT3P(zhp, ==, NULL);
nvlist_free(props);
usage(B_FALSE);
return (-1);
}
/*
* Return a default volblocksize for the pool which always uses more than
* half of the data sectors. This primarily applies to dRAID which always
* writes full stripe widths.
*/
static uint64_t
default_volblocksize(zpool_handle_t *zhp, nvlist_t *props)
{
uint64_t volblocksize, asize = SPA_MINBLOCKSIZE;
nvlist_t *tree, **vdevs;
uint_t nvdevs;
nvlist_t *config = zpool_get_config(zhp, NULL);
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &tree) != 0 ||
nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
&vdevs, &nvdevs) != 0) {
return (ZVOL_DEFAULT_BLOCKSIZE);
}
for (int i = 0; i < nvdevs; i++) {
nvlist_t *nv = vdevs[i];
uint64_t ashift, ndata, nparity;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &ashift) != 0)
continue;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA,
&ndata) == 0) {
/* dRAID minimum allocation width */
asize = MAX(asize, ndata * (1ULL << ashift));
} else if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
&nparity) == 0) {
/* raidz minimum allocation width */
if (nparity == 1)
asize = MAX(asize, 2 * (1ULL << ashift));
else
asize = MAX(asize, 4 * (1ULL << ashift));
} else {
/* mirror or (non-redundant) leaf vdev */
asize = MAX(asize, 1ULL << ashift);
}
}
/*
* Calculate the target volblocksize such that more than half
* of the asize is used. The following table is for 4k sectors.
*
* n asize blksz used | n asize blksz used
* -------------------------+---------------------------------
* 1 4,096 8,192 100% | 9 36,864 32,768 88%
* 2 8,192 8,192 100% | 10 40,960 32,768 80%
* 3 12,288 8,192 66% | 11 45,056 32,768 72%
* 4 16,384 16,384 100% | 12 49,152 32,768 66%
* 5 20,480 16,384 80% | 13 53,248 32,768 61%
* 6 24,576 16,384 66% | 14 57,344 32,768 57%
* 7 28,672 16,384 57% | 15 61,440 32,768 53%
* 8 32,768 32,768 100% | 16 65,536 65,636 100%
*
* This is primarily a concern for dRAID which always allocates
* a full stripe width. For dRAID the default stripe width is
* n=8 in which case the volblocksize is set to 32k. Ignoring
* compression there are no unused sectors. This same reasoning
* applies to raidz[2,3] so target 4 sectors to minimize waste.
*/
uint64_t tgt_volblocksize = ZVOL_DEFAULT_BLOCKSIZE;
while (tgt_volblocksize * 2 <= asize)
tgt_volblocksize *= 2;
const char *prop = zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE);
if (nvlist_lookup_uint64(props, prop, &volblocksize) == 0) {
/* Issue a warning when a non-optimal size is requested. */
if (volblocksize < ZVOL_DEFAULT_BLOCKSIZE) {
(void) fprintf(stderr, gettext("Warning: "
"volblocksize (%llu) is less than the default "
"minimum block size (%llu).\nTo reduce wasted "
"space a volblocksize of %llu is recommended.\n"),
(u_longlong_t)volblocksize,
(u_longlong_t)ZVOL_DEFAULT_BLOCKSIZE,
(u_longlong_t)tgt_volblocksize);
} else if (volblocksize < tgt_volblocksize) {
(void) fprintf(stderr, gettext("Warning: "
"volblocksize (%llu) is much less than the "
"minimum allocation\nunit (%llu), which wastes "
"at least %llu%% of space. To reduce wasted "
"space,\nuse a larger volblocksize (%llu is "
"recommended), fewer dRAID data disks\n"
"per group, or smaller sector size (ashift).\n"),
(u_longlong_t)volblocksize, (u_longlong_t)asize,
(u_longlong_t)((100 * (asize - volblocksize)) /
asize), (u_longlong_t)tgt_volblocksize);
}
} else {
volblocksize = tgt_volblocksize;
fnvlist_add_uint64(props, prop, volblocksize);
}
return (volblocksize);
}
/*
* zfs create [-Pnpv] [-o prop=value] ... fs
* zfs create [-Pnpsv] [-b blocksize] [-o prop=value] ... -V vol size
*
* Create a new dataset. This command can be used to create filesystems
* and volumes. Snapshot creation is handled by 'zfs snapshot'.
* For volumes, the user must specify a size to be used.
*
* The '-s' flag applies only to volumes, and indicates that we should not try
* to set the reservation for this volume. By default we set a reservation
* equal to the size for any volume. For pools with SPA_VERSION >=
* SPA_VERSION_REFRESERVATION, we set a refreservation instead.
*
* The '-p' flag creates all the non-existing ancestors of the target first.
*
* The '-n' flag is no-op (dry run) mode. This will perform a user-space sanity
* check of arguments and properties, but does not check for permissions,
* available space, etc.
*
* The '-u' flag prevents the newly created file system from being mounted.
*
* The '-v' flag is for verbose output.
*
* The '-P' flag is used for parseable output. It implies '-v'.
*/
static int
zfs_do_create(int argc, char **argv)
{
zfs_type_t type = ZFS_TYPE_FILESYSTEM;
zpool_handle_t *zpool_handle = NULL;
nvlist_t *real_props = NULL;
uint64_t volsize = 0;
int c;
boolean_t noreserve = B_FALSE;
boolean_t bflag = B_FALSE;
boolean_t parents = B_FALSE;
boolean_t dryrun = B_FALSE;
boolean_t nomount = B_FALSE;
boolean_t verbose = B_FALSE;
boolean_t parseable = B_FALSE;
int ret = 1;
nvlist_t *props;
uint64_t intval;
const char *strval;
if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
nomem();
/* check options */
while ((c = getopt(argc, argv, ":PV:b:nso:puv")) != -1) {
switch (c) {
case 'V':
type = ZFS_TYPE_VOLUME;
if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) {
(void) fprintf(stderr, gettext("bad volume "
"size '%s': %s\n"), optarg,
libzfs_error_description(g_zfs));
goto error;
}
if (nvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_VOLSIZE), intval) != 0)
nomem();
volsize = intval;
break;
case 'P':
verbose = B_TRUE;
parseable = B_TRUE;
break;
case 'p':
parents = B_TRUE;
break;
case 'b':
bflag = B_TRUE;
if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) {
(void) fprintf(stderr, gettext("bad volume "
"block size '%s': %s\n"), optarg,
libzfs_error_description(g_zfs));
goto error;
}
if (nvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
intval) != 0)
nomem();
break;
case 'n':
dryrun = B_TRUE;
break;
case 'o':
if (!parseprop(props, optarg))
goto error;
break;
case 's':
noreserve = B_TRUE;
break;
case 'u':
nomount = B_TRUE;
break;
case 'v':
verbose = B_TRUE;
break;
case ':':
(void) fprintf(stderr, gettext("missing size "
"argument\n"));
goto badusage;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
goto badusage;
}
}
if ((bflag || noreserve) && type != ZFS_TYPE_VOLUME) {
(void) fprintf(stderr, gettext("'-s' and '-b' can only be "
"used when creating a volume\n"));
goto badusage;
}
if (nomount && type != ZFS_TYPE_FILESYSTEM) {
(void) fprintf(stderr, gettext("'-u' can only be "
"used when creating a filesystem\n"));
goto badusage;
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc == 0) {
(void) fprintf(stderr, gettext("missing %s argument\n"),
zfs_type_to_name(type));
goto badusage;
}
if (argc > 1) {
(void) fprintf(stderr, gettext("too many arguments\n"));
goto badusage;
}
if (dryrun || type == ZFS_TYPE_VOLUME) {
char msg[ZFS_MAX_DATASET_NAME_LEN * 2];
char *p;
if ((p = strchr(argv[0], '/')) != NULL)
*p = '\0';
zpool_handle = zpool_open(g_zfs, argv[0]);
if (p != NULL)
*p = '/';
if (zpool_handle == NULL)
goto error;
(void) snprintf(msg, sizeof (msg),
dryrun ? gettext("cannot verify '%s'") :
gettext("cannot create '%s'"), argv[0]);
if (props && (real_props = zfs_valid_proplist(g_zfs, type,
props, 0, NULL, zpool_handle, B_TRUE, msg)) == NULL) {
zpool_close(zpool_handle);
goto error;
}
}
if (type == ZFS_TYPE_VOLUME) {
const char *prop = zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE);
uint64_t volblocksize = default_volblocksize(zpool_handle,
real_props);
if (volblocksize != ZVOL_DEFAULT_BLOCKSIZE &&
nvlist_lookup_string(props, prop, &strval) != 0) {
char *tmp;
if (asprintf(&tmp, "%llu",
(u_longlong_t)volblocksize) == -1)
nomem();
nvlist_add_string(props, prop, tmp);
free(tmp);
}
/*
* If volsize is not a multiple of volblocksize, round it
* up to the nearest multiple of the volblocksize.
*/
if (volsize % volblocksize) {
volsize = P2ROUNDUP_TYPED(volsize, volblocksize,
uint64_t);
if (nvlist_add_uint64(props,
zfs_prop_to_name(ZFS_PROP_VOLSIZE), volsize) != 0) {
nvlist_free(props);
nomem();
}
}
}
if (type == ZFS_TYPE_VOLUME && !noreserve) {
uint64_t spa_version;
zfs_prop_t resv_prop;
spa_version = zpool_get_prop_int(zpool_handle,
ZPOOL_PROP_VERSION, NULL);
if (spa_version >= SPA_VERSION_REFRESERVATION)
resv_prop = ZFS_PROP_REFRESERVATION;
else
resv_prop = ZFS_PROP_RESERVATION;
volsize = zvol_volsize_to_reservation(zpool_handle, volsize,
real_props);
if (nvlist_lookup_string(props, zfs_prop_to_name(resv_prop),
&strval) != 0) {
if (nvlist_add_uint64(props,
zfs_prop_to_name(resv_prop), volsize) != 0) {
nvlist_free(props);
nomem();
}
}
}
if (zpool_handle != NULL) {
zpool_close(zpool_handle);
nvlist_free(real_props);
}
if (parents && zfs_name_valid(argv[0], type)) {
/*
* Now create the ancestors of target dataset. If the target
* already exists and '-p' option was used we should not
* complain.
*/
if (zfs_dataset_exists(g_zfs, argv[0], type)) {
ret = 0;
goto error;
}
if (verbose) {
(void) printf(parseable ? "create_ancestors\t%s\n" :
dryrun ? "would create ancestors of %s\n" :
"create ancestors of %s\n", argv[0]);
}
if (!dryrun) {
if (zfs_create_ancestors(g_zfs, argv[0]) != 0) {
goto error;
}
}
}
if (verbose) {
nvpair_t *nvp = NULL;
(void) printf(parseable ? "create\t%s\n" :
dryrun ? "would create %s\n" : "create %s\n", argv[0]);
while ((nvp = nvlist_next_nvpair(props, nvp)) != NULL) {
uint64_t uval;
const char *sval;
switch (nvpair_type(nvp)) {
case DATA_TYPE_UINT64:
VERIFY0(nvpair_value_uint64(nvp, &uval));
(void) printf(parseable ?
"property\t%s\t%llu\n" : "\t%s=%llu\n",
nvpair_name(nvp), (u_longlong_t)uval);
break;
case DATA_TYPE_STRING:
VERIFY0(nvpair_value_string(nvp, &sval));
(void) printf(parseable ?
"property\t%s\t%s\n" : "\t%s=%s\n",
nvpair_name(nvp), sval);
break;
default:
(void) fprintf(stderr, "property '%s' "
"has illegal type %d\n",
nvpair_name(nvp), nvpair_type(nvp));
abort();
}
}
}
if (dryrun) {
ret = 0;
goto error;
}
/* pass to libzfs */
if (zfs_create(g_zfs, argv[0], type, props) != 0)
goto error;
if (log_history) {
(void) zpool_log_history(g_zfs, history_str);
log_history = B_FALSE;
}
if (nomount) {
ret = 0;
goto error;
}
ret = zfs_mount_and_share(g_zfs, argv[0], ZFS_TYPE_DATASET);
error:
nvlist_free(props);
return (ret);
badusage:
nvlist_free(props);
usage(B_FALSE);
return (2);
}
/*
* zfs destroy [-rRf] <fs, vol>
* zfs destroy [-rRd] <snap>
*
* -r Recursively destroy all children
* -R Recursively destroy all dependents, including clones
* -f Force unmounting of any dependents
* -d If we can't destroy now, mark for deferred destruction
*
* Destroys the given dataset. By default, it will unmount any filesystems,
* and refuse to destroy a dataset that has any dependents. A dependent can
* either be a child, or a clone of a child.
*/
typedef struct destroy_cbdata {
boolean_t cb_first;
boolean_t cb_force;
boolean_t cb_recurse;
boolean_t cb_error;
boolean_t cb_doclones;
zfs_handle_t *cb_target;
boolean_t cb_defer_destroy;
boolean_t cb_verbose;
boolean_t cb_parsable;
boolean_t cb_dryrun;
nvlist_t *cb_nvl;
nvlist_t *cb_batchedsnaps;
/* first snap in contiguous run */
char *cb_firstsnap;
/* previous snap in contiguous run */
char *cb_prevsnap;
int64_t cb_snapused;
char *cb_snapspec;
char *cb_bookmark;
uint64_t cb_snap_count;
} destroy_cbdata_t;
/*
* Check for any dependents based on the '-r' or '-R' flags.
*/
static int
destroy_check_dependent(zfs_handle_t *zhp, void *data)
{
destroy_cbdata_t *cbp = data;
const char *tname = zfs_get_name(cbp->cb_target);
const char *name = zfs_get_name(zhp);
if (strncmp(tname, name, strlen(tname)) == 0 &&
(name[strlen(tname)] == '/' || name[strlen(tname)] == '@')) {
/*
* This is a direct descendant, not a clone somewhere else in
* the hierarchy.
*/
if (cbp->cb_recurse)
goto out;
if (cbp->cb_first) {
(void) fprintf(stderr, gettext("cannot destroy '%s': "
"%s has children\n"),
zfs_get_name(cbp->cb_target),
zfs_type_to_name(zfs_get_type(cbp->cb_target)));
(void) fprintf(stderr, gettext("use '-r' to destroy "
"the following datasets:\n"));
cbp->cb_first = B_FALSE;
cbp->cb_error = B_TRUE;
}
(void) fprintf(stderr, "%s\n", zfs_get_name(zhp));
} else {
/*
* This is a clone. We only want to report this if the '-r'
* wasn't specified, or the target is a snapshot.
*/
if (!cbp->cb_recurse &&
zfs_get_type(cbp->cb_target) != ZFS_TYPE_SNAPSHOT)
goto out;
if (cbp->cb_first) {
(void) fprintf(stderr, gettext("cannot destroy '%s': "
"%s has dependent clones\n"),
zfs_get_name(cbp->cb_target),
zfs_type_to_name(zfs_get_type(cbp->cb_target)));
(void) fprintf(stderr, gettext("use '-R' to destroy "
"the following datasets:\n"));
cbp->cb_first = B_FALSE;
cbp->cb_error = B_TRUE;
cbp->cb_dryrun = B_TRUE;
}
(void) fprintf(stderr, "%s\n", zfs_get_name(zhp));
}
out:
zfs_close(zhp);
return (0);
}
static int
destroy_batched(destroy_cbdata_t *cb)
{
int error = zfs_destroy_snaps_nvl(g_zfs,
cb->cb_batchedsnaps, B_FALSE);
fnvlist_free(cb->cb_batchedsnaps);
cb->cb_batchedsnaps = fnvlist_alloc();
return (error);
}
static int
destroy_callback(zfs_handle_t *zhp, void *data)
{
destroy_cbdata_t *cb = data;
const char *name = zfs_get_name(zhp);
int error;
if (cb->cb_verbose) {
if (cb->cb_parsable) {
(void) printf("destroy\t%s\n", name);
} else if (cb->cb_dryrun) {
(void) printf(gettext("would destroy %s\n"),
name);
} else {
(void) printf(gettext("will destroy %s\n"),
name);
}
}
/*
* Ignore pools (which we've already flagged as an error before getting
* here).
*/
if (strchr(zfs_get_name(zhp), '/') == NULL &&
zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) {
zfs_close(zhp);
return (0);
}
if (cb->cb_dryrun) {
zfs_close(zhp);
return (0);
}
/*
* We batch up all contiguous snapshots (even of different
* filesystems) and destroy them with one ioctl. We can't
* simply do all snap deletions and then all fs deletions,
* because we must delete a clone before its origin.
*/
if (zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) {
cb->cb_snap_count++;
fnvlist_add_boolean(cb->cb_batchedsnaps, name);
if (cb->cb_snap_count % 10 == 0 && cb->cb_defer_destroy) {
error = destroy_batched(cb);
if (error != 0) {
zfs_close(zhp);
return (-1);
}
}
} else {
error = destroy_batched(cb);
if (error != 0 ||
zfs_unmount(zhp, NULL, cb->cb_force ? MS_FORCE : 0) != 0 ||
zfs_destroy(zhp, cb->cb_defer_destroy) != 0) {
zfs_close(zhp);
/*
* When performing a recursive destroy we ignore errors
* so that the recursive destroy could continue
* destroying past problem datasets
*/
if (cb->cb_recurse) {
cb->cb_error = B_TRUE;
return (0);
}
return (-1);
}
}
zfs_close(zhp);
return (0);
}
static int
destroy_print_cb(zfs_handle_t *zhp, void *arg)
{
destroy_cbdata_t *cb = arg;
const char *name = zfs_get_name(zhp);
int err = 0;
if (nvlist_exists(cb->cb_nvl, name)) {
if (cb->cb_firstsnap == NULL)
cb->cb_firstsnap = strdup(name);
if (cb->cb_prevsnap != NULL)
free(cb->cb_prevsnap);
/* this snap continues the current range */
cb->cb_prevsnap = strdup(name);
if (cb->cb_firstsnap == NULL || cb->cb_prevsnap == NULL)
nomem();
if (cb->cb_verbose) {
if (cb->cb_parsable) {
(void) printf("destroy\t%s\n", name);
} else if (cb->cb_dryrun) {
(void) printf(gettext("would destroy %s\n"),
name);
} else {
(void) printf(gettext("will destroy %s\n"),
name);
}
}
} else if (cb->cb_firstsnap != NULL) {
/* end of this range */
uint64_t used = 0;
err = lzc_snaprange_space(cb->cb_firstsnap,
cb->cb_prevsnap, &used);
cb->cb_snapused += used;
free(cb->cb_firstsnap);
cb->cb_firstsnap = NULL;
free(cb->cb_prevsnap);
cb->cb_prevsnap = NULL;
}
zfs_close(zhp);
return (err);
}
static int
destroy_print_snapshots(zfs_handle_t *fs_zhp, destroy_cbdata_t *cb)
{
int err;
assert(cb->cb_firstsnap == NULL);
assert(cb->cb_prevsnap == NULL);
err = zfs_iter_snapshots_sorted_v2(fs_zhp, 0, destroy_print_cb, cb, 0,
0);
if (cb->cb_firstsnap != NULL) {
uint64_t used = 0;
if (err == 0) {
err = lzc_snaprange_space(cb->cb_firstsnap,
cb->cb_prevsnap, &used);
}
cb->cb_snapused += used;
free(cb->cb_firstsnap);
cb->cb_firstsnap = NULL;
free(cb->cb_prevsnap);
cb->cb_prevsnap = NULL;
}
return (err);
}
static int
snapshot_to_nvl_cb(zfs_handle_t *zhp, void *arg)
{
destroy_cbdata_t *cb = arg;
int err = 0;
/* Check for clones. */
if (!cb->cb_doclones && !cb->cb_defer_destroy) {
cb->cb_target = zhp;
cb->cb_first = B_TRUE;
err = zfs_iter_dependents_v2(zhp, 0, B_TRUE,
destroy_check_dependent, cb);
}
if (err == 0) {
if (nvlist_add_boolean(cb->cb_nvl, zfs_get_name(zhp)))
nomem();
}
zfs_close(zhp);
return (err);
}
static int
gather_snapshots(zfs_handle_t *zhp, void *arg)
{
destroy_cbdata_t *cb = arg;
int err = 0;
err = zfs_iter_snapspec_v2(zhp, 0, cb->cb_snapspec,
snapshot_to_nvl_cb, cb);
if (err == ENOENT)
err = 0;
if (err != 0)
goto out;
if (cb->cb_verbose) {
err = destroy_print_snapshots(zhp, cb);
if (err != 0)
goto out;
}
if (cb->cb_recurse)
err = zfs_iter_filesystems_v2(zhp, 0, gather_snapshots, cb);
out:
zfs_close(zhp);
return (err);
}
static int
destroy_clones(destroy_cbdata_t *cb)
{
nvpair_t *pair;
for (pair = nvlist_next_nvpair(cb->cb_nvl, NULL);
pair != NULL;
pair = nvlist_next_nvpair(cb->cb_nvl, pair)) {
zfs_handle_t *zhp = zfs_open(g_zfs, nvpair_name(pair),
ZFS_TYPE_SNAPSHOT);
if (zhp != NULL) {
boolean_t defer = cb->cb_defer_destroy;
int err;
/*
* We can't defer destroy non-snapshots, so set it to
* false while destroying the clones.
*/
cb->cb_defer_destroy = B_FALSE;
err = zfs_iter_dependents_v2(zhp, 0, B_FALSE,
destroy_callback, cb);
cb->cb_defer_destroy = defer;
zfs_close(zhp);
if (err != 0)
return (err);
}
}
return (0);
}
static int
zfs_do_destroy(int argc, char **argv)
{
destroy_cbdata_t cb = { 0 };
int rv = 0;
int err = 0;
int c;
zfs_handle_t *zhp = NULL;
char *at, *pound;
zfs_type_t type = ZFS_TYPE_DATASET;
/* check options */
while ((c = getopt(argc, argv, "vpndfrR")) != -1) {
switch (c) {
case 'v':
cb.cb_verbose = B_TRUE;
break;
case 'p':
cb.cb_verbose = B_TRUE;
cb.cb_parsable = B_TRUE;
break;
case 'n':
cb.cb_dryrun = B_TRUE;
break;
case 'd':
cb.cb_defer_destroy = B_TRUE;
type = ZFS_TYPE_SNAPSHOT;
break;
case 'f':
cb.cb_force = B_TRUE;
break;
case 'r':
cb.cb_recurse = B_TRUE;
break;
case 'R':
cb.cb_recurse = B_TRUE;
cb.cb_doclones = B_TRUE;
break;
case '?':
default:
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc == 0) {
(void) fprintf(stderr, gettext("missing dataset argument\n"));
usage(B_FALSE);
}
if (argc > 1) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
at = strchr(argv[0], '@');
pound = strchr(argv[0], '#');
if (at != NULL) {
/* Build the list of snaps to destroy in cb_nvl. */
cb.cb_nvl = fnvlist_alloc();
*at = '\0';
zhp = zfs_open(g_zfs, argv[0],
ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL) {
nvlist_free(cb.cb_nvl);
return (1);
}
cb.cb_snapspec = at + 1;
if (gather_snapshots(zfs_handle_dup(zhp), &cb) != 0 ||
cb.cb_error) {
rv = 1;
goto out;
}
if (nvlist_empty(cb.cb_nvl)) {
(void) fprintf(stderr, gettext("could not find any "
"snapshots to destroy; check snapshot names.\n"));
rv = 1;
goto out;
}
if (cb.cb_verbose) {
char buf[16];
zfs_nicebytes(cb.cb_snapused, buf, sizeof (buf));
if (cb.cb_parsable) {
(void) printf("reclaim\t%llu\n",
(u_longlong_t)cb.cb_snapused);
} else if (cb.cb_dryrun) {
(void) printf(gettext("would reclaim %s\n"),
buf);
} else {
(void) printf(gettext("will reclaim %s\n"),
buf);
}
}
if (!cb.cb_dryrun) {
if (cb.cb_doclones) {
cb.cb_batchedsnaps = fnvlist_alloc();
err = destroy_clones(&cb);
if (err == 0) {
err = zfs_destroy_snaps_nvl(g_zfs,
cb.cb_batchedsnaps, B_FALSE);
}
if (err != 0) {
rv = 1;
goto out;
}
}
if (err == 0) {
err = zfs_destroy_snaps_nvl(g_zfs, cb.cb_nvl,
cb.cb_defer_destroy);
}
}
if (err != 0)
rv = 1;
} else if (pound != NULL) {
int err;
nvlist_t *nvl;
if (cb.cb_dryrun) {
(void) fprintf(stderr,
"dryrun is not supported with bookmark\n");
return (-1);
}
if (cb.cb_defer_destroy) {
(void) fprintf(stderr,
"defer destroy is not supported with bookmark\n");
return (-1);
}
if (cb.cb_recurse) {
(void) fprintf(stderr,
"recursive is not supported with bookmark\n");
return (-1);
}
/*
* Unfortunately, zfs_bookmark() doesn't honor the
* casesensitivity setting. However, we can't simply
* remove this check, because lzc_destroy_bookmarks()
* ignores non-existent bookmarks, so this is necessary
* to get a proper error message.
*/
if (!zfs_bookmark_exists(argv[0])) {
(void) fprintf(stderr, gettext("bookmark '%s' "
"does not exist.\n"), argv[0]);
return (1);
}
nvl = fnvlist_alloc();
fnvlist_add_boolean(nvl, argv[0]);
err = lzc_destroy_bookmarks(nvl, NULL);
if (err != 0) {
(void) zfs_standard_error(g_zfs, err,
"cannot destroy bookmark");
}
nvlist_free(nvl);
return (err);
} else {
/* Open the given dataset */
if ((zhp = zfs_open(g_zfs, argv[0], type)) == NULL)
return (1);
cb.cb_target = zhp;
/*
* Perform an explicit check for pools before going any further.
*/
if (!cb.cb_recurse && strchr(zfs_get_name(zhp), '/') == NULL &&
zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) {
(void) fprintf(stderr, gettext("cannot destroy '%s': "
"operation does not apply to pools\n"),
zfs_get_name(zhp));
(void) fprintf(stderr, gettext("use 'zfs destroy -r "
"%s' to destroy all datasets in the pool\n"),
zfs_get_name(zhp));
(void) fprintf(stderr, gettext("use 'zpool destroy %s' "
"to destroy the pool itself\n"), zfs_get_name(zhp));
rv = 1;
goto out;
}
/*
* Check for any dependents and/or clones.
*/
cb.cb_first = B_TRUE;
if (!cb.cb_doclones && zfs_iter_dependents_v2(zhp, 0, B_TRUE,
destroy_check_dependent, &cb) != 0) {
rv = 1;
goto out;
}
if (cb.cb_error) {
rv = 1;
goto out;
}
cb.cb_batchedsnaps = fnvlist_alloc();
if (zfs_iter_dependents_v2(zhp, 0, B_FALSE, destroy_callback,
&cb) != 0) {
rv = 1;
goto out;
}
/*
* Do the real thing. The callback will close the
* handle regardless of whether it succeeds or not.
*/
err = destroy_callback(zhp, &cb);
zhp = NULL;
if (err == 0) {
err = zfs_destroy_snaps_nvl(g_zfs,
cb.cb_batchedsnaps, cb.cb_defer_destroy);
}
if (err != 0 || cb.cb_error == B_TRUE)
rv = 1;
}
out:
fnvlist_free(cb.cb_batchedsnaps);
fnvlist_free(cb.cb_nvl);
if (zhp != NULL)
zfs_close(zhp);
return (rv);
}
static boolean_t
is_recvd_column(zprop_get_cbdata_t *cbp)
{
int i;
zfs_get_column_t col;
for (i = 0; i < ZFS_GET_NCOLS &&
(col = cbp->cb_columns[i]) != GET_COL_NONE; i++)
if (col == GET_COL_RECVD)
return (B_TRUE);
return (B_FALSE);
}
/*
* zfs get [-rHp] [-o all | field[,field]...] [-s source[,source]...]
* < all | property[,property]... > < fs | snap | vol > ...
*
* -r recurse over any child datasets
* -H scripted mode. Headers are stripped, and fields are separated
* by tabs instead of spaces.
* -o Set of fields to display. One of "name,property,value,
* received,source". Default is "name,property,value,source".
* "all" is an alias for all five.
* -s Set of sources to allow. One of
* "local,default,inherited,received,temporary,none". Default is
* all six.
* -p Display values in parsable (literal) format.
*
* Prints properties for the given datasets. The user can control which
* columns to display as well as which property types to allow.
*/
/*
* Invoked to display the properties for a single dataset.
*/
static int
get_callback(zfs_handle_t *zhp, void *data)
{
char buf[ZFS_MAXPROPLEN];
char rbuf[ZFS_MAXPROPLEN];
zprop_source_t sourcetype;
char source[ZFS_MAX_DATASET_NAME_LEN];
zprop_get_cbdata_t *cbp = data;
nvlist_t *user_props = zfs_get_user_props(zhp);
zprop_list_t *pl = cbp->cb_proplist;
nvlist_t *propval;
const char *strval;
const char *sourceval;
boolean_t received = is_recvd_column(cbp);
for (; pl != NULL; pl = pl->pl_next) {
char *recvdval = NULL;
/*
* Skip the special fake placeholder. This will also skip over
* the name property when 'all' is specified.
*/
if (pl->pl_prop == ZFS_PROP_NAME &&
pl == cbp->cb_proplist)
continue;
if (pl->pl_prop != ZPROP_USERPROP) {
if (zfs_prop_get(zhp, pl->pl_prop, buf,
sizeof (buf), &sourcetype, source,
sizeof (source),
cbp->cb_literal) != 0) {
if (pl->pl_all)
continue;
if (!zfs_prop_valid_for_type(pl->pl_prop,
ZFS_TYPE_DATASET, B_FALSE)) {
(void) fprintf(stderr,
gettext("No such property '%s'\n"),
zfs_prop_to_name(pl->pl_prop));
continue;
}
sourcetype = ZPROP_SRC_NONE;
(void) strlcpy(buf, "-", sizeof (buf));
}
if (received && (zfs_prop_get_recvd(zhp,
zfs_prop_to_name(pl->pl_prop), rbuf, sizeof (rbuf),
cbp->cb_literal) == 0))
recvdval = rbuf;
zprop_print_one_property(zfs_get_name(zhp), cbp,
zfs_prop_to_name(pl->pl_prop),
buf, sourcetype, source, recvdval);
} else if (zfs_prop_userquota(pl->pl_user_prop)) {
sourcetype = ZPROP_SRC_LOCAL;
if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
buf, sizeof (buf), cbp->cb_literal) != 0) {
sourcetype = ZPROP_SRC_NONE;
(void) strlcpy(buf, "-", sizeof (buf));
}
zprop_print_one_property(zfs_get_name(zhp), cbp,
pl->pl_user_prop, buf, sourcetype, source, NULL);
} else if (zfs_prop_written(pl->pl_user_prop)) {
sourcetype = ZPROP_SRC_LOCAL;
if (zfs_prop_get_written(zhp, pl->pl_user_prop,
buf, sizeof (buf), cbp->cb_literal) != 0) {
sourcetype = ZPROP_SRC_NONE;
(void) strlcpy(buf, "-", sizeof (buf));
}
zprop_print_one_property(zfs_get_name(zhp), cbp,
pl->pl_user_prop, buf, sourcetype, source, NULL);
} else {
if (nvlist_lookup_nvlist(user_props,
pl->pl_user_prop, &propval) != 0) {
if (pl->pl_all)
continue;
sourcetype = ZPROP_SRC_NONE;
strval = "-";
} else {
strval = fnvlist_lookup_string(propval,
ZPROP_VALUE);
sourceval = fnvlist_lookup_string(propval,
ZPROP_SOURCE);
if (strcmp(sourceval,
zfs_get_name(zhp)) == 0) {
sourcetype = ZPROP_SRC_LOCAL;
} else if (strcmp(sourceval,
ZPROP_SOURCE_VAL_RECVD) == 0) {
sourcetype = ZPROP_SRC_RECEIVED;
} else {
sourcetype = ZPROP_SRC_INHERITED;
(void) strlcpy(source,
sourceval, sizeof (source));
}
}
if (received && (zfs_prop_get_recvd(zhp,
pl->pl_user_prop, rbuf, sizeof (rbuf),
cbp->cb_literal) == 0))
recvdval = rbuf;
zprop_print_one_property(zfs_get_name(zhp), cbp,
pl->pl_user_prop, strval, sourcetype,
source, recvdval);
}
}
return (0);
}
static int
zfs_do_get(int argc, char **argv)
{
zprop_get_cbdata_t cb = { 0 };
int i, c, flags = ZFS_ITER_ARGS_CAN_BE_PATHS;
int types = ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK;
char *fields;
int ret = 0;
int limit = 0;
zprop_list_t fake_name = { 0 };
/*
* Set up default columns and sources.
*/
cb.cb_sources = ZPROP_SRC_ALL;
cb.cb_columns[0] = GET_COL_NAME;
cb.cb_columns[1] = GET_COL_PROPERTY;
cb.cb_columns[2] = GET_COL_VALUE;
cb.cb_columns[3] = GET_COL_SOURCE;
cb.cb_type = ZFS_TYPE_DATASET;
/* check options */
while ((c = getopt(argc, argv, ":d:o:s:rt:Hp")) != -1) {
switch (c) {
case 'p':
cb.cb_literal = B_TRUE;
break;
case 'd':
limit = parse_depth(optarg, &flags);
break;
case 'r':
flags |= ZFS_ITER_RECURSE;
break;
case 'H':
cb.cb_scripted = B_TRUE;
break;
case ':':
(void) fprintf(stderr, gettext("missing argument for "
"'%c' option\n"), optopt);
usage(B_FALSE);
break;
case 'o':
/*
* Process the set of columns to display. We zero out
* the structure to give us a blank slate.
*/
memset(&cb.cb_columns, 0, sizeof (cb.cb_columns));
i = 0;
for (char *tok; (tok = strsep(&optarg, ",")); ) {
static const char *const col_subopts[] =
{ "name", "property", "value",
"received", "source", "all" };
static const zfs_get_column_t col_subopt_col[] =
{ GET_COL_NAME, GET_COL_PROPERTY, GET_COL_VALUE,
GET_COL_RECVD, GET_COL_SOURCE };
static const int col_subopt_flags[] =
{ 0, 0, 0, ZFS_ITER_RECVD_PROPS, 0 };
if (i == ZFS_GET_NCOLS) {
(void) fprintf(stderr, gettext("too "
"many fields given to -o "
"option\n"));
usage(B_FALSE);
}
for (c = 0; c < ARRAY_SIZE(col_subopts); ++c)
if (strcmp(tok, col_subopts[c]) == 0)
goto found;
(void) fprintf(stderr,
gettext("invalid column name '%s'\n"), tok);
usage(B_FALSE);
found:
if (c >= 5) {
if (i > 0) {
(void) fprintf(stderr,
gettext("\"all\" conflicts "
"with specific fields "
"given to -o option\n"));
usage(B_FALSE);
}
memcpy(cb.cb_columns, col_subopt_col,
sizeof (col_subopt_col));
flags |= ZFS_ITER_RECVD_PROPS;
i = ZFS_GET_NCOLS;
} else {
cb.cb_columns[i++] = col_subopt_col[c];
flags |= col_subopt_flags[c];
}
}
break;
case 's':
cb.cb_sources = 0;
for (char *tok; (tok = strsep(&optarg, ",")); ) {
static const char *const source_opt[] = {
"local", "default",
"inherited", "received",
"temporary", "none" };
static const int source_flg[] = {
ZPROP_SRC_LOCAL, ZPROP_SRC_DEFAULT,
ZPROP_SRC_INHERITED, ZPROP_SRC_RECEIVED,
ZPROP_SRC_TEMPORARY, ZPROP_SRC_NONE };
for (i = 0; i < ARRAY_SIZE(source_opt); ++i)
if (strcmp(tok, source_opt[i]) == 0) {
cb.cb_sources |= source_flg[i];
goto found2;
}
(void) fprintf(stderr,
gettext("invalid source '%s'\n"), tok);
usage(B_FALSE);
found2:;
}
break;
case 't':
types = 0;
flags &= ~ZFS_ITER_PROP_LISTSNAPS;
for (char *tok; (tok = strsep(&optarg, ",")); ) {
static const char *const type_opts[] = {
"filesystem", "volume",
"snapshot", "snap",
"bookmark",
"all" };
static const int type_types[] = {
ZFS_TYPE_FILESYSTEM, ZFS_TYPE_VOLUME,
ZFS_TYPE_SNAPSHOT, ZFS_TYPE_SNAPSHOT,
ZFS_TYPE_BOOKMARK,
ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK };
for (i = 0; i < ARRAY_SIZE(type_opts); ++i)
if (strcmp(tok, type_opts[i]) == 0) {
types |= type_types[i];
goto found3;
}
(void) fprintf(stderr,
gettext("invalid type '%s'\n"), tok);
usage(B_FALSE);
found3:;
}
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
if (argc < 1) {
(void) fprintf(stderr, gettext("missing property "
"argument\n"));
usage(B_FALSE);
}
fields = argv[0];
/*
* Handle users who want to get all snapshots or bookmarks
* of a dataset (ex. 'zfs get -t snapshot refer <dataset>').
*/
if ((types == ZFS_TYPE_SNAPSHOT || types == ZFS_TYPE_BOOKMARK) &&
argc > 1 && (flags & ZFS_ITER_RECURSE) == 0 && limit == 0) {
flags |= (ZFS_ITER_DEPTH_LIMIT | ZFS_ITER_RECURSE);
limit = 1;
}
if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET)
!= 0)
usage(B_FALSE);
argc--;
argv++;
/*
* As part of zfs_expand_proplist(), we keep track of the maximum column
* width for each property. For the 'NAME' (and 'SOURCE') columns, we
* need to know the maximum name length. However, the user likely did
* not specify 'name' as one of the properties to fetch, so we need to
* make sure we always include at least this property for
* print_get_headers() to work properly.
*/
if (cb.cb_proplist != NULL) {
fake_name.pl_prop = ZFS_PROP_NAME;
fake_name.pl_width = strlen(gettext("NAME"));
fake_name.pl_next = cb.cb_proplist;
cb.cb_proplist = &fake_name;
}
cb.cb_first = B_TRUE;
/* run for each object */
ret = zfs_for_each(argc, argv, flags, types, NULL,
&cb.cb_proplist, limit, get_callback, &cb);
if (cb.cb_proplist == &fake_name)
zprop_free_list(fake_name.pl_next);
else
zprop_free_list(cb.cb_proplist);
return (ret);
}
/*
* inherit [-rS] <property> <fs|vol> ...
*
* -r Recurse over all children
* -S Revert to received value, if any
*
* For each dataset specified on the command line, inherit the given property
* from its parent. Inheriting a property at the pool level will cause it to
* use the default value. The '-r' flag will recurse over all children, and is
* useful for setting a property on a hierarchy-wide basis, regardless of any
* local modifications for each dataset.
*/
typedef struct inherit_cbdata {
const char *cb_propname;
boolean_t cb_received;
} inherit_cbdata_t;
static int
inherit_recurse_cb(zfs_handle_t *zhp, void *data)
{
inherit_cbdata_t *cb = data;
zfs_prop_t prop = zfs_name_to_prop(cb->cb_propname);
/*
* If we're doing it recursively, then ignore properties that
* are not valid for this type of dataset.
*/
if (prop != ZPROP_INVAL &&
!zfs_prop_valid_for_type(prop, zfs_get_type(zhp), B_FALSE))
return (0);
return (zfs_prop_inherit(zhp, cb->cb_propname, cb->cb_received) != 0);
}
static int
inherit_cb(zfs_handle_t *zhp, void *data)
{
inherit_cbdata_t *cb = data;
return (zfs_prop_inherit(zhp, cb->cb_propname, cb->cb_received) != 0);
}
static int
zfs_do_inherit(int argc, char **argv)
{
int c;
zfs_prop_t prop;
inherit_cbdata_t cb = { 0 };
char *propname;
int ret = 0;
int flags = 0;
boolean_t received = B_FALSE;
/* check options */
while ((c = getopt(argc, argv, "rS")) != -1) {
switch (c) {
case 'r':
flags |= ZFS_ITER_RECURSE;
break;
case 'S':
received = B_TRUE;
break;
case '?':
default:
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc < 1) {
(void) fprintf(stderr, gettext("missing property argument\n"));
usage(B_FALSE);
}
if (argc < 2) {
(void) fprintf(stderr, gettext("missing dataset argument\n"));
usage(B_FALSE);
}
propname = argv[0];
argc--;
argv++;
if ((prop = zfs_name_to_prop(propname)) != ZPROP_USERPROP) {
if (zfs_prop_readonly(prop)) {
(void) fprintf(stderr, gettext(
"%s property is read-only\n"),
propname);
return (1);
}
if (!zfs_prop_inheritable(prop) && !received) {
(void) fprintf(stderr, gettext("'%s' property cannot "
"be inherited\n"), propname);
if (prop == ZFS_PROP_QUOTA ||
prop == ZFS_PROP_RESERVATION ||
prop == ZFS_PROP_REFQUOTA ||
prop == ZFS_PROP_REFRESERVATION) {
(void) fprintf(stderr, gettext("use 'zfs set "
"%s=none' to clear\n"), propname);
(void) fprintf(stderr, gettext("use 'zfs "
"inherit -S %s' to revert to received "
"value\n"), propname);
}
return (1);
}
if (received && (prop == ZFS_PROP_VOLSIZE ||
prop == ZFS_PROP_VERSION)) {
(void) fprintf(stderr, gettext("'%s' property cannot "
"be reverted to a received value\n"), propname);
return (1);
}
} else if (!zfs_prop_user(propname)) {
(void) fprintf(stderr, gettext("invalid property '%s'\n"),
propname);
usage(B_FALSE);
}
cb.cb_propname = propname;
cb.cb_received = received;
if (flags & ZFS_ITER_RECURSE) {
ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET,
NULL, NULL, 0, inherit_recurse_cb, &cb);
} else {
ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET,
NULL, NULL, 0, inherit_cb, &cb);
}
return (ret);
}
typedef struct upgrade_cbdata {
uint64_t cb_numupgraded;
uint64_t cb_numsamegraded;
uint64_t cb_numfailed;
uint64_t cb_version;
boolean_t cb_newer;
boolean_t cb_foundone;
char cb_lastfs[ZFS_MAX_DATASET_NAME_LEN];
} upgrade_cbdata_t;
static int
same_pool(zfs_handle_t *zhp, const char *name)
{
int len1 = strcspn(name, "/@");
const char *zhname = zfs_get_name(zhp);
int len2 = strcspn(zhname, "/@");
if (len1 != len2)
return (B_FALSE);
return (strncmp(name, zhname, len1) == 0);
}
static int
upgrade_list_callback(zfs_handle_t *zhp, void *data)
{
upgrade_cbdata_t *cb = data;
int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);
/* list if it's old/new */
if ((!cb->cb_newer && version < ZPL_VERSION) ||
(cb->cb_newer && version > ZPL_VERSION)) {
char *str;
if (cb->cb_newer) {
str = gettext("The following filesystems are "
"formatted using a newer software version and\n"
"cannot be accessed on the current system.\n\n");
} else {
str = gettext("The following filesystems are "
"out of date, and can be upgraded. After being\n"
"upgraded, these filesystems (and any 'zfs send' "
"streams generated from\n"
"subsequent snapshots) will no longer be "
"accessible by older software versions.\n\n");
}
if (!cb->cb_foundone) {
(void) puts(str);
(void) printf(gettext("VER FILESYSTEM\n"));
(void) printf(gettext("--- ------------\n"));
cb->cb_foundone = B_TRUE;
}
(void) printf("%2u %s\n", version, zfs_get_name(zhp));
}
return (0);
}
static int
upgrade_set_callback(zfs_handle_t *zhp, void *data)
{
upgrade_cbdata_t *cb = data;
int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION);
int needed_spa_version;
int spa_version;
if (zfs_spa_version(zhp, &spa_version) < 0)
return (-1);
needed_spa_version = zfs_spa_version_map(cb->cb_version);
if (needed_spa_version < 0)
return (-1);
if (spa_version < needed_spa_version) {
/* can't upgrade */
(void) printf(gettext("%s: can not be "
"upgraded; the pool version needs to first "
"be upgraded\nto version %d\n\n"),
zfs_get_name(zhp), needed_spa_version);
cb->cb_numfailed++;
return (0);
}
/* upgrade */
if (version < cb->cb_version) {
char verstr[24];
(void) snprintf(verstr, sizeof (verstr),
"%llu", (u_longlong_t)cb->cb_version);
if (cb->cb_lastfs[0] && !same_pool(zhp, cb->cb_lastfs)) {
/*
* If they did "zfs upgrade -a", then we could
* be doing ioctls to different pools. We need
* to log this history once to each pool, and bypass
* the normal history logging that happens in main().
*/
(void) zpool_log_history(g_zfs, history_str);
log_history = B_FALSE;
}
if (zfs_prop_set(zhp, "version", verstr) == 0)
cb->cb_numupgraded++;
else
cb->cb_numfailed++;
(void) strlcpy(cb->cb_lastfs, zfs_get_name(zhp),
sizeof (cb->cb_lastfs));
} else if (version > cb->cb_version) {
/* can't downgrade */
(void) printf(gettext("%s: can not be downgraded; "
"it is already at version %u\n"),
zfs_get_name(zhp), version);
cb->cb_numfailed++;
} else {
cb->cb_numsamegraded++;
}
return (0);
}
/*
* zfs upgrade
* zfs upgrade -v
* zfs upgrade [-r] [-V <version>] <-a | filesystem>
*/
static int
zfs_do_upgrade(int argc, char **argv)
{
boolean_t all = B_FALSE;
boolean_t showversions = B_FALSE;
int ret = 0;
upgrade_cbdata_t cb = { 0 };
int c;
int flags = ZFS_ITER_ARGS_CAN_BE_PATHS;
/* check options */
while ((c = getopt(argc, argv, "rvV:a")) != -1) {
switch (c) {
case 'r':
flags |= ZFS_ITER_RECURSE;
break;
case 'v':
showversions = B_TRUE;
break;
case 'V':
if (zfs_prop_string_to_index(ZFS_PROP_VERSION,
optarg, &cb.cb_version) != 0) {
(void) fprintf(stderr,
gettext("invalid version %s\n"), optarg);
usage(B_FALSE);
}
break;
case 'a':
all = B_TRUE;
break;
case '?':
default:
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
if ((!all && !argc) && ((flags & ZFS_ITER_RECURSE) | cb.cb_version))
usage(B_FALSE);
if (showversions && (flags & ZFS_ITER_RECURSE || all ||
cb.cb_version || argc))
usage(B_FALSE);
if ((all || argc) && (showversions))
usage(B_FALSE);
if (all && argc)
usage(B_FALSE);
if (showversions) {
/* Show info on available versions. */
(void) printf(gettext("The following filesystem versions are "
"supported:\n\n"));
(void) printf(gettext("VER DESCRIPTION\n"));
(void) printf("--- -----------------------------------------"
"---------------\n");
(void) printf(gettext(" 1 Initial ZFS filesystem version\n"));
(void) printf(gettext(" 2 Enhanced directory entries\n"));
(void) printf(gettext(" 3 Case insensitive and filesystem "
"user identifier (FUID)\n"));
(void) printf(gettext(" 4 userquota, groupquota "
"properties\n"));
(void) printf(gettext(" 5 System attributes\n"));
(void) printf(gettext("\nFor more information on a particular "
"version, including supported releases,\n"));
(void) printf("see the ZFS Administration Guide.\n\n");
ret = 0;
} else if (argc || all) {
/* Upgrade filesystems */
if (cb.cb_version == 0)
cb.cb_version = ZPL_VERSION;
ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_FILESYSTEM,
NULL, NULL, 0, upgrade_set_callback, &cb);
(void) printf(gettext("%llu filesystems upgraded\n"),
(u_longlong_t)cb.cb_numupgraded);
if (cb.cb_numsamegraded) {
(void) printf(gettext("%llu filesystems already at "
"this version\n"),
(u_longlong_t)cb.cb_numsamegraded);
}
if (cb.cb_numfailed != 0)
ret = 1;
} else {
/* List old-version filesystems */
boolean_t found;
(void) printf(gettext("This system is currently running "
"ZFS filesystem version %llu.\n\n"), ZPL_VERSION);
flags |= ZFS_ITER_RECURSE;
ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM,
NULL, NULL, 0, upgrade_list_callback, &cb);
found = cb.cb_foundone;
cb.cb_foundone = B_FALSE;
cb.cb_newer = B_TRUE;
ret |= zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM,
NULL, NULL, 0, upgrade_list_callback, &cb);
if (!cb.cb_foundone && !found) {
(void) printf(gettext("All filesystems are "
"formatted with the current version.\n"));
}
}
return (ret);
}
/*
* zfs userspace [-Hinp] [-o field[,...]] [-s field [-s field]...]
* [-S field [-S field]...] [-t type[,...]]
* filesystem | snapshot | path
* zfs groupspace [-Hinp] [-o field[,...]] [-s field [-s field]...]
* [-S field [-S field]...] [-t type[,...]]
* filesystem | snapshot | path
* zfs projectspace [-Hp] [-o field[,...]] [-s field [-s field]...]
* [-S field [-S field]...] filesystem | snapshot | path
*
* -H Scripted mode; elide headers and separate columns by tabs.
* -i Translate SID to POSIX ID.
* -n Print numeric ID instead of user/group name.
* -o Control which fields to display.
* -p Use exact (parsable) numeric output.
* -s Specify sort columns, descending order.
* -S Specify sort columns, ascending order.
* -t Control which object types to display.
*
* Displays space consumed by, and quotas on, each user in the specified
* filesystem or snapshot.
*/
/* us_field_types, us_field_hdr and us_field_names should be kept in sync */
enum us_field_types {
USFIELD_TYPE,
USFIELD_NAME,
USFIELD_USED,
USFIELD_QUOTA,
USFIELD_OBJUSED,
USFIELD_OBJQUOTA
};
static const char *const us_field_hdr[] = { "TYPE", "NAME", "USED", "QUOTA",
"OBJUSED", "OBJQUOTA" };
static const char *const us_field_names[] = { "type", "name", "used", "quota",
"objused", "objquota" };
#define USFIELD_LAST (sizeof (us_field_names) / sizeof (char *))
#define USTYPE_PSX_GRP (1 << 0)
#define USTYPE_PSX_USR (1 << 1)
#define USTYPE_SMB_GRP (1 << 2)
#define USTYPE_SMB_USR (1 << 3)
#define USTYPE_PROJ (1 << 4)
#define USTYPE_ALL \
(USTYPE_PSX_GRP | USTYPE_PSX_USR | USTYPE_SMB_GRP | USTYPE_SMB_USR | \
USTYPE_PROJ)
static int us_type_bits[] = {
USTYPE_PSX_GRP,
USTYPE_PSX_USR,
USTYPE_SMB_GRP,
USTYPE_SMB_USR,
USTYPE_ALL
};
static const char *const us_type_names[] = { "posixgroup", "posixuser",
"smbgroup", "smbuser", "all" };
typedef struct us_node {
nvlist_t *usn_nvl;
uu_avl_node_t usn_avlnode;
uu_list_node_t usn_listnode;
} us_node_t;
typedef struct us_cbdata {
nvlist_t **cb_nvlp;
uu_avl_pool_t *cb_avl_pool;
uu_avl_t *cb_avl;
boolean_t cb_numname;
boolean_t cb_nicenum;
boolean_t cb_sid2posix;
zfs_userquota_prop_t cb_prop;
zfs_sort_column_t *cb_sortcol;
size_t cb_width[USFIELD_LAST];
} us_cbdata_t;
static boolean_t us_populated = B_FALSE;
typedef struct {
zfs_sort_column_t *si_sortcol;
boolean_t si_numname;
} us_sort_info_t;
static int
us_field_index(const char *field)
{
for (int i = 0; i < USFIELD_LAST; i++) {
if (strcmp(field, us_field_names[i]) == 0)
return (i);
}
return (-1);
}
static int
us_compare(const void *larg, const void *rarg, void *unused)
{
const us_node_t *l = larg;
const us_node_t *r = rarg;
us_sort_info_t *si = (us_sort_info_t *)unused;
zfs_sort_column_t *sortcol = si->si_sortcol;
boolean_t numname = si->si_numname;
nvlist_t *lnvl = l->usn_nvl;
nvlist_t *rnvl = r->usn_nvl;
int rc = 0;
boolean_t lvb, rvb;
for (; sortcol != NULL; sortcol = sortcol->sc_next) {
const char *lvstr = "";
const char *rvstr = "";
uint32_t lv32 = 0;
uint32_t rv32 = 0;
uint64_t lv64 = 0;
uint64_t rv64 = 0;
zfs_prop_t prop = sortcol->sc_prop;
const char *propname = NULL;
boolean_t reverse = sortcol->sc_reverse;
switch (prop) {
case ZFS_PROP_TYPE:
propname = "type";
(void) nvlist_lookup_uint32(lnvl, propname, &lv32);
(void) nvlist_lookup_uint32(rnvl, propname, &rv32);
if (rv32 != lv32)
rc = (rv32 < lv32) ? 1 : -1;
break;
case ZFS_PROP_NAME:
propname = "name";
if (numname) {
compare_nums:
(void) nvlist_lookup_uint64(lnvl, propname,
&lv64);
(void) nvlist_lookup_uint64(rnvl, propname,
&rv64);
if (rv64 != lv64)
rc = (rv64 < lv64) ? 1 : -1;
} else {
if ((nvlist_lookup_string(lnvl, propname,
&lvstr) == ENOENT) ||
(nvlist_lookup_string(rnvl, propname,
&rvstr) == ENOENT)) {
goto compare_nums;
}
rc = strcmp(lvstr, rvstr);
}
break;
case ZFS_PROP_USED:
case ZFS_PROP_QUOTA:
if (!us_populated)
break;
if (prop == ZFS_PROP_USED)
propname = "used";
else
propname = "quota";
(void) nvlist_lookup_uint64(lnvl, propname, &lv64);
(void) nvlist_lookup_uint64(rnvl, propname, &rv64);
if (rv64 != lv64)
rc = (rv64 < lv64) ? 1 : -1;
break;
default:
break;
}
if (rc != 0) {
if (rc < 0)
return (reverse ? 1 : -1);
else
return (reverse ? -1 : 1);
}
}
/*
* If entries still seem to be the same, check if they are of the same
* type (smbentity is added only if we are doing SID to POSIX ID
* translation where we can have duplicate type/name combinations).
*/
if (nvlist_lookup_boolean_value(lnvl, "smbentity", &lvb) == 0 &&
nvlist_lookup_boolean_value(rnvl, "smbentity", &rvb) == 0 &&
lvb != rvb)
return (lvb < rvb ? -1 : 1);
return (0);
}
static boolean_t
zfs_prop_is_user(unsigned p)
{
return (p == ZFS_PROP_USERUSED || p == ZFS_PROP_USERQUOTA ||
p == ZFS_PROP_USEROBJUSED || p == ZFS_PROP_USEROBJQUOTA);
}
static boolean_t
zfs_prop_is_group(unsigned p)
{
return (p == ZFS_PROP_GROUPUSED || p == ZFS_PROP_GROUPQUOTA ||
p == ZFS_PROP_GROUPOBJUSED || p == ZFS_PROP_GROUPOBJQUOTA);
}
static boolean_t
zfs_prop_is_project(unsigned p)
{
return (p == ZFS_PROP_PROJECTUSED || p == ZFS_PROP_PROJECTQUOTA ||
p == ZFS_PROP_PROJECTOBJUSED || p == ZFS_PROP_PROJECTOBJQUOTA);
}
static inline const char *
us_type2str(unsigned field_type)
{
switch (field_type) {
case USTYPE_PSX_USR:
return ("POSIX User");
case USTYPE_PSX_GRP:
return ("POSIX Group");
case USTYPE_SMB_USR:
return ("SMB User");
case USTYPE_SMB_GRP:
return ("SMB Group");
case USTYPE_PROJ:
return ("Project");
default:
return ("Undefined");
}
}
static int
userspace_cb(void *arg, const char *domain, uid_t rid, uint64_t space)
{
us_cbdata_t *cb = (us_cbdata_t *)arg;
zfs_userquota_prop_t prop = cb->cb_prop;
char *name = NULL;
const char *propname;
char sizebuf[32];
us_node_t *node;
uu_avl_pool_t *avl_pool = cb->cb_avl_pool;
uu_avl_t *avl = cb->cb_avl;
uu_avl_index_t idx;
nvlist_t *props;
us_node_t *n;
zfs_sort_column_t *sortcol = cb->cb_sortcol;
unsigned type = 0;
const char *typestr;
size_t namelen;
size_t typelen;
size_t sizelen;
int typeidx, nameidx, sizeidx;
us_sort_info_t sortinfo = { sortcol, cb->cb_numname };
boolean_t smbentity = B_FALSE;
if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
nomem();
node = safe_malloc(sizeof (us_node_t));
uu_avl_node_init(node, &node->usn_avlnode, avl_pool);
node->usn_nvl = props;
if (domain != NULL && domain[0] != '\0') {
#ifdef HAVE_IDMAP
/* SMB */
char sid[MAXNAMELEN + 32];
uid_t id;
uint64_t classes;
int err;
directory_error_t e;
smbentity = B_TRUE;
(void) snprintf(sid, sizeof (sid), "%s-%u", domain, rid);
if (prop == ZFS_PROP_GROUPUSED || prop == ZFS_PROP_GROUPQUOTA) {
type = USTYPE_SMB_GRP;
err = sid_to_id(sid, B_FALSE, &id);
} else {
type = USTYPE_SMB_USR;
err = sid_to_id(sid, B_TRUE, &id);
}
if (err == 0) {
rid = id;
if (!cb->cb_sid2posix) {
e = directory_name_from_sid(NULL, sid, &name,
&classes);
if (e != NULL)
directory_error_free(e);
if (name == NULL)
name = sid;
}
}
#else
nvlist_free(props);
free(node);
return (-1);
#endif /* HAVE_IDMAP */
}
if (cb->cb_sid2posix || domain == NULL || domain[0] == '\0') {
/* POSIX or -i */
if (zfs_prop_is_group(prop)) {
type = USTYPE_PSX_GRP;
if (!cb->cb_numname) {
struct group *g;
if ((g = getgrgid(rid)) != NULL)
name = g->gr_name;
}
} else if (zfs_prop_is_user(prop)) {
type = USTYPE_PSX_USR;
if (!cb->cb_numname) {
struct passwd *p;
if ((p = getpwuid(rid)) != NULL)
name = p->pw_name;
}
} else {
type = USTYPE_PROJ;
}
}
/*
* Make sure that the type/name combination is unique when doing
* SID to POSIX ID translation (hence changing the type from SMB to
* POSIX).
*/
if (cb->cb_sid2posix &&
nvlist_add_boolean_value(props, "smbentity", smbentity) != 0)
nomem();
/* Calculate/update width of TYPE field */
typestr = us_type2str(type);
typelen = strlen(gettext(typestr));
typeidx = us_field_index("type");
if (typelen > cb->cb_width[typeidx])
cb->cb_width[typeidx] = typelen;
if (nvlist_add_uint32(props, "type", type) != 0)
nomem();
/* Calculate/update width of NAME field */
if ((cb->cb_numname && cb->cb_sid2posix) || name == NULL) {
if (nvlist_add_uint64(props, "name", rid) != 0)
nomem();
namelen = snprintf(NULL, 0, "%u", rid);
} else {
if (nvlist_add_string(props, "name", name) != 0)
nomem();
namelen = strlen(name);
}
nameidx = us_field_index("name");
if (nameidx >= 0 && namelen > cb->cb_width[nameidx])
cb->cb_width[nameidx] = namelen;
/*
* Check if this type/name combination is in the list and update it;
* otherwise add new node to the list.
*/
if ((n = uu_avl_find(avl, node, &sortinfo, &idx)) == NULL) {
uu_avl_insert(avl, node, idx);
} else {
nvlist_free(props);
free(node);
node = n;
props = node->usn_nvl;
}
/* Calculate/update width of USED/QUOTA fields */
if (cb->cb_nicenum) {
if (prop == ZFS_PROP_USERUSED || prop == ZFS_PROP_GROUPUSED ||
prop == ZFS_PROP_USERQUOTA || prop == ZFS_PROP_GROUPQUOTA ||
prop == ZFS_PROP_PROJECTUSED ||
prop == ZFS_PROP_PROJECTQUOTA) {
zfs_nicebytes(space, sizebuf, sizeof (sizebuf));
} else {
zfs_nicenum(space, sizebuf, sizeof (sizebuf));
}
} else {
(void) snprintf(sizebuf, sizeof (sizebuf), "%llu",
(u_longlong_t)space);
}
sizelen = strlen(sizebuf);
if (prop == ZFS_PROP_USERUSED || prop == ZFS_PROP_GROUPUSED ||
prop == ZFS_PROP_PROJECTUSED) {
propname = "used";
if (!nvlist_exists(props, "quota"))
(void) nvlist_add_uint64(props, "quota", 0);
} else if (prop == ZFS_PROP_USERQUOTA || prop == ZFS_PROP_GROUPQUOTA ||
prop == ZFS_PROP_PROJECTQUOTA) {
propname = "quota";
if (!nvlist_exists(props, "used"))
(void) nvlist_add_uint64(props, "used", 0);
} else if (prop == ZFS_PROP_USEROBJUSED ||
prop == ZFS_PROP_GROUPOBJUSED || prop == ZFS_PROP_PROJECTOBJUSED) {
propname = "objused";
if (!nvlist_exists(props, "objquota"))
(void) nvlist_add_uint64(props, "objquota", 0);
} else if (prop == ZFS_PROP_USEROBJQUOTA ||
prop == ZFS_PROP_GROUPOBJQUOTA ||
prop == ZFS_PROP_PROJECTOBJQUOTA) {
propname = "objquota";
if (!nvlist_exists(props, "objused"))
(void) nvlist_add_uint64(props, "objused", 0);
} else {
return (-1);
}
sizeidx = us_field_index(propname);
if (sizeidx >= 0 && sizelen > cb->cb_width[sizeidx])
cb->cb_width[sizeidx] = sizelen;
if (nvlist_add_uint64(props, propname, space) != 0)
nomem();
return (0);
}
static void
print_us_node(boolean_t scripted, boolean_t parsable, int *fields, int types,
size_t *width, us_node_t *node)
{
nvlist_t *nvl = node->usn_nvl;
char valstr[MAXNAMELEN];
boolean_t first = B_TRUE;
int cfield = 0;
int field;
uint32_t ustype;
/* Check type */
(void) nvlist_lookup_uint32(nvl, "type", &ustype);
if (!(ustype & types))
return;
while ((field = fields[cfield]) != USFIELD_LAST) {
nvpair_t *nvp = NULL;
data_type_t type;
uint32_t val32 = -1;
uint64_t val64 = -1;
const char *strval = "-";
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL)
if (strcmp(nvpair_name(nvp),
us_field_names[field]) == 0)
break;
type = nvp == NULL ? DATA_TYPE_UNKNOWN : nvpair_type(nvp);
switch (type) {
case DATA_TYPE_UINT32:
val32 = fnvpair_value_uint32(nvp);
break;
case DATA_TYPE_UINT64:
val64 = fnvpair_value_uint64(nvp);
break;
case DATA_TYPE_STRING:
strval = fnvpair_value_string(nvp);
break;
case DATA_TYPE_UNKNOWN:
break;
default:
(void) fprintf(stderr, "invalid data type\n");
}
switch (field) {
case USFIELD_TYPE:
if (type == DATA_TYPE_UINT32)
strval = us_type2str(val32);
break;
case USFIELD_NAME:
if (type == DATA_TYPE_UINT64) {
(void) sprintf(valstr, "%llu",
(u_longlong_t)val64);
strval = valstr;
}
break;
case USFIELD_USED:
case USFIELD_QUOTA:
if (type == DATA_TYPE_UINT64) {
if (parsable) {
(void) sprintf(valstr, "%llu",
(u_longlong_t)val64);
strval = valstr;
} else if (field == USFIELD_QUOTA &&
val64 == 0) {
strval = "none";
} else {
zfs_nicebytes(val64, valstr,
sizeof (valstr));
strval = valstr;
}
}
break;
case USFIELD_OBJUSED:
case USFIELD_OBJQUOTA:
if (type == DATA_TYPE_UINT64) {
if (parsable) {
(void) sprintf(valstr, "%llu",
(u_longlong_t)val64);
strval = valstr;
} else if (field == USFIELD_OBJQUOTA &&
val64 == 0) {
strval = "none";
} else {
zfs_nicenum(val64, valstr,
sizeof (valstr));
strval = valstr;
}
}
break;
}
if (!first) {
if (scripted)
(void) putchar('\t');
else
(void) fputs(" ", stdout);
}
if (scripted)
(void) fputs(strval, stdout);
else if (field == USFIELD_TYPE || field == USFIELD_NAME)
(void) printf("%-*s", (int)width[field], strval);
else
(void) printf("%*s", (int)width[field], strval);
first = B_FALSE;
cfield++;
}
(void) putchar('\n');
}
static void
print_us(boolean_t scripted, boolean_t parsable, int *fields, int types,
size_t *width, boolean_t rmnode, uu_avl_t *avl)
{
us_node_t *node;
const char *col;
int cfield = 0;
int field;
if (!scripted) {
boolean_t first = B_TRUE;
while ((field = fields[cfield]) != USFIELD_LAST) {
col = gettext(us_field_hdr[field]);
if (field == USFIELD_TYPE || field == USFIELD_NAME) {
(void) printf(first ? "%-*s" : " %-*s",
(int)width[field], col);
} else {
(void) printf(first ? "%*s" : " %*s",
(int)width[field], col);
}
first = B_FALSE;
cfield++;
}
(void) printf("\n");
}
for (node = uu_avl_first(avl); node; node = uu_avl_next(avl, node)) {
print_us_node(scripted, parsable, fields, types, width, node);
if (rmnode)
nvlist_free(node->usn_nvl);
}
}
static int
zfs_do_userspace(int argc, char **argv)
{
zfs_handle_t *zhp;
zfs_userquota_prop_t p;
uu_avl_pool_t *avl_pool;
uu_avl_t *avl_tree;
uu_avl_walk_t *walk;
char *delim;
char deffields[] = "type,name,used,quota,objused,objquota";
char *ofield = NULL;
char *tfield = NULL;
int cfield = 0;
int fields[256];
int i;
boolean_t scripted = B_FALSE;
boolean_t prtnum = B_FALSE;
boolean_t parsable = B_FALSE;
boolean_t sid2posix = B_FALSE;
int ret = 0;
int c;
zfs_sort_column_t *sortcol = NULL;
int types = USTYPE_PSX_USR | USTYPE_SMB_USR;
us_cbdata_t cb;
us_node_t *node;
us_node_t *rmnode;
uu_list_pool_t *listpool;
uu_list_t *list;
uu_avl_index_t idx = 0;
uu_list_index_t idx2 = 0;
if (argc < 2)
usage(B_FALSE);
if (strcmp(argv[0], "groupspace") == 0) {
/* Toggle default group types */
types = USTYPE_PSX_GRP | USTYPE_SMB_GRP;
} else if (strcmp(argv[0], "projectspace") == 0) {
types = USTYPE_PROJ;
prtnum = B_TRUE;
}
while ((c = getopt(argc, argv, "nHpo:s:S:t:i")) != -1) {
switch (c) {
case 'n':
if (types == USTYPE_PROJ) {
(void) fprintf(stderr,
gettext("invalid option 'n'\n"));
usage(B_FALSE);
}
prtnum = B_TRUE;
break;
case 'H':
scripted = B_TRUE;
break;
case 'p':
parsable = B_TRUE;
break;
case 'o':
ofield = optarg;
break;
case 's':
case 'S':
if (zfs_add_sort_column(&sortcol, optarg,
c == 's' ? B_FALSE : B_TRUE) != 0) {
(void) fprintf(stderr,
gettext("invalid field '%s'\n"), optarg);
usage(B_FALSE);
}
break;
case 't':
if (types == USTYPE_PROJ) {
(void) fprintf(stderr,
gettext("invalid option 't'\n"));
usage(B_FALSE);
}
tfield = optarg;
break;
case 'i':
if (types == USTYPE_PROJ) {
(void) fprintf(stderr,
gettext("invalid option 'i'\n"));
usage(B_FALSE);
}
sid2posix = B_TRUE;
break;
case ':':
(void) fprintf(stderr, gettext("missing argument for "
"'%c' option\n"), optopt);
usage(B_FALSE);
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
if (argc < 1) {
(void) fprintf(stderr, gettext("missing dataset name\n"));
usage(B_FALSE);
}
if (argc > 1) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
/* Use default output fields if not specified using -o */
if (ofield == NULL)
ofield = deffields;
do {
if ((delim = strchr(ofield, ',')) != NULL)
*delim = '\0';
if ((fields[cfield++] = us_field_index(ofield)) == -1) {
(void) fprintf(stderr, gettext("invalid type '%s' "
"for -o option\n"), ofield);
return (-1);
}
if (delim != NULL)
ofield = delim + 1;
} while (delim != NULL);
fields[cfield] = USFIELD_LAST;
/* Override output types (-t option) */
if (tfield != NULL) {
types = 0;
do {
boolean_t found = B_FALSE;
if ((delim = strchr(tfield, ',')) != NULL)
*delim = '\0';
for (i = 0; i < sizeof (us_type_bits) / sizeof (int);
i++) {
if (strcmp(tfield, us_type_names[i]) == 0) {
found = B_TRUE;
types |= us_type_bits[i];
break;
}
}
if (!found) {
(void) fprintf(stderr, gettext("invalid type "
"'%s' for -t option\n"), tfield);
return (-1);
}
if (delim != NULL)
tfield = delim + 1;
} while (delim != NULL);
}
if ((zhp = zfs_path_to_zhandle(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM |
ZFS_TYPE_SNAPSHOT)) == NULL)
return (1);
if (zfs_get_underlying_type(zhp) != ZFS_TYPE_FILESYSTEM) {
(void) fprintf(stderr, gettext("operation is only applicable "
"to filesystems and their snapshots\n"));
zfs_close(zhp);
return (1);
}
if ((avl_pool = uu_avl_pool_create("us_avl_pool", sizeof (us_node_t),
offsetof(us_node_t, usn_avlnode), us_compare, UU_DEFAULT)) == NULL)
nomem();
if ((avl_tree = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL)
nomem();
/* Always add default sorting columns */
(void) zfs_add_sort_column(&sortcol, "type", B_FALSE);
(void) zfs_add_sort_column(&sortcol, "name", B_FALSE);
cb.cb_sortcol = sortcol;
cb.cb_numname = prtnum;
cb.cb_nicenum = !parsable;
cb.cb_avl_pool = avl_pool;
cb.cb_avl = avl_tree;
cb.cb_sid2posix = sid2posix;
for (i = 0; i < USFIELD_LAST; i++)
cb.cb_width[i] = strlen(gettext(us_field_hdr[i]));
for (p = 0; p < ZFS_NUM_USERQUOTA_PROPS; p++) {
if ((zfs_prop_is_user(p) &&
!(types & (USTYPE_PSX_USR | USTYPE_SMB_USR))) ||
(zfs_prop_is_group(p) &&
!(types & (USTYPE_PSX_GRP | USTYPE_SMB_GRP))) ||
(zfs_prop_is_project(p) && types != USTYPE_PROJ))
continue;
cb.cb_prop = p;
if ((ret = zfs_userspace(zhp, p, userspace_cb, &cb)) != 0) {
zfs_close(zhp);
return (ret);
}
}
zfs_close(zhp);
/* Sort the list */
if ((node = uu_avl_first(avl_tree)) == NULL)
return (0);
us_populated = B_TRUE;
listpool = uu_list_pool_create("tmplist", sizeof (us_node_t),
offsetof(us_node_t, usn_listnode), NULL, UU_DEFAULT);
list = uu_list_create(listpool, NULL, UU_DEFAULT);
uu_list_node_init(node, &node->usn_listnode, listpool);
while (node != NULL) {
rmnode = node;
node = uu_avl_next(avl_tree, node);
uu_avl_remove(avl_tree, rmnode);
if (uu_list_find(list, rmnode, NULL, &idx2) == NULL)
uu_list_insert(list, rmnode, idx2);
}
for (node = uu_list_first(list); node != NULL;
node = uu_list_next(list, node)) {
us_sort_info_t sortinfo = { sortcol, cb.cb_numname };
if (uu_avl_find(avl_tree, node, &sortinfo, &idx) == NULL)
uu_avl_insert(avl_tree, node, idx);
}
uu_list_destroy(list);
uu_list_pool_destroy(listpool);
/* Print and free node nvlist memory */
print_us(scripted, parsable, fields, types, cb.cb_width, B_TRUE,
cb.cb_avl);
zfs_free_sort_columns(sortcol);
/* Clean up the AVL tree */
if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL)
nomem();
while ((node = uu_avl_walk_next(walk)) != NULL) {
uu_avl_remove(cb.cb_avl, node);
free(node);
}
uu_avl_walk_end(walk);
uu_avl_destroy(avl_tree);
uu_avl_pool_destroy(avl_pool);
return (ret);
}
/*
* list [-Hp][-r|-d max] [-o property[,...]] [-s property] ... [-S property]
* [-t type[,...]] [filesystem|volume|snapshot] ...
*
* -H Scripted mode; elide headers and separate columns by tabs
* -p Display values in parsable (literal) format.
* -r Recurse over all children
* -d Limit recursion by depth.
* -o Control which fields to display.
* -s Specify sort columns, descending order.
* -S Specify sort columns, ascending order.
* -t Control which object types to display.
*
* When given no arguments, list all filesystems in the system.
* Otherwise, list the specified datasets, optionally recursing down them if
* '-r' is specified.
*/
typedef struct list_cbdata {
boolean_t cb_first;
boolean_t cb_literal;
boolean_t cb_scripted;
zprop_list_t *cb_proplist;
} list_cbdata_t;
/*
* Given a list of columns to display, output appropriate headers for each one.
*/
static void
print_header(list_cbdata_t *cb)
{
zprop_list_t *pl = cb->cb_proplist;
char headerbuf[ZFS_MAXPROPLEN];
const char *header;
int i;
boolean_t first = B_TRUE;
boolean_t right_justify;
color_start(ANSI_BOLD);
for (; pl != NULL; pl = pl->pl_next) {
if (!first) {
(void) printf(" ");
} else {
first = B_FALSE;
}
right_justify = B_FALSE;
if (pl->pl_prop != ZPROP_USERPROP) {
header = zfs_prop_column_name(pl->pl_prop);
right_justify = zfs_prop_align_right(pl->pl_prop);
} else {
for (i = 0; pl->pl_user_prop[i] != '\0'; i++)
headerbuf[i] = toupper(pl->pl_user_prop[i]);
headerbuf[i] = '\0';
header = headerbuf;
}
if (pl->pl_next == NULL && !right_justify)
(void) printf("%s", header);
else if (right_justify)
(void) printf("%*s", (int)pl->pl_width, header);
else
(void) printf("%-*s", (int)pl->pl_width, header);
}
color_end();
(void) printf("\n");
}
/*
* Decides on the color that the avail value should be printed in.
* > 80% used = yellow
* > 90% used = red
*/
static const char *
zfs_list_avail_color(zfs_handle_t *zhp)
{
uint64_t used = zfs_prop_get_int(zhp, ZFS_PROP_USED);
uint64_t avail = zfs_prop_get_int(zhp, ZFS_PROP_AVAILABLE);
int percentage = (int)((double)avail / MAX(avail + used, 1) * 100);
if (percentage > 20)
return (NULL);
else if (percentage > 10)
return (ANSI_YELLOW);
else
return (ANSI_RED);
}
/*
* Given a dataset and a list of fields, print out all the properties according
* to the described layout.
*/
static void
print_dataset(zfs_handle_t *zhp, list_cbdata_t *cb)
{
zprop_list_t *pl = cb->cb_proplist;
boolean_t first = B_TRUE;
char property[ZFS_MAXPROPLEN];
nvlist_t *userprops = zfs_get_user_props(zhp);
nvlist_t *propval;
const char *propstr;
boolean_t right_justify;
for (; pl != NULL; pl = pl->pl_next) {
if (!first) {
if (cb->cb_scripted)
(void) putchar('\t');
else
(void) fputs(" ", stdout);
} else {
first = B_FALSE;
}
if (pl->pl_prop == ZFS_PROP_NAME) {
(void) strlcpy(property, zfs_get_name(zhp),
sizeof (property));
propstr = property;
right_justify = zfs_prop_align_right(pl->pl_prop);
} else if (pl->pl_prop != ZPROP_USERPROP) {
if (zfs_prop_get(zhp, pl->pl_prop, property,
sizeof (property), NULL, NULL, 0,
cb->cb_literal) != 0)
propstr = "-";
else
propstr = property;
right_justify = zfs_prop_align_right(pl->pl_prop);
} else if (zfs_prop_userquota(pl->pl_user_prop)) {
if (zfs_prop_get_userquota(zhp, pl->pl_user_prop,
property, sizeof (property), cb->cb_literal) != 0)
propstr = "-";
else
propstr = property;
right_justify = B_TRUE;
} else if (zfs_prop_written(pl->pl_user_prop)) {
if (zfs_prop_get_written(zhp, pl->pl_user_prop,
property, sizeof (property), cb->cb_literal) != 0)
propstr = "-";
else
propstr = property;
right_justify = B_TRUE;
} else {
if (nvlist_lookup_nvlist(userprops,
pl->pl_user_prop, &propval) != 0)
propstr = "-";
else
propstr = fnvlist_lookup_string(propval,
ZPROP_VALUE);
right_justify = B_FALSE;
}
/*
* zfs_list_avail_color() needs ZFS_PROP_AVAILABLE + USED
* - so we need another for() search for the USED part
* - when no colors wanted, we can skip the whole thing
*/
if (use_color() && pl->pl_prop == ZFS_PROP_AVAILABLE) {
zprop_list_t *pl2 = cb->cb_proplist;
for (; pl2 != NULL; pl2 = pl2->pl_next) {
if (pl2->pl_prop == ZFS_PROP_USED) {
color_start(zfs_list_avail_color(zhp));
/* found it, no need for more loops */
break;
}
}
}
/*
* If this is being called in scripted mode, or if this is the
* last column and it is left-justified, don't include a width
* format specifier.
*/
if (cb->cb_scripted || (pl->pl_next == NULL && !right_justify))
(void) fputs(propstr, stdout);
else if (right_justify)
(void) printf("%*s", (int)pl->pl_width, propstr);
else
(void) printf("%-*s", (int)pl->pl_width, propstr);
if (pl->pl_prop == ZFS_PROP_AVAILABLE)
color_end();
}
(void) putchar('\n');
}
/*
* Generic callback function to list a dataset or snapshot.
*/
static int
list_callback(zfs_handle_t *zhp, void *data)
{
list_cbdata_t *cbp = data;
if (cbp->cb_first) {
if (!cbp->cb_scripted)
print_header(cbp);
cbp->cb_first = B_FALSE;
}
print_dataset(zhp, cbp);
return (0);
}
static int
zfs_do_list(int argc, char **argv)
{
int c;
char default_fields[] =
"name,used,available,referenced,mountpoint";
int types = ZFS_TYPE_DATASET;
boolean_t types_specified = B_FALSE;
char *fields = default_fields;
list_cbdata_t cb = { 0 };
int limit = 0;
int ret = 0;
zfs_sort_column_t *sortcol = NULL;
int flags = ZFS_ITER_PROP_LISTSNAPS | ZFS_ITER_ARGS_CAN_BE_PATHS;
/* check options */
while ((c = getopt(argc, argv, "HS:d:o:prs:t:")) != -1) {
switch (c) {
case 'o':
fields = optarg;
break;
case 'p':
cb.cb_literal = B_TRUE;
flags |= ZFS_ITER_LITERAL_PROPS;
break;
case 'd':
limit = parse_depth(optarg, &flags);
break;
case 'r':
flags |= ZFS_ITER_RECURSE;
break;
case 'H':
cb.cb_scripted = B_TRUE;
break;
case 's':
if (zfs_add_sort_column(&sortcol, optarg,
B_FALSE) != 0) {
(void) fprintf(stderr,
gettext("invalid property '%s'\n"), optarg);
usage(B_FALSE);
}
break;
case 'S':
if (zfs_add_sort_column(&sortcol, optarg,
B_TRUE) != 0) {
(void) fprintf(stderr,
gettext("invalid property '%s'\n"), optarg);
usage(B_FALSE);
}
break;
case 't':
types = 0;
types_specified = B_TRUE;
flags &= ~ZFS_ITER_PROP_LISTSNAPS;
for (char *tok; (tok = strsep(&optarg, ",")); ) {
static const char *const type_subopts[] = {
"filesystem",
"fs",
"volume",
"vol",
"snapshot",
"snap",
"bookmark",
"all"
};
static const int type_types[] = {
ZFS_TYPE_FILESYSTEM,
ZFS_TYPE_FILESYSTEM,
ZFS_TYPE_VOLUME,
ZFS_TYPE_VOLUME,
ZFS_TYPE_SNAPSHOT,
ZFS_TYPE_SNAPSHOT,
ZFS_TYPE_BOOKMARK,
ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK
};
for (c = 0; c < ARRAY_SIZE(type_subopts); ++c)
if (strcmp(tok, type_subopts[c]) == 0) {
types |= type_types[c];
goto found3;
}
(void) fprintf(stderr,
gettext("invalid type '%s'\n"), tok);
usage(B_FALSE);
found3:;
}
break;
case ':':
(void) fprintf(stderr, gettext("missing argument for "
"'%c' option\n"), optopt);
usage(B_FALSE);
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
/*
* If "-o space" and no types were specified, don't display snapshots.
*/
if (strcmp(fields, "space") == 0 && types_specified == B_FALSE)
types &= ~ZFS_TYPE_SNAPSHOT;
/*
* Handle users who want to list all snapshots or bookmarks
* of the current dataset (ex. 'zfs list -t snapshot <dataset>').
*/
if ((types == ZFS_TYPE_SNAPSHOT || types == ZFS_TYPE_BOOKMARK) &&
argc > 0 && (flags & ZFS_ITER_RECURSE) == 0 && limit == 0) {
flags |= (ZFS_ITER_DEPTH_LIMIT | ZFS_ITER_RECURSE);
limit = 1;
}
/*
* If the user specifies '-o all', the zprop_get_list() doesn't
* normally include the name of the dataset. For 'zfs list', we always
* want this property to be first.
*/
if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET)
!= 0)
usage(B_FALSE);
cb.cb_first = B_TRUE;
/*
* If we are only going to list and sort by properties that are "fast"
* then we can use "simple" mode and avoid populating the properties
* nvlist.
*/
if (zfs_list_only_by_fast(cb.cb_proplist) &&
zfs_sort_only_by_fast(sortcol))
flags |= ZFS_ITER_SIMPLE;
ret = zfs_for_each(argc, argv, flags, types, sortcol, &cb.cb_proplist,
limit, list_callback, &cb);
zprop_free_list(cb.cb_proplist);
zfs_free_sort_columns(sortcol);
if (ret == 0 && cb.cb_first && !cb.cb_scripted)
(void) fprintf(stderr, gettext("no datasets available\n"));
return (ret);
}
/*
* zfs rename [-fu] <fs | snap | vol> <fs | snap | vol>
* zfs rename [-f] -p <fs | vol> <fs | vol>
* zfs rename [-u] -r <snap> <snap>
*
* Renames the given dataset to another of the same type.
*
* The '-p' flag creates all the non-existing ancestors of the target first.
* The '-u' flag prevents file systems from being remounted during rename.
*/
static int
zfs_do_rename(int argc, char **argv)
{
zfs_handle_t *zhp;
renameflags_t flags = { 0 };
int c;
int ret = 0;
int types;
boolean_t parents = B_FALSE;
/* check options */
while ((c = getopt(argc, argv, "pruf")) != -1) {
switch (c) {
case 'p':
parents = B_TRUE;
break;
case 'r':
flags.recursive = B_TRUE;
break;
case 'u':
flags.nounmount = B_TRUE;
break;
case 'f':
flags.forceunmount = B_TRUE;
break;
case '?':
default:
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc < 1) {
(void) fprintf(stderr, gettext("missing source dataset "
"argument\n"));
usage(B_FALSE);
}
if (argc < 2) {
(void) fprintf(stderr, gettext("missing target dataset "
"argument\n"));
usage(B_FALSE);
}
if (argc > 2) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
if (flags.recursive && parents) {
(void) fprintf(stderr, gettext("-p and -r options are mutually "
"exclusive\n"));
usage(B_FALSE);
}
if (flags.nounmount && parents) {
(void) fprintf(stderr, gettext("-u and -p options are mutually "
"exclusive\n"));
usage(B_FALSE);
}
if (flags.recursive && strchr(argv[0], '@') == 0) {
(void) fprintf(stderr, gettext("source dataset for recursive "
"rename must be a snapshot\n"));
usage(B_FALSE);
}
if (flags.nounmount)
types = ZFS_TYPE_FILESYSTEM;
else if (parents)
types = ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME;
else
types = ZFS_TYPE_DATASET;
if ((zhp = zfs_open(g_zfs, argv[0], types)) == NULL)
return (1);
/* If we were asked and the name looks good, try to create ancestors. */
if (parents && zfs_name_valid(argv[1], zfs_get_type(zhp)) &&
zfs_create_ancestors(g_zfs, argv[1]) != 0) {
zfs_close(zhp);
return (1);
}
ret = (zfs_rename(zhp, argv[1], flags) != 0);
zfs_close(zhp);
return (ret);
}
/*
* zfs promote <fs>
*
* Promotes the given clone fs to be the parent
*/
static int
zfs_do_promote(int argc, char **argv)
{
zfs_handle_t *zhp;
int ret = 0;
/* check options */
if (argc > 1 && argv[1][0] == '-') {
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
argv[1][1]);
usage(B_FALSE);
}
/* check number of arguments */
if (argc < 2) {
(void) fprintf(stderr, gettext("missing clone filesystem"
" argument\n"));
usage(B_FALSE);
}
if (argc > 2) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
zhp = zfs_open(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL)
return (1);
ret = (zfs_promote(zhp) != 0);
zfs_close(zhp);
return (ret);
}
static int
zfs_do_redact(int argc, char **argv)
{
char *snap = NULL;
char *bookname = NULL;
char **rsnaps = NULL;
int numrsnaps = 0;
argv++;
argc--;
if (argc < 3) {
(void) fprintf(stderr, gettext("too few arguments\n"));
usage(B_FALSE);
}
snap = argv[0];
bookname = argv[1];
rsnaps = argv + 2;
numrsnaps = argc - 2;
nvlist_t *rsnapnv = fnvlist_alloc();
for (int i = 0; i < numrsnaps; i++) {
fnvlist_add_boolean(rsnapnv, rsnaps[i]);
}
int err = lzc_redact(snap, bookname, rsnapnv);
fnvlist_free(rsnapnv);
switch (err) {
case 0:
break;
case ENOENT: {
zfs_handle_t *zhp = zfs_open(g_zfs, snap, ZFS_TYPE_SNAPSHOT);
if (zhp == NULL) {
(void) fprintf(stderr, gettext("provided snapshot %s "
"does not exist\n"), snap);
} else {
zfs_close(zhp);
}
for (int i = 0; i < numrsnaps; i++) {
zhp = zfs_open(g_zfs, rsnaps[i], ZFS_TYPE_SNAPSHOT);
if (zhp == NULL) {
(void) fprintf(stderr, gettext("provided "
"snapshot %s does not exist\n"), rsnaps[i]);
} else {
zfs_close(zhp);
}
}
break;
}
case EEXIST:
(void) fprintf(stderr, gettext("specified redaction bookmark "
"(%s) provided already exists\n"), bookname);
break;
case ENAMETOOLONG:
(void) fprintf(stderr, gettext("provided bookmark name cannot "
"be used, final name would be too long\n"));
break;
case E2BIG:
(void) fprintf(stderr, gettext("too many redaction snapshots "
"specified\n"));
break;
case EINVAL:
if (strchr(bookname, '#') != NULL)
(void) fprintf(stderr, gettext(
"redaction bookmark name must not contain '#'\n"));
else
(void) fprintf(stderr, gettext(
"redaction snapshot must be descendent of "
"snapshot being redacted\n"));
break;
case EALREADY:
(void) fprintf(stderr, gettext("attempted to redact redacted "
"dataset or with respect to redacted dataset\n"));
break;
case ENOTSUP:
(void) fprintf(stderr, gettext("redaction bookmarks feature "
"not enabled\n"));
break;
case EXDEV:
(void) fprintf(stderr, gettext("potentially invalid redaction "
"snapshot; full dataset names required\n"));
break;
case ESRCH:
(void) fprintf(stderr, gettext("attempted to resume redaction "
" with a mismatched redaction list\n"));
break;
default:
(void) fprintf(stderr, gettext("internal error: %s\n"),
strerror(errno));
}
return (err);
}
/*
* zfs rollback [-rRf] <snapshot>
*
* -r Delete any intervening snapshots before doing rollback
* -R Delete any snapshots and their clones
* -f ignored for backwards compatibility
*
* Given a filesystem, rollback to a specific snapshot, discarding any changes
* since then and making it the active dataset. If more recent snapshots exist,
* the command will complain unless the '-r' flag is given.
*/
typedef struct rollback_cbdata {
uint64_t cb_create;
uint8_t cb_younger_ds_printed;
boolean_t cb_first;
int cb_doclones;
char *cb_target;
int cb_error;
boolean_t cb_recurse;
} rollback_cbdata_t;
static int
rollback_check_dependent(zfs_handle_t *zhp, void *data)
{
rollback_cbdata_t *cbp = data;
if (cbp->cb_first && cbp->cb_recurse) {
(void) fprintf(stderr, gettext("cannot rollback to "
"'%s': clones of previous snapshots exist\n"),
cbp->cb_target);
(void) fprintf(stderr, gettext("use '-R' to "
"force deletion of the following clones and "
"dependents:\n"));
cbp->cb_first = 0;
cbp->cb_error = 1;
}
(void) fprintf(stderr, "%s\n", zfs_get_name(zhp));
zfs_close(zhp);
return (0);
}
/*
* Report some snapshots/bookmarks more recent than the one specified.
* Used when '-r' is not specified. We reuse this same callback for the
* snapshot dependents - if 'cb_dependent' is set, then this is a
* dependent and we should report it without checking the transaction group.
*/
static int
rollback_check(zfs_handle_t *zhp, void *data)
{
rollback_cbdata_t *cbp = data;
/*
* Max number of younger snapshots and/or bookmarks to display before
* we stop the iteration.
*/
const uint8_t max_younger = 32;
if (cbp->cb_doclones) {
zfs_close(zhp);
return (0);
}
if (zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) {
if (cbp->cb_first && !cbp->cb_recurse) {
(void) fprintf(stderr, gettext("cannot "
"rollback to '%s': more recent snapshots "
"or bookmarks exist\n"),
cbp->cb_target);
(void) fprintf(stderr, gettext("use '-r' to "
"force deletion of the following "
"snapshots and bookmarks:\n"));
cbp->cb_first = 0;
cbp->cb_error = 1;
}
if (cbp->cb_recurse) {
if (zfs_iter_dependents_v2(zhp, 0, B_TRUE,
rollback_check_dependent, cbp) != 0) {
zfs_close(zhp);
return (-1);
}
} else {
(void) fprintf(stderr, "%s\n",
zfs_get_name(zhp));
cbp->cb_younger_ds_printed++;
}
}
zfs_close(zhp);
if (cbp->cb_younger_ds_printed == max_younger) {
/*
* This non-recursive rollback is going to fail due to the
* presence of snapshots and/or bookmarks that are younger than
* the rollback target.
* We printed some of the offending objects, now we stop
* zfs_iter_snapshot/bookmark iteration so we can fail fast and
* avoid iterating over the rest of the younger objects
*/
(void) fprintf(stderr, gettext("Output limited to %d "
"snapshots/bookmarks\n"), max_younger);
return (-1);
}
return (0);
}
static int
zfs_do_rollback(int argc, char **argv)
{
int ret = 0;
int c;
boolean_t force = B_FALSE;
rollback_cbdata_t cb = { 0 };
zfs_handle_t *zhp, *snap;
char parentname[ZFS_MAX_DATASET_NAME_LEN];
char *delim;
uint64_t min_txg = 0;
/* check options */
while ((c = getopt(argc, argv, "rRf")) != -1) {
switch (c) {
case 'r':
cb.cb_recurse = 1;
break;
case 'R':
cb.cb_recurse = 1;
cb.cb_doclones = 1;
break;
case 'f':
force = B_TRUE;
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc < 1) {
(void) fprintf(stderr, gettext("missing dataset argument\n"));
usage(B_FALSE);
}
if (argc > 1) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
/* open the snapshot */
if ((snap = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL)
return (1);
/* open the parent dataset */
(void) strlcpy(parentname, argv[0], sizeof (parentname));
verify((delim = strrchr(parentname, '@')) != NULL);
*delim = '\0';
if ((zhp = zfs_open(g_zfs, parentname, ZFS_TYPE_DATASET)) == NULL) {
zfs_close(snap);
return (1);
}
/*
* Check for more recent snapshots and/or clones based on the presence
* of '-r' and '-R'.
*/
cb.cb_target = argv[0];
cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG);
cb.cb_first = B_TRUE;
cb.cb_error = 0;
if (cb.cb_create > 0)
min_txg = cb.cb_create;
if ((ret = zfs_iter_snapshots_v2(zhp, 0, rollback_check, &cb,
min_txg, 0)) != 0)
goto out;
if ((ret = zfs_iter_bookmarks_v2(zhp, 0, rollback_check, &cb)) != 0)
goto out;
if ((ret = cb.cb_error) != 0)
goto out;
/*
* Rollback parent to the given snapshot.
*/
ret = zfs_rollback(zhp, snap, force);
out:
zfs_close(snap);
zfs_close(zhp);
if (ret == 0)
return (0);
else
return (1);
}
/*
* zfs set property=value ... { fs | snap | vol } ...
*
* Sets the given properties for all datasets specified on the command line.
*/
static int
set_callback(zfs_handle_t *zhp, void *data)
{
zprop_set_cbdata_t *cb = data;
int ret = zfs_prop_set_list_flags(zhp, cb->cb_proplist, cb->cb_flags);
if (ret != 0 || libzfs_errno(g_zfs) != EZFS_SUCCESS) {
switch (libzfs_errno(g_zfs)) {
case EZFS_MOUNTFAILED:
(void) fprintf(stderr, gettext("property may be set "
"but unable to remount filesystem\n"));
break;
case EZFS_SHARENFSFAILED:
(void) fprintf(stderr, gettext("property may be set "
"but unable to reshare filesystem\n"));
break;
}
}
return (ret);
}
static int
zfs_do_set(int argc, char **argv)
{
zprop_set_cbdata_t cb = { 0 };
int ds_start = -1; /* argv idx of first dataset arg */
int ret = 0;
int i, c;
/* check options */
while ((c = getopt(argc, argv, "u")) != -1) {
switch (c) {
case 'u':
cb.cb_flags |= ZFS_SET_NOMOUNT;
break;
case '?':
default:
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc < 1) {
(void) fprintf(stderr, gettext("missing arguments\n"));
usage(B_FALSE);
}
if (argc < 2) {
if (strchr(argv[0], '=') == NULL) {
(void) fprintf(stderr, gettext("missing property=value "
"argument(s)\n"));
} else {
(void) fprintf(stderr, gettext("missing dataset "
"name(s)\n"));
}
usage(B_FALSE);
}
/* validate argument order: prop=val args followed by dataset args */
for (i = 0; i < argc; i++) {
if (strchr(argv[i], '=') != NULL) {
if (ds_start > 0) {
/* out-of-order prop=val argument */
(void) fprintf(stderr, gettext("invalid "
"argument order\n"));
usage(B_FALSE);
}
} else if (ds_start < 0) {
ds_start = i;
}
}
if (ds_start < 0) {
(void) fprintf(stderr, gettext("missing dataset name(s)\n"));
usage(B_FALSE);
}
/* Populate a list of property settings */
if (nvlist_alloc(&cb.cb_proplist, NV_UNIQUE_NAME, 0) != 0)
nomem();
for (i = 0; i < ds_start; i++) {
if (!parseprop(cb.cb_proplist, argv[i])) {
ret = -1;
goto error;
}
}
ret = zfs_for_each(argc - ds_start, argv + ds_start, 0,
ZFS_TYPE_DATASET, NULL, NULL, 0, set_callback, &cb);
error:
nvlist_free(cb.cb_proplist);
return (ret);
}
typedef struct snap_cbdata {
nvlist_t *sd_nvl;
boolean_t sd_recursive;
const char *sd_snapname;
} snap_cbdata_t;
static int
zfs_snapshot_cb(zfs_handle_t *zhp, void *arg)
{
snap_cbdata_t *sd = arg;
char *name;
int rv = 0;
int error;
if (sd->sd_recursive &&
zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) != 0) {
zfs_close(zhp);
return (0);
}
error = asprintf(&name, "%s@%s", zfs_get_name(zhp), sd->sd_snapname);
if (error == -1)
nomem();
fnvlist_add_boolean(sd->sd_nvl, name);
free(name);
if (sd->sd_recursive)
rv = zfs_iter_filesystems_v2(zhp, 0, zfs_snapshot_cb, sd);
zfs_close(zhp);
return (rv);
}
/*
* zfs snapshot [-r] [-o prop=value] ... <fs@snap>
*
* Creates a snapshot with the given name. While functionally equivalent to
* 'zfs create', it is a separate command to differentiate intent.
*/
static int
zfs_do_snapshot(int argc, char **argv)
{
int ret = 0;
int c;
nvlist_t *props;
snap_cbdata_t sd = { 0 };
boolean_t multiple_snaps = B_FALSE;
if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
nomem();
if (nvlist_alloc(&sd.sd_nvl, NV_UNIQUE_NAME, 0) != 0)
nomem();
/* check options */
while ((c = getopt(argc, argv, "ro:")) != -1) {
switch (c) {
case 'o':
if (!parseprop(props, optarg)) {
nvlist_free(sd.sd_nvl);
nvlist_free(props);
return (1);
}
break;
case 'r':
sd.sd_recursive = B_TRUE;
multiple_snaps = B_TRUE;
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
goto usage;
}
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc < 1) {
(void) fprintf(stderr, gettext("missing snapshot argument\n"));
goto usage;
}
if (argc > 1)
multiple_snaps = B_TRUE;
for (; argc > 0; argc--, argv++) {
char *atp;
zfs_handle_t *zhp;
atp = strchr(argv[0], '@');
if (atp == NULL)
goto usage;
*atp = '\0';
sd.sd_snapname = atp + 1;
zhp = zfs_open(g_zfs, argv[0],
ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL)
goto usage;
if (zfs_snapshot_cb(zhp, &sd) != 0)
goto usage;
}
ret = zfs_snapshot_nvl(g_zfs, sd.sd_nvl, props);
nvlist_free(sd.sd_nvl);
nvlist_free(props);
if (ret != 0 && multiple_snaps)
(void) fprintf(stderr, gettext("no snapshots were created\n"));
return (ret != 0);
usage:
nvlist_free(sd.sd_nvl);
nvlist_free(props);
usage(B_FALSE);
return (-1);
}
/*
* Array of prefixes to exclude
* a linear search, even if executed for each dataset,
* is plenty good enough.
*/
typedef struct zfs_send_exclude_arg {
size_t count;
const char **list;
} zfs_send_exclude_arg_t;
static boolean_t
zfs_do_send_exclude(zfs_handle_t *zhp, void *context)
{
zfs_send_exclude_arg_t *excludes = context;
const char *name = zfs_get_name(zhp);
for (size_t i = 0; i < excludes->count; ++i) {
size_t len = strlen(excludes->list[i]);
if (strncmp(name, excludes->list[i], len) == 0 &&
memchr("/@", name[len], sizeof ("/@")))
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Send a backup stream to stdout.
*/
static int
zfs_do_send(int argc, char **argv)
{
char *fromname = NULL;
char *toname = NULL;
char *resume_token = NULL;
char *cp;
zfs_handle_t *zhp;
sendflags_t flags = { 0 };
int c, err;
nvlist_t *dbgnv = NULL;
char *redactbook = NULL;
zfs_send_exclude_arg_t excludes = { 0 };
struct option long_options[] = {
{"replicate", no_argument, NULL, 'R'},
{"skip-missing", no_argument, NULL, 's'},
{"redact", required_argument, NULL, 'd'},
{"props", no_argument, NULL, 'p'},
{"parsable", no_argument, NULL, 'P'},
{"dedup", no_argument, NULL, 'D'},
{"proctitle", no_argument, NULL, 'V'},
{"verbose", no_argument, NULL, 'v'},
{"dryrun", no_argument, NULL, 'n'},
{"large-block", no_argument, NULL, 'L'},
{"embed", no_argument, NULL, 'e'},
{"resume", required_argument, NULL, 't'},
{"compressed", no_argument, NULL, 'c'},
{"raw", no_argument, NULL, 'w'},
{"backup", no_argument, NULL, 'b'},
{"holds", no_argument, NULL, 'h'},
{"saved", no_argument, NULL, 'S'},
{"exclude", required_argument, NULL, 'X'},
{0, 0, 0, 0}
};
/* check options */
while ((c = getopt_long(argc, argv, ":i:I:RsDpVvnPLeht:cwbd:SX:",
long_options, NULL)) != -1) {
switch (c) {
case 'X':
for (char *ds; (ds = strsep(&optarg, ",")) != NULL; ) {
if (!zfs_name_valid(ds, ZFS_TYPE_DATASET) ||
strchr(ds, '/') == NULL) {
(void) fprintf(stderr, gettext("-X %s: "
"not a valid non-root dataset name"
".\n"), ds);
usage(B_FALSE);
}
excludes.list = safe_realloc(excludes.list,
sizeof (char *) * (excludes.count + 1));
excludes.list[excludes.count++] = ds;
}
break;
case 'i':
if (fromname)
usage(B_FALSE);
fromname = optarg;
break;
case 'I':
if (fromname)
usage(B_FALSE);
fromname = optarg;
flags.doall = B_TRUE;
break;
case 'R':
flags.replicate = B_TRUE;
break;
case 's':
flags.skipmissing = B_TRUE;
break;
case 'd':
redactbook = optarg;
break;
case 'p':
flags.props = B_TRUE;
break;
case 'b':
flags.backup = B_TRUE;
break;
case 'h':
flags.holds = B_TRUE;
break;
case 'P':
flags.parsable = B_TRUE;
break;
case 'V':
flags.progressastitle = B_TRUE;
break;
case 'v':
flags.verbosity++;
flags.progress = B_TRUE;
break;
case 'D':
(void) fprintf(stderr,
gettext("WARNING: deduplicated send is no "
"longer supported. A regular,\n"
"non-deduplicated stream will be generated.\n\n"));
break;
case 'n':
flags.dryrun = B_TRUE;
break;
case 'L':
flags.largeblock = B_TRUE;
break;
case 'e':
flags.embed_data = B_TRUE;
break;
case 't':
resume_token = optarg;
break;
case 'c':
flags.compress = B_TRUE;
break;
case 'w':
flags.raw = B_TRUE;
flags.compress = B_TRUE;
flags.embed_data = B_TRUE;
flags.largeblock = B_TRUE;
break;
case 'S':
flags.saved = B_TRUE;
break;
case ':':
/*
* If a parameter was not passed, optopt contains the
* value that would normally lead us into the
* appropriate case statement. If it's > 256, then this
* must be a longopt and we should look at argv to get
* the string. Otherwise it's just the character, so we
* should use it directly.
*/
if (optopt <= UINT8_MAX) {
(void) fprintf(stderr,
gettext("missing argument for '%c' "
"option\n"), optopt);
} else {
(void) fprintf(stderr,
gettext("missing argument for '%s' "
"option\n"), argv[optind - 1]);
}
free(excludes.list);
usage(B_FALSE);
break;
case '?':
default:
/*
* If an invalid flag was passed, optopt contains the
* character if it was a short flag, or 0 if it was a
* longopt.
*/
if (optopt != 0) {
(void) fprintf(stderr,
gettext("invalid option '%c'\n"), optopt);
} else {
(void) fprintf(stderr,
gettext("invalid option '%s'\n"),
argv[optind - 1]);
}
free(excludes.list);
usage(B_FALSE);
}
}
if ((flags.parsable || flags.progressastitle) && flags.verbosity == 0)
flags.verbosity = 1;
if (excludes.count > 0 && !flags.replicate) {
free(excludes.list);
(void) fprintf(stderr, gettext("Cannot specify "
"dataset exclusion (-X) on a non-recursive "
"send.\n"));
return (1);
}
argc -= optind;
argv += optind;
if (resume_token != NULL) {
if (fromname != NULL || flags.replicate || flags.props ||
flags.backup || flags.holds ||
flags.saved || redactbook != NULL) {
free(excludes.list);
(void) fprintf(stderr,
gettext("invalid flags combined with -t\n"));
usage(B_FALSE);
}
if (argc > 0) {
free(excludes.list);
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
} else {
if (argc < 1) {
free(excludes.list);
(void) fprintf(stderr,
gettext("missing snapshot argument\n"));
usage(B_FALSE);
}
if (argc > 1) {
free(excludes.list);
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
}
if (flags.saved) {
if (fromname != NULL || flags.replicate || flags.props ||
flags.doall || flags.backup ||
flags.holds || flags.largeblock || flags.embed_data ||
flags.compress || flags.raw || redactbook != NULL) {
free(excludes.list);
(void) fprintf(stderr, gettext("incompatible flags "
"combined with saved send flag\n"));
usage(B_FALSE);
}
if (strchr(argv[0], '@') != NULL) {
free(excludes.list);
(void) fprintf(stderr, gettext("saved send must "
"specify the dataset with partially-received "
"state\n"));
usage(B_FALSE);
}
}
if (flags.raw && redactbook != NULL) {
free(excludes.list);
(void) fprintf(stderr,
gettext("Error: raw sends may not be redacted.\n"));
return (1);
}
if (!flags.dryrun && isatty(STDOUT_FILENO)) {
free(excludes.list);
(void) fprintf(stderr,
gettext("Error: Stream can not be written to a terminal.\n"
"You must redirect standard output.\n"));
return (1);
}
if (flags.saved) {
zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET);
if (zhp == NULL) {
free(excludes.list);
return (1);
}
err = zfs_send_saved(zhp, &flags, STDOUT_FILENO,
resume_token);
free(excludes.list);
zfs_close(zhp);
return (err != 0);
} else if (resume_token != NULL) {
free(excludes.list);
return (zfs_send_resume(g_zfs, &flags, STDOUT_FILENO,
resume_token));
}
if (flags.skipmissing && !flags.replicate) {
free(excludes.list);
(void) fprintf(stderr,
gettext("skip-missing flag can only be used in "
"conjunction with replicate\n"));
usage(B_FALSE);
}
/*
* For everything except -R and -I, use the new, cleaner code path.
*/
if (!(flags.replicate || flags.doall)) {
char frombuf[ZFS_MAX_DATASET_NAME_LEN];
if (fromname != NULL && (strchr(fromname, '#') == NULL &&
strchr(fromname, '@') == NULL)) {
/*
* Neither bookmark or snapshot was specified. Print a
* warning, and assume snapshot.
*/
(void) fprintf(stderr, "Warning: incremental source "
"didn't specify type, assuming snapshot. Use '@' "
"or '#' prefix to avoid ambiguity.\n");
(void) snprintf(frombuf, sizeof (frombuf), "@%s",
fromname);
fromname = frombuf;
}
if (fromname != NULL &&
(fromname[0] == '#' || fromname[0] == '@')) {
/*
* Incremental source name begins with # or @.
* Default to same fs as target.
*/
char tmpbuf[ZFS_MAX_DATASET_NAME_LEN];
(void) strlcpy(tmpbuf, fromname, sizeof (tmpbuf));
(void) strlcpy(frombuf, argv[0], sizeof (frombuf));
cp = strchr(frombuf, '@');
if (cp != NULL)
*cp = '\0';
(void) strlcat(frombuf, tmpbuf, sizeof (frombuf));
fromname = frombuf;
}
zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET);
if (zhp == NULL) {
free(excludes.list);
return (1);
}
err = zfs_send_one(zhp, fromname, STDOUT_FILENO, &flags,
redactbook);
free(excludes.list);
zfs_close(zhp);
return (err != 0);
}
if (fromname != NULL && strchr(fromname, '#')) {
(void) fprintf(stderr,
gettext("Error: multiple snapshots cannot be "
"sent from a bookmark.\n"));
free(excludes.list);
return (1);
}
if (redactbook != NULL) {
(void) fprintf(stderr, gettext("Error: multiple snapshots "
"cannot be sent redacted.\n"));
free(excludes.list);
return (1);
}
if ((cp = strchr(argv[0], '@')) == NULL) {
(void) fprintf(stderr, gettext("Error: "
"Unsupported flag with filesystem or bookmark.\n"));
free(excludes.list);
return (1);
}
*cp = '\0';
toname = cp + 1;
zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL) {
free(excludes.list);
return (1);
}
/*
* If they specified the full path to the snapshot, chop off
* everything except the short name of the snapshot, but special
* case if they specify the origin.
*/
if (fromname && (cp = strchr(fromname, '@')) != NULL) {
char origin[ZFS_MAX_DATASET_NAME_LEN];
zprop_source_t src;
(void) zfs_prop_get(zhp, ZFS_PROP_ORIGIN,
origin, sizeof (origin), &src, NULL, 0, B_FALSE);
if (strcmp(origin, fromname) == 0) {
fromname = NULL;
flags.fromorigin = B_TRUE;
} else {
*cp = '\0';
if (cp != fromname && strcmp(argv[0], fromname)) {
zfs_close(zhp);
free(excludes.list);
(void) fprintf(stderr,
gettext("incremental source must be "
"in same filesystem\n"));
usage(B_FALSE);
}
fromname = cp + 1;
if (strchr(fromname, '@') || strchr(fromname, '/')) {
zfs_close(zhp);
free(excludes.list);
(void) fprintf(stderr,
gettext("invalid incremental source\n"));
usage(B_FALSE);
}
}
}
if (flags.replicate && fromname == NULL)
flags.doall = B_TRUE;
err = zfs_send(zhp, fromname, toname, &flags, STDOUT_FILENO,
excludes.count > 0 ? zfs_do_send_exclude : NULL,
&excludes, flags.verbosity >= 3 ? &dbgnv : NULL);
if (flags.verbosity >= 3 && dbgnv != NULL) {
/*
* dump_nvlist prints to stdout, but that's been
* redirected to a file. Make it print to stderr
* instead.
*/
(void) dup2(STDERR_FILENO, STDOUT_FILENO);
dump_nvlist(dbgnv, 0);
nvlist_free(dbgnv);
}
zfs_close(zhp);
free(excludes.list);
return (err != 0);
}
/*
* Restore a backup stream from stdin.
*/
static int
zfs_do_receive(int argc, char **argv)
{
int c, err = 0;
recvflags_t flags = { 0 };
boolean_t abort_resumable = B_FALSE;
nvlist_t *props;
if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
nomem();
/* check options */
while ((c = getopt(argc, argv, ":o:x:dehMnuvFsAc")) != -1) {
switch (c) {
case 'o':
if (!parseprop(props, optarg)) {
nvlist_free(props);
usage(B_FALSE);
}
break;
case 'x':
if (!parsepropname(props, optarg)) {
nvlist_free(props);
usage(B_FALSE);
}
break;
case 'd':
if (flags.istail) {
(void) fprintf(stderr, gettext("invalid option "
"combination: -d and -e are mutually "
"exclusive\n"));
usage(B_FALSE);
}
flags.isprefix = B_TRUE;
break;
case 'e':
if (flags.isprefix) {
(void) fprintf(stderr, gettext("invalid option "
"combination: -d and -e are mutually "
"exclusive\n"));
usage(B_FALSE);
}
flags.istail = B_TRUE;
break;
case 'h':
flags.skipholds = B_TRUE;
break;
case 'M':
flags.forceunmount = B_TRUE;
break;
case 'n':
flags.dryrun = B_TRUE;
break;
case 'u':
flags.nomount = B_TRUE;
break;
case 'v':
flags.verbose = B_TRUE;
break;
case 's':
flags.resumable = B_TRUE;
break;
case 'F':
flags.force = B_TRUE;
break;
case 'A':
abort_resumable = B_TRUE;
break;
case 'c':
flags.heal = B_TRUE;
break;
case ':':
(void) fprintf(stderr, gettext("missing argument for "
"'%c' option\n"), optopt);
usage(B_FALSE);
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
/* zfs recv -e (use "tail" name) implies -d (remove dataset "head") */
if (flags.istail)
flags.isprefix = B_TRUE;
/* check number of arguments */
if (argc < 1) {
(void) fprintf(stderr, gettext("missing snapshot argument\n"));
usage(B_FALSE);
}
if (argc > 1) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
if (abort_resumable) {
if (flags.isprefix || flags.istail || flags.dryrun ||
flags.resumable || flags.nomount) {
(void) fprintf(stderr, gettext("invalid option\n"));
usage(B_FALSE);
}
char namebuf[ZFS_MAX_DATASET_NAME_LEN];
(void) snprintf(namebuf, sizeof (namebuf),
"%s/%%recv", argv[0]);
if (zfs_dataset_exists(g_zfs, namebuf,
ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) {
zfs_handle_t *zhp = zfs_open(g_zfs,
namebuf, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL) {
nvlist_free(props);
return (1);
}
err = zfs_destroy(zhp, B_FALSE);
zfs_close(zhp);
} else {
zfs_handle_t *zhp = zfs_open(g_zfs,
argv[0], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL)
usage(B_FALSE);
if (!zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) ||
zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
NULL, 0, NULL, NULL, 0, B_TRUE) == -1) {
(void) fprintf(stderr,
gettext("'%s' does not have any "
"resumable receive state to abort\n"),
argv[0]);
nvlist_free(props);
zfs_close(zhp);
return (1);
}
err = zfs_destroy(zhp, B_FALSE);
zfs_close(zhp);
}
nvlist_free(props);
return (err != 0);
}
if (isatty(STDIN_FILENO)) {
(void) fprintf(stderr,
gettext("Error: Backup stream can not be read "
"from a terminal.\n"
"You must redirect standard input.\n"));
nvlist_free(props);
return (1);
}
err = zfs_receive(g_zfs, argv[0], props, &flags, STDIN_FILENO, NULL);
nvlist_free(props);
return (err != 0);
}
/*
* allow/unallow stuff
*/
/* copied from zfs/sys/dsl_deleg.h */
#define ZFS_DELEG_PERM_CREATE "create"
#define ZFS_DELEG_PERM_DESTROY "destroy"
#define ZFS_DELEG_PERM_SNAPSHOT "snapshot"
#define ZFS_DELEG_PERM_ROLLBACK "rollback"
#define ZFS_DELEG_PERM_CLONE "clone"
#define ZFS_DELEG_PERM_PROMOTE "promote"
#define ZFS_DELEG_PERM_RENAME "rename"
#define ZFS_DELEG_PERM_MOUNT "mount"
#define ZFS_DELEG_PERM_SHARE "share"
#define ZFS_DELEG_PERM_SEND "send"
#define ZFS_DELEG_PERM_RECEIVE "receive"
#define ZFS_DELEG_PERM_ALLOW "allow"
#define ZFS_DELEG_PERM_USERPROP "userprop"
#define ZFS_DELEG_PERM_VSCAN "vscan" /* ??? */
#define ZFS_DELEG_PERM_USERQUOTA "userquota"
#define ZFS_DELEG_PERM_GROUPQUOTA "groupquota"
#define ZFS_DELEG_PERM_USERUSED "userused"
#define ZFS_DELEG_PERM_GROUPUSED "groupused"
#define ZFS_DELEG_PERM_USEROBJQUOTA "userobjquota"
#define ZFS_DELEG_PERM_GROUPOBJQUOTA "groupobjquota"
#define ZFS_DELEG_PERM_USEROBJUSED "userobjused"
#define ZFS_DELEG_PERM_GROUPOBJUSED "groupobjused"
#define ZFS_DELEG_PERM_HOLD "hold"
#define ZFS_DELEG_PERM_RELEASE "release"
#define ZFS_DELEG_PERM_DIFF "diff"
#define ZFS_DELEG_PERM_BOOKMARK "bookmark"
#define ZFS_DELEG_PERM_LOAD_KEY "load-key"
#define ZFS_DELEG_PERM_CHANGE_KEY "change-key"
#define ZFS_DELEG_PERM_PROJECTUSED "projectused"
#define ZFS_DELEG_PERM_PROJECTQUOTA "projectquota"
#define ZFS_DELEG_PERM_PROJECTOBJUSED "projectobjused"
#define ZFS_DELEG_PERM_PROJECTOBJQUOTA "projectobjquota"
#define ZFS_NUM_DELEG_NOTES ZFS_DELEG_NOTE_NONE
static zfs_deleg_perm_tab_t zfs_deleg_perm_tbl[] = {
{ ZFS_DELEG_PERM_ALLOW, ZFS_DELEG_NOTE_ALLOW },
{ ZFS_DELEG_PERM_CLONE, ZFS_DELEG_NOTE_CLONE },
{ ZFS_DELEG_PERM_CREATE, ZFS_DELEG_NOTE_CREATE },
{ ZFS_DELEG_PERM_DESTROY, ZFS_DELEG_NOTE_DESTROY },
{ ZFS_DELEG_PERM_DIFF, ZFS_DELEG_NOTE_DIFF},
{ ZFS_DELEG_PERM_HOLD, ZFS_DELEG_NOTE_HOLD },
{ ZFS_DELEG_PERM_MOUNT, ZFS_DELEG_NOTE_MOUNT },
{ ZFS_DELEG_PERM_PROMOTE, ZFS_DELEG_NOTE_PROMOTE },
{ ZFS_DELEG_PERM_RECEIVE, ZFS_DELEG_NOTE_RECEIVE },
{ ZFS_DELEG_PERM_RELEASE, ZFS_DELEG_NOTE_RELEASE },
{ ZFS_DELEG_PERM_RENAME, ZFS_DELEG_NOTE_RENAME },
{ ZFS_DELEG_PERM_ROLLBACK, ZFS_DELEG_NOTE_ROLLBACK },
{ ZFS_DELEG_PERM_SEND, ZFS_DELEG_NOTE_SEND },
{ ZFS_DELEG_PERM_SHARE, ZFS_DELEG_NOTE_SHARE },
{ ZFS_DELEG_PERM_SNAPSHOT, ZFS_DELEG_NOTE_SNAPSHOT },
{ ZFS_DELEG_PERM_BOOKMARK, ZFS_DELEG_NOTE_BOOKMARK },
{ ZFS_DELEG_PERM_LOAD_KEY, ZFS_DELEG_NOTE_LOAD_KEY },
{ ZFS_DELEG_PERM_CHANGE_KEY, ZFS_DELEG_NOTE_CHANGE_KEY },
{ ZFS_DELEG_PERM_GROUPQUOTA, ZFS_DELEG_NOTE_GROUPQUOTA },
{ ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_NOTE_GROUPUSED },
{ ZFS_DELEG_PERM_USERPROP, ZFS_DELEG_NOTE_USERPROP },
{ ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_NOTE_USERQUOTA },
{ ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_NOTE_USERUSED },
{ ZFS_DELEG_PERM_USEROBJQUOTA, ZFS_DELEG_NOTE_USEROBJQUOTA },
{ ZFS_DELEG_PERM_USEROBJUSED, ZFS_DELEG_NOTE_USEROBJUSED },
{ ZFS_DELEG_PERM_GROUPOBJQUOTA, ZFS_DELEG_NOTE_GROUPOBJQUOTA },
{ ZFS_DELEG_PERM_GROUPOBJUSED, ZFS_DELEG_NOTE_GROUPOBJUSED },
{ ZFS_DELEG_PERM_PROJECTUSED, ZFS_DELEG_NOTE_PROJECTUSED },
{ ZFS_DELEG_PERM_PROJECTQUOTA, ZFS_DELEG_NOTE_PROJECTQUOTA },
{ ZFS_DELEG_PERM_PROJECTOBJUSED, ZFS_DELEG_NOTE_PROJECTOBJUSED },
{ ZFS_DELEG_PERM_PROJECTOBJQUOTA, ZFS_DELEG_NOTE_PROJECTOBJQUOTA },
{ NULL, ZFS_DELEG_NOTE_NONE }
};
/* permission structure */
typedef struct deleg_perm {
zfs_deleg_who_type_t dp_who_type;
const char *dp_name;
boolean_t dp_local;
boolean_t dp_descend;
} deleg_perm_t;
/* */
typedef struct deleg_perm_node {
deleg_perm_t dpn_perm;
uu_avl_node_t dpn_avl_node;
} deleg_perm_node_t;
typedef struct fs_perm fs_perm_t;
/* permissions set */
typedef struct who_perm {
zfs_deleg_who_type_t who_type;
const char *who_name; /* id */
char who_ug_name[256]; /* user/group name */
fs_perm_t *who_fsperm; /* uplink */
uu_avl_t *who_deleg_perm_avl; /* permissions */
} who_perm_t;
/* */
typedef struct who_perm_node {
who_perm_t who_perm;
uu_avl_node_t who_avl_node;
} who_perm_node_t;
typedef struct fs_perm_set fs_perm_set_t;
/* fs permissions */
struct fs_perm {
const char *fsp_name;
uu_avl_t *fsp_sc_avl; /* sets,create */
uu_avl_t *fsp_uge_avl; /* user,group,everyone */
fs_perm_set_t *fsp_set; /* uplink */
};
/* */
typedef struct fs_perm_node {
fs_perm_t fspn_fsperm;
uu_avl_t *fspn_avl;
uu_list_node_t fspn_list_node;
} fs_perm_node_t;
/* top level structure */
struct fs_perm_set {
uu_list_pool_t *fsps_list_pool;
uu_list_t *fsps_list; /* list of fs_perms */
uu_avl_pool_t *fsps_named_set_avl_pool;
uu_avl_pool_t *fsps_who_perm_avl_pool;
uu_avl_pool_t *fsps_deleg_perm_avl_pool;
};
static inline const char *
deleg_perm_type(zfs_deleg_note_t note)
{
/* subcommands */
switch (note) {
/* SUBCOMMANDS */
/* OTHER */
case ZFS_DELEG_NOTE_GROUPQUOTA:
case ZFS_DELEG_NOTE_GROUPUSED:
case ZFS_DELEG_NOTE_USERPROP:
case ZFS_DELEG_NOTE_USERQUOTA:
case ZFS_DELEG_NOTE_USERUSED:
case ZFS_DELEG_NOTE_USEROBJQUOTA:
case ZFS_DELEG_NOTE_USEROBJUSED:
case ZFS_DELEG_NOTE_GROUPOBJQUOTA:
case ZFS_DELEG_NOTE_GROUPOBJUSED:
case ZFS_DELEG_NOTE_PROJECTUSED:
case ZFS_DELEG_NOTE_PROJECTQUOTA:
case ZFS_DELEG_NOTE_PROJECTOBJUSED:
case ZFS_DELEG_NOTE_PROJECTOBJQUOTA:
/* other */
return (gettext("other"));
default:
return (gettext("subcommand"));
}
}
static int
who_type2weight(zfs_deleg_who_type_t who_type)
{
int res;
switch (who_type) {
case ZFS_DELEG_NAMED_SET_SETS:
case ZFS_DELEG_NAMED_SET:
res = 0;
break;
case ZFS_DELEG_CREATE_SETS:
case ZFS_DELEG_CREATE:
res = 1;
break;
case ZFS_DELEG_USER_SETS:
case ZFS_DELEG_USER:
res = 2;
break;
case ZFS_DELEG_GROUP_SETS:
case ZFS_DELEG_GROUP:
res = 3;
break;
case ZFS_DELEG_EVERYONE_SETS:
case ZFS_DELEG_EVERYONE:
res = 4;
break;
default:
res = -1;
}
return (res);
}
static int
who_perm_compare(const void *larg, const void *rarg, void *unused)
{
(void) unused;
const who_perm_node_t *l = larg;
const who_perm_node_t *r = rarg;
zfs_deleg_who_type_t ltype = l->who_perm.who_type;
zfs_deleg_who_type_t rtype = r->who_perm.who_type;
int lweight = who_type2weight(ltype);
int rweight = who_type2weight(rtype);
int res = lweight - rweight;
if (res == 0)
res = strncmp(l->who_perm.who_name, r->who_perm.who_name,
ZFS_MAX_DELEG_NAME-1);
if (res == 0)
return (0);
if (res > 0)
return (1);
else
return (-1);
}
static int
deleg_perm_compare(const void *larg, const void *rarg, void *unused)
{
(void) unused;
const deleg_perm_node_t *l = larg;
const deleg_perm_node_t *r = rarg;
int res = strncmp(l->dpn_perm.dp_name, r->dpn_perm.dp_name,
ZFS_MAX_DELEG_NAME-1);
if (res == 0)
return (0);
if (res > 0)
return (1);
else
return (-1);
}
static inline void
fs_perm_set_init(fs_perm_set_t *fspset)
{
memset(fspset, 0, sizeof (fs_perm_set_t));
if ((fspset->fsps_list_pool = uu_list_pool_create("fsps_list_pool",
sizeof (fs_perm_node_t), offsetof(fs_perm_node_t, fspn_list_node),
NULL, UU_DEFAULT)) == NULL)
nomem();
if ((fspset->fsps_list = uu_list_create(fspset->fsps_list_pool, NULL,
UU_DEFAULT)) == NULL)
nomem();
if ((fspset->fsps_named_set_avl_pool = uu_avl_pool_create(
"named_set_avl_pool", sizeof (who_perm_node_t), offsetof(
who_perm_node_t, who_avl_node), who_perm_compare,
UU_DEFAULT)) == NULL)
nomem();
if ((fspset->fsps_who_perm_avl_pool = uu_avl_pool_create(
"who_perm_avl_pool", sizeof (who_perm_node_t), offsetof(
who_perm_node_t, who_avl_node), who_perm_compare,
UU_DEFAULT)) == NULL)
nomem();
if ((fspset->fsps_deleg_perm_avl_pool = uu_avl_pool_create(
"deleg_perm_avl_pool", sizeof (deleg_perm_node_t), offsetof(
deleg_perm_node_t, dpn_avl_node), deleg_perm_compare, UU_DEFAULT))
== NULL)
nomem();
}
static inline void fs_perm_fini(fs_perm_t *);
static inline void who_perm_fini(who_perm_t *);
static inline void
fs_perm_set_fini(fs_perm_set_t *fspset)
{
fs_perm_node_t *node = uu_list_first(fspset->fsps_list);
while (node != NULL) {
fs_perm_node_t *next_node =
uu_list_next(fspset->fsps_list, node);
fs_perm_t *fsperm = &node->fspn_fsperm;
fs_perm_fini(fsperm);
uu_list_remove(fspset->fsps_list, node);
free(node);
node = next_node;
}
uu_avl_pool_destroy(fspset->fsps_named_set_avl_pool);
uu_avl_pool_destroy(fspset->fsps_who_perm_avl_pool);
uu_avl_pool_destroy(fspset->fsps_deleg_perm_avl_pool);
}
static inline void
deleg_perm_init(deleg_perm_t *deleg_perm, zfs_deleg_who_type_t type,
const char *name)
{
deleg_perm->dp_who_type = type;
deleg_perm->dp_name = name;
}
static inline void
who_perm_init(who_perm_t *who_perm, fs_perm_t *fsperm,
zfs_deleg_who_type_t type, const char *name)
{
uu_avl_pool_t *pool;
pool = fsperm->fsp_set->fsps_deleg_perm_avl_pool;
memset(who_perm, 0, sizeof (who_perm_t));
if ((who_perm->who_deleg_perm_avl = uu_avl_create(pool, NULL,
UU_DEFAULT)) == NULL)
nomem();
who_perm->who_type = type;
who_perm->who_name = name;
who_perm->who_fsperm = fsperm;
}
static inline void
who_perm_fini(who_perm_t *who_perm)
{
deleg_perm_node_t *node = uu_avl_first(who_perm->who_deleg_perm_avl);
while (node != NULL) {
deleg_perm_node_t *next_node =
uu_avl_next(who_perm->who_deleg_perm_avl, node);
uu_avl_remove(who_perm->who_deleg_perm_avl, node);
free(node);
node = next_node;
}
uu_avl_destroy(who_perm->who_deleg_perm_avl);
}
static inline void
fs_perm_init(fs_perm_t *fsperm, fs_perm_set_t *fspset, const char *fsname)
{
uu_avl_pool_t *nset_pool = fspset->fsps_named_set_avl_pool;
uu_avl_pool_t *who_pool = fspset->fsps_who_perm_avl_pool;
memset(fsperm, 0, sizeof (fs_perm_t));
if ((fsperm->fsp_sc_avl = uu_avl_create(nset_pool, NULL, UU_DEFAULT))
== NULL)
nomem();
if ((fsperm->fsp_uge_avl = uu_avl_create(who_pool, NULL, UU_DEFAULT))
== NULL)
nomem();
fsperm->fsp_set = fspset;
fsperm->fsp_name = fsname;
}
static inline void
fs_perm_fini(fs_perm_t *fsperm)
{
who_perm_node_t *node = uu_avl_first(fsperm->fsp_sc_avl);
while (node != NULL) {
who_perm_node_t *next_node = uu_avl_next(fsperm->fsp_sc_avl,
node);
who_perm_t *who_perm = &node->who_perm;
who_perm_fini(who_perm);
uu_avl_remove(fsperm->fsp_sc_avl, node);
free(node);
node = next_node;
}
node = uu_avl_first(fsperm->fsp_uge_avl);
while (node != NULL) {
who_perm_node_t *next_node = uu_avl_next(fsperm->fsp_uge_avl,
node);
who_perm_t *who_perm = &node->who_perm;
who_perm_fini(who_perm);
uu_avl_remove(fsperm->fsp_uge_avl, node);
free(node);
node = next_node;
}
uu_avl_destroy(fsperm->fsp_sc_avl);
uu_avl_destroy(fsperm->fsp_uge_avl);
}
static void
set_deleg_perm_node(uu_avl_t *avl, deleg_perm_node_t *node,
zfs_deleg_who_type_t who_type, const char *name, char locality)
{
uu_avl_index_t idx = 0;
deleg_perm_node_t *found_node = NULL;
deleg_perm_t *deleg_perm = &node->dpn_perm;
deleg_perm_init(deleg_perm, who_type, name);
if ((found_node = uu_avl_find(avl, node, NULL, &idx))
== NULL)
uu_avl_insert(avl, node, idx);
else {
node = found_node;
deleg_perm = &node->dpn_perm;
}
switch (locality) {
case ZFS_DELEG_LOCAL:
deleg_perm->dp_local = B_TRUE;
break;
case ZFS_DELEG_DESCENDENT:
deleg_perm->dp_descend = B_TRUE;
break;
case ZFS_DELEG_NA:
break;
default:
assert(B_FALSE); /* invalid locality */
}
}
static inline int
parse_who_perm(who_perm_t *who_perm, nvlist_t *nvl, char locality)
{
nvpair_t *nvp = NULL;
fs_perm_set_t *fspset = who_perm->who_fsperm->fsp_set;
uu_avl_t *avl = who_perm->who_deleg_perm_avl;
zfs_deleg_who_type_t who_type = who_perm->who_type;
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
const char *name = nvpair_name(nvp);
data_type_t type = nvpair_type(nvp);
uu_avl_pool_t *avl_pool = fspset->fsps_deleg_perm_avl_pool;
deleg_perm_node_t *node =
safe_malloc(sizeof (deleg_perm_node_t));
VERIFY(type == DATA_TYPE_BOOLEAN);
uu_avl_node_init(node, &node->dpn_avl_node, avl_pool);
set_deleg_perm_node(avl, node, who_type, name, locality);
}
return (0);
}
static inline int
parse_fs_perm(fs_perm_t *fsperm, nvlist_t *nvl)
{
nvpair_t *nvp = NULL;
fs_perm_set_t *fspset = fsperm->fsp_set;
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
nvlist_t *nvl2 = NULL;
const char *name = nvpair_name(nvp);
uu_avl_t *avl = NULL;
uu_avl_pool_t *avl_pool = NULL;
zfs_deleg_who_type_t perm_type = name[0];
char perm_locality = name[1];
const char *perm_name = name + 3;
who_perm_t *who_perm = NULL;
assert('$' == name[2]);
if (nvpair_value_nvlist(nvp, &nvl2) != 0)
return (-1);
switch (perm_type) {
case ZFS_DELEG_CREATE:
case ZFS_DELEG_CREATE_SETS:
case ZFS_DELEG_NAMED_SET:
case ZFS_DELEG_NAMED_SET_SETS:
avl_pool = fspset->fsps_named_set_avl_pool;
avl = fsperm->fsp_sc_avl;
break;
case ZFS_DELEG_USER:
case ZFS_DELEG_USER_SETS:
case ZFS_DELEG_GROUP:
case ZFS_DELEG_GROUP_SETS:
case ZFS_DELEG_EVERYONE:
case ZFS_DELEG_EVERYONE_SETS:
avl_pool = fspset->fsps_who_perm_avl_pool;
avl = fsperm->fsp_uge_avl;
break;
default:
assert(!"unhandled zfs_deleg_who_type_t");
}
who_perm_node_t *found_node = NULL;
who_perm_node_t *node = safe_malloc(
sizeof (who_perm_node_t));
who_perm = &node->who_perm;
uu_avl_index_t idx = 0;
uu_avl_node_init(node, &node->who_avl_node, avl_pool);
who_perm_init(who_perm, fsperm, perm_type, perm_name);
if ((found_node = uu_avl_find(avl, node, NULL, &idx))
== NULL) {
if (avl == fsperm->fsp_uge_avl) {
uid_t rid = 0;
struct passwd *p = NULL;
struct group *g = NULL;
const char *nice_name = NULL;
switch (perm_type) {
case ZFS_DELEG_USER_SETS:
case ZFS_DELEG_USER:
rid = atoi(perm_name);
p = getpwuid(rid);
if (p)
nice_name = p->pw_name;
break;
case ZFS_DELEG_GROUP_SETS:
case ZFS_DELEG_GROUP:
rid = atoi(perm_name);
g = getgrgid(rid);
if (g)
nice_name = g->gr_name;
break;
default:
break;
}
if (nice_name != NULL) {
(void) strlcpy(
node->who_perm.who_ug_name,
nice_name, 256);
} else {
/* User or group unknown */
(void) snprintf(
node->who_perm.who_ug_name,
sizeof (node->who_perm.who_ug_name),
"(unknown: %d)", rid);
}
}
uu_avl_insert(avl, node, idx);
} else {
node = found_node;
who_perm = &node->who_perm;
}
assert(who_perm != NULL);
(void) parse_who_perm(who_perm, nvl2, perm_locality);
}
return (0);
}
static inline int
parse_fs_perm_set(fs_perm_set_t *fspset, nvlist_t *nvl)
{
nvpair_t *nvp = NULL;
uu_avl_index_t idx = 0;
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
nvlist_t *nvl2 = NULL;
const char *fsname = nvpair_name(nvp);
data_type_t type = nvpair_type(nvp);
fs_perm_t *fsperm = NULL;
fs_perm_node_t *node = safe_malloc(sizeof (fs_perm_node_t));
fsperm = &node->fspn_fsperm;
VERIFY(DATA_TYPE_NVLIST == type);
uu_list_node_init(node, &node->fspn_list_node,
fspset->fsps_list_pool);
idx = uu_list_numnodes(fspset->fsps_list);
fs_perm_init(fsperm, fspset, fsname);
if (nvpair_value_nvlist(nvp, &nvl2) != 0)
return (-1);
(void) parse_fs_perm(fsperm, nvl2);
uu_list_insert(fspset->fsps_list, node, idx);
}
return (0);
}
static inline const char *
deleg_perm_comment(zfs_deleg_note_t note)
{
const char *str = "";
/* subcommands */
switch (note) {
/* SUBCOMMANDS */
case ZFS_DELEG_NOTE_ALLOW:
str = gettext("Must also have the permission that is being"
"\n\t\t\t\tallowed");
break;
case ZFS_DELEG_NOTE_CLONE:
str = gettext("Must also have the 'create' ability and 'mount'"
"\n\t\t\t\tability in the origin file system");
break;
case ZFS_DELEG_NOTE_CREATE:
str = gettext("Must also have the 'mount' ability");
break;
case ZFS_DELEG_NOTE_DESTROY:
str = gettext("Must also have the 'mount' ability");
break;
case ZFS_DELEG_NOTE_DIFF:
str = gettext("Allows lookup of paths within a dataset;"
"\n\t\t\t\tgiven an object number. Ordinary users need this"
"\n\t\t\t\tin order to use zfs diff");
break;
case ZFS_DELEG_NOTE_HOLD:
str = gettext("Allows adding a user hold to a snapshot");
break;
case ZFS_DELEG_NOTE_MOUNT:
str = gettext("Allows mount/umount of ZFS datasets");
break;
case ZFS_DELEG_NOTE_PROMOTE:
str = gettext("Must also have the 'mount'\n\t\t\t\tand"
" 'promote' ability in the origin file system");
break;
case ZFS_DELEG_NOTE_RECEIVE:
str = gettext("Must also have the 'mount' and 'create'"
" ability");
break;
case ZFS_DELEG_NOTE_RELEASE:
str = gettext("Allows releasing a user hold which\n\t\t\t\t"
"might destroy the snapshot");
break;
case ZFS_DELEG_NOTE_RENAME:
str = gettext("Must also have the 'mount' and 'create'"
"\n\t\t\t\tability in the new parent");
break;
case ZFS_DELEG_NOTE_ROLLBACK:
str = gettext("");
break;
case ZFS_DELEG_NOTE_SEND:
str = gettext("");
break;
case ZFS_DELEG_NOTE_SHARE:
str = gettext("Allows sharing file systems over NFS or SMB"
"\n\t\t\t\tprotocols");
break;
case ZFS_DELEG_NOTE_SNAPSHOT:
str = gettext("");
break;
case ZFS_DELEG_NOTE_LOAD_KEY:
str = gettext("Allows loading or unloading an encryption key");
break;
case ZFS_DELEG_NOTE_CHANGE_KEY:
str = gettext("Allows changing or adding an encryption key");
break;
/*
* case ZFS_DELEG_NOTE_VSCAN:
* str = gettext("");
* break;
*/
/* OTHER */
case ZFS_DELEG_NOTE_GROUPQUOTA:
str = gettext("Allows accessing any groupquota@... property");
break;
case ZFS_DELEG_NOTE_GROUPUSED:
str = gettext("Allows reading any groupused@... property");
break;
case ZFS_DELEG_NOTE_USERPROP:
str = gettext("Allows changing any user property");
break;
case ZFS_DELEG_NOTE_USERQUOTA:
str = gettext("Allows accessing any userquota@... property");
break;
case ZFS_DELEG_NOTE_USERUSED:
str = gettext("Allows reading any userused@... property");
break;
case ZFS_DELEG_NOTE_USEROBJQUOTA:
str = gettext("Allows accessing any userobjquota@... property");
break;
case ZFS_DELEG_NOTE_GROUPOBJQUOTA:
str = gettext("Allows accessing any \n\t\t\t\t"
"groupobjquota@... property");
break;
case ZFS_DELEG_NOTE_GROUPOBJUSED:
str = gettext("Allows reading any groupobjused@... property");
break;
case ZFS_DELEG_NOTE_USEROBJUSED:
str = gettext("Allows reading any userobjused@... property");
break;
case ZFS_DELEG_NOTE_PROJECTQUOTA:
str = gettext("Allows accessing any projectquota@... property");
break;
case ZFS_DELEG_NOTE_PROJECTOBJQUOTA:
str = gettext("Allows accessing any \n\t\t\t\t"
"projectobjquota@... property");
break;
case ZFS_DELEG_NOTE_PROJECTUSED:
str = gettext("Allows reading any projectused@... property");
break;
case ZFS_DELEG_NOTE_PROJECTOBJUSED:
str = gettext("Allows accessing any \n\t\t\t\t"
"projectobjused@... property");
break;
/* other */
default:
str = "";
}
return (str);
}
struct allow_opts {
boolean_t local;
boolean_t descend;
boolean_t user;
boolean_t group;
boolean_t everyone;
boolean_t create;
boolean_t set;
boolean_t recursive; /* unallow only */
boolean_t prt_usage;
boolean_t prt_perms;
char *who;
char *perms;
const char *dataset;
};
static inline int
prop_cmp(const void *a, const void *b)
{
const char *str1 = *(const char **)a;
const char *str2 = *(const char **)b;
return (strcmp(str1, str2));
}
static void
allow_usage(boolean_t un, boolean_t requested, const char *msg)
{
const char *opt_desc[] = {
"-h", gettext("show this help message and exit"),
"-l", gettext("set permission locally"),
"-d", gettext("set permission for descents"),
"-u", gettext("set permission for user"),
"-g", gettext("set permission for group"),
"-e", gettext("set permission for everyone"),
"-c", gettext("set create time permission"),
"-s", gettext("define permission set"),
/* unallow only */
"-r", gettext("remove permissions recursively"),
};
size_t unallow_size = sizeof (opt_desc) / sizeof (char *);
size_t allow_size = unallow_size - 2;
const char *props[ZFS_NUM_PROPS];
int i;
size_t count = 0;
FILE *fp = requested ? stdout : stderr;
zprop_desc_t *pdtbl = zfs_prop_get_table();
const char *fmt = gettext("%-16s %-14s\t%s\n");
(void) fprintf(fp, gettext("Usage: %s\n"), get_usage(un ? HELP_UNALLOW :
HELP_ALLOW));
(void) fprintf(fp, gettext("Options:\n"));
for (i = 0; i < (un ? unallow_size : allow_size); i += 2) {
const char *opt = opt_desc[i];
const char *optdsc = opt_desc[i + 1];
(void) fprintf(fp, gettext(" %-10s %s\n"), opt, optdsc);
}
(void) fprintf(fp, gettext("\nThe following permissions are "
"supported:\n\n"));
(void) fprintf(fp, fmt, gettext("NAME"), gettext("TYPE"),
gettext("NOTES"));
for (i = 0; i < ZFS_NUM_DELEG_NOTES; i++) {
const char *perm_name = zfs_deleg_perm_tbl[i].z_perm;
zfs_deleg_note_t perm_note = zfs_deleg_perm_tbl[i].z_note;
const char *perm_type = deleg_perm_type(perm_note);
const char *perm_comment = deleg_perm_comment(perm_note);
(void) fprintf(fp, fmt, perm_name, perm_type, perm_comment);
}
for (i = 0; i < ZFS_NUM_PROPS; i++) {
zprop_desc_t *pd = &pdtbl[i];
if (pd->pd_visible != B_TRUE)
continue;
if (pd->pd_attr == PROP_READONLY)
continue;
props[count++] = pd->pd_name;
}
props[count] = NULL;
qsort(props, count, sizeof (char *), prop_cmp);
for (i = 0; i < count; i++)
(void) fprintf(fp, fmt, props[i], gettext("property"), "");
if (msg != NULL)
(void) fprintf(fp, gettext("\nzfs: error: %s"), msg);
exit(requested ? 0 : 2);
}
static inline const char *
munge_args(int argc, char **argv, boolean_t un, size_t expected_argc,
char **permsp)
{
if (un && argc == expected_argc - 1)
*permsp = NULL;
else if (argc == expected_argc)
*permsp = argv[argc - 2];
else
allow_usage(un, B_FALSE,
gettext("wrong number of parameters\n"));
return (argv[argc - 1]);
}
static void
parse_allow_args(int argc, char **argv, boolean_t un, struct allow_opts *opts)
{
int uge_sum = opts->user + opts->group + opts->everyone;
int csuge_sum = opts->create + opts->set + uge_sum;
int ldcsuge_sum = csuge_sum + opts->local + opts->descend;
int all_sum = un ? ldcsuge_sum + opts->recursive : ldcsuge_sum;
if (uge_sum > 1)
allow_usage(un, B_FALSE,
gettext("-u, -g, and -e are mutually exclusive\n"));
if (opts->prt_usage) {
if (argc == 0 && all_sum == 0)
allow_usage(un, B_TRUE, NULL);
else
usage(B_FALSE);
}
if (opts->set) {
if (csuge_sum > 1)
allow_usage(un, B_FALSE,
gettext("invalid options combined with -s\n"));
opts->dataset = munge_args(argc, argv, un, 3, &opts->perms);
if (argv[0][0] != '@')
allow_usage(un, B_FALSE,
gettext("invalid set name: missing '@' prefix\n"));
opts->who = argv[0];
} else if (opts->create) {
if (ldcsuge_sum > 1)
allow_usage(un, B_FALSE,
gettext("invalid options combined with -c\n"));
opts->dataset = munge_args(argc, argv, un, 2, &opts->perms);
} else if (opts->everyone) {
if (csuge_sum > 1)
allow_usage(un, B_FALSE,
gettext("invalid options combined with -e\n"));
opts->dataset = munge_args(argc, argv, un, 2, &opts->perms);
} else if (uge_sum == 0 && argc > 0 && strcmp(argv[0], "everyone")
== 0) {
opts->everyone = B_TRUE;
argc--;
argv++;
opts->dataset = munge_args(argc, argv, un, 2, &opts->perms);
} else if (argc == 1 && !un) {
opts->prt_perms = B_TRUE;
opts->dataset = argv[argc-1];
} else {
opts->dataset = munge_args(argc, argv, un, 3, &opts->perms);
opts->who = argv[0];
}
if (!opts->local && !opts->descend) {
opts->local = B_TRUE;
opts->descend = B_TRUE;
}
}
static void
store_allow_perm(zfs_deleg_who_type_t type, boolean_t local, boolean_t descend,
const char *who, char *perms, nvlist_t *top_nvl)
{
int i;
char ld[2] = { '\0', '\0' };
char who_buf[MAXNAMELEN + 32];
char base_type = '\0';
char set_type = '\0';
nvlist_t *base_nvl = NULL;
nvlist_t *set_nvl = NULL;
nvlist_t *nvl;
if (nvlist_alloc(&base_nvl, NV_UNIQUE_NAME, 0) != 0)
nomem();
if (nvlist_alloc(&set_nvl, NV_UNIQUE_NAME, 0) != 0)
nomem();
switch (type) {
case ZFS_DELEG_NAMED_SET_SETS:
case ZFS_DELEG_NAMED_SET:
set_type = ZFS_DELEG_NAMED_SET_SETS;
base_type = ZFS_DELEG_NAMED_SET;
ld[0] = ZFS_DELEG_NA;
break;
case ZFS_DELEG_CREATE_SETS:
case ZFS_DELEG_CREATE:
set_type = ZFS_DELEG_CREATE_SETS;
base_type = ZFS_DELEG_CREATE;
ld[0] = ZFS_DELEG_NA;
break;
case ZFS_DELEG_USER_SETS:
case ZFS_DELEG_USER:
set_type = ZFS_DELEG_USER_SETS;
base_type = ZFS_DELEG_USER;
if (local)
ld[0] = ZFS_DELEG_LOCAL;
if (descend)
ld[1] = ZFS_DELEG_DESCENDENT;
break;
case ZFS_DELEG_GROUP_SETS:
case ZFS_DELEG_GROUP:
set_type = ZFS_DELEG_GROUP_SETS;
base_type = ZFS_DELEG_GROUP;
if (local)
ld[0] = ZFS_DELEG_LOCAL;
if (descend)
ld[1] = ZFS_DELEG_DESCENDENT;
break;
case ZFS_DELEG_EVERYONE_SETS:
case ZFS_DELEG_EVERYONE:
set_type = ZFS_DELEG_EVERYONE_SETS;
base_type = ZFS_DELEG_EVERYONE;
if (local)
ld[0] = ZFS_DELEG_LOCAL;
if (descend)
ld[1] = ZFS_DELEG_DESCENDENT;
break;
default:
assert(set_type != '\0' && base_type != '\0');
}
if (perms != NULL) {
char *curr = perms;
char *end = curr + strlen(perms);
while (curr < end) {
char *delim = strchr(curr, ',');
if (delim == NULL)
delim = end;
else
*delim = '\0';
if (curr[0] == '@')
nvl = set_nvl;
else
nvl = base_nvl;
(void) nvlist_add_boolean(nvl, curr);
if (delim != end)
*delim = ',';
curr = delim + 1;
}
for (i = 0; i < 2; i++) {
char locality = ld[i];
if (locality == 0)
continue;
if (!nvlist_empty(base_nvl)) {
if (who != NULL)
(void) snprintf(who_buf,
sizeof (who_buf), "%c%c$%s",
base_type, locality, who);
else
(void) snprintf(who_buf,
sizeof (who_buf), "%c%c$",
base_type, locality);
(void) nvlist_add_nvlist(top_nvl, who_buf,
base_nvl);
}
if (!nvlist_empty(set_nvl)) {
if (who != NULL)
(void) snprintf(who_buf,
sizeof (who_buf), "%c%c$%s",
set_type, locality, who);
else
(void) snprintf(who_buf,
sizeof (who_buf), "%c%c$",
set_type, locality);
(void) nvlist_add_nvlist(top_nvl, who_buf,
set_nvl);
}
}
} else {
for (i = 0; i < 2; i++) {
char locality = ld[i];
if (locality == 0)
continue;
if (who != NULL)
(void) snprintf(who_buf, sizeof (who_buf),
"%c%c$%s", base_type, locality, who);
else
(void) snprintf(who_buf, sizeof (who_buf),
"%c%c$", base_type, locality);
(void) nvlist_add_boolean(top_nvl, who_buf);
if (who != NULL)
(void) snprintf(who_buf, sizeof (who_buf),
"%c%c$%s", set_type, locality, who);
else
(void) snprintf(who_buf, sizeof (who_buf),
"%c%c$", set_type, locality);
(void) nvlist_add_boolean(top_nvl, who_buf);
}
}
}
static int
construct_fsacl_list(boolean_t un, struct allow_opts *opts, nvlist_t **nvlp)
{
if (nvlist_alloc(nvlp, NV_UNIQUE_NAME, 0) != 0)
nomem();
if (opts->set) {
store_allow_perm(ZFS_DELEG_NAMED_SET, opts->local,
opts->descend, opts->who, opts->perms, *nvlp);
} else if (opts->create) {
store_allow_perm(ZFS_DELEG_CREATE, opts->local,
opts->descend, NULL, opts->perms, *nvlp);
} else if (opts->everyone) {
store_allow_perm(ZFS_DELEG_EVERYONE, opts->local,
opts->descend, NULL, opts->perms, *nvlp);
} else {
char *curr = opts->who;
char *end = curr + strlen(curr);
while (curr < end) {
const char *who;
zfs_deleg_who_type_t who_type = ZFS_DELEG_WHO_UNKNOWN;
char *endch;
char *delim = strchr(curr, ',');
char errbuf[256];
char id[64];
struct passwd *p = NULL;
struct group *g = NULL;
uid_t rid;
if (delim == NULL)
delim = end;
else
*delim = '\0';
rid = (uid_t)strtol(curr, &endch, 0);
if (opts->user) {
who_type = ZFS_DELEG_USER;
if (*endch != '\0')
p = getpwnam(curr);
else
p = getpwuid(rid);
if (p != NULL)
rid = p->pw_uid;
else if (*endch != '\0') {
(void) snprintf(errbuf, sizeof (errbuf),
gettext("invalid user %s\n"), curr);
allow_usage(un, B_TRUE, errbuf);
}
} else if (opts->group) {
who_type = ZFS_DELEG_GROUP;
if (*endch != '\0')
g = getgrnam(curr);
else
g = getgrgid(rid);
if (g != NULL)
rid = g->gr_gid;
else if (*endch != '\0') {
(void) snprintf(errbuf, sizeof (errbuf),
gettext("invalid group %s\n"),
curr);
allow_usage(un, B_TRUE, errbuf);
}
} else {
if (*endch != '\0') {
p = getpwnam(curr);
} else {
p = getpwuid(rid);
}
if (p == NULL) {
if (*endch != '\0') {
g = getgrnam(curr);
} else {
g = getgrgid(rid);
}
}
if (p != NULL) {
who_type = ZFS_DELEG_USER;
rid = p->pw_uid;
} else if (g != NULL) {
who_type = ZFS_DELEG_GROUP;
rid = g->gr_gid;
} else {
(void) snprintf(errbuf, sizeof (errbuf),
gettext("invalid user/group %s\n"),
curr);
allow_usage(un, B_TRUE, errbuf);
}
}
(void) sprintf(id, "%u", rid);
who = id;
store_allow_perm(who_type, opts->local,
opts->descend, who, opts->perms, *nvlp);
curr = delim + 1;
}
}
return (0);
}
static void
print_set_creat_perms(uu_avl_t *who_avl)
{
const char *sc_title[] = {
gettext("Permission sets:\n"),
gettext("Create time permissions:\n"),
NULL
};
who_perm_node_t *who_node = NULL;
int prev_weight = -1;
for (who_node = uu_avl_first(who_avl); who_node != NULL;
who_node = uu_avl_next(who_avl, who_node)) {
uu_avl_t *avl = who_node->who_perm.who_deleg_perm_avl;
zfs_deleg_who_type_t who_type = who_node->who_perm.who_type;
const char *who_name = who_node->who_perm.who_name;
int weight = who_type2weight(who_type);
boolean_t first = B_TRUE;
deleg_perm_node_t *deleg_node;
if (prev_weight != weight) {
(void) printf("%s", sc_title[weight]);
prev_weight = weight;
}
if (who_name == NULL || strnlen(who_name, 1) == 0)
(void) printf("\t");
else
(void) printf("\t%s ", who_name);
for (deleg_node = uu_avl_first(avl); deleg_node != NULL;
deleg_node = uu_avl_next(avl, deleg_node)) {
if (first) {
(void) printf("%s",
deleg_node->dpn_perm.dp_name);
first = B_FALSE;
} else
(void) printf(",%s",
deleg_node->dpn_perm.dp_name);
}
(void) printf("\n");
}
}
static void
print_uge_deleg_perms(uu_avl_t *who_avl, boolean_t local, boolean_t descend,
const char *title)
{
who_perm_node_t *who_node = NULL;
boolean_t prt_title = B_TRUE;
uu_avl_walk_t *walk;
if ((walk = uu_avl_walk_start(who_avl, UU_WALK_ROBUST)) == NULL)
nomem();
while ((who_node = uu_avl_walk_next(walk)) != NULL) {
const char *who_name = who_node->who_perm.who_name;
const char *nice_who_name = who_node->who_perm.who_ug_name;
uu_avl_t *avl = who_node->who_perm.who_deleg_perm_avl;
zfs_deleg_who_type_t who_type = who_node->who_perm.who_type;
char delim = ' ';
deleg_perm_node_t *deleg_node;
boolean_t prt_who = B_TRUE;
for (deleg_node = uu_avl_first(avl);
deleg_node != NULL;
deleg_node = uu_avl_next(avl, deleg_node)) {
if (local != deleg_node->dpn_perm.dp_local ||
descend != deleg_node->dpn_perm.dp_descend)
continue;
if (prt_who) {
const char *who = NULL;
if (prt_title) {
prt_title = B_FALSE;
(void) printf("%s", title);
}
switch (who_type) {
case ZFS_DELEG_USER_SETS:
case ZFS_DELEG_USER:
who = gettext("user");
if (nice_who_name)
who_name = nice_who_name;
break;
case ZFS_DELEG_GROUP_SETS:
case ZFS_DELEG_GROUP:
who = gettext("group");
if (nice_who_name)
who_name = nice_who_name;
break;
case ZFS_DELEG_EVERYONE_SETS:
case ZFS_DELEG_EVERYONE:
who = gettext("everyone");
who_name = NULL;
break;
default:
assert(who != NULL);
}
prt_who = B_FALSE;
if (who_name == NULL)
(void) printf("\t%s", who);
else
(void) printf("\t%s %s", who, who_name);
}
(void) printf("%c%s", delim,
deleg_node->dpn_perm.dp_name);
delim = ',';
}
if (!prt_who)
(void) printf("\n");
}
uu_avl_walk_end(walk);
}
static void
print_fs_perms(fs_perm_set_t *fspset)
{
fs_perm_node_t *node = NULL;
char buf[MAXNAMELEN + 32];
const char *dsname = buf;
for (node = uu_list_first(fspset->fsps_list); node != NULL;
node = uu_list_next(fspset->fsps_list, node)) {
uu_avl_t *sc_avl = node->fspn_fsperm.fsp_sc_avl;
uu_avl_t *uge_avl = node->fspn_fsperm.fsp_uge_avl;
int left = 0;
(void) snprintf(buf, sizeof (buf),
gettext("---- Permissions on %s "),
node->fspn_fsperm.fsp_name);
(void) printf("%s", dsname);
left = 70 - strlen(buf);
while (left-- > 0)
(void) printf("-");
(void) printf("\n");
print_set_creat_perms(sc_avl);
print_uge_deleg_perms(uge_avl, B_TRUE, B_FALSE,
gettext("Local permissions:\n"));
print_uge_deleg_perms(uge_avl, B_FALSE, B_TRUE,
gettext("Descendent permissions:\n"));
print_uge_deleg_perms(uge_avl, B_TRUE, B_TRUE,
gettext("Local+Descendent permissions:\n"));
}
}
static fs_perm_set_t fs_perm_set = { NULL, NULL, NULL, NULL };
struct deleg_perms {
boolean_t un;
nvlist_t *nvl;
};
static int
set_deleg_perms(zfs_handle_t *zhp, void *data)
{
struct deleg_perms *perms = (struct deleg_perms *)data;
zfs_type_t zfs_type = zfs_get_type(zhp);
if (zfs_type != ZFS_TYPE_FILESYSTEM && zfs_type != ZFS_TYPE_VOLUME)
return (0);
return (zfs_set_fsacl(zhp, perms->un, perms->nvl));
}
static int
zfs_do_allow_unallow_impl(int argc, char **argv, boolean_t un)
{
zfs_handle_t *zhp;
nvlist_t *perm_nvl = NULL;
nvlist_t *update_perm_nvl = NULL;
int error = 1;
int c;
struct allow_opts opts = { 0 };
const char *optstr = un ? "ldugecsrh" : "ldugecsh";
/* check opts */
while ((c = getopt(argc, argv, optstr)) != -1) {
switch (c) {
case 'l':
opts.local = B_TRUE;
break;
case 'd':
opts.descend = B_TRUE;
break;
case 'u':
opts.user = B_TRUE;
break;
case 'g':
opts.group = B_TRUE;
break;
case 'e':
opts.everyone = B_TRUE;
break;
case 's':
opts.set = B_TRUE;
break;
case 'c':
opts.create = B_TRUE;
break;
case 'r':
opts.recursive = B_TRUE;
break;
case ':':
(void) fprintf(stderr, gettext("missing argument for "
"'%c' option\n"), optopt);
usage(B_FALSE);
break;
case 'h':
opts.prt_usage = B_TRUE;
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
/* check arguments */
parse_allow_args(argc, argv, un, &opts);
/* try to open the dataset */
if ((zhp = zfs_open(g_zfs, opts.dataset, ZFS_TYPE_FILESYSTEM |
ZFS_TYPE_VOLUME)) == NULL) {
(void) fprintf(stderr, "Failed to open dataset: %s\n",
opts.dataset);
return (-1);
}
if (zfs_get_fsacl(zhp, &perm_nvl) != 0)
goto cleanup2;
fs_perm_set_init(&fs_perm_set);
if (parse_fs_perm_set(&fs_perm_set, perm_nvl) != 0) {
(void) fprintf(stderr, "Failed to parse fsacl permissions\n");
goto cleanup1;
}
if (opts.prt_perms)
print_fs_perms(&fs_perm_set);
else {
(void) construct_fsacl_list(un, &opts, &update_perm_nvl);
if (zfs_set_fsacl(zhp, un, update_perm_nvl) != 0)
goto cleanup0;
if (un && opts.recursive) {
struct deleg_perms data = { un, update_perm_nvl };
if (zfs_iter_filesystems_v2(zhp, 0, set_deleg_perms,
&data) != 0)
goto cleanup0;
}
}
error = 0;
cleanup0:
nvlist_free(perm_nvl);
nvlist_free(update_perm_nvl);
cleanup1:
fs_perm_set_fini(&fs_perm_set);
cleanup2:
zfs_close(zhp);
return (error);
}
static int
zfs_do_allow(int argc, char **argv)
{
return (zfs_do_allow_unallow_impl(argc, argv, B_FALSE));
}
static int
zfs_do_unallow(int argc, char **argv)
{
return (zfs_do_allow_unallow_impl(argc, argv, B_TRUE));
}
static int
zfs_do_hold_rele_impl(int argc, char **argv, boolean_t holding)
{
int errors = 0;
int i;
const char *tag;
boolean_t recursive = B_FALSE;
const char *opts = holding ? "rt" : "r";
int c;
/* check options */
while ((c = getopt(argc, argv, opts)) != -1) {
switch (c) {
case 'r':
recursive = B_TRUE;
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc < 2)
usage(B_FALSE);
tag = argv[0];
--argc;
++argv;
if (holding && tag[0] == '.') {
/* tags starting with '.' are reserved for libzfs */
(void) fprintf(stderr, gettext("tag may not start with '.'\n"));
usage(B_FALSE);
}
for (i = 0; i < argc; ++i) {
zfs_handle_t *zhp;
char parent[ZFS_MAX_DATASET_NAME_LEN];
const char *delim;
char *path = argv[i];
delim = strchr(path, '@');
if (delim == NULL) {
(void) fprintf(stderr,
gettext("'%s' is not a snapshot\n"), path);
++errors;
continue;
}
(void) strlcpy(parent, path, MIN(sizeof (parent),
delim - path + 1));
zhp = zfs_open(g_zfs, parent,
ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL) {
++errors;
continue;
}
if (holding) {
if (zfs_hold(zhp, delim+1, tag, recursive, -1) != 0)
++errors;
} else {
if (zfs_release(zhp, delim+1, tag, recursive) != 0)
++errors;
}
zfs_close(zhp);
}
return (errors != 0);
}
/*
* zfs hold [-r] [-t] <tag> <snap> ...
*
* -r Recursively hold
*
* Apply a user-hold with the given tag to the list of snapshots.
*/
static int
zfs_do_hold(int argc, char **argv)
{
return (zfs_do_hold_rele_impl(argc, argv, B_TRUE));
}
/*
* zfs release [-r] <tag> <snap> ...
*
* -r Recursively release
*
* Release a user-hold with the given tag from the list of snapshots.
*/
static int
zfs_do_release(int argc, char **argv)
{
return (zfs_do_hold_rele_impl(argc, argv, B_FALSE));
}
typedef struct holds_cbdata {
boolean_t cb_recursive;
const char *cb_snapname;
nvlist_t **cb_nvlp;
size_t cb_max_namelen;
size_t cb_max_taglen;
} holds_cbdata_t;
#define STRFTIME_FMT_STR "%a %b %e %H:%M %Y"
#define DATETIME_BUF_LEN (32)
/*
*
*/
static void
print_holds(boolean_t scripted, int nwidth, int tagwidth, nvlist_t *nvl,
boolean_t parsable)
{
int i;
nvpair_t *nvp = NULL;
const char *const hdr_cols[] = { "NAME", "TAG", "TIMESTAMP" };
const char *col;
if (!scripted) {
for (i = 0; i < 3; i++) {
col = gettext(hdr_cols[i]);
if (i < 2)
(void) printf("%-*s ", i ? tagwidth : nwidth,
col);
else
(void) printf("%s\n", col);
}
}
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
const char *zname = nvpair_name(nvp);
nvlist_t *nvl2;
nvpair_t *nvp2 = NULL;
(void) nvpair_value_nvlist(nvp, &nvl2);
while ((nvp2 = nvlist_next_nvpair(nvl2, nvp2)) != NULL) {
char tsbuf[DATETIME_BUF_LEN];
const char *tagname = nvpair_name(nvp2);
uint64_t val = 0;
time_t time;
struct tm t;
(void) nvpair_value_uint64(nvp2, &val);
time = (time_t)val;
(void) localtime_r(&time, &t);
(void) strftime(tsbuf, DATETIME_BUF_LEN,
gettext(STRFTIME_FMT_STR), &t);
if (scripted) {
if (parsable) {
(void) printf("%s\t%s\t%ld\n", zname,
tagname, time);
} else {
(void) printf("%s\t%s\t%s\n", zname,
tagname, tsbuf);
}
} else {
if (parsable) {
(void) printf("%-*s %-*s %ld\n",
nwidth, zname, tagwidth,
tagname, time);
} else {
(void) printf("%-*s %-*s %s\n",
nwidth, zname, tagwidth,
tagname, tsbuf);
}
}
}
}
}
/*
* Generic callback function to list a dataset or snapshot.
*/
static int
holds_callback(zfs_handle_t *zhp, void *data)
{
holds_cbdata_t *cbp = data;
nvlist_t *top_nvl = *cbp->cb_nvlp;
nvlist_t *nvl = NULL;
nvpair_t *nvp = NULL;
const char *zname = zfs_get_name(zhp);
size_t znamelen = strlen(zname);
if (cbp->cb_recursive) {
const char *snapname;
char *delim = strchr(zname, '@');
if (delim == NULL)
return (0);
snapname = delim + 1;
if (strcmp(cbp->cb_snapname, snapname))
return (0);
}
if (zfs_get_holds(zhp, &nvl) != 0)
return (-1);
if (znamelen > cbp->cb_max_namelen)
cbp->cb_max_namelen = znamelen;
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
const char *tag = nvpair_name(nvp);
size_t taglen = strlen(tag);
if (taglen > cbp->cb_max_taglen)
cbp->cb_max_taglen = taglen;
}
return (nvlist_add_nvlist(top_nvl, zname, nvl));
}
/*
* zfs holds [-rHp] <snap> ...
*
* -r Lists holds that are set on the named snapshots recursively.
* -H Scripted mode; elide headers and separate columns by tabs.
* -p Display values in parsable (literal) format.
*/
static int
zfs_do_holds(int argc, char **argv)
{
int c;
boolean_t errors = B_FALSE;
boolean_t scripted = B_FALSE;
boolean_t recursive = B_FALSE;
boolean_t parsable = B_FALSE;
int types = ZFS_TYPE_SNAPSHOT;
holds_cbdata_t cb = { 0 };
int limit = 0;
int ret = 0;
int flags = 0;
/* check options */
while ((c = getopt(argc, argv, "rHp")) != -1) {
switch (c) {
case 'r':
recursive = B_TRUE;
break;
case 'H':
scripted = B_TRUE;
break;
case 'p':
parsable = B_TRUE;
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
if (recursive) {
types |= ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME;
flags |= ZFS_ITER_RECURSE;
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc < 1)
usage(B_FALSE);
nvlist_t *nvl = fnvlist_alloc();
for (int i = 0; i < argc; ++i) {
char *snapshot = argv[i];
const char *delim;
const char *snapname;
delim = strchr(snapshot, '@');
if (delim == NULL) {
(void) fprintf(stderr,
gettext("'%s' is not a snapshot\n"), snapshot);
errors = B_TRUE;
continue;
}
snapname = delim + 1;
if (recursive)
snapshot[delim - snapshot] = '\0';
cb.cb_recursive = recursive;
cb.cb_snapname = snapname;
cb.cb_nvlp = &nvl;
/*
* 1. collect holds data, set format options
*/
ret = zfs_for_each(1, argv + i, flags, types, NULL, NULL, limit,
holds_callback, &cb);
if (ret != 0)
errors = B_TRUE;
}
/*
* 2. print holds data
*/
print_holds(scripted, cb.cb_max_namelen, cb.cb_max_taglen, nvl,
parsable);
if (nvlist_empty(nvl))
(void) fprintf(stderr, gettext("no datasets available\n"));
nvlist_free(nvl);
return (errors);
}
#define CHECK_SPINNER 30
#define SPINNER_TIME 3 /* seconds */
#define MOUNT_TIME 1 /* seconds */
typedef struct get_all_state {
char **ga_datasets;
int ga_count;
boolean_t ga_verbose;
get_all_cb_t *ga_cbp;
} get_all_state_t;
static int
get_one_dataset(zfs_handle_t *zhp, void *data)
{
static const char *const spin[] = { "-", "\\", "|", "/" };
static int spinval = 0;
static int spincheck = 0;
static time_t last_spin_time = (time_t)0;
get_all_state_t *state = data;
zfs_type_t type = zfs_get_type(zhp);
if (state->ga_verbose) {
if (--spincheck < 0) {
time_t now = time(NULL);
if (last_spin_time + SPINNER_TIME < now) {
update_progress(spin[spinval++ % 4]);
last_spin_time = now;
}
spincheck = CHECK_SPINNER;
}
}
/*
* Iterate over any nested datasets.
*/
if (zfs_iter_filesystems_v2(zhp, 0, get_one_dataset, data) != 0) {
zfs_close(zhp);
return (1);
}
/*
* Skip any datasets whose type does not match.
*/
if ((type & ZFS_TYPE_FILESYSTEM) == 0) {
zfs_close(zhp);
return (0);
}
libzfs_add_handle(state->ga_cbp, zhp);
assert(state->ga_cbp->cb_used <= state->ga_cbp->cb_alloc);
return (0);
}
static int
get_recursive_datasets(zfs_handle_t *zhp, void *data)
{
get_all_state_t *state = data;
int len = strlen(zfs_get_name(zhp));
for (int i = 0; i < state->ga_count; ++i) {
if (strcmp(state->ga_datasets[i], zfs_get_name(zhp)) == 0)
return (get_one_dataset(zhp, data));
else if ((strncmp(state->ga_datasets[i], zfs_get_name(zhp),
len) == 0) && state->ga_datasets[i][len] == '/') {
(void) zfs_iter_filesystems_v2(zhp, 0,
get_recursive_datasets, data);
}
}
zfs_close(zhp);
return (0);
}
static void
get_all_datasets(get_all_state_t *state)
{
if (state->ga_verbose)
set_progress_header(gettext("Reading ZFS config"));
if (state->ga_datasets == NULL)
(void) zfs_iter_root(g_zfs, get_one_dataset, state);
else
(void) zfs_iter_root(g_zfs, get_recursive_datasets, state);
if (state->ga_verbose)
finish_progress(gettext("done."));
}
/*
* Generic callback for sharing or mounting filesystems. Because the code is so
* similar, we have a common function with an extra parameter to determine which
* mode we are using.
*/
typedef enum { OP_SHARE, OP_MOUNT } share_mount_op_t;
typedef struct share_mount_state {
share_mount_op_t sm_op;
boolean_t sm_verbose;
int sm_flags;
char *sm_options;
enum sa_protocol sm_proto; /* only valid for OP_SHARE */
pthread_mutex_t sm_lock; /* protects the remaining fields */
uint_t sm_total; /* number of filesystems to process */
uint_t sm_done; /* number of filesystems processed */
int sm_status; /* -1 if any of the share/mount operations failed */
} share_mount_state_t;
/*
* Share or mount a dataset.
*/
static int
share_mount_one(zfs_handle_t *zhp, int op, int flags, enum sa_protocol protocol,
boolean_t explicit, const char *options)
{
char mountpoint[ZFS_MAXPROPLEN];
char shareopts[ZFS_MAXPROPLEN];
char smbshareopts[ZFS_MAXPROPLEN];
const char *cmdname = op == OP_SHARE ? "share" : "mount";
struct mnttab mnt;
uint64_t zoned, canmount;
boolean_t shared_nfs, shared_smb;
assert(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM);
/*
* Check to make sure we can mount/share this dataset. If we
* are in the global zone and the filesystem is exported to a
* local zone, or if we are in a local zone and the
* filesystem is not exported, then it is an error.
*/
zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED);
if (zoned && getzoneid() == GLOBAL_ZONEID) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot %s '%s': "
"dataset is exported to a local zone\n"), cmdname,
zfs_get_name(zhp));
return (1);
} else if (!zoned && getzoneid() != GLOBAL_ZONEID) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot %s '%s': "
"permission denied\n"), cmdname,
zfs_get_name(zhp));
return (1);
}
/*
* Ignore any filesystems which don't apply to us. This
* includes those with a legacy mountpoint, or those with
* legacy share options.
*/
verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint,
sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, shareopts,
sizeof (shareopts), NULL, NULL, 0, B_FALSE) == 0);
verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, smbshareopts,
sizeof (smbshareopts), NULL, NULL, 0, B_FALSE) == 0);
if (op == OP_SHARE && strcmp(shareopts, "off") == 0 &&
strcmp(smbshareopts, "off") == 0) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot share '%s': "
"legacy share\n"), zfs_get_name(zhp));
(void) fprintf(stderr, gettext("use exports(5) or "
"smb.conf(5) to share this filesystem, or set "
"the sharenfs or sharesmb property\n"));
return (1);
}
/*
* We cannot share or mount legacy filesystems. If the
* shareopts is non-legacy but the mountpoint is legacy, we
* treat it as a legacy share.
*/
if (strcmp(mountpoint, "legacy") == 0) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot %s '%s': "
"legacy mountpoint\n"), cmdname, zfs_get_name(zhp));
(void) fprintf(stderr, gettext("use %s(8) to "
"%s this filesystem\n"), cmdname, cmdname);
return (1);
}
if (strcmp(mountpoint, "none") == 0) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot %s '%s': no "
"mountpoint set\n"), cmdname, zfs_get_name(zhp));
return (1);
}
/*
* canmount explicit outcome
* on no pass through
* on yes pass through
* off no return 0
* off yes display error, return 1
* noauto no return 0
* noauto yes pass through
*/
canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT);
if (canmount == ZFS_CANMOUNT_OFF) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot %s '%s': "
"'canmount' property is set to 'off'\n"), cmdname,
zfs_get_name(zhp));
return (1);
} else if (canmount == ZFS_CANMOUNT_NOAUTO && !explicit) {
/*
* When performing a 'zfs mount -a', we skip any mounts for
* datasets that have 'noauto' set. Sharing a dataset with
* 'noauto' set is only allowed if it's mounted.
*/
if (op == OP_MOUNT)
return (0);
if (op == OP_SHARE && !zfs_is_mounted(zhp, NULL)) {
/* also purge it from existing exports */
zfs_unshare(zhp, mountpoint, NULL);
return (0);
}
}
/*
* If this filesystem is encrypted and does not have
* a loaded key, we can not mount it.
*/
if ((flags & MS_CRYPT) == 0 &&
zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF &&
zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
ZFS_KEYSTATUS_UNAVAILABLE) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot %s '%s': "
"encryption key not loaded\n"), cmdname, zfs_get_name(zhp));
return (1);
}
/*
* If this filesystem is inconsistent and has a receive resume
* token, we can not mount it.
*/
if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot %s '%s': "
"Contains partially-completed state from "
"\"zfs receive -s\", which can be resumed with "
"\"zfs send -t\"\n"),
cmdname, zfs_get_name(zhp));
return (1);
}
if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE)) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot %s '%s': "
"Dataset is not complete, was created by receiving "
"a redacted zfs send stream.\n"), cmdname,
zfs_get_name(zhp));
return (1);
}
/*
* At this point, we have verified that the mountpoint and/or
* shareopts are appropriate for auto management. If the
* filesystem is already mounted or shared, return (failing
* for explicit requests); otherwise mount or share the
* filesystem.
*/
switch (op) {
case OP_SHARE: {
enum sa_protocol prot[] = {SA_PROTOCOL_NFS, SA_NO_PROTOCOL};
shared_nfs = zfs_is_shared(zhp, NULL, prot);
*prot = SA_PROTOCOL_SMB;
shared_smb = zfs_is_shared(zhp, NULL, prot);
if ((shared_nfs && shared_smb) ||
(shared_nfs && strcmp(shareopts, "on") == 0 &&
strcmp(smbshareopts, "off") == 0) ||
(shared_smb && strcmp(smbshareopts, "on") == 0 &&
strcmp(shareopts, "off") == 0)) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot share "
"'%s': filesystem already shared\n"),
zfs_get_name(zhp));
return (1);
}
if (!zfs_is_mounted(zhp, NULL) &&
zfs_mount(zhp, NULL, flags) != 0)
return (1);
*prot = protocol;
if (zfs_share(zhp, protocol == SA_NO_PROTOCOL ? NULL : prot))
return (1);
}
break;
case OP_MOUNT:
mnt.mnt_mntopts = (char *)(options ?: "");
if (!hasmntopt(&mnt, MNTOPT_REMOUNT) &&
zfs_is_mounted(zhp, NULL)) {
if (!explicit)
return (0);
(void) fprintf(stderr, gettext("cannot mount "
"'%s': filesystem already mounted\n"),
zfs_get_name(zhp));
return (1);
}
if (zfs_mount(zhp, options, flags) != 0)
return (1);
break;
}
return (0);
}
/*
* Reports progress in the form "(current/total)". Not thread-safe.
*/
static void
report_mount_progress(int current, int total)
{
static time_t last_progress_time = 0;
time_t now = time(NULL);
char info[32];
/* display header if we're here for the first time */
if (current == 1) {
set_progress_header(gettext("Mounting ZFS filesystems"));
} else if (current != total && last_progress_time + MOUNT_TIME >= now) {
/* too soon to report again */
return;
}
last_progress_time = now;
(void) sprintf(info, "(%d/%d)", current, total);
if (current == total)
finish_progress(info);
else
update_progress(info);
}
/*
* zfs_foreach_mountpoint() callback that mounts or shares one filesystem and
* updates the progress meter.
*/
static int
share_mount_one_cb(zfs_handle_t *zhp, void *arg)
{
share_mount_state_t *sms = arg;
int ret;
ret = share_mount_one(zhp, sms->sm_op, sms->sm_flags, sms->sm_proto,
B_FALSE, sms->sm_options);
pthread_mutex_lock(&sms->sm_lock);
if (ret != 0)
sms->sm_status = ret;
sms->sm_done++;
if (sms->sm_verbose)
report_mount_progress(sms->sm_done, sms->sm_total);
pthread_mutex_unlock(&sms->sm_lock);
return (ret);
}
static void
append_options(char *mntopts, char *newopts)
{
int len = strlen(mntopts);
/* original length plus new string to append plus 1 for the comma */
if (len + 1 + strlen(newopts) >= MNT_LINE_MAX) {
(void) fprintf(stderr, gettext("the opts argument for "
"'%s' option is too long (more than %d chars)\n"),
"-o", MNT_LINE_MAX);
usage(B_FALSE);
}
if (*mntopts)
mntopts[len++] = ',';
(void) strcpy(&mntopts[len], newopts);
}
static enum sa_protocol
sa_protocol_decode(const char *protocol)
{
for (enum sa_protocol i = 0; i < ARRAY_SIZE(sa_protocol_names); ++i)
if (strcmp(protocol, sa_protocol_names[i]) == 0)
return (i);
(void) fputs(gettext("share type must be one of: "), stderr);
for (enum sa_protocol i = 0;
i < ARRAY_SIZE(sa_protocol_names); ++i)
(void) fprintf(stderr, "%s%s",
i != 0 ? ", " : "", sa_protocol_names[i]);
(void) fputc('\n', stderr);
usage(B_FALSE);
}
static int
share_mount(int op, int argc, char **argv)
{
int do_all = 0;
int recursive = 0;
boolean_t verbose = B_FALSE;
int c, ret = 0;
char *options = NULL;
int flags = 0;
/* check options */
while ((c = getopt(argc, argv, op == OP_MOUNT ? ":aRlvo:Of" : "al"))
!= -1) {
switch (c) {
case 'a':
do_all = 1;
break;
case 'R':
recursive = 1;
break;
case 'v':
verbose = B_TRUE;
break;
case 'l':
flags |= MS_CRYPT;
break;
case 'o':
if (*optarg == '\0') {
(void) fprintf(stderr, gettext("empty mount "
"options (-o) specified\n"));
usage(B_FALSE);
}
if (options == NULL)
options = safe_malloc(MNT_LINE_MAX + 1);
/* option validation is done later */
append_options(options, optarg);
break;
case 'O':
flags |= MS_OVERLAY;
break;
case 'f':
flags |= MS_FORCE;
break;
case ':':
(void) fprintf(stderr, gettext("missing argument for "
"'%c' option\n"), optopt);
usage(B_FALSE);
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (do_all || recursive) {
enum sa_protocol protocol = SA_NO_PROTOCOL;
if (op == OP_SHARE && argc > 0) {
protocol = sa_protocol_decode(argv[0]);
argc--;
argv++;
}
if (argc != 0 && do_all) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
if (argc == 0 && recursive) {
(void) fprintf(stderr,
gettext("no dataset provided\n"));
usage(B_FALSE);
}
start_progress_timer();
get_all_cb_t cb = { 0 };
get_all_state_t state = { 0 };
if (argc == 0) {
state.ga_datasets = NULL;
state.ga_count = -1;
} else {
zfs_handle_t *zhp;
for (int i = 0; i < argc; i++) {
zhp = zfs_open(g_zfs, argv[i],
ZFS_TYPE_FILESYSTEM);
if (zhp == NULL)
usage(B_FALSE);
zfs_close(zhp);
}
state.ga_datasets = argv;
state.ga_count = argc;
}
state.ga_verbose = verbose;
state.ga_cbp = &cb;
get_all_datasets(&state);
if (cb.cb_used == 0) {
free(options);
return (0);
}
share_mount_state_t share_mount_state = { 0 };
share_mount_state.sm_op = op;
share_mount_state.sm_verbose = verbose;
share_mount_state.sm_flags = flags;
share_mount_state.sm_options = options;
share_mount_state.sm_proto = protocol;
share_mount_state.sm_total = cb.cb_used;
pthread_mutex_init(&share_mount_state.sm_lock, NULL);
/* For a 'zfs share -a' operation start with a clean slate. */
if (op == OP_SHARE)
zfs_truncate_shares(NULL);
/*
* libshare isn't mt-safe, so only do the operation in parallel
* if we're mounting. Additionally, the key-loading option must
* be serialized so that we can prompt the user for their keys
* in a consistent manner.
*/
zfs_foreach_mountpoint(g_zfs, cb.cb_handles, cb.cb_used,
share_mount_one_cb, &share_mount_state,
op == OP_MOUNT && !(flags & MS_CRYPT));
zfs_commit_shares(NULL);
ret = share_mount_state.sm_status;
for (int i = 0; i < cb.cb_used; i++)
zfs_close(cb.cb_handles[i]);
free(cb.cb_handles);
} else if (argc == 0) {
FILE *mnttab;
struct mnttab entry;
if ((op == OP_SHARE) || (options != NULL)) {
(void) fprintf(stderr, gettext("missing filesystem "
"argument (specify -a for all)\n"));
usage(B_FALSE);
}
/*
* When mount is given no arguments, go through
* /proc/self/mounts and display any active ZFS mounts.
* We hide any snapshots, since they are controlled
* automatically.
*/
if ((mnttab = fopen(MNTTAB, "re")) == NULL) {
free(options);
return (ENOENT);
}
while (getmntent(mnttab, &entry) == 0) {
if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0 ||
strchr(entry.mnt_special, '@') != NULL)
continue;
(void) printf("%-30s %s\n", entry.mnt_special,
entry.mnt_mountp);
}
(void) fclose(mnttab);
} else {
zfs_handle_t *zhp;
if (argc > 1) {
(void) fprintf(stderr,
gettext("too many arguments\n"));
usage(B_FALSE);
}
if ((zhp = zfs_open(g_zfs, argv[0],
ZFS_TYPE_FILESYSTEM)) == NULL) {
ret = 1;
} else {
ret = share_mount_one(zhp, op, flags, SA_NO_PROTOCOL,
B_TRUE, options);
zfs_commit_shares(NULL);
zfs_close(zhp);
}
}
free(options);
return (ret);
}
/*
* zfs mount -a
* zfs mount filesystem
*
* Mount all filesystems, or mount the given filesystem.
*/
static int
zfs_do_mount(int argc, char **argv)
{
return (share_mount(OP_MOUNT, argc, argv));
}
/*
* zfs share -a [nfs | smb]
* zfs share filesystem
*
* Share all filesystems, or share the given filesystem.
*/
static int
zfs_do_share(int argc, char **argv)
{
return (share_mount(OP_SHARE, argc, argv));
}
typedef struct unshare_unmount_node {
zfs_handle_t *un_zhp;
char *un_mountp;
uu_avl_node_t un_avlnode;
} unshare_unmount_node_t;
static int
unshare_unmount_compare(const void *larg, const void *rarg, void *unused)
{
(void) unused;
const unshare_unmount_node_t *l = larg;
const unshare_unmount_node_t *r = rarg;
return (strcmp(l->un_mountp, r->un_mountp));
}
/*
* Convenience routine used by zfs_do_umount() and manual_unmount(). Given an
* absolute path, find the entry /proc/self/mounts, verify that it's a
* ZFS filesystem, and unmount it appropriately.
*/
static int
unshare_unmount_path(int op, char *path, int flags, boolean_t is_manual)
{
zfs_handle_t *zhp;
int ret = 0;
struct stat64 statbuf;
struct extmnttab entry;
const char *cmdname = (op == OP_SHARE) ? "unshare" : "unmount";
ino_t path_inode;
/*
* Search for the given (major,minor) pair in the mount table.
*/
if (getextmntent(path, &entry, &statbuf) != 0) {
if (op == OP_SHARE) {
(void) fprintf(stderr, gettext("cannot %s '%s': not "
"currently mounted\n"), cmdname, path);
return (1);
}
(void) fprintf(stderr, gettext("warning: %s not in"
"/proc/self/mounts\n"), path);
if ((ret = umount2(path, flags)) != 0)
(void) fprintf(stderr, gettext("%s: %s\n"), path,
strerror(errno));
return (ret != 0);
}
path_inode = statbuf.st_ino;
if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) {
(void) fprintf(stderr, gettext("cannot %s '%s': not a ZFS "
"filesystem\n"), cmdname, path);
return (1);
}
if ((zhp = zfs_open(g_zfs, entry.mnt_special,
ZFS_TYPE_FILESYSTEM)) == NULL)
return (1);
ret = 1;
if (stat64(entry.mnt_mountp, &statbuf) != 0) {
(void) fprintf(stderr, gettext("cannot %s '%s': %s\n"),
cmdname, path, strerror(errno));
goto out;
} else if (statbuf.st_ino != path_inode) {
(void) fprintf(stderr, gettext("cannot "
"%s '%s': not a mountpoint\n"), cmdname, path);
goto out;
}
if (op == OP_SHARE) {
char nfs_mnt_prop[ZFS_MAXPROPLEN];
char smbshare_prop[ZFS_MAXPROPLEN];
verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfs_mnt_prop,
sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0);
verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, smbshare_prop,
sizeof (smbshare_prop), NULL, NULL, 0, B_FALSE) == 0);
if (strcmp(nfs_mnt_prop, "off") == 0 &&
strcmp(smbshare_prop, "off") == 0) {
(void) fprintf(stderr, gettext("cannot unshare "
"'%s': legacy share\n"), path);
(void) fprintf(stderr, gettext("use exportfs(8) "
"or smbcontrol(1) to unshare this filesystem\n"));
} else if (!zfs_is_shared(zhp, NULL, NULL)) {
(void) fprintf(stderr, gettext("cannot unshare '%s': "
"not currently shared\n"), path);
} else {
ret = zfs_unshare(zhp, path, NULL);
zfs_commit_shares(NULL);
}
} else {
char mtpt_prop[ZFS_MAXPROPLEN];
verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mtpt_prop,
sizeof (mtpt_prop), NULL, NULL, 0, B_FALSE) == 0);
if (is_manual) {
ret = zfs_unmount(zhp, NULL, flags);
} else if (strcmp(mtpt_prop, "legacy") == 0) {
(void) fprintf(stderr, gettext("cannot unmount "
"'%s': legacy mountpoint\n"),
zfs_get_name(zhp));
(void) fprintf(stderr, gettext("use umount(8) "
"to unmount this filesystem\n"));
} else {
ret = zfs_unmountall(zhp, flags);
}
}
out:
zfs_close(zhp);
return (ret != 0);
}
/*
* Generic callback for unsharing or unmounting a filesystem.
*/
static int
unshare_unmount(int op, int argc, char **argv)
{
int do_all = 0;
int flags = 0;
int ret = 0;
int c;
zfs_handle_t *zhp;
char nfs_mnt_prop[ZFS_MAXPROPLEN];
char sharesmb[ZFS_MAXPROPLEN];
/* check options */
while ((c = getopt(argc, argv, op == OP_SHARE ? ":a" : "afu")) != -1) {
switch (c) {
case 'a':
do_all = 1;
break;
case 'f':
flags |= MS_FORCE;
break;
case 'u':
flags |= MS_CRYPT;
break;
case ':':
(void) fprintf(stderr, gettext("missing argument for "
"'%c' option\n"), optopt);
usage(B_FALSE);
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
if (do_all) {
/*
* We could make use of zfs_for_each() to walk all datasets in
* the system, but this would be very inefficient, especially
* since we would have to linearly search /proc/self/mounts for
* each one. Instead, do one pass through /proc/self/mounts
* looking for zfs entries and call zfs_unmount() for each one.
*
* Things get a little tricky if the administrator has created
* mountpoints beneath other ZFS filesystems. In this case, we
* have to unmount the deepest filesystems first. To accomplish
* this, we place all the mountpoints in an AVL tree sorted by
* the special type (dataset name), and walk the result in
* reverse to make sure to get any snapshots first.
*/
FILE *mnttab;
struct mnttab entry;
uu_avl_pool_t *pool;
uu_avl_t *tree = NULL;
unshare_unmount_node_t *node;
uu_avl_index_t idx;
uu_avl_walk_t *walk;
enum sa_protocol *protocol = NULL,
single_protocol[] = {SA_NO_PROTOCOL, SA_NO_PROTOCOL};
if (op == OP_SHARE && argc > 0) {
*single_protocol = sa_protocol_decode(argv[0]);
protocol = single_protocol;
argc--;
argv++;
}
if (argc != 0) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
if (((pool = uu_avl_pool_create("unmount_pool",
sizeof (unshare_unmount_node_t),
offsetof(unshare_unmount_node_t, un_avlnode),
unshare_unmount_compare, UU_DEFAULT)) == NULL) ||
((tree = uu_avl_create(pool, NULL, UU_DEFAULT)) == NULL))
nomem();
if ((mnttab = fopen(MNTTAB, "re")) == NULL) {
uu_avl_destroy(tree);
uu_avl_pool_destroy(pool);
return (ENOENT);
}
while (getmntent(mnttab, &entry) == 0) {
/* ignore non-ZFS entries */
if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
continue;
/* ignore snapshots */
if (strchr(entry.mnt_special, '@') != NULL)
continue;
if ((zhp = zfs_open(g_zfs, entry.mnt_special,
ZFS_TYPE_FILESYSTEM)) == NULL) {
ret = 1;
continue;
}
/*
* Ignore datasets that are excluded/restricted by
* parent pool name.
*/
if (zpool_skip_pool(zfs_get_pool_name(zhp))) {
zfs_close(zhp);
continue;
}
switch (op) {
case OP_SHARE:
verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS,
nfs_mnt_prop,
sizeof (nfs_mnt_prop),
NULL, NULL, 0, B_FALSE) == 0);
if (strcmp(nfs_mnt_prop, "off") != 0)
break;
verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB,
nfs_mnt_prop,
sizeof (nfs_mnt_prop),
NULL, NULL, 0, B_FALSE) == 0);
if (strcmp(nfs_mnt_prop, "off") == 0)
continue;
break;
case OP_MOUNT:
/* Ignore legacy mounts */
verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT,
nfs_mnt_prop,
sizeof (nfs_mnt_prop),
NULL, NULL, 0, B_FALSE) == 0);
if (strcmp(nfs_mnt_prop, "legacy") == 0)
continue;
/* Ignore canmount=noauto mounts */
if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) ==
ZFS_CANMOUNT_NOAUTO)
continue;
break;
default:
break;
}
node = safe_malloc(sizeof (unshare_unmount_node_t));
node->un_zhp = zhp;
node->un_mountp = safe_strdup(entry.mnt_mountp);
uu_avl_node_init(node, &node->un_avlnode, pool);
if (uu_avl_find(tree, node, NULL, &idx) == NULL) {
uu_avl_insert(tree, node, idx);
} else {
zfs_close(node->un_zhp);
free(node->un_mountp);
free(node);
}
}
(void) fclose(mnttab);
/*
* Walk the AVL tree in reverse, unmounting each filesystem and
* removing it from the AVL tree in the process.
*/
if ((walk = uu_avl_walk_start(tree,
UU_WALK_REVERSE | UU_WALK_ROBUST)) == NULL)
nomem();
while ((node = uu_avl_walk_next(walk)) != NULL) {
const char *mntarg = NULL;
uu_avl_remove(tree, node);
switch (op) {
case OP_SHARE:
if (zfs_unshare(node->un_zhp,
node->un_mountp, protocol) != 0)
ret = 1;
break;
case OP_MOUNT:
if (zfs_unmount(node->un_zhp,
mntarg, flags) != 0)
ret = 1;
break;
}
zfs_close(node->un_zhp);
free(node->un_mountp);
free(node);
}
if (op == OP_SHARE)
zfs_commit_shares(protocol);
uu_avl_walk_end(walk);
uu_avl_destroy(tree);
uu_avl_pool_destroy(pool);
} else {
if (argc != 1) {
if (argc == 0)
(void) fprintf(stderr,
gettext("missing filesystem argument\n"));
else
(void) fprintf(stderr,
gettext("too many arguments\n"));
usage(B_FALSE);
}
/*
* We have an argument, but it may be a full path or a ZFS
* filesystem. Pass full paths off to unmount_path() (shared by
* manual_unmount), otherwise open the filesystem and pass to
* zfs_unmount().
*/
if (argv[0][0] == '/')
return (unshare_unmount_path(op, argv[0],
flags, B_FALSE));
if ((zhp = zfs_open(g_zfs, argv[0],
ZFS_TYPE_FILESYSTEM)) == NULL)
return (1);
verify(zfs_prop_get(zhp, op == OP_SHARE ?
ZFS_PROP_SHARENFS : ZFS_PROP_MOUNTPOINT,
nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL,
NULL, 0, B_FALSE) == 0);
switch (op) {
case OP_SHARE:
verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS,
nfs_mnt_prop,
sizeof (nfs_mnt_prop),
NULL, NULL, 0, B_FALSE) == 0);
verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB,
sharesmb, sizeof (sharesmb), NULL, NULL,
0, B_FALSE) == 0);
if (strcmp(nfs_mnt_prop, "off") == 0 &&
strcmp(sharesmb, "off") == 0) {
(void) fprintf(stderr, gettext("cannot "
"unshare '%s': legacy share\n"),
zfs_get_name(zhp));
(void) fprintf(stderr, gettext("use "
"exports(5) or smb.conf(5) to unshare "
"this filesystem\n"));
ret = 1;
} else if (!zfs_is_shared(zhp, NULL, NULL)) {
(void) fprintf(stderr, gettext("cannot "
"unshare '%s': not currently "
"shared\n"), zfs_get_name(zhp));
ret = 1;
} else if (zfs_unshareall(zhp, NULL) != 0) {
ret = 1;
}
break;
case OP_MOUNT:
if (strcmp(nfs_mnt_prop, "legacy") == 0) {
(void) fprintf(stderr, gettext("cannot "
"unmount '%s': legacy "
"mountpoint\n"), zfs_get_name(zhp));
(void) fprintf(stderr, gettext("use "
"umount(8) to unmount this "
"filesystem\n"));
ret = 1;
} else if (!zfs_is_mounted(zhp, NULL)) {
(void) fprintf(stderr, gettext("cannot "
"unmount '%s': not currently "
"mounted\n"),
zfs_get_name(zhp));
ret = 1;
} else if (zfs_unmountall(zhp, flags) != 0) {
ret = 1;
}
break;
}
zfs_close(zhp);
}
return (ret);
}
/*
* zfs unmount [-fu] -a
* zfs unmount [-fu] filesystem
*
* Unmount all filesystems, or a specific ZFS filesystem.
*/
static int
zfs_do_unmount(int argc, char **argv)
{
return (unshare_unmount(OP_MOUNT, argc, argv));
}
/*
* zfs unshare -a
* zfs unshare filesystem
*
* Unshare all filesystems, or a specific ZFS filesystem.
*/
static int
zfs_do_unshare(int argc, char **argv)
{
return (unshare_unmount(OP_SHARE, argc, argv));
}
static int
find_command_idx(const char *command, int *idx)
{
int i;
for (i = 0; i < NCOMMAND; i++) {
if (command_table[i].name == NULL)
continue;
if (strcmp(command, command_table[i].name) == 0) {
*idx = i;
return (0);
}
}
return (1);
}
static int
zfs_do_diff(int argc, char **argv)
{
zfs_handle_t *zhp;
int flags = 0;
char *tosnap = NULL;
char *fromsnap = NULL;
char *atp, *copy;
int err = 0;
int c;
struct sigaction sa;
while ((c = getopt(argc, argv, "FHth")) != -1) {
switch (c) {
case 'F':
flags |= ZFS_DIFF_CLASSIFY;
break;
case 'H':
flags |= ZFS_DIFF_PARSEABLE;
break;
case 't':
flags |= ZFS_DIFF_TIMESTAMP;
break;
case 'h':
flags |= ZFS_DIFF_NO_MANGLE;
break;
default:
(void) fprintf(stderr,
gettext("invalid option '%c'\n"), optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
if (argc < 1) {
(void) fprintf(stderr,
gettext("must provide at least one snapshot name\n"));
usage(B_FALSE);
}
if (argc > 2) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
fromsnap = argv[0];
tosnap = (argc == 2) ? argv[1] : NULL;
copy = NULL;
if (*fromsnap != '@')
copy = strdup(fromsnap);
else if (tosnap)
copy = strdup(tosnap);
if (copy == NULL)
usage(B_FALSE);
if ((atp = strchr(copy, '@')) != NULL)
*atp = '\0';
if ((zhp = zfs_open(g_zfs, copy, ZFS_TYPE_FILESYSTEM)) == NULL) {
free(copy);
return (1);
}
free(copy);
/*
* Ignore SIGPIPE so that the library can give us
* information on any failure
*/
if (sigemptyset(&sa.sa_mask) == -1) {
err = errno;
goto out;
}
sa.sa_flags = 0;
sa.sa_handler = SIG_IGN;
if (sigaction(SIGPIPE, &sa, NULL) == -1) {
err = errno;
goto out;
}
err = zfs_show_diffs(zhp, STDOUT_FILENO, fromsnap, tosnap, flags);
out:
zfs_close(zhp);
return (err != 0);
}
/*
* zfs bookmark <fs@source>|<fs#source> <fs#bookmark>
*
* Creates a bookmark with the given name from the source snapshot
* or creates a copy of an existing source bookmark.
*/
static int
zfs_do_bookmark(int argc, char **argv)
{
char *source, *bookname;
char expbuf[ZFS_MAX_DATASET_NAME_LEN];
int source_type;
nvlist_t *nvl;
int ret = 0;
int c;
/* check options */
while ((c = getopt(argc, argv, "")) != -1) {
switch (c) {
case '?':
(void) fprintf(stderr,
gettext("invalid option '%c'\n"), optopt);
goto usage;
}
}
argc -= optind;
argv += optind;
/* check number of arguments */
if (argc < 1) {
(void) fprintf(stderr, gettext("missing source argument\n"));
goto usage;
}
if (argc < 2) {
(void) fprintf(stderr, gettext("missing bookmark argument\n"));
goto usage;
}
source = argv[0];
bookname = argv[1];
if (strchr(source, '@') == NULL && strchr(source, '#') == NULL) {
(void) fprintf(stderr,
gettext("invalid source name '%s': "
"must contain a '@' or '#'\n"), source);
goto usage;
}
if (strchr(bookname, '#') == NULL) {
(void) fprintf(stderr,
gettext("invalid bookmark name '%s': "
"must contain a '#'\n"), bookname);
goto usage;
}
/*
* expand source or bookname to full path:
* one of them may be specified as short name
*/
{
char **expand;
char *source_short, *bookname_short;
source_short = strpbrk(source, "@#");
bookname_short = strpbrk(bookname, "#");
if (source_short == source &&
bookname_short == bookname) {
(void) fprintf(stderr, gettext(
"either source or bookmark must be specified as "
"full dataset paths"));
goto usage;
} else if (source_short != source &&
bookname_short != bookname) {
expand = NULL;
} else if (source_short != source) {
strlcpy(expbuf, source, sizeof (expbuf));
expand = &bookname;
} else if (bookname_short != bookname) {
strlcpy(expbuf, bookname, sizeof (expbuf));
expand = &source;
} else {
abort();
}
if (expand != NULL) {
*strpbrk(expbuf, "@#") = '\0'; /* dataset name in buf */
(void) strlcat(expbuf, *expand, sizeof (expbuf));
*expand = expbuf;
}
}
/* determine source type */
switch (*strpbrk(source, "@#")) {
case '@': source_type = ZFS_TYPE_SNAPSHOT; break;
case '#': source_type = ZFS_TYPE_BOOKMARK; break;
default: abort();
}
/* test the source exists */
zfs_handle_t *zhp;
zhp = zfs_open(g_zfs, source, source_type);
if (zhp == NULL)
goto usage;
zfs_close(zhp);
nvl = fnvlist_alloc();
fnvlist_add_string(nvl, bookname, source);
ret = lzc_bookmark(nvl, NULL);
fnvlist_free(nvl);
if (ret != 0) {
const char *err_msg = NULL;
char errbuf[1024];
(void) snprintf(errbuf, sizeof (errbuf),
dgettext(TEXT_DOMAIN,
"cannot create bookmark '%s'"), bookname);
switch (ret) {
case EXDEV:
err_msg = "bookmark is in a different pool";
break;
case ZFS_ERR_BOOKMARK_SOURCE_NOT_ANCESTOR:
err_msg = "source is not an ancestor of the "
"new bookmark's dataset";
break;
case EEXIST:
err_msg = "bookmark exists";
break;
case EINVAL:
err_msg = "invalid argument";
break;
case ENOTSUP:
err_msg = "bookmark feature not enabled";
break;
case ENOSPC:
err_msg = "out of space";
break;
case ENOENT:
err_msg = "dataset does not exist";
break;
default:
(void) zfs_standard_error(g_zfs, ret, errbuf);
break;
}
if (err_msg != NULL) {
(void) fprintf(stderr, "%s: %s\n", errbuf,
dgettext(TEXT_DOMAIN, err_msg));
}
}
return (ret != 0);
usage:
usage(B_FALSE);
return (-1);
}
static int
zfs_do_channel_program(int argc, char **argv)
{
int ret, fd, c;
size_t progsize, progread;
nvlist_t *outnvl = NULL;
uint64_t instrlimit = ZCP_DEFAULT_INSTRLIMIT;
uint64_t memlimit = ZCP_DEFAULT_MEMLIMIT;
boolean_t sync_flag = B_TRUE, json_output = B_FALSE;
zpool_handle_t *zhp;
/* check options */
while ((c = getopt(argc, argv, "nt:m:j")) != -1) {
switch (c) {
case 't':
case 'm': {
uint64_t arg;
char *endp;
errno = 0;
arg = strtoull(optarg, &endp, 0);
if (errno != 0 || *endp != '\0') {
(void) fprintf(stderr, gettext(
"invalid argument "
"'%s': expected integer\n"), optarg);
goto usage;
}
if (c == 't') {
instrlimit = arg;
} else {
ASSERT3U(c, ==, 'm');
memlimit = arg;
}
break;
}
case 'n': {
sync_flag = B_FALSE;
break;
}
case 'j': {
json_output = B_TRUE;
break;
}
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
goto usage;
}
}
argc -= optind;
argv += optind;
if (argc < 2) {
(void) fprintf(stderr,
gettext("invalid number of arguments\n"));
goto usage;
}
const char *poolname = argv[0];
const char *filename = argv[1];
if (strcmp(filename, "-") == 0) {
fd = 0;
filename = "standard input";
} else if ((fd = open(filename, O_RDONLY)) < 0) {
(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
filename, strerror(errno));
return (1);
}
if ((zhp = zpool_open(g_zfs, poolname)) == NULL) {
(void) fprintf(stderr, gettext("cannot open pool '%s'\n"),
poolname);
if (fd != 0)
(void) close(fd);
return (1);
}
zpool_close(zhp);
/*
* Read in the channel program, expanding the program buffer as
* necessary.
*/
progread = 0;
progsize = 1024;
char *progbuf = safe_malloc(progsize);
do {
ret = read(fd, progbuf + progread, progsize - progread);
progread += ret;
if (progread == progsize && ret > 0) {
progsize *= 2;
progbuf = safe_realloc(progbuf, progsize);
}
} while (ret > 0);
if (fd != 0)
(void) close(fd);
if (ret < 0) {
free(progbuf);
(void) fprintf(stderr,
gettext("cannot read '%s': %s\n"),
filename, strerror(errno));
return (1);
}
progbuf[progread] = '\0';
/*
* Any remaining arguments are passed as arguments to the lua script as
* a string array:
* {
* "argv" -> [ "arg 1", ... "arg n" ],
* }
*/
nvlist_t *argnvl = fnvlist_alloc();
fnvlist_add_string_array(argnvl, ZCP_ARG_CLIARGV,
(const char **)argv + 2, argc - 2);
if (sync_flag) {
ret = lzc_channel_program(poolname, progbuf,
instrlimit, memlimit, argnvl, &outnvl);
} else {
ret = lzc_channel_program_nosync(poolname, progbuf,
instrlimit, memlimit, argnvl, &outnvl);
}
if (ret != 0) {
/*
* On error, report the error message handed back by lua if one
* exists. Otherwise, generate an appropriate error message,
* falling back on strerror() for an unexpected return code.
*/
const char *errstring = NULL;
const char *msg = gettext("Channel program execution failed");
uint64_t instructions = 0;
if (outnvl != NULL && nvlist_exists(outnvl, ZCP_RET_ERROR)) {
const char *es = NULL;
(void) nvlist_lookup_string(outnvl,
ZCP_RET_ERROR, &es);
if (es == NULL)
errstring = strerror(ret);
else
errstring = es;
if (ret == ETIME) {
(void) nvlist_lookup_uint64(outnvl,
ZCP_ARG_INSTRLIMIT, &instructions);
}
} else {
switch (ret) {
case EINVAL:
errstring =
"Invalid instruction or memory limit.";
break;
case ENOMEM:
errstring = "Return value too large.";
break;
case ENOSPC:
errstring = "Memory limit exhausted.";
break;
case ETIME:
errstring = "Timed out.";
break;
case EPERM:
errstring = "Permission denied. Channel "
"programs must be run as root.";
break;
default:
(void) zfs_standard_error(g_zfs, ret, msg);
}
}
if (errstring != NULL)
(void) fprintf(stderr, "%s:\n%s\n", msg, errstring);
if (ret == ETIME && instructions != 0)
(void) fprintf(stderr,
gettext("%llu Lua instructions\n"),
(u_longlong_t)instructions);
} else {
if (json_output) {
(void) nvlist_print_json(stdout, outnvl);
} else if (nvlist_empty(outnvl)) {
(void) fprintf(stdout, gettext("Channel program fully "
"executed and did not produce output.\n"));
} else {
(void) fprintf(stdout, gettext("Channel program fully "
"executed and produced output:\n"));
dump_nvlist(outnvl, 4);
}
}
free(progbuf);
fnvlist_free(outnvl);
fnvlist_free(argnvl);
return (ret != 0);
usage:
usage(B_FALSE);
return (-1);
}
typedef struct loadkey_cbdata {
boolean_t cb_loadkey;
boolean_t cb_recursive;
boolean_t cb_noop;
char *cb_keylocation;
uint64_t cb_numfailed;
uint64_t cb_numattempted;
} loadkey_cbdata_t;
static int
load_key_callback(zfs_handle_t *zhp, void *data)
{
int ret;
boolean_t is_encroot;
loadkey_cbdata_t *cb = data;
uint64_t keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
/*
* If we are working recursively, we want to skip loading / unloading
* keys for non-encryption roots and datasets whose keys are already
* in the desired end-state.
*/
if (cb->cb_recursive) {
ret = zfs_crypto_get_encryption_root(zhp, &is_encroot, NULL);
if (ret != 0)
return (ret);
if (!is_encroot)
return (0);
if ((cb->cb_loadkey && keystatus == ZFS_KEYSTATUS_AVAILABLE) ||
(!cb->cb_loadkey && keystatus == ZFS_KEYSTATUS_UNAVAILABLE))
return (0);
}
cb->cb_numattempted++;
if (cb->cb_loadkey)
ret = zfs_crypto_load_key(zhp, cb->cb_noop, cb->cb_keylocation);
else
ret = zfs_crypto_unload_key(zhp);
if (ret != 0) {
cb->cb_numfailed++;
return (ret);
}
return (0);
}
static int
load_unload_keys(int argc, char **argv, boolean_t loadkey)
{
int c, ret = 0, flags = 0;
boolean_t do_all = B_FALSE;
loadkey_cbdata_t cb = { 0 };
cb.cb_loadkey = loadkey;
while ((c = getopt(argc, argv, "anrL:")) != -1) {
/* noop and alternate keylocations only apply to zfs load-key */
if (loadkey) {
switch (c) {
case 'n':
cb.cb_noop = B_TRUE;
continue;
case 'L':
cb.cb_keylocation = optarg;
continue;
default:
break;
}
}
switch (c) {
case 'a':
do_all = B_TRUE;
cb.cb_recursive = B_TRUE;
break;
case 'r':
flags |= ZFS_ITER_RECURSE;
cb.cb_recursive = B_TRUE;
break;
default:
(void) fprintf(stderr,
gettext("invalid option '%c'\n"), optopt);
usage(B_FALSE);
}
}
argc -= optind;
argv += optind;
if (!do_all && argc == 0) {
(void) fprintf(stderr,
gettext("Missing dataset argument or -a option\n"));
usage(B_FALSE);
}
if (do_all && argc != 0) {
(void) fprintf(stderr,
gettext("Cannot specify dataset with -a option\n"));
usage(B_FALSE);
}
if (cb.cb_recursive && cb.cb_keylocation != NULL &&
strcmp(cb.cb_keylocation, "prompt") != 0) {
(void) fprintf(stderr, gettext("alternate keylocation may only "
"be 'prompt' with -r or -a\n"));
usage(B_FALSE);
}
ret = zfs_for_each(argc, argv, flags,
ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, NULL, NULL, 0,
load_key_callback, &cb);
if (cb.cb_noop || (cb.cb_recursive && cb.cb_numattempted != 0)) {
(void) printf(gettext("%llu / %llu key(s) successfully %s\n"),
(u_longlong_t)(cb.cb_numattempted - cb.cb_numfailed),
(u_longlong_t)cb.cb_numattempted,
loadkey ? (cb.cb_noop ? "verified" : "loaded") :
"unloaded");
}
if (cb.cb_numfailed != 0)
ret = -1;
return (ret);
}
static int
zfs_do_load_key(int argc, char **argv)
{
return (load_unload_keys(argc, argv, B_TRUE));
}
static int
zfs_do_unload_key(int argc, char **argv)
{
return (load_unload_keys(argc, argv, B_FALSE));
}
static int
zfs_do_change_key(int argc, char **argv)
{
int c, ret;
uint64_t keystatus;
boolean_t loadkey = B_FALSE, inheritkey = B_FALSE;
zfs_handle_t *zhp = NULL;
nvlist_t *props = fnvlist_alloc();
while ((c = getopt(argc, argv, "lio:")) != -1) {
switch (c) {
case 'l':
loadkey = B_TRUE;
break;
case 'i':
inheritkey = B_TRUE;
break;
case 'o':
if (!parseprop(props, optarg)) {
nvlist_free(props);
return (1);
}
break;
default:
(void) fprintf(stderr,
gettext("invalid option '%c'\n"), optopt);
usage(B_FALSE);
}
}
if (inheritkey && !nvlist_empty(props)) {
(void) fprintf(stderr,
gettext("Properties not allowed for inheriting\n"));
usage(B_FALSE);
}
argc -= optind;
argv += optind;
if (argc < 1) {
(void) fprintf(stderr, gettext("Missing dataset argument\n"));
usage(B_FALSE);
}
if (argc > 1) {
(void) fprintf(stderr, gettext("Too many arguments\n"));
usage(B_FALSE);
}
zhp = zfs_open(g_zfs, argv[argc - 1],
ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
if (zhp == NULL)
usage(B_FALSE);
if (loadkey) {
keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
if (keystatus != ZFS_KEYSTATUS_AVAILABLE) {
ret = zfs_crypto_load_key(zhp, B_FALSE, NULL);
if (ret != 0) {
nvlist_free(props);
zfs_close(zhp);
return (-1);
}
}
/* refresh the properties so the new keystatus is visible */
zfs_refresh_properties(zhp);
}
ret = zfs_crypto_rewrap(zhp, props, inheritkey);
if (ret != 0) {
nvlist_free(props);
zfs_close(zhp);
return (-1);
}
nvlist_free(props);
zfs_close(zhp);
return (0);
}
/*
* 1) zfs project [-d|-r] <file|directory ...>
* List project ID and inherit flag of file(s) or directories.
* -d: List the directory itself, not its children.
* -r: List subdirectories recursively.
*
* 2) zfs project -C [-k] [-r] <file|directory ...>
* Clear project inherit flag and/or ID on the file(s) or directories.
* -k: Keep the project ID unchanged. If not specified, the project ID
* will be reset as zero.
* -r: Clear on subdirectories recursively.
*
* 3) zfs project -c [-0] [-d|-r] [-p id] <file|directory ...>
* Check project ID and inherit flag on the file(s) or directories,
* report the outliers.
* -0: Print file name followed by a NUL instead of newline.
* -d: Check the directory itself, not its children.
* -p: Specify the referenced ID for comparing with the target file(s)
* or directories' project IDs. If not specified, the target (top)
* directory's project ID will be used as the referenced one.
* -r: Check subdirectories recursively.
*
* 4) zfs project [-p id] [-r] [-s] <file|directory ...>
* Set project ID and/or inherit flag on the file(s) or directories.
* -p: Set the project ID as the given id.
* -r: Set on subdirectories recursively. If not specify "-p" option,
* it will use top-level directory's project ID as the given id,
* then set both project ID and inherit flag on all descendants
* of the top-level directory.
* -s: Set project inherit flag.
*/
static int
zfs_do_project(int argc, char **argv)
{
zfs_project_control_t zpc = {
.zpc_expected_projid = ZFS_INVALID_PROJID,
.zpc_op = ZFS_PROJECT_OP_DEFAULT,
.zpc_dironly = B_FALSE,
.zpc_keep_projid = B_FALSE,
.zpc_newline = B_TRUE,
.zpc_recursive = B_FALSE,
.zpc_set_flag = B_FALSE,
};
int ret = 0, c;
if (argc < 2)
usage(B_FALSE);
while ((c = getopt(argc, argv, "0Ccdkp:rs")) != -1) {
switch (c) {
case '0':
zpc.zpc_newline = B_FALSE;
break;
case 'C':
if (zpc.zpc_op != ZFS_PROJECT_OP_DEFAULT) {
(void) fprintf(stderr, gettext("cannot "
"specify '-C' '-c' '-s' together\n"));
usage(B_FALSE);
}
zpc.zpc_op = ZFS_PROJECT_OP_CLEAR;
break;
case 'c':
if (zpc.zpc_op != ZFS_PROJECT_OP_DEFAULT) {
(void) fprintf(stderr, gettext("cannot "
"specify '-C' '-c' '-s' together\n"));
usage(B_FALSE);
}
zpc.zpc_op = ZFS_PROJECT_OP_CHECK;
break;
case 'd':
zpc.zpc_dironly = B_TRUE;
/* overwrite "-r" option */
zpc.zpc_recursive = B_FALSE;
break;
case 'k':
zpc.zpc_keep_projid = B_TRUE;
break;
case 'p': {
char *endptr;
errno = 0;
zpc.zpc_expected_projid = strtoull(optarg, &endptr, 0);
if (errno != 0 || *endptr != '\0') {
(void) fprintf(stderr,
gettext("project ID must be less than "
"%u\n"), UINT32_MAX);
usage(B_FALSE);
}
if (zpc.zpc_expected_projid >= UINT32_MAX) {
(void) fprintf(stderr,
gettext("invalid project ID\n"));
usage(B_FALSE);
}
break;
}
case 'r':
zpc.zpc_recursive = B_TRUE;
/* overwrite "-d" option */
zpc.zpc_dironly = B_FALSE;
break;
case 's':
if (zpc.zpc_op != ZFS_PROJECT_OP_DEFAULT) {
(void) fprintf(stderr, gettext("cannot "
"specify '-C' '-c' '-s' together\n"));
usage(B_FALSE);
}
zpc.zpc_set_flag = B_TRUE;
zpc.zpc_op = ZFS_PROJECT_OP_SET;
break;
default:
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
if (zpc.zpc_op == ZFS_PROJECT_OP_DEFAULT) {
if (zpc.zpc_expected_projid != ZFS_INVALID_PROJID)
zpc.zpc_op = ZFS_PROJECT_OP_SET;
else
zpc.zpc_op = ZFS_PROJECT_OP_LIST;
}
switch (zpc.zpc_op) {
case ZFS_PROJECT_OP_LIST:
if (zpc.zpc_keep_projid) {
(void) fprintf(stderr,
gettext("'-k' is only valid together with '-C'\n"));
usage(B_FALSE);
}
if (!zpc.zpc_newline) {
(void) fprintf(stderr,
gettext("'-0' is only valid together with '-c'\n"));
usage(B_FALSE);
}
break;
case ZFS_PROJECT_OP_CHECK:
if (zpc.zpc_keep_projid) {
(void) fprintf(stderr,
gettext("'-k' is only valid together with '-C'\n"));
usage(B_FALSE);
}
break;
case ZFS_PROJECT_OP_CLEAR:
if (zpc.zpc_dironly) {
(void) fprintf(stderr,
gettext("'-d' is useless together with '-C'\n"));
usage(B_FALSE);
}
if (!zpc.zpc_newline) {
(void) fprintf(stderr,
gettext("'-0' is only valid together with '-c'\n"));
usage(B_FALSE);
}
if (zpc.zpc_expected_projid != ZFS_INVALID_PROJID) {
(void) fprintf(stderr,
gettext("'-p' is useless together with '-C'\n"));
usage(B_FALSE);
}
break;
case ZFS_PROJECT_OP_SET:
if (zpc.zpc_dironly) {
(void) fprintf(stderr,
gettext("'-d' is useless for set project ID and/or "
"inherit flag\n"));
usage(B_FALSE);
}
if (zpc.zpc_keep_projid) {
(void) fprintf(stderr,
gettext("'-k' is only valid together with '-C'\n"));
usage(B_FALSE);
}
if (!zpc.zpc_newline) {
(void) fprintf(stderr,
gettext("'-0' is only valid together with '-c'\n"));
usage(B_FALSE);
}
break;
default:
ASSERT(0);
break;
}
argv += optind;
argc -= optind;
if (argc == 0) {
(void) fprintf(stderr,
gettext("missing file or directory target(s)\n"));
usage(B_FALSE);
}
for (int i = 0; i < argc; i++) {
int err;
err = zfs_project_handle(argv[i], &zpc);
if (err && !ret)
ret = err;
}
return (ret);
}
static int
zfs_do_wait(int argc, char **argv)
{
boolean_t enabled[ZFS_WAIT_NUM_ACTIVITIES];
int error = 0, i;
int c;
/* By default, wait for all types of activity. */
for (i = 0; i < ZFS_WAIT_NUM_ACTIVITIES; i++)
enabled[i] = B_TRUE;
while ((c = getopt(argc, argv, "t:")) != -1) {
switch (c) {
case 't':
/* Reset activities array */
memset(&enabled, 0, sizeof (enabled));
for (char *tok; (tok = strsep(&optarg, ",")); ) {
static const char *const col_subopts[
ZFS_WAIT_NUM_ACTIVITIES] = { "deleteq" };
for (i = 0; i < ARRAY_SIZE(col_subopts); ++i)
if (strcmp(tok, col_subopts[i]) == 0) {
enabled[i] = B_TRUE;
goto found;
}
(void) fprintf(stderr,
gettext("invalid activity '%s'\n"), tok);
usage(B_FALSE);
found:;
}
break;
case '?':
(void) fprintf(stderr, gettext("invalid option '%c'\n"),
optopt);
usage(B_FALSE);
}
}
argv += optind;
argc -= optind;
if (argc < 1) {
(void) fprintf(stderr, gettext("missing 'filesystem' "
"argument\n"));
usage(B_FALSE);
}
if (argc > 1) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
zfs_handle_t *zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM);
if (zhp == NULL)
return (1);
for (;;) {
boolean_t missing = B_FALSE;
boolean_t any_waited = B_FALSE;
for (int i = 0; i < ZFS_WAIT_NUM_ACTIVITIES; i++) {
boolean_t waited;
if (!enabled[i])
continue;
error = zfs_wait_status(zhp, i, &missing, &waited);
if (error != 0 || missing)
break;
any_waited = (any_waited || waited);
}
if (error != 0 || missing || !any_waited)
break;
}
zfs_close(zhp);
return (error);
}
/*
* Display version message
*/
static int
zfs_do_version(int argc, char **argv)
{
(void) argc, (void) argv;
return (zfs_version_print() != 0);
}
/* Display documentation */
static int
zfs_do_help(int argc, char **argv)
{
char page[MAXNAMELEN];
if (argc < 3 || strcmp(argv[2], "zfs") == 0)
strcpy(page, "zfs");
else if (strcmp(argv[2], "concepts") == 0 ||
strcmp(argv[2], "props") == 0)
snprintf(page, sizeof (page), "zfs%s", argv[2]);
else
snprintf(page, sizeof (page), "zfs-%s", argv[2]);
execlp("man", "man", page, NULL);
fprintf(stderr, "couldn't run man program: %s", strerror(errno));
return (-1);
}
int
main(int argc, char **argv)
{
int ret = 0;
int i = 0;
const char *cmdname;
char **newargv;
(void) setlocale(LC_ALL, "");
(void) setlocale(LC_NUMERIC, "C");
(void) textdomain(TEXT_DOMAIN);
opterr = 0;
/*
* Make sure the user has specified some command.
*/
if (argc < 2) {
(void) fprintf(stderr, gettext("missing command\n"));
usage(B_FALSE);
}
cmdname = argv[1];
/*
* The 'umount' command is an alias for 'unmount'
*/
if (strcmp(cmdname, "umount") == 0)
cmdname = "unmount";
/*
* The 'recv' command is an alias for 'receive'
*/
if (strcmp(cmdname, "recv") == 0)
cmdname = "receive";
/*
* The 'snap' command is an alias for 'snapshot'
*/
if (strcmp(cmdname, "snap") == 0)
cmdname = "snapshot";
/*
* Special case '-?'
*/
if ((strcmp(cmdname, "-?") == 0) ||
(strcmp(cmdname, "--help") == 0))
usage(B_TRUE);
/*
* Special case '-V|--version'
*/
if ((strcmp(cmdname, "-V") == 0) || (strcmp(cmdname, "--version") == 0))
return (zfs_do_version(argc, argv));
/*
* Special case 'help'
*/
if (strcmp(cmdname, "help") == 0)
return (zfs_do_help(argc, argv));
if ((g_zfs = libzfs_init()) == NULL) {
(void) fprintf(stderr, "%s\n", libzfs_error_init(errno));
return (1);
}
zfs_save_arguments(argc, argv, history_str, sizeof (history_str));
libzfs_print_on_error(g_zfs, B_TRUE);
zfs_setproctitle_init(argc, argv, environ);
/*
* Many commands modify input strings for string parsing reasons.
* We create a copy to protect the original argv.
*/
newargv = safe_malloc((argc + 1) * sizeof (newargv[0]));
for (i = 0; i < argc; i++)
newargv[i] = strdup(argv[i]);
newargv[argc] = NULL;
/*
* Run the appropriate command.
*/
libzfs_mnttab_cache(g_zfs, B_TRUE);
if (find_command_idx(cmdname, &i) == 0) {
current_command = &command_table[i];
ret = command_table[i].func(argc - 1, newargv + 1);
} else if (strchr(cmdname, '=') != NULL) {
verify(find_command_idx("set", &i) == 0);
current_command = &command_table[i];
ret = command_table[i].func(argc, newargv);
} else {
(void) fprintf(stderr, gettext("unrecognized "
"command '%s'\n"), cmdname);
usage(B_FALSE);
ret = 1;
}
for (i = 0; i < argc; i++)
free(newargv[i]);
free(newargv);
if (ret == 0 && log_history)
(void) zpool_log_history(g_zfs, history_str);
libzfs_fini(g_zfs);
/*
* The 'ZFS_ABORT' environment variable causes us to dump core on exit
* for the purposes of running ::findleaks.
*/
if (getenv("ZFS_ABORT") != NULL) {
(void) printf("dumping core by request\n");
abort();
}
return (ret);
}
/*
* zfs zone nsfile filesystem
*
* Add or delete the given dataset to/from the namespace.
*/
#ifdef __linux__
static int
zfs_do_zone_impl(int argc, char **argv, boolean_t attach)
{
zfs_handle_t *zhp;
int ret;
if (argc < 3) {
(void) fprintf(stderr, gettext("missing argument(s)\n"));
usage(B_FALSE);
}
if (argc > 3) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
zhp = zfs_open(g_zfs, argv[2], ZFS_TYPE_FILESYSTEM);
if (zhp == NULL)
return (1);
ret = (zfs_userns(zhp, argv[1], attach) != 0);
zfs_close(zhp);
return (ret);
}
static int
zfs_do_zone(int argc, char **argv)
{
return (zfs_do_zone_impl(argc, argv, B_TRUE));
}
static int
zfs_do_unzone(int argc, char **argv)
{
return (zfs_do_zone_impl(argc, argv, B_FALSE));
}
#endif
#ifdef __FreeBSD__
#include <sys/jail.h>
#include <jail.h>
/*
* Attach/detach the given dataset to/from the given jail
*/
static int
zfs_do_jail_impl(int argc, char **argv, boolean_t attach)
{
zfs_handle_t *zhp;
int jailid, ret;
/* check number of arguments */
if (argc < 3) {
(void) fprintf(stderr, gettext("missing argument(s)\n"));
usage(B_FALSE);
}
if (argc > 3) {
(void) fprintf(stderr, gettext("too many arguments\n"));
usage(B_FALSE);
}
jailid = jail_getid(argv[1]);
if (jailid < 0) {
(void) fprintf(stderr, gettext("invalid jail id or name\n"));
usage(B_FALSE);
}
zhp = zfs_open(g_zfs, argv[2], ZFS_TYPE_FILESYSTEM);
if (zhp == NULL)
return (1);
ret = (zfs_jail(zhp, jailid, attach) != 0);
zfs_close(zhp);
return (ret);
}
/*
* zfs jail jailid filesystem
*
* Attach the given dataset to the given jail
*/
static int
zfs_do_jail(int argc, char **argv)
{
return (zfs_do_jail_impl(argc, argv, B_TRUE));
}
/*
* zfs unjail jailid filesystem
*
* Detach the given dataset from the given jail
*/
static int
zfs_do_unjail(int argc, char **argv)
{
return (zfs_do_jail_impl(argc, argv, B_FALSE));
}
#endif