mirror_zfs/module/zfs/dmu_traverse.c
George Wilson d3c2ae1c08 OpenZFS 6950 - ARC should cache compressed data
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: David Quigley <david.quigley@intel.com>

This review covers the reading and writing of compressed arc headers, sharing
data between the arc_hdr_t and the arc_buf_t, and the implementation of a new
dbuf cache to keep frequently access data uncompressed.

I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs
off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block
for that DVA. The physical block may or may not be compressed. If compressed
arc is enabled and the block on-disk is compressed, then the b_pdata will match
the block on-disk and remain compressed in memory. If the block on disk is not
compressed, then neither will the b_pdata. Lastly, if compressed arc is
disabled, then b_pdata will always be an uncompressed version of the on-disk
block.

Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict
any arc_buf_t's that are no longer referenced. This means that the arc will
primarily have compressed blocks as the arc_buf_t's are considered overhead and
are always uncompressed. When a consumer reads a block we first look to see if
the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new
arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If
the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t
and bcopy the uncompressed contents from the first arc_buf_t to the new one.

Writing to the compressed arc requires that we first discard the b_pdata since
the physical block is about to be rewritten. The new data contents will be
passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we
will copy the physical block contents to a newly allocated b_pdata.

When an l2arc is inuse it will also take advantage of the b_pdata. Now the
l2arc will always write the contents of b_pdata to the l2arc. This means that
when compressed arc is enabled that the l2arc blocks are identical to those
stored in the main data pool. This provides a significant advantage since we
can leverage the bp's checksum when reading from the l2arc to determine if the
contents are valid. If the compressed arc is disabled, then we must first
transform the read block to look like the physical block in the main data pool
before comparing the checksum and determining it's valid.

OpenZFS-issue: https://www.illumos.org/issues/6950
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0
Issue #5078
2016-09-13 09:58:33 -07:00

735 lines
20 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2016 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_pool.h>
#include <sys/dnode.h>
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/dmu_impl.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#include <sys/callb.h>
#include <sys/zfeature.h>
int32_t zfs_pd_bytes_max = 50 * 1024 * 1024; /* 50MB */
int32_t ignore_hole_birth = 0;
typedef struct prefetch_data {
kmutex_t pd_mtx;
kcondvar_t pd_cv;
int32_t pd_bytes_fetched;
int pd_flags;
boolean_t pd_cancel;
boolean_t pd_exited;
zbookmark_phys_t pd_resume;
} prefetch_data_t;
typedef struct traverse_data {
spa_t *td_spa;
uint64_t td_objset;
blkptr_t *td_rootbp;
uint64_t td_min_txg;
zbookmark_phys_t *td_resume;
int td_flags;
prefetch_data_t *td_pfd;
boolean_t td_paused;
uint64_t td_hole_birth_enabled_txg;
blkptr_cb_t *td_func;
void *td_arg;
boolean_t td_realloc_possible;
} traverse_data_t;
static int traverse_dnode(traverse_data_t *td, const dnode_phys_t *dnp,
uint64_t objset, uint64_t object);
static void prefetch_dnode_metadata(traverse_data_t *td, const dnode_phys_t *,
uint64_t objset, uint64_t object);
static int
traverse_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
{
traverse_data_t *td = arg;
zbookmark_phys_t zb;
if (BP_IS_HOLE(bp))
return (0);
if (claim_txg == 0 && bp->blk_birth >= spa_first_txg(td->td_spa))
return (0);
SET_BOOKMARK(&zb, td->td_objset, ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
(void) td->td_func(td->td_spa, zilog, bp, &zb, NULL, td->td_arg);
return (0);
}
static int
traverse_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
{
traverse_data_t *td = arg;
if (lrc->lrc_txtype == TX_WRITE) {
lr_write_t *lr = (lr_write_t *)lrc;
blkptr_t *bp = &lr->lr_blkptr;
zbookmark_phys_t zb;
if (BP_IS_HOLE(bp))
return (0);
if (claim_txg == 0 || bp->blk_birth < claim_txg)
return (0);
SET_BOOKMARK(&zb, td->td_objset, lr->lr_foid,
ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
(void) td->td_func(td->td_spa, zilog, bp, &zb, NULL,
td->td_arg);
}
return (0);
}
static void
traverse_zil(traverse_data_t *td, zil_header_t *zh)
{
uint64_t claim_txg = zh->zh_claim_txg;
zilog_t *zilog;
/*
* We only want to visit blocks that have been claimed but not yet
* replayed; plus, in read-only mode, blocks that are already stable.
*/
if (claim_txg == 0 && spa_writeable(td->td_spa))
return;
zilog = zil_alloc(spa_get_dsl(td->td_spa)->dp_meta_objset, zh);
(void) zil_parse(zilog, traverse_zil_block, traverse_zil_record, td,
claim_txg);
zil_free(zilog);
}
typedef enum resume_skip {
RESUME_SKIP_ALL,
RESUME_SKIP_NONE,
RESUME_SKIP_CHILDREN
} resume_skip_t;
/*
* Returns RESUME_SKIP_ALL if td indicates that we are resuming a traversal and
* the block indicated by zb does not need to be visited at all. Returns
* RESUME_SKIP_CHILDREN if we are resuming a post traversal and we reach the
* resume point. This indicates that this block should be visited but not its
* children (since they must have been visited in a previous traversal).
* Otherwise returns RESUME_SKIP_NONE.
*/
static resume_skip_t
resume_skip_check(traverse_data_t *td, const dnode_phys_t *dnp,
const zbookmark_phys_t *zb)
{
if (td->td_resume != NULL && !ZB_IS_ZERO(td->td_resume)) {
/*
* If we already visited this bp & everything below,
* don't bother doing it again.
*/
if (zbookmark_subtree_completed(dnp, zb, td->td_resume))
return (RESUME_SKIP_ALL);
/*
* If we found the block we're trying to resume from, zero
* the bookmark out to indicate that we have resumed.
*/
if (bcmp(zb, td->td_resume, sizeof (*zb)) == 0) {
bzero(td->td_resume, sizeof (*zb));
if (td->td_flags & TRAVERSE_POST)
return (RESUME_SKIP_CHILDREN);
}
}
return (RESUME_SKIP_NONE);
}
static void
traverse_prefetch_metadata(traverse_data_t *td,
const blkptr_t *bp, const zbookmark_phys_t *zb)
{
arc_flags_t flags = ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
if (!(td->td_flags & TRAVERSE_PREFETCH_METADATA))
return;
/*
* If we are in the process of resuming, don't prefetch, because
* some children will not be needed (and in fact may have already
* been freed).
*/
if (td->td_resume != NULL && !ZB_IS_ZERO(td->td_resume))
return;
if (BP_IS_HOLE(bp) || bp->blk_birth <= td->td_min_txg)
return;
if (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE)
return;
(void) arc_read(NULL, td->td_spa, bp, NULL, NULL,
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
}
static boolean_t
prefetch_needed(prefetch_data_t *pfd, const blkptr_t *bp)
{
ASSERT(pfd->pd_flags & TRAVERSE_PREFETCH_DATA);
if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) ||
BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG)
return (B_FALSE);
return (B_TRUE);
}
static int
traverse_visitbp(traverse_data_t *td, const dnode_phys_t *dnp,
const blkptr_t *bp, const zbookmark_phys_t *zb)
{
int err = 0;
arc_buf_t *buf = NULL;
prefetch_data_t *pd = td->td_pfd;
switch (resume_skip_check(td, dnp, zb)) {
case RESUME_SKIP_ALL:
return (0);
case RESUME_SKIP_CHILDREN:
goto post;
case RESUME_SKIP_NONE:
break;
default:
ASSERT(0);
}
if (bp->blk_birth == 0) {
/*
* Since this block has a birth time of 0 it must be one of
* two things: a hole created before the
* SPA_FEATURE_HOLE_BIRTH feature was enabled, or a hole
* which has always been a hole in an object.
*
* If a file is written sparsely, then the unwritten parts of
* the file were "always holes" -- that is, they have been
* holes since this object was allocated. However, we (and
* our callers) can not necessarily tell when an object was
* allocated. Therefore, if it's possible that this object
* was freed and then its object number reused, we need to
* visit all the holes with birth==0.
*
* If it isn't possible that the object number was reused,
* then if SPA_FEATURE_HOLE_BIRTH was enabled before we wrote
* all the blocks we will visit as part of this traversal,
* then this hole must have always existed, so we can skip
* it. We visit blocks born after (exclusive) td_min_txg.
*
* Note that the meta-dnode cannot be reallocated.
*/
if (!ignore_hole_birth && (!td->td_realloc_possible ||
zb->zb_object == DMU_META_DNODE_OBJECT) &&
td->td_hole_birth_enabled_txg <= td->td_min_txg)
return (0);
} else if (bp->blk_birth <= td->td_min_txg) {
return (0);
}
if (pd != NULL && !pd->pd_exited && prefetch_needed(pd, bp)) {
uint64_t size = BP_GET_LSIZE(bp);
mutex_enter(&pd->pd_mtx);
ASSERT(pd->pd_bytes_fetched >= 0);
while (pd->pd_bytes_fetched < size && !pd->pd_exited)
cv_wait_sig(&pd->pd_cv, &pd->pd_mtx);
pd->pd_bytes_fetched -= size;
cv_broadcast(&pd->pd_cv);
mutex_exit(&pd->pd_mtx);
}
if (BP_IS_HOLE(bp)) {
err = td->td_func(td->td_spa, NULL, bp, zb, dnp, td->td_arg);
if (err != 0)
goto post;
return (0);
}
if (td->td_flags & TRAVERSE_PRE) {
err = td->td_func(td->td_spa, NULL, bp, zb, dnp,
td->td_arg);
if (err == TRAVERSE_VISIT_NO_CHILDREN)
return (0);
if (err != 0)
goto post;
}
if (BP_GET_LEVEL(bp) > 0) {
uint32_t flags = ARC_FLAG_WAIT;
int32_t i;
int32_t epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
zbookmark_phys_t *czb;
err = arc_read(NULL, td->td_spa, bp, arc_getbuf_func, &buf,
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
if (err != 0)
goto post;
czb = kmem_alloc(sizeof (zbookmark_phys_t), KM_SLEEP);
for (i = 0; i < epb; i++) {
SET_BOOKMARK(czb, zb->zb_objset, zb->zb_object,
zb->zb_level - 1,
zb->zb_blkid * epb + i);
traverse_prefetch_metadata(td,
&((blkptr_t *)buf->b_data)[i], czb);
}
/* recursively visitbp() blocks below this */
for (i = 0; i < epb; i++) {
SET_BOOKMARK(czb, zb->zb_objset, zb->zb_object,
zb->zb_level - 1,
zb->zb_blkid * epb + i);
err = traverse_visitbp(td, dnp,
&((blkptr_t *)buf->b_data)[i], czb);
if (err != 0)
break;
}
kmem_free(czb, sizeof (zbookmark_phys_t));
} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
uint32_t flags = ARC_FLAG_WAIT;
int32_t i;
int32_t epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
dnode_phys_t *child_dnp;
err = arc_read(NULL, td->td_spa, bp, arc_getbuf_func, &buf,
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
if (err != 0)
goto post;
child_dnp = buf->b_data;
for (i = 0; i < epb; i += child_dnp[i].dn_extra_slots + 1) {
prefetch_dnode_metadata(td, &child_dnp[i],
zb->zb_objset, zb->zb_blkid * epb + i);
}
/* recursively visitbp() blocks below this */
for (i = 0; i < epb; i += child_dnp[i].dn_extra_slots + 1) {
err = traverse_dnode(td, &child_dnp[i],
zb->zb_objset, zb->zb_blkid * epb + i);
if (err != 0)
break;
}
} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
arc_flags_t flags = ARC_FLAG_WAIT;
objset_phys_t *osp;
err = arc_read(NULL, td->td_spa, bp, arc_getbuf_func, &buf,
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
if (err != 0)
goto post;
osp = buf->b_data;
prefetch_dnode_metadata(td, &osp->os_meta_dnode, zb->zb_objset,
DMU_META_DNODE_OBJECT);
/*
* See the block comment above for the goal of this variable.
* If the maxblkid of the meta-dnode is 0, then we know that
* we've never had more than DNODES_PER_BLOCK objects in the
* dataset, which means we can't have reused any object ids.
*/
if (osp->os_meta_dnode.dn_maxblkid == 0)
td->td_realloc_possible = B_FALSE;
if (arc_buf_size(buf) >= sizeof (objset_phys_t)) {
prefetch_dnode_metadata(td, &osp->os_groupused_dnode,
zb->zb_objset, DMU_GROUPUSED_OBJECT);
prefetch_dnode_metadata(td, &osp->os_userused_dnode,
zb->zb_objset, DMU_USERUSED_OBJECT);
}
err = traverse_dnode(td, &osp->os_meta_dnode, zb->zb_objset,
DMU_META_DNODE_OBJECT);
if (err == 0 && arc_buf_size(buf) >= sizeof (objset_phys_t)) {
err = traverse_dnode(td, &osp->os_groupused_dnode,
zb->zb_objset, DMU_GROUPUSED_OBJECT);
}
if (err == 0 && arc_buf_size(buf) >= sizeof (objset_phys_t)) {
err = traverse_dnode(td, &osp->os_userused_dnode,
zb->zb_objset, DMU_USERUSED_OBJECT);
}
}
if (buf)
arc_buf_destroy(buf, &buf);
post:
if (err == 0 && (td->td_flags & TRAVERSE_POST))
err = td->td_func(td->td_spa, NULL, bp, zb, dnp, td->td_arg);
if ((td->td_flags & TRAVERSE_HARD) && (err == EIO || err == ECKSUM)) {
/*
* Ignore this disk error as requested by the HARD flag,
* and continue traversal.
*/
err = 0;
}
/*
* If we are stopping here, set td_resume.
*/
if (td->td_resume != NULL && err != 0 && !td->td_paused) {
td->td_resume->zb_objset = zb->zb_objset;
td->td_resume->zb_object = zb->zb_object;
td->td_resume->zb_level = 0;
/*
* If we have stopped on an indirect block (e.g. due to
* i/o error), we have not visited anything below it.
* Set the bookmark to the first level-0 block that we need
* to visit. This way, the resuming code does not need to
* deal with resuming from indirect blocks.
*
* Note, if zb_level <= 0, dnp may be NULL, so we don't want
* to dereference it.
*/
td->td_resume->zb_blkid = zb->zb_blkid;
if (zb->zb_level > 0) {
td->td_resume->zb_blkid <<= zb->zb_level *
(dnp->dn_indblkshift - SPA_BLKPTRSHIFT);
}
td->td_paused = B_TRUE;
}
return (err);
}
static void
prefetch_dnode_metadata(traverse_data_t *td, const dnode_phys_t *dnp,
uint64_t objset, uint64_t object)
{
int j;
zbookmark_phys_t czb;
for (j = 0; j < dnp->dn_nblkptr; j++) {
SET_BOOKMARK(&czb, objset, object, dnp->dn_nlevels - 1, j);
traverse_prefetch_metadata(td, &dnp->dn_blkptr[j], &czb);
}
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
SET_BOOKMARK(&czb, objset, object, 0, DMU_SPILL_BLKID);
traverse_prefetch_metadata(td, DN_SPILL_BLKPTR(dnp), &czb);
}
}
static int
traverse_dnode(traverse_data_t *td, const dnode_phys_t *dnp,
uint64_t objset, uint64_t object)
{
int j, err = 0;
zbookmark_phys_t czb;
if (object != DMU_META_DNODE_OBJECT && td->td_resume != NULL &&
object < td->td_resume->zb_object)
return (0);
if (td->td_flags & TRAVERSE_PRE) {
SET_BOOKMARK(&czb, objset, object, ZB_DNODE_LEVEL,
ZB_DNODE_BLKID);
err = td->td_func(td->td_spa, NULL, NULL, &czb, dnp,
td->td_arg);
if (err == TRAVERSE_VISIT_NO_CHILDREN)
return (0);
if (err != 0)
return (err);
}
for (j = 0; j < dnp->dn_nblkptr; j++) {
SET_BOOKMARK(&czb, objset, object, dnp->dn_nlevels - 1, j);
err = traverse_visitbp(td, dnp, &dnp->dn_blkptr[j], &czb);
if (err != 0)
break;
}
if (err == 0 && (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
SET_BOOKMARK(&czb, objset, object, 0, DMU_SPILL_BLKID);
err = traverse_visitbp(td, dnp, DN_SPILL_BLKPTR(dnp), &czb);
}
if (err == 0 && (td->td_flags & TRAVERSE_POST)) {
SET_BOOKMARK(&czb, objset, object, ZB_DNODE_LEVEL,
ZB_DNODE_BLKID);
err = td->td_func(td->td_spa, NULL, NULL, &czb, dnp,
td->td_arg);
if (err == TRAVERSE_VISIT_NO_CHILDREN)
return (0);
if (err != 0)
return (err);
}
return (err);
}
/* ARGSUSED */
static int
traverse_prefetcher(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
{
prefetch_data_t *pfd = arg;
arc_flags_t aflags = ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
ASSERT(pfd->pd_bytes_fetched >= 0);
if (bp == NULL)
return (0);
if (pfd->pd_cancel)
return (SET_ERROR(EINTR));
if (!prefetch_needed(pfd, bp))
return (0);
mutex_enter(&pfd->pd_mtx);
while (!pfd->pd_cancel && pfd->pd_bytes_fetched >= zfs_pd_bytes_max)
cv_wait_sig(&pfd->pd_cv, &pfd->pd_mtx);
pfd->pd_bytes_fetched += BP_GET_LSIZE(bp);
cv_broadcast(&pfd->pd_cv);
mutex_exit(&pfd->pd_mtx);
(void) arc_read(NULL, spa, bp, NULL, NULL, ZIO_PRIORITY_ASYNC_READ,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &aflags, zb);
return (0);
}
static void
traverse_prefetch_thread(void *arg)
{
traverse_data_t *td_main = arg;
traverse_data_t td = *td_main;
zbookmark_phys_t czb;
fstrans_cookie_t cookie = spl_fstrans_mark();
td.td_func = traverse_prefetcher;
td.td_arg = td_main->td_pfd;
td.td_pfd = NULL;
td.td_resume = &td_main->td_pfd->pd_resume;
SET_BOOKMARK(&czb, td.td_objset,
ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
(void) traverse_visitbp(&td, NULL, td.td_rootbp, &czb);
mutex_enter(&td_main->td_pfd->pd_mtx);
td_main->td_pfd->pd_exited = B_TRUE;
cv_broadcast(&td_main->td_pfd->pd_cv);
mutex_exit(&td_main->td_pfd->pd_mtx);
spl_fstrans_unmark(cookie);
}
/*
* NB: dataset must not be changing on-disk (eg, is a snapshot or we are
* in syncing context).
*/
static int
traverse_impl(spa_t *spa, dsl_dataset_t *ds, uint64_t objset, blkptr_t *rootbp,
uint64_t txg_start, zbookmark_phys_t *resume, int flags,
blkptr_cb_t func, void *arg)
{
traverse_data_t *td;
prefetch_data_t *pd;
zbookmark_phys_t *czb;
int err;
ASSERT(ds == NULL || objset == ds->ds_object);
ASSERT(!(flags & TRAVERSE_PRE) || !(flags & TRAVERSE_POST));
td = kmem_alloc(sizeof (traverse_data_t), KM_SLEEP);
pd = kmem_zalloc(sizeof (prefetch_data_t), KM_SLEEP);
czb = kmem_alloc(sizeof (zbookmark_phys_t), KM_SLEEP);
td->td_spa = spa;
td->td_objset = objset;
td->td_rootbp = rootbp;
td->td_min_txg = txg_start;
td->td_resume = resume;
td->td_func = func;
td->td_arg = arg;
td->td_pfd = pd;
td->td_flags = flags;
td->td_paused = B_FALSE;
td->td_realloc_possible = (txg_start == 0 ? B_FALSE : B_TRUE);
if (spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
VERIFY(spa_feature_enabled_txg(spa,
SPA_FEATURE_HOLE_BIRTH, &td->td_hole_birth_enabled_txg));
} else {
td->td_hole_birth_enabled_txg = UINT64_MAX;
}
pd->pd_flags = flags;
if (resume != NULL)
pd->pd_resume = *resume;
mutex_init(&pd->pd_mtx, NULL, MUTEX_DEFAULT, NULL);
cv_init(&pd->pd_cv, NULL, CV_DEFAULT, NULL);
SET_BOOKMARK(czb, td->td_objset,
ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
/* See comment on ZIL traversal in dsl_scan_visitds. */
if (ds != NULL && !ds->ds_is_snapshot && !BP_IS_HOLE(rootbp)) {
uint32_t flags = ARC_FLAG_WAIT;
objset_phys_t *osp;
arc_buf_t *buf;
err = arc_read(NULL, td->td_spa, rootbp,
arc_getbuf_func, &buf,
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, czb);
if (err != 0)
return (err);
osp = buf->b_data;
traverse_zil(td, &osp->os_zil_header);
arc_buf_destroy(buf, &buf);
}
if (!(flags & TRAVERSE_PREFETCH_DATA) ||
0 == taskq_dispatch(system_taskq, traverse_prefetch_thread,
td, TQ_NOQUEUE))
pd->pd_exited = B_TRUE;
err = traverse_visitbp(td, NULL, rootbp, czb);
mutex_enter(&pd->pd_mtx);
pd->pd_cancel = B_TRUE;
cv_broadcast(&pd->pd_cv);
while (!pd->pd_exited)
cv_wait_sig(&pd->pd_cv, &pd->pd_mtx);
mutex_exit(&pd->pd_mtx);
mutex_destroy(&pd->pd_mtx);
cv_destroy(&pd->pd_cv);
kmem_free(czb, sizeof (zbookmark_phys_t));
kmem_free(pd, sizeof (struct prefetch_data));
kmem_free(td, sizeof (struct traverse_data));
return (err);
}
/*
* NB: dataset must not be changing on-disk (eg, is a snapshot or we are
* in syncing context).
*/
int
traverse_dataset_resume(dsl_dataset_t *ds, uint64_t txg_start,
zbookmark_phys_t *resume,
int flags, blkptr_cb_t func, void *arg)
{
return (traverse_impl(ds->ds_dir->dd_pool->dp_spa, ds, ds->ds_object,
&dsl_dataset_phys(ds)->ds_bp, txg_start, resume, flags, func, arg));
}
int
traverse_dataset(dsl_dataset_t *ds, uint64_t txg_start,
int flags, blkptr_cb_t func, void *arg)
{
return (traverse_dataset_resume(ds, txg_start, NULL, flags, func, arg));
}
int
traverse_dataset_destroyed(spa_t *spa, blkptr_t *blkptr,
uint64_t txg_start, zbookmark_phys_t *resume, int flags,
blkptr_cb_t func, void *arg)
{
return (traverse_impl(spa, NULL, ZB_DESTROYED_OBJSET,
blkptr, txg_start, resume, flags, func, arg));
}
/*
* NB: pool must not be changing on-disk (eg, from zdb or sync context).
*/
int
traverse_pool(spa_t *spa, uint64_t txg_start, int flags,
blkptr_cb_t func, void *arg)
{
int err;
uint64_t obj;
dsl_pool_t *dp = spa_get_dsl(spa);
objset_t *mos = dp->dp_meta_objset;
boolean_t hard = (flags & TRAVERSE_HARD);
/* visit the MOS */
err = traverse_impl(spa, NULL, 0, spa_get_rootblkptr(spa),
txg_start, NULL, flags, func, arg);
if (err != 0)
return (err);
/* visit each dataset */
for (obj = 1; err == 0;
err = dmu_object_next(mos, &obj, B_FALSE, txg_start)) {
dmu_object_info_t doi;
err = dmu_object_info(mos, obj, &doi);
if (err != 0) {
if (hard)
continue;
break;
}
if (doi.doi_bonus_type == DMU_OT_DSL_DATASET) {
dsl_dataset_t *ds;
uint64_t txg = txg_start;
dsl_pool_config_enter(dp, FTAG);
err = dsl_dataset_hold_obj(dp, obj, FTAG, &ds);
dsl_pool_config_exit(dp, FTAG);
if (err != 0) {
if (hard)
continue;
break;
}
if (dsl_dataset_phys(ds)->ds_prev_snap_txg > txg)
txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
err = traverse_dataset(ds, txg, flags, func, arg);
dsl_dataset_rele(ds, FTAG);
if (err != 0)
break;
}
}
if (err == ESRCH)
err = 0;
return (err);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
EXPORT_SYMBOL(traverse_dataset);
EXPORT_SYMBOL(traverse_pool);
module_param(zfs_pd_bytes_max, int, 0644);
MODULE_PARM_DESC(zfs_pd_bytes_max, "Max number of bytes to prefetch");
module_param(ignore_hole_birth, int, 0644);
MODULE_PARM_DESC(ignore_hole_birth, "Ignore hole_birth txg for send");
#endif