mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-03 23:09:35 +03:00
c3ae9321bf
Refer to the correct section or alternative for FreeBSD and Linux. Reviewed-by: George Melikov <mail@gmelikov.ru> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ryan Moeller <ryan@iXsystems.com> Closes #11132
6238 lines
189 KiB
C
6238 lines
189 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
|
|
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
|
|
* Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2017, Intel Corporation.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/space_map.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/vdev_indirect_mapping.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/btree.h>
|
|
|
|
#define WITH_DF_BLOCK_ALLOCATOR
|
|
|
|
#define GANG_ALLOCATION(flags) \
|
|
((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
|
|
|
|
/*
|
|
* Metaslab granularity, in bytes. This is roughly similar to what would be
|
|
* referred to as the "stripe size" in traditional RAID arrays. In normal
|
|
* operation, we will try to write this amount of data to a top-level vdev
|
|
* before moving on to the next one.
|
|
*/
|
|
unsigned long metaslab_aliquot = 512 << 10;
|
|
|
|
/*
|
|
* For testing, make some blocks above a certain size be gang blocks.
|
|
*/
|
|
unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
|
|
|
|
/*
|
|
* In pools where the log space map feature is not enabled we touch
|
|
* multiple metaslabs (and their respective space maps) with each
|
|
* transaction group. Thus, we benefit from having a small space map
|
|
* block size since it allows us to issue more I/O operations scattered
|
|
* around the disk. So a sane default for the space map block size
|
|
* is 8~16K.
|
|
*/
|
|
int zfs_metaslab_sm_blksz_no_log = (1 << 14);
|
|
|
|
/*
|
|
* When the log space map feature is enabled, we accumulate a lot of
|
|
* changes per metaslab that are flushed once in a while so we benefit
|
|
* from a bigger block size like 128K for the metaslab space maps.
|
|
*/
|
|
int zfs_metaslab_sm_blksz_with_log = (1 << 17);
|
|
|
|
/*
|
|
* The in-core space map representation is more compact than its on-disk form.
|
|
* The zfs_condense_pct determines how much more compact the in-core
|
|
* space map representation must be before we compact it on-disk.
|
|
* Values should be greater than or equal to 100.
|
|
*/
|
|
int zfs_condense_pct = 200;
|
|
|
|
/*
|
|
* Condensing a metaslab is not guaranteed to actually reduce the amount of
|
|
* space used on disk. In particular, a space map uses data in increments of
|
|
* MAX(1 << ashift, space_map_blksz), so a metaslab might use the
|
|
* same number of blocks after condensing. Since the goal of condensing is to
|
|
* reduce the number of IOPs required to read the space map, we only want to
|
|
* condense when we can be sure we will reduce the number of blocks used by the
|
|
* space map. Unfortunately, we cannot precisely compute whether or not this is
|
|
* the case in metaslab_should_condense since we are holding ms_lock. Instead,
|
|
* we apply the following heuristic: do not condense a spacemap unless the
|
|
* uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
|
|
* blocks.
|
|
*/
|
|
int zfs_metaslab_condense_block_threshold = 4;
|
|
|
|
/*
|
|
* The zfs_mg_noalloc_threshold defines which metaslab groups should
|
|
* be eligible for allocation. The value is defined as a percentage of
|
|
* free space. Metaslab groups that have more free space than
|
|
* zfs_mg_noalloc_threshold are always eligible for allocations. Once
|
|
* a metaslab group's free space is less than or equal to the
|
|
* zfs_mg_noalloc_threshold the allocator will avoid allocating to that
|
|
* group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
|
|
* Once all groups in the pool reach zfs_mg_noalloc_threshold then all
|
|
* groups are allowed to accept allocations. Gang blocks are always
|
|
* eligible to allocate on any metaslab group. The default value of 0 means
|
|
* no metaslab group will be excluded based on this criterion.
|
|
*/
|
|
int zfs_mg_noalloc_threshold = 0;
|
|
|
|
/*
|
|
* Metaslab groups are considered eligible for allocations if their
|
|
* fragmentation metric (measured as a percentage) is less than or
|
|
* equal to zfs_mg_fragmentation_threshold. If a metaslab group
|
|
* exceeds this threshold then it will be skipped unless all metaslab
|
|
* groups within the metaslab class have also crossed this threshold.
|
|
*
|
|
* This tunable was introduced to avoid edge cases where we continue
|
|
* allocating from very fragmented disks in our pool while other, less
|
|
* fragmented disks, exists. On the other hand, if all disks in the
|
|
* pool are uniformly approaching the threshold, the threshold can
|
|
* be a speed bump in performance, where we keep switching the disks
|
|
* that we allocate from (e.g. we allocate some segments from disk A
|
|
* making it bypassing the threshold while freeing segments from disk
|
|
* B getting its fragmentation below the threshold).
|
|
*
|
|
* Empirically, we've seen that our vdev selection for allocations is
|
|
* good enough that fragmentation increases uniformly across all vdevs
|
|
* the majority of the time. Thus we set the threshold percentage high
|
|
* enough to avoid hitting the speed bump on pools that are being pushed
|
|
* to the edge.
|
|
*/
|
|
int zfs_mg_fragmentation_threshold = 95;
|
|
|
|
/*
|
|
* Allow metaslabs to keep their active state as long as their fragmentation
|
|
* percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
|
|
* active metaslab that exceeds this threshold will no longer keep its active
|
|
* status allowing better metaslabs to be selected.
|
|
*/
|
|
int zfs_metaslab_fragmentation_threshold = 70;
|
|
|
|
/*
|
|
* When set will load all metaslabs when pool is first opened.
|
|
*/
|
|
int metaslab_debug_load = 0;
|
|
|
|
/*
|
|
* When set will prevent metaslabs from being unloaded.
|
|
*/
|
|
int metaslab_debug_unload = 0;
|
|
|
|
/*
|
|
* Minimum size which forces the dynamic allocator to change
|
|
* it's allocation strategy. Once the space map cannot satisfy
|
|
* an allocation of this size then it switches to using more
|
|
* aggressive strategy (i.e search by size rather than offset).
|
|
*/
|
|
uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
|
|
|
|
/*
|
|
* The minimum free space, in percent, which must be available
|
|
* in a space map to continue allocations in a first-fit fashion.
|
|
* Once the space map's free space drops below this level we dynamically
|
|
* switch to using best-fit allocations.
|
|
*/
|
|
int metaslab_df_free_pct = 4;
|
|
|
|
/*
|
|
* Maximum distance to search forward from the last offset. Without this
|
|
* limit, fragmented pools can see >100,000 iterations and
|
|
* metaslab_block_picker() becomes the performance limiting factor on
|
|
* high-performance storage.
|
|
*
|
|
* With the default setting of 16MB, we typically see less than 500
|
|
* iterations, even with very fragmented, ashift=9 pools. The maximum number
|
|
* of iterations possible is:
|
|
* metaslab_df_max_search / (2 * (1<<ashift))
|
|
* With the default setting of 16MB this is 16*1024 (with ashift=9) or
|
|
* 2048 (with ashift=12).
|
|
*/
|
|
int metaslab_df_max_search = 16 * 1024 * 1024;
|
|
|
|
/*
|
|
* Forces the metaslab_block_picker function to search for at least this many
|
|
* segments forwards until giving up on finding a segment that the allocation
|
|
* will fit into.
|
|
*/
|
|
uint32_t metaslab_min_search_count = 100;
|
|
|
|
/*
|
|
* If we are not searching forward (due to metaslab_df_max_search,
|
|
* metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
|
|
* controls what segment is used. If it is set, we will use the largest free
|
|
* segment. If it is not set, we will use a segment of exactly the requested
|
|
* size (or larger).
|
|
*/
|
|
int metaslab_df_use_largest_segment = B_FALSE;
|
|
|
|
/*
|
|
* Percentage of all cpus that can be used by the metaslab taskq.
|
|
*/
|
|
int metaslab_load_pct = 50;
|
|
|
|
/*
|
|
* These tunables control how long a metaslab will remain loaded after the
|
|
* last allocation from it. A metaslab can't be unloaded until at least
|
|
* metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
|
|
* have elapsed. However, zfs_metaslab_mem_limit may cause it to be
|
|
* unloaded sooner. These settings are intended to be generous -- to keep
|
|
* metaslabs loaded for a long time, reducing the rate of metaslab loading.
|
|
*/
|
|
int metaslab_unload_delay = 32;
|
|
int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
|
|
|
|
/*
|
|
* Max number of metaslabs per group to preload.
|
|
*/
|
|
int metaslab_preload_limit = 10;
|
|
|
|
/*
|
|
* Enable/disable preloading of metaslab.
|
|
*/
|
|
int metaslab_preload_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable fragmentation weighting on metaslabs.
|
|
*/
|
|
int metaslab_fragmentation_factor_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable lba weighting (i.e. outer tracks are given preference).
|
|
*/
|
|
int metaslab_lba_weighting_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable metaslab group biasing.
|
|
*/
|
|
int metaslab_bias_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable remapping of indirect DVAs to their concrete vdevs.
|
|
*/
|
|
boolean_t zfs_remap_blkptr_enable = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable segment-based metaslab selection.
|
|
*/
|
|
int zfs_metaslab_segment_weight_enabled = B_TRUE;
|
|
|
|
/*
|
|
* When using segment-based metaslab selection, we will continue
|
|
* allocating from the active metaslab until we have exhausted
|
|
* zfs_metaslab_switch_threshold of its buckets.
|
|
*/
|
|
int zfs_metaslab_switch_threshold = 2;
|
|
|
|
/*
|
|
* Internal switch to enable/disable the metaslab allocation tracing
|
|
* facility.
|
|
*/
|
|
#ifdef _METASLAB_TRACING
|
|
boolean_t metaslab_trace_enabled = B_TRUE;
|
|
#endif
|
|
|
|
/*
|
|
* Maximum entries that the metaslab allocation tracing facility will keep
|
|
* in a given list when running in non-debug mode. We limit the number
|
|
* of entries in non-debug mode to prevent us from using up too much memory.
|
|
* The limit should be sufficiently large that we don't expect any allocation
|
|
* to every exceed this value. In debug mode, the system will panic if this
|
|
* limit is ever reached allowing for further investigation.
|
|
*/
|
|
#ifdef _METASLAB_TRACING
|
|
uint64_t metaslab_trace_max_entries = 5000;
|
|
#endif
|
|
|
|
/*
|
|
* Maximum number of metaslabs per group that can be disabled
|
|
* simultaneously.
|
|
*/
|
|
int max_disabled_ms = 3;
|
|
|
|
/*
|
|
* Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
|
|
* To avoid 64-bit overflow, don't set above UINT32_MAX.
|
|
*/
|
|
unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */
|
|
|
|
/*
|
|
* Maximum percentage of memory to use on storing loaded metaslabs. If loading
|
|
* a metaslab would take it over this percentage, the oldest selected metaslab
|
|
* is automatically unloaded.
|
|
*/
|
|
int zfs_metaslab_mem_limit = 75;
|
|
|
|
/*
|
|
* Force the per-metaslab range trees to use 64-bit integers to store
|
|
* segments. Used for debugging purposes.
|
|
*/
|
|
boolean_t zfs_metaslab_force_large_segs = B_FALSE;
|
|
|
|
/*
|
|
* By default we only store segments over a certain size in the size-sorted
|
|
* metaslab trees (ms_allocatable_by_size and
|
|
* ms_unflushed_frees_by_size). This dramatically reduces memory usage and
|
|
* improves load and unload times at the cost of causing us to use slightly
|
|
* larger segments than we would otherwise in some cases.
|
|
*/
|
|
uint32_t metaslab_by_size_min_shift = 14;
|
|
|
|
static uint64_t metaslab_weight(metaslab_t *, boolean_t);
|
|
static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
|
|
static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
|
|
static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
|
|
|
|
static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
|
|
static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
|
|
static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
|
|
static unsigned int metaslab_idx_func(multilist_t *, void *);
|
|
static void metaslab_evict(metaslab_t *, uint64_t);
|
|
static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
|
|
#ifdef _METASLAB_TRACING
|
|
kmem_cache_t *metaslab_alloc_trace_cache;
|
|
|
|
typedef struct metaslab_stats {
|
|
kstat_named_t metaslabstat_trace_over_limit;
|
|
kstat_named_t metaslabstat_df_find_under_floor;
|
|
kstat_named_t metaslabstat_reload_tree;
|
|
} metaslab_stats_t;
|
|
|
|
static metaslab_stats_t metaslab_stats = {
|
|
{ "trace_over_limit", KSTAT_DATA_UINT64 },
|
|
{ "df_find_under_floor", KSTAT_DATA_UINT64 },
|
|
{ "reload_tree", KSTAT_DATA_UINT64 },
|
|
};
|
|
|
|
#define METASLABSTAT_BUMP(stat) \
|
|
atomic_inc_64(&metaslab_stats.stat.value.ui64);
|
|
|
|
|
|
kstat_t *metaslab_ksp;
|
|
|
|
void
|
|
metaslab_stat_init(void)
|
|
{
|
|
ASSERT(metaslab_alloc_trace_cache == NULL);
|
|
metaslab_alloc_trace_cache = kmem_cache_create(
|
|
"metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
|
|
0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
|
|
"misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
|
|
sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
|
|
if (metaslab_ksp != NULL) {
|
|
metaslab_ksp->ks_data = &metaslab_stats;
|
|
kstat_install(metaslab_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
metaslab_stat_fini(void)
|
|
{
|
|
if (metaslab_ksp != NULL) {
|
|
kstat_delete(metaslab_ksp);
|
|
metaslab_ksp = NULL;
|
|
}
|
|
|
|
kmem_cache_destroy(metaslab_alloc_trace_cache);
|
|
metaslab_alloc_trace_cache = NULL;
|
|
}
|
|
#else
|
|
|
|
void
|
|
metaslab_stat_init(void)
|
|
{
|
|
}
|
|
|
|
void
|
|
metaslab_stat_fini(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab classes
|
|
* ==========================================================================
|
|
*/
|
|
metaslab_class_t *
|
|
metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
|
|
{
|
|
metaslab_class_t *mc;
|
|
|
|
mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
|
|
|
|
mc->mc_spa = spa;
|
|
mc->mc_rotor = NULL;
|
|
mc->mc_ops = ops;
|
|
mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mc->mc_metaslab_txg_list = multilist_create(sizeof (metaslab_t),
|
|
offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
|
|
mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
|
|
sizeof (zfs_refcount_t), KM_SLEEP);
|
|
mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
|
|
sizeof (uint64_t), KM_SLEEP);
|
|
for (int i = 0; i < spa->spa_alloc_count; i++)
|
|
zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
|
|
|
|
return (mc);
|
|
}
|
|
|
|
void
|
|
metaslab_class_destroy(metaslab_class_t *mc)
|
|
{
|
|
ASSERT(mc->mc_rotor == NULL);
|
|
ASSERT(mc->mc_alloc == 0);
|
|
ASSERT(mc->mc_deferred == 0);
|
|
ASSERT(mc->mc_space == 0);
|
|
ASSERT(mc->mc_dspace == 0);
|
|
|
|
for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
|
|
zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
|
|
kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
|
|
sizeof (zfs_refcount_t));
|
|
kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
|
|
sizeof (uint64_t));
|
|
mutex_destroy(&mc->mc_lock);
|
|
multilist_destroy(mc->mc_metaslab_txg_list);
|
|
kmem_free(mc, sizeof (metaslab_class_t));
|
|
}
|
|
|
|
int
|
|
metaslab_class_validate(metaslab_class_t *mc)
|
|
{
|
|
metaslab_group_t *mg;
|
|
vdev_t *vd;
|
|
|
|
/*
|
|
* Must hold one of the spa_config locks.
|
|
*/
|
|
ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
|
|
spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
|
|
|
|
if ((mg = mc->mc_rotor) == NULL)
|
|
return (0);
|
|
|
|
do {
|
|
vd = mg->mg_vd;
|
|
ASSERT(vd->vdev_mg != NULL);
|
|
ASSERT3P(vd->vdev_top, ==, vd);
|
|
ASSERT3P(mg->mg_class, ==, mc);
|
|
ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
|
|
} while ((mg = mg->mg_next) != mc->mc_rotor);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
|
|
int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
|
|
{
|
|
atomic_add_64(&mc->mc_alloc, alloc_delta);
|
|
atomic_add_64(&mc->mc_deferred, defer_delta);
|
|
atomic_add_64(&mc->mc_space, space_delta);
|
|
atomic_add_64(&mc->mc_dspace, dspace_delta);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_alloc(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_alloc);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_deferred(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_deferred);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_space(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_space);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_dspace(metaslab_class_t *mc)
|
|
{
|
|
return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
|
|
}
|
|
|
|
void
|
|
metaslab_class_histogram_verify(metaslab_class_t *mc)
|
|
{
|
|
spa_t *spa = mc->mc_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
uint64_t *mc_hist;
|
|
int i;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
|
|
return;
|
|
|
|
mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
|
|
KM_SLEEP);
|
|
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
/*
|
|
* Skip any holes, uninitialized top-levels, or
|
|
* vdevs that are not in this metalab class.
|
|
*/
|
|
if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
|
|
mg->mg_class != mc) {
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
|
|
mc_hist[i] += mg->mg_histogram[i];
|
|
}
|
|
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
|
|
VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
|
|
|
|
kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Calculate the metaslab class's fragmentation metric. The metric
|
|
* is weighted based on the space contribution of each metaslab group.
|
|
* The return value will be a number between 0 and 100 (inclusive), or
|
|
* ZFS_FRAG_INVALID if the metric has not been set. See comment above the
|
|
* zfs_frag_table for more information about the metric.
|
|
*/
|
|
uint64_t
|
|
metaslab_class_fragmentation(metaslab_class_t *mc)
|
|
{
|
|
vdev_t *rvd = mc->mc_spa->spa_root_vdev;
|
|
uint64_t fragmentation = 0;
|
|
|
|
spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
/*
|
|
* Skip any holes, uninitialized top-levels,
|
|
* or vdevs that are not in this metalab class.
|
|
*/
|
|
if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
|
|
mg->mg_class != mc) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If a metaslab group does not contain a fragmentation
|
|
* metric then just bail out.
|
|
*/
|
|
if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
|
|
spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
|
|
return (ZFS_FRAG_INVALID);
|
|
}
|
|
|
|
/*
|
|
* Determine how much this metaslab_group is contributing
|
|
* to the overall pool fragmentation metric.
|
|
*/
|
|
fragmentation += mg->mg_fragmentation *
|
|
metaslab_group_get_space(mg);
|
|
}
|
|
fragmentation /= metaslab_class_get_space(mc);
|
|
|
|
ASSERT3U(fragmentation, <=, 100);
|
|
spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
|
|
return (fragmentation);
|
|
}
|
|
|
|
/*
|
|
* Calculate the amount of expandable space that is available in
|
|
* this metaslab class. If a device is expanded then its expandable
|
|
* space will be the amount of allocatable space that is currently not
|
|
* part of this metaslab class.
|
|
*/
|
|
uint64_t
|
|
metaslab_class_expandable_space(metaslab_class_t *mc)
|
|
{
|
|
vdev_t *rvd = mc->mc_spa->spa_root_vdev;
|
|
uint64_t space = 0;
|
|
|
|
spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
|
|
mg->mg_class != mc) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Calculate if we have enough space to add additional
|
|
* metaslabs. We report the expandable space in terms
|
|
* of the metaslab size since that's the unit of expansion.
|
|
*/
|
|
space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
|
|
1ULL << tvd->vdev_ms_shift);
|
|
}
|
|
spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
|
|
return (space);
|
|
}
|
|
|
|
void
|
|
metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
|
|
{
|
|
multilist_t *ml = mc->mc_metaslab_txg_list;
|
|
for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
|
|
multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
|
|
metaslab_t *msp = multilist_sublist_head(mls);
|
|
multilist_sublist_unlock(mls);
|
|
while (msp != NULL) {
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* If the metaslab has been removed from the list
|
|
* (which could happen if we were at the memory limit
|
|
* and it was evicted during this loop), then we can't
|
|
* proceed and we should restart the sublist.
|
|
*/
|
|
if (!multilist_link_active(&msp->ms_class_txg_node)) {
|
|
mutex_exit(&msp->ms_lock);
|
|
i--;
|
|
break;
|
|
}
|
|
mls = multilist_sublist_lock(ml, i);
|
|
metaslab_t *next_msp = multilist_sublist_next(mls, msp);
|
|
multilist_sublist_unlock(mls);
|
|
if (txg >
|
|
msp->ms_selected_txg + metaslab_unload_delay &&
|
|
gethrtime() > msp->ms_selected_time +
|
|
(uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
|
|
metaslab_evict(msp, txg);
|
|
} else {
|
|
/*
|
|
* Once we've hit a metaslab selected too
|
|
* recently to evict, we're done evicting for
|
|
* now.
|
|
*/
|
|
mutex_exit(&msp->ms_lock);
|
|
break;
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
msp = next_msp;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
metaslab_compare(const void *x1, const void *x2)
|
|
{
|
|
const metaslab_t *m1 = (const metaslab_t *)x1;
|
|
const metaslab_t *m2 = (const metaslab_t *)x2;
|
|
|
|
int sort1 = 0;
|
|
int sort2 = 0;
|
|
if (m1->ms_allocator != -1 && m1->ms_primary)
|
|
sort1 = 1;
|
|
else if (m1->ms_allocator != -1 && !m1->ms_primary)
|
|
sort1 = 2;
|
|
if (m2->ms_allocator != -1 && m2->ms_primary)
|
|
sort2 = 1;
|
|
else if (m2->ms_allocator != -1 && !m2->ms_primary)
|
|
sort2 = 2;
|
|
|
|
/*
|
|
* Sort inactive metaslabs first, then primaries, then secondaries. When
|
|
* selecting a metaslab to allocate from, an allocator first tries its
|
|
* primary, then secondary active metaslab. If it doesn't have active
|
|
* metaslabs, or can't allocate from them, it searches for an inactive
|
|
* metaslab to activate. If it can't find a suitable one, it will steal
|
|
* a primary or secondary metaslab from another allocator.
|
|
*/
|
|
if (sort1 < sort2)
|
|
return (-1);
|
|
if (sort1 > sort2)
|
|
return (1);
|
|
|
|
int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
|
|
|
|
return (TREE_CMP(m1->ms_start, m2->ms_start));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab groups
|
|
* ==========================================================================
|
|
*/
|
|
/*
|
|
* Update the allocatable flag and the metaslab group's capacity.
|
|
* The allocatable flag is set to true if the capacity is below
|
|
* the zfs_mg_noalloc_threshold or has a fragmentation value that is
|
|
* greater than zfs_mg_fragmentation_threshold. If a metaslab group
|
|
* transitions from allocatable to non-allocatable or vice versa then the
|
|
* metaslab group's class is updated to reflect the transition.
|
|
*/
|
|
static void
|
|
metaslab_group_alloc_update(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
boolean_t was_allocatable;
|
|
boolean_t was_initialized;
|
|
|
|
ASSERT(vd == vd->vdev_top);
|
|
ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
|
|
SCL_ALLOC);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
was_allocatable = mg->mg_allocatable;
|
|
was_initialized = mg->mg_initialized;
|
|
|
|
mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
|
|
(vs->vs_space + 1);
|
|
|
|
mutex_enter(&mc->mc_lock);
|
|
|
|
/*
|
|
* If the metaslab group was just added then it won't
|
|
* have any space until we finish syncing out this txg.
|
|
* At that point we will consider it initialized and available
|
|
* for allocations. We also don't consider non-activated
|
|
* metaslab groups (e.g. vdevs that are in the middle of being removed)
|
|
* to be initialized, because they can't be used for allocation.
|
|
*/
|
|
mg->mg_initialized = metaslab_group_initialized(mg);
|
|
if (!was_initialized && mg->mg_initialized) {
|
|
mc->mc_groups++;
|
|
} else if (was_initialized && !mg->mg_initialized) {
|
|
ASSERT3U(mc->mc_groups, >, 0);
|
|
mc->mc_groups--;
|
|
}
|
|
if (mg->mg_initialized)
|
|
mg->mg_no_free_space = B_FALSE;
|
|
|
|
/*
|
|
* A metaslab group is considered allocatable if it has plenty
|
|
* of free space or is not heavily fragmented. We only take
|
|
* fragmentation into account if the metaslab group has a valid
|
|
* fragmentation metric (i.e. a value between 0 and 100).
|
|
*/
|
|
mg->mg_allocatable = (mg->mg_activation_count > 0 &&
|
|
mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
|
|
(mg->mg_fragmentation == ZFS_FRAG_INVALID ||
|
|
mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
|
|
|
|
/*
|
|
* The mc_alloc_groups maintains a count of the number of
|
|
* groups in this metaslab class that are still above the
|
|
* zfs_mg_noalloc_threshold. This is used by the allocating
|
|
* threads to determine if they should avoid allocations to
|
|
* a given group. The allocator will avoid allocations to a group
|
|
* if that group has reached or is below the zfs_mg_noalloc_threshold
|
|
* and there are still other groups that are above the threshold.
|
|
* When a group transitions from allocatable to non-allocatable or
|
|
* vice versa we update the metaslab class to reflect that change.
|
|
* When the mc_alloc_groups value drops to 0 that means that all
|
|
* groups have reached the zfs_mg_noalloc_threshold making all groups
|
|
* eligible for allocations. This effectively means that all devices
|
|
* are balanced again.
|
|
*/
|
|
if (was_allocatable && !mg->mg_allocatable)
|
|
mc->mc_alloc_groups--;
|
|
else if (!was_allocatable && mg->mg_allocatable)
|
|
mc->mc_alloc_groups++;
|
|
mutex_exit(&mc->mc_lock);
|
|
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
int
|
|
metaslab_sort_by_flushed(const void *va, const void *vb)
|
|
{
|
|
const metaslab_t *a = va;
|
|
const metaslab_t *b = vb;
|
|
|
|
int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
|
|
uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
|
|
cmp = TREE_CMP(a_vdev_id, b_vdev_id);
|
|
if (cmp)
|
|
return (cmp);
|
|
|
|
return (TREE_CMP(a->ms_id, b->ms_id));
|
|
}
|
|
|
|
metaslab_group_t *
|
|
metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
|
|
{
|
|
metaslab_group_t *mg;
|
|
|
|
mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
|
|
mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
|
|
avl_create(&mg->mg_metaslab_tree, metaslab_compare,
|
|
sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
|
|
mg->mg_vd = vd;
|
|
mg->mg_class = mc;
|
|
mg->mg_activation_count = 0;
|
|
mg->mg_initialized = B_FALSE;
|
|
mg->mg_no_free_space = B_TRUE;
|
|
mg->mg_allocators = allocators;
|
|
|
|
mg->mg_allocator = kmem_zalloc(allocators *
|
|
sizeof (metaslab_group_allocator_t), KM_SLEEP);
|
|
for (int i = 0; i < allocators; i++) {
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
|
|
zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
|
|
}
|
|
|
|
mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
|
|
maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
|
|
|
|
return (mg);
|
|
}
|
|
|
|
void
|
|
metaslab_group_destroy(metaslab_group_t *mg)
|
|
{
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
/*
|
|
* We may have gone below zero with the activation count
|
|
* either because we never activated in the first place or
|
|
* because we're done, and possibly removing the vdev.
|
|
*/
|
|
ASSERT(mg->mg_activation_count <= 0);
|
|
|
|
taskq_destroy(mg->mg_taskq);
|
|
avl_destroy(&mg->mg_metaslab_tree);
|
|
mutex_destroy(&mg->mg_lock);
|
|
mutex_destroy(&mg->mg_ms_disabled_lock);
|
|
cv_destroy(&mg->mg_ms_disabled_cv);
|
|
|
|
for (int i = 0; i < mg->mg_allocators; i++) {
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
|
|
zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
|
|
}
|
|
kmem_free(mg->mg_allocator, mg->mg_allocators *
|
|
sizeof (metaslab_group_allocator_t));
|
|
|
|
kmem_free(mg, sizeof (metaslab_group_t));
|
|
}
|
|
|
|
void
|
|
metaslab_group_activate(metaslab_group_t *mg)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
metaslab_group_t *mgprev, *mgnext;
|
|
|
|
ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
|
|
|
|
ASSERT(mc->mc_rotor != mg);
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
ASSERT(mg->mg_activation_count <= 0);
|
|
|
|
if (++mg->mg_activation_count <= 0)
|
|
return;
|
|
|
|
mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
|
|
metaslab_group_alloc_update(mg);
|
|
|
|
if ((mgprev = mc->mc_rotor) == NULL) {
|
|
mg->mg_prev = mg;
|
|
mg->mg_next = mg;
|
|
} else {
|
|
mgnext = mgprev->mg_next;
|
|
mg->mg_prev = mgprev;
|
|
mg->mg_next = mgnext;
|
|
mgprev->mg_next = mg;
|
|
mgnext->mg_prev = mg;
|
|
}
|
|
mc->mc_rotor = mg;
|
|
}
|
|
|
|
/*
|
|
* Passivate a metaslab group and remove it from the allocation rotor.
|
|
* Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
|
|
* a metaslab group. This function will momentarily drop spa_config_locks
|
|
* that are lower than the SCL_ALLOC lock (see comment below).
|
|
*/
|
|
void
|
|
metaslab_group_passivate(metaslab_group_t *mg)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
spa_t *spa = mc->mc_spa;
|
|
metaslab_group_t *mgprev, *mgnext;
|
|
int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
|
|
|
|
ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
|
|
(SCL_ALLOC | SCL_ZIO));
|
|
|
|
if (--mg->mg_activation_count != 0) {
|
|
ASSERT(mc->mc_rotor != mg);
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
ASSERT(mg->mg_activation_count < 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The spa_config_lock is an array of rwlocks, ordered as
|
|
* follows (from highest to lowest):
|
|
* SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
|
|
* SCL_ZIO > SCL_FREE > SCL_VDEV
|
|
* (For more information about the spa_config_lock see spa_misc.c)
|
|
* The higher the lock, the broader its coverage. When we passivate
|
|
* a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
|
|
* config locks. However, the metaslab group's taskq might be trying
|
|
* to preload metaslabs so we must drop the SCL_ZIO lock and any
|
|
* lower locks to allow the I/O to complete. At a minimum,
|
|
* we continue to hold the SCL_ALLOC lock, which prevents any future
|
|
* allocations from taking place and any changes to the vdev tree.
|
|
*/
|
|
spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
|
|
taskq_wait_outstanding(mg->mg_taskq, 0);
|
|
spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
|
|
metaslab_group_alloc_update(mg);
|
|
for (int i = 0; i < mg->mg_allocators; i++) {
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
|
|
metaslab_t *msp = mga->mga_primary;
|
|
if (msp != NULL) {
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_passivate(msp,
|
|
metaslab_weight_from_range_tree(msp));
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
msp = mga->mga_secondary;
|
|
if (msp != NULL) {
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_passivate(msp,
|
|
metaslab_weight_from_range_tree(msp));
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
}
|
|
|
|
mgprev = mg->mg_prev;
|
|
mgnext = mg->mg_next;
|
|
|
|
if (mg == mgnext) {
|
|
mc->mc_rotor = NULL;
|
|
} else {
|
|
mc->mc_rotor = mgnext;
|
|
mgprev->mg_next = mgnext;
|
|
mgnext->mg_prev = mgprev;
|
|
}
|
|
|
|
mg->mg_prev = NULL;
|
|
mg->mg_next = NULL;
|
|
}
|
|
|
|
boolean_t
|
|
metaslab_group_initialized(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
|
|
return (vs->vs_space != 0 && mg->mg_activation_count > 0);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_group_get_space(metaslab_group_t *mg)
|
|
{
|
|
return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
|
|
}
|
|
|
|
void
|
|
metaslab_group_histogram_verify(metaslab_group_t *mg)
|
|
{
|
|
uint64_t *mg_hist;
|
|
vdev_t *vd = mg->mg_vd;
|
|
uint64_t ashift = vd->vdev_ashift;
|
|
int i;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
|
|
return;
|
|
|
|
mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
|
|
KM_SLEEP);
|
|
|
|
ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
|
|
SPACE_MAP_HISTOGRAM_SIZE + ashift);
|
|
|
|
for (int m = 0; m < vd->vdev_ms_count; m++) {
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
/* skip if not active or not a member */
|
|
if (msp->ms_sm == NULL || msp->ms_group != mg)
|
|
continue;
|
|
|
|
for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
|
|
mg_hist[i + ashift] +=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
}
|
|
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
|
|
VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
|
|
|
|
kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
uint64_t ashift = mg->mg_vd->vdev_ashift;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
if (msp->ms_sm == NULL)
|
|
return;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
mg->mg_histogram[i + ashift] +=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
mc->mc_histogram[i + ashift] +=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
}
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
uint64_t ashift = mg->mg_vd->vdev_ashift;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
if (msp->ms_sm == NULL)
|
|
return;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
ASSERT3U(mg->mg_histogram[i + ashift], >=,
|
|
msp->ms_sm->sm_phys->smp_histogram[i]);
|
|
ASSERT3U(mc->mc_histogram[i + ashift], >=,
|
|
msp->ms_sm->sm_phys->smp_histogram[i]);
|
|
|
|
mg->mg_histogram[i + ashift] -=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
mc->mc_histogram[i + ashift] -=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
}
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
ASSERT(msp->ms_group == NULL);
|
|
mutex_enter(&mg->mg_lock);
|
|
msp->ms_group = mg;
|
|
msp->ms_weight = 0;
|
|
avl_add(&mg->mg_metaslab_tree, msp);
|
|
mutex_exit(&mg->mg_lock);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_group_histogram_add(mg, msp);
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_group_histogram_remove(mg, msp);
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
ASSERT(msp->ms_group == mg);
|
|
avl_remove(&mg->mg_metaslab_tree, msp);
|
|
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
multilist_sublist_t *mls =
|
|
multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
|
|
if (multilist_link_active(&msp->ms_class_txg_node))
|
|
multilist_sublist_remove(mls, msp);
|
|
multilist_sublist_unlock(mls);
|
|
|
|
msp->ms_group = NULL;
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(MUTEX_HELD(&mg->mg_lock));
|
|
ASSERT(msp->ms_group == mg);
|
|
|
|
avl_remove(&mg->mg_metaslab_tree, msp);
|
|
msp->ms_weight = weight;
|
|
avl_add(&mg->mg_metaslab_tree, msp);
|
|
|
|
}
|
|
|
|
static void
|
|
metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
|
|
{
|
|
/*
|
|
* Although in principle the weight can be any value, in
|
|
* practice we do not use values in the range [1, 511].
|
|
*/
|
|
ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
metaslab_group_sort_impl(mg, msp, weight);
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
/*
|
|
* Calculate the fragmentation for a given metaslab group. We can use
|
|
* a simple average here since all metaslabs within the group must have
|
|
* the same size. The return value will be a value between 0 and 100
|
|
* (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
|
|
* group have a fragmentation metric.
|
|
*/
|
|
uint64_t
|
|
metaslab_group_fragmentation(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
uint64_t fragmentation = 0;
|
|
uint64_t valid_ms = 0;
|
|
|
|
for (int m = 0; m < vd->vdev_ms_count; m++) {
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
|
|
continue;
|
|
if (msp->ms_group != mg)
|
|
continue;
|
|
|
|
valid_ms++;
|
|
fragmentation += msp->ms_fragmentation;
|
|
}
|
|
|
|
if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
|
|
return (ZFS_FRAG_INVALID);
|
|
|
|
fragmentation /= valid_ms;
|
|
ASSERT3U(fragmentation, <=, 100);
|
|
return (fragmentation);
|
|
}
|
|
|
|
/*
|
|
* Determine if a given metaslab group should skip allocations. A metaslab
|
|
* group should avoid allocations if its free capacity is less than the
|
|
* zfs_mg_noalloc_threshold or its fragmentation metric is greater than
|
|
* zfs_mg_fragmentation_threshold and there is at least one metaslab group
|
|
* that can still handle allocations. If the allocation throttle is enabled
|
|
* then we skip allocations to devices that have reached their maximum
|
|
* allocation queue depth unless the selected metaslab group is the only
|
|
* eligible group remaining.
|
|
*/
|
|
static boolean_t
|
|
metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
|
|
uint64_t psize, int allocator, int d)
|
|
{
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
|
|
/*
|
|
* We can only consider skipping this metaslab group if it's
|
|
* in the normal metaslab class and there are other metaslab
|
|
* groups to select from. Otherwise, we always consider it eligible
|
|
* for allocations.
|
|
*/
|
|
if ((mc != spa_normal_class(spa) &&
|
|
mc != spa_special_class(spa) &&
|
|
mc != spa_dedup_class(spa)) ||
|
|
mc->mc_groups <= 1)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* If the metaslab group's mg_allocatable flag is set (see comments
|
|
* in metaslab_group_alloc_update() for more information) and
|
|
* the allocation throttle is disabled then allow allocations to this
|
|
* device. However, if the allocation throttle is enabled then
|
|
* check if we have reached our allocation limit (mg_alloc_queue_depth)
|
|
* to determine if we should allow allocations to this metaslab group.
|
|
* If all metaslab groups are no longer considered allocatable
|
|
* (mc_alloc_groups == 0) or we're trying to allocate the smallest
|
|
* gang block size then we allow allocations on this metaslab group
|
|
* regardless of the mg_allocatable or throttle settings.
|
|
*/
|
|
if (mg->mg_allocatable) {
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
int64_t qdepth;
|
|
uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
|
|
|
|
if (!mc->mc_alloc_throttle_enabled)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* If this metaslab group does not have any free space, then
|
|
* there is no point in looking further.
|
|
*/
|
|
if (mg->mg_no_free_space)
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Relax allocation throttling for ditto blocks. Due to
|
|
* random imbalances in allocation it tends to push copies
|
|
* to one vdev, that looks a bit better at the moment.
|
|
*/
|
|
qmax = qmax * (4 + d) / 4;
|
|
|
|
qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
|
|
|
|
/*
|
|
* If this metaslab group is below its qmax or it's
|
|
* the only allocatable metasable group, then attempt
|
|
* to allocate from it.
|
|
*/
|
|
if (qdepth < qmax || mc->mc_alloc_groups == 1)
|
|
return (B_TRUE);
|
|
ASSERT3U(mc->mc_alloc_groups, >, 1);
|
|
|
|
/*
|
|
* Since this metaslab group is at or over its qmax, we
|
|
* need to determine if there are metaslab groups after this
|
|
* one that might be able to handle this allocation. This is
|
|
* racy since we can't hold the locks for all metaslab
|
|
* groups at the same time when we make this check.
|
|
*/
|
|
for (metaslab_group_t *mgp = mg->mg_next;
|
|
mgp != rotor; mgp = mgp->mg_next) {
|
|
metaslab_group_allocator_t *mgap =
|
|
&mgp->mg_allocator[allocator];
|
|
qmax = mgap->mga_cur_max_alloc_queue_depth;
|
|
qmax = qmax * (4 + d) / 4;
|
|
qdepth =
|
|
zfs_refcount_count(&mgap->mga_alloc_queue_depth);
|
|
|
|
/*
|
|
* If there is another metaslab group that
|
|
* might be able to handle the allocation, then
|
|
* we return false so that we skip this group.
|
|
*/
|
|
if (qdepth < qmax && !mgp->mg_no_free_space)
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* We didn't find another group to handle the allocation
|
|
* so we can't skip this metaslab group even though
|
|
* we are at or over our qmax.
|
|
*/
|
|
return (B_TRUE);
|
|
|
|
} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Range tree callbacks
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Comparison function for the private size-ordered tree using 32-bit
|
|
* ranges. Tree is sorted by size, larger sizes at the end of the tree.
|
|
*/
|
|
static int
|
|
metaslab_rangesize32_compare(const void *x1, const void *x2)
|
|
{
|
|
const range_seg32_t *r1 = x1;
|
|
const range_seg32_t *r2 = x2;
|
|
|
|
uint64_t rs_size1 = r1->rs_end - r1->rs_start;
|
|
uint64_t rs_size2 = r2->rs_end - r2->rs_start;
|
|
|
|
int cmp = TREE_CMP(rs_size1, rs_size2);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (TREE_CMP(r1->rs_start, r2->rs_start));
|
|
}
|
|
|
|
/*
|
|
* Comparison function for the private size-ordered tree using 64-bit
|
|
* ranges. Tree is sorted by size, larger sizes at the end of the tree.
|
|
*/
|
|
static int
|
|
metaslab_rangesize64_compare(const void *x1, const void *x2)
|
|
{
|
|
const range_seg64_t *r1 = x1;
|
|
const range_seg64_t *r2 = x2;
|
|
|
|
uint64_t rs_size1 = r1->rs_end - r1->rs_start;
|
|
uint64_t rs_size2 = r2->rs_end - r2->rs_start;
|
|
|
|
int cmp = TREE_CMP(rs_size1, rs_size2);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (TREE_CMP(r1->rs_start, r2->rs_start));
|
|
}
|
|
typedef struct metaslab_rt_arg {
|
|
zfs_btree_t *mra_bt;
|
|
uint32_t mra_floor_shift;
|
|
} metaslab_rt_arg_t;
|
|
|
|
struct mssa_arg {
|
|
range_tree_t *rt;
|
|
metaslab_rt_arg_t *mra;
|
|
};
|
|
|
|
static void
|
|
metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
struct mssa_arg *mssap = arg;
|
|
range_tree_t *rt = mssap->rt;
|
|
metaslab_rt_arg_t *mrap = mssap->mra;
|
|
range_seg_max_t seg = {0};
|
|
rs_set_start(&seg, rt, start);
|
|
rs_set_end(&seg, rt, start + size);
|
|
metaslab_rt_add(rt, &seg, mrap);
|
|
}
|
|
|
|
static void
|
|
metaslab_size_tree_full_load(range_tree_t *rt)
|
|
{
|
|
metaslab_rt_arg_t *mrap = rt->rt_arg;
|
|
#ifdef _METASLAB_TRACING
|
|
METASLABSTAT_BUMP(metaslabstat_reload_tree);
|
|
#endif
|
|
ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
|
|
mrap->mra_floor_shift = 0;
|
|
struct mssa_arg arg = {0};
|
|
arg.rt = rt;
|
|
arg.mra = mrap;
|
|
range_tree_walk(rt, metaslab_size_sorted_add, &arg);
|
|
}
|
|
|
|
/*
|
|
* Create any block allocator specific components. The current allocators
|
|
* rely on using both a size-ordered range_tree_t and an array of uint64_t's.
|
|
*/
|
|
/* ARGSUSED */
|
|
static void
|
|
metaslab_rt_create(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_rt_arg_t *mrap = arg;
|
|
zfs_btree_t *size_tree = mrap->mra_bt;
|
|
|
|
size_t size;
|
|
int (*compare) (const void *, const void *);
|
|
switch (rt->rt_type) {
|
|
case RANGE_SEG32:
|
|
size = sizeof (range_seg32_t);
|
|
compare = metaslab_rangesize32_compare;
|
|
break;
|
|
case RANGE_SEG64:
|
|
size = sizeof (range_seg64_t);
|
|
compare = metaslab_rangesize64_compare;
|
|
break;
|
|
default:
|
|
panic("Invalid range seg type %d", rt->rt_type);
|
|
}
|
|
zfs_btree_create(size_tree, compare, size);
|
|
mrap->mra_floor_shift = metaslab_by_size_min_shift;
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
metaslab_rt_destroy(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_rt_arg_t *mrap = arg;
|
|
zfs_btree_t *size_tree = mrap->mra_bt;
|
|
|
|
zfs_btree_destroy(size_tree);
|
|
kmem_free(mrap, sizeof (*mrap));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
|
|
{
|
|
metaslab_rt_arg_t *mrap = arg;
|
|
zfs_btree_t *size_tree = mrap->mra_bt;
|
|
|
|
if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
|
|
(1 << mrap->mra_floor_shift))
|
|
return;
|
|
|
|
zfs_btree_add(size_tree, rs);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
|
|
{
|
|
metaslab_rt_arg_t *mrap = arg;
|
|
zfs_btree_t *size_tree = mrap->mra_bt;
|
|
|
|
if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 <<
|
|
mrap->mra_floor_shift))
|
|
return;
|
|
|
|
zfs_btree_remove(size_tree, rs);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
metaslab_rt_vacate(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_rt_arg_t *mrap = arg;
|
|
zfs_btree_t *size_tree = mrap->mra_bt;
|
|
zfs_btree_clear(size_tree);
|
|
zfs_btree_destroy(size_tree);
|
|
|
|
metaslab_rt_create(rt, arg);
|
|
}
|
|
|
|
static range_tree_ops_t metaslab_rt_ops = {
|
|
.rtop_create = metaslab_rt_create,
|
|
.rtop_destroy = metaslab_rt_destroy,
|
|
.rtop_add = metaslab_rt_add,
|
|
.rtop_remove = metaslab_rt_remove,
|
|
.rtop_vacate = metaslab_rt_vacate
|
|
};
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Common allocator routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Return the maximum contiguous segment within the metaslab.
|
|
*/
|
|
uint64_t
|
|
metaslab_largest_allocatable(metaslab_t *msp)
|
|
{
|
|
zfs_btree_t *t = &msp->ms_allocatable_by_size;
|
|
range_seg_t *rs;
|
|
|
|
if (t == NULL)
|
|
return (0);
|
|
if (zfs_btree_numnodes(t) == 0)
|
|
metaslab_size_tree_full_load(msp->ms_allocatable);
|
|
|
|
rs = zfs_btree_last(t, NULL);
|
|
if (rs == NULL)
|
|
return (0);
|
|
|
|
return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
|
|
msp->ms_allocatable));
|
|
}
|
|
|
|
/*
|
|
* Return the maximum contiguous segment within the unflushed frees of this
|
|
* metaslab.
|
|
*/
|
|
static uint64_t
|
|
metaslab_largest_unflushed_free(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if (msp->ms_unflushed_frees == NULL)
|
|
return (0);
|
|
|
|
if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
|
|
metaslab_size_tree_full_load(msp->ms_unflushed_frees);
|
|
range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
|
|
NULL);
|
|
if (rs == NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* When a range is freed from the metaslab, that range is added to
|
|
* both the unflushed frees and the deferred frees. While the block
|
|
* will eventually be usable, if the metaslab were loaded the range
|
|
* would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
|
|
* txgs had passed. As a result, when attempting to estimate an upper
|
|
* bound for the largest currently-usable free segment in the
|
|
* metaslab, we need to not consider any ranges currently in the defer
|
|
* trees. This algorithm approximates the largest available chunk in
|
|
* the largest range in the unflushed_frees tree by taking the first
|
|
* chunk. While this may be a poor estimate, it should only remain so
|
|
* briefly and should eventually self-correct as frees are no longer
|
|
* deferred. Similar logic applies to the ms_freed tree. See
|
|
* metaslab_load() for more details.
|
|
*
|
|
* There are two primary sources of inaccuracy in this estimate. Both
|
|
* are tolerated for performance reasons. The first source is that we
|
|
* only check the largest segment for overlaps. Smaller segments may
|
|
* have more favorable overlaps with the other trees, resulting in
|
|
* larger usable chunks. Second, we only look at the first chunk in
|
|
* the largest segment; there may be other usable chunks in the
|
|
* largest segment, but we ignore them.
|
|
*/
|
|
uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
|
|
uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
uint64_t start = 0;
|
|
uint64_t size = 0;
|
|
boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
|
|
rsize, &start, &size);
|
|
if (found) {
|
|
if (rstart == start)
|
|
return (0);
|
|
rsize = start - rstart;
|
|
}
|
|
}
|
|
|
|
uint64_t start = 0;
|
|
uint64_t size = 0;
|
|
boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
|
|
rsize, &start, &size);
|
|
if (found)
|
|
rsize = start - rstart;
|
|
|
|
return (rsize);
|
|
}
|
|
|
|
static range_seg_t *
|
|
metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
|
|
uint64_t size, zfs_btree_index_t *where)
|
|
{
|
|
range_seg_t *rs;
|
|
range_seg_max_t rsearch;
|
|
|
|
rs_set_start(&rsearch, rt, start);
|
|
rs_set_end(&rsearch, rt, start + size);
|
|
|
|
rs = zfs_btree_find(t, &rsearch, where);
|
|
if (rs == NULL) {
|
|
rs = zfs_btree_next(t, where, where);
|
|
}
|
|
|
|
return (rs);
|
|
}
|
|
|
|
#if defined(WITH_DF_BLOCK_ALLOCATOR) || \
|
|
defined(WITH_CF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* This is a helper function that can be used by the allocator to find a
|
|
* suitable block to allocate. This will search the specified B-tree looking
|
|
* for a block that matches the specified criteria.
|
|
*/
|
|
static uint64_t
|
|
metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
|
|
uint64_t max_search)
|
|
{
|
|
if (*cursor == 0)
|
|
*cursor = rt->rt_start;
|
|
zfs_btree_t *bt = &rt->rt_root;
|
|
zfs_btree_index_t where;
|
|
range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
|
|
uint64_t first_found;
|
|
int count_searched = 0;
|
|
|
|
if (rs != NULL)
|
|
first_found = rs_get_start(rs, rt);
|
|
|
|
while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
|
|
max_search || count_searched < metaslab_min_search_count)) {
|
|
uint64_t offset = rs_get_start(rs, rt);
|
|
if (offset + size <= rs_get_end(rs, rt)) {
|
|
*cursor = offset + size;
|
|
return (offset);
|
|
}
|
|
rs = zfs_btree_next(bt, &where, &where);
|
|
count_searched++;
|
|
}
|
|
|
|
*cursor = 0;
|
|
return (-1ULL);
|
|
}
|
|
#endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_DF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* Dynamic Fit (df) block allocator
|
|
*
|
|
* Search for a free chunk of at least this size, starting from the last
|
|
* offset (for this alignment of block) looking for up to
|
|
* metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
|
|
* found within 16MB, then return a free chunk of exactly the requested size (or
|
|
* larger).
|
|
*
|
|
* If it seems like searching from the last offset will be unproductive, skip
|
|
* that and just return a free chunk of exactly the requested size (or larger).
|
|
* This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
|
|
* mechanism is probably not very useful and may be removed in the future.
|
|
*
|
|
* The behavior when not searching can be changed to return the largest free
|
|
* chunk, instead of a free chunk of exactly the requested size, by setting
|
|
* metaslab_df_use_largest_segment.
|
|
* ==========================================================================
|
|
*/
|
|
static uint64_t
|
|
metaslab_df_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
/*
|
|
* Find the largest power of 2 block size that evenly divides the
|
|
* requested size. This is used to try to allocate blocks with similar
|
|
* alignment from the same area of the metaslab (i.e. same cursor
|
|
* bucket) but it does not guarantee that other allocations sizes
|
|
* may exist in the same region.
|
|
*/
|
|
uint64_t align = size & -size;
|
|
uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
|
|
range_tree_t *rt = msp->ms_allocatable;
|
|
int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
|
|
uint64_t offset;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* If we're running low on space, find a segment based on size,
|
|
* rather than iterating based on offset.
|
|
*/
|
|
if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
|
|
free_pct < metaslab_df_free_pct) {
|
|
offset = -1;
|
|
} else {
|
|
offset = metaslab_block_picker(rt,
|
|
cursor, size, metaslab_df_max_search);
|
|
}
|
|
|
|
if (offset == -1) {
|
|
range_seg_t *rs;
|
|
if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
|
|
metaslab_size_tree_full_load(msp->ms_allocatable);
|
|
if (metaslab_df_use_largest_segment) {
|
|
/* use largest free segment */
|
|
rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
|
|
} else {
|
|
zfs_btree_index_t where;
|
|
/* use segment of this size, or next largest */
|
|
#ifdef _METASLAB_TRACING
|
|
metaslab_rt_arg_t *mrap = msp->ms_allocatable->rt_arg;
|
|
if (size < (1 << mrap->mra_floor_shift)) {
|
|
METASLABSTAT_BUMP(
|
|
metaslabstat_df_find_under_floor);
|
|
}
|
|
#endif
|
|
rs = metaslab_block_find(&msp->ms_allocatable_by_size,
|
|
rt, msp->ms_start, size, &where);
|
|
}
|
|
if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
|
|
rt)) {
|
|
offset = rs_get_start(rs, rt);
|
|
*cursor = offset + size;
|
|
}
|
|
}
|
|
|
|
return (offset);
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_df_ops = {
|
|
metaslab_df_alloc
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
|
|
#endif /* WITH_DF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_CF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* Cursor fit block allocator -
|
|
* Select the largest region in the metaslab, set the cursor to the beginning
|
|
* of the range and the cursor_end to the end of the range. As allocations
|
|
* are made advance the cursor. Continue allocating from the cursor until
|
|
* the range is exhausted and then find a new range.
|
|
* ==========================================================================
|
|
*/
|
|
static uint64_t
|
|
metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
range_tree_t *rt = msp->ms_allocatable;
|
|
zfs_btree_t *t = &msp->ms_allocatable_by_size;
|
|
uint64_t *cursor = &msp->ms_lbas[0];
|
|
uint64_t *cursor_end = &msp->ms_lbas[1];
|
|
uint64_t offset = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
ASSERT3U(*cursor_end, >=, *cursor);
|
|
|
|
if ((*cursor + size) > *cursor_end) {
|
|
range_seg_t *rs;
|
|
|
|
if (zfs_btree_numnodes(t) == 0)
|
|
metaslab_size_tree_full_load(msp->ms_allocatable);
|
|
rs = zfs_btree_last(t, NULL);
|
|
if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
|
|
size)
|
|
return (-1ULL);
|
|
|
|
*cursor = rs_get_start(rs, rt);
|
|
*cursor_end = rs_get_end(rs, rt);
|
|
}
|
|
|
|
offset = *cursor;
|
|
*cursor += size;
|
|
|
|
return (offset);
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_cf_ops = {
|
|
metaslab_cf_alloc
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
|
|
#endif /* WITH_CF_BLOCK_ALLOCATOR */
|
|
|
|
#if defined(WITH_NDF_BLOCK_ALLOCATOR)
|
|
/*
|
|
* ==========================================================================
|
|
* New dynamic fit allocator -
|
|
* Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
|
|
* contiguous blocks. If no region is found then just use the largest segment
|
|
* that remains.
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
|
|
* to request from the allocator.
|
|
*/
|
|
uint64_t metaslab_ndf_clump_shift = 4;
|
|
|
|
static uint64_t
|
|
metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
zfs_btree_t *t = &msp->ms_allocatable->rt_root;
|
|
range_tree_t *rt = msp->ms_allocatable;
|
|
zfs_btree_index_t where;
|
|
range_seg_t *rs;
|
|
range_seg_max_t rsearch;
|
|
uint64_t hbit = highbit64(size);
|
|
uint64_t *cursor = &msp->ms_lbas[hbit - 1];
|
|
uint64_t max_size = metaslab_largest_allocatable(msp);
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if (max_size < size)
|
|
return (-1ULL);
|
|
|
|
rs_set_start(&rsearch, rt, *cursor);
|
|
rs_set_end(&rsearch, rt, *cursor + size);
|
|
|
|
rs = zfs_btree_find(t, &rsearch, &where);
|
|
if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
|
|
t = &msp->ms_allocatable_by_size;
|
|
|
|
rs_set_start(&rsearch, rt, 0);
|
|
rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
|
|
metaslab_ndf_clump_shift)));
|
|
|
|
rs = zfs_btree_find(t, &rsearch, &where);
|
|
if (rs == NULL)
|
|
rs = zfs_btree_next(t, &where, &where);
|
|
ASSERT(rs != NULL);
|
|
}
|
|
|
|
if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
|
|
*cursor = rs_get_start(rs, rt) + size;
|
|
return (rs_get_start(rs, rt));
|
|
}
|
|
return (-1ULL);
|
|
}
|
|
|
|
static metaslab_ops_t metaslab_ndf_ops = {
|
|
metaslab_ndf_alloc
|
|
};
|
|
|
|
metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
|
|
#endif /* WITH_NDF_BLOCK_ALLOCATOR */
|
|
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslabs
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Wait for any in-progress metaslab loads to complete.
|
|
*/
|
|
static void
|
|
metaslab_load_wait(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
while (msp->ms_loading) {
|
|
ASSERT(!msp->ms_loaded);
|
|
cv_wait(&msp->ms_load_cv, &msp->ms_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wait for any in-progress flushing to complete.
|
|
*/
|
|
static void
|
|
metaslab_flush_wait(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
while (msp->ms_flushing)
|
|
cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
|
|
}
|
|
|
|
static unsigned int
|
|
metaslab_idx_func(multilist_t *ml, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
return (msp->ms_id % multilist_get_num_sublists(ml));
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_allocated_space(metaslab_t *msp)
|
|
{
|
|
return (msp->ms_allocated_space);
|
|
}
|
|
|
|
/*
|
|
* Verify that the space accounting on disk matches the in-core range_trees.
|
|
*/
|
|
static void
|
|
metaslab_verify_space(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
uint64_t allocating = 0;
|
|
uint64_t sm_free_space, msp_free_space;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(!msp->ms_condensing);
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
|
|
return;
|
|
|
|
/*
|
|
* We can only verify the metaslab space when we're called
|
|
* from syncing context with a loaded metaslab that has an
|
|
* allocated space map. Calling this in non-syncing context
|
|
* does not provide a consistent view of the metaslab since
|
|
* we're performing allocations in the future.
|
|
*/
|
|
if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
|
|
!msp->ms_loaded)
|
|
return;
|
|
|
|
/*
|
|
* Even though the smp_alloc field can get negative,
|
|
* when it comes to a metaslab's space map, that should
|
|
* never be the case.
|
|
*/
|
|
ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
|
|
|
|
ASSERT3U(space_map_allocated(msp->ms_sm), >=,
|
|
range_tree_space(msp->ms_unflushed_frees));
|
|
|
|
ASSERT3U(metaslab_allocated_space(msp), ==,
|
|
space_map_allocated(msp->ms_sm) +
|
|
range_tree_space(msp->ms_unflushed_allocs) -
|
|
range_tree_space(msp->ms_unflushed_frees));
|
|
|
|
sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
|
|
|
|
/*
|
|
* Account for future allocations since we would have
|
|
* already deducted that space from the ms_allocatable.
|
|
*/
|
|
for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
|
|
allocating +=
|
|
range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
|
|
}
|
|
ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
|
|
msp->ms_allocating_total);
|
|
|
|
ASSERT3U(msp->ms_deferspace, ==,
|
|
range_tree_space(msp->ms_defer[0]) +
|
|
range_tree_space(msp->ms_defer[1]));
|
|
|
|
msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
|
|
msp->ms_deferspace + range_tree_space(msp->ms_freed);
|
|
|
|
VERIFY3U(sm_free_space, ==, msp_free_space);
|
|
}
|
|
|
|
static void
|
|
metaslab_aux_histograms_clear(metaslab_t *msp)
|
|
{
|
|
/*
|
|
* Auxiliary histograms are only cleared when resetting them,
|
|
* which can only happen while the metaslab is loaded.
|
|
*/
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++)
|
|
bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t]));
|
|
}
|
|
|
|
static void
|
|
metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
|
|
range_tree_t *rt)
|
|
{
|
|
/*
|
|
* This is modeled after space_map_histogram_add(), so refer to that
|
|
* function for implementation details. We want this to work like
|
|
* the space map histogram, and not the range tree histogram, as we
|
|
* are essentially constructing a delta that will be later subtracted
|
|
* from the space map histogram.
|
|
*/
|
|
int idx = 0;
|
|
for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
ASSERT3U(i, >=, idx + shift);
|
|
histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
|
|
|
|
if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
|
|
ASSERT3U(idx + shift, ==, i);
|
|
idx++;
|
|
ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called at every sync pass that the metaslab gets synced.
|
|
*
|
|
* The reason is that we want our auxiliary histograms to be updated
|
|
* wherever the metaslab's space map histogram is updated. This way
|
|
* we stay consistent on which parts of the metaslab space map's
|
|
* histogram are currently not available for allocations (e.g because
|
|
* they are in the defer, freed, and freeing trees).
|
|
*/
|
|
static void
|
|
metaslab_aux_histograms_update(metaslab_t *msp)
|
|
{
|
|
space_map_t *sm = msp->ms_sm;
|
|
ASSERT(sm != NULL);
|
|
|
|
/*
|
|
* This is similar to the metaslab's space map histogram updates
|
|
* that take place in metaslab_sync(). The only difference is that
|
|
* we only care about segments that haven't made it into the
|
|
* ms_allocatable tree yet.
|
|
*/
|
|
if (msp->ms_loaded) {
|
|
metaslab_aux_histograms_clear(msp);
|
|
|
|
metaslab_aux_histogram_add(msp->ms_synchist,
|
|
sm->sm_shift, msp->ms_freed);
|
|
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
metaslab_aux_histogram_add(msp->ms_deferhist[t],
|
|
sm->sm_shift, msp->ms_defer[t]);
|
|
}
|
|
}
|
|
|
|
metaslab_aux_histogram_add(msp->ms_synchist,
|
|
sm->sm_shift, msp->ms_freeing);
|
|
}
|
|
|
|
/*
|
|
* Called every time we are done syncing (writing to) the metaslab,
|
|
* i.e. at the end of each sync pass.
|
|
* [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
|
|
*/
|
|
static void
|
|
metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
space_map_t *sm = msp->ms_sm;
|
|
|
|
if (sm == NULL) {
|
|
/*
|
|
* We came here from metaslab_init() when creating/opening a
|
|
* pool, looking at a metaslab that hasn't had any allocations
|
|
* yet.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is similar to the actions that we take for the ms_freed
|
|
* and ms_defer trees in metaslab_sync_done().
|
|
*/
|
|
uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
|
|
if (defer_allowed) {
|
|
bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index],
|
|
sizeof (msp->ms_synchist));
|
|
} else {
|
|
bzero(msp->ms_deferhist[hist_index],
|
|
sizeof (msp->ms_deferhist[hist_index]));
|
|
}
|
|
bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
|
|
}
|
|
|
|
/*
|
|
* Ensure that the metaslab's weight and fragmentation are consistent
|
|
* with the contents of the histogram (either the range tree's histogram
|
|
* or the space map's depending whether the metaslab is loaded).
|
|
*/
|
|
static void
|
|
metaslab_verify_weight_and_frag(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
|
|
return;
|
|
|
|
/*
|
|
* We can end up here from vdev_remove_complete(), in which case we
|
|
* cannot do these assertions because we hold spa config locks and
|
|
* thus we are not allowed to read from the DMU.
|
|
*
|
|
* We check if the metaslab group has been removed and if that's
|
|
* the case we return immediately as that would mean that we are
|
|
* here from the aforementioned code path.
|
|
*/
|
|
if (msp->ms_group == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Devices being removed always return a weight of 0 and leave
|
|
* fragmentation and ms_max_size as is - there is nothing for
|
|
* us to verify here.
|
|
*/
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
if (vd->vdev_removing)
|
|
return;
|
|
|
|
/*
|
|
* If the metaslab is dirty it probably means that we've done
|
|
* some allocations or frees that have changed our histograms
|
|
* and thus the weight.
|
|
*/
|
|
for (int t = 0; t < TXG_SIZE; t++) {
|
|
if (txg_list_member(&vd->vdev_ms_list, msp, t))
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This verification checks that our in-memory state is consistent
|
|
* with what's on disk. If the pool is read-only then there aren't
|
|
* any changes and we just have the initially-loaded state.
|
|
*/
|
|
if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
|
|
return;
|
|
|
|
/* some extra verification for in-core tree if you can */
|
|
if (msp->ms_loaded) {
|
|
range_tree_stat_verify(msp->ms_allocatable);
|
|
VERIFY(space_map_histogram_verify(msp->ms_sm,
|
|
msp->ms_allocatable));
|
|
}
|
|
|
|
uint64_t weight = msp->ms_weight;
|
|
uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
|
|
boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
|
|
uint64_t frag = msp->ms_fragmentation;
|
|
uint64_t max_segsize = msp->ms_max_size;
|
|
|
|
msp->ms_weight = 0;
|
|
msp->ms_fragmentation = 0;
|
|
|
|
/*
|
|
* This function is used for verification purposes and thus should
|
|
* not introduce any side-effects/mutations on the system's state.
|
|
*
|
|
* Regardless of whether metaslab_weight() thinks this metaslab
|
|
* should be active or not, we want to ensure that the actual weight
|
|
* (and therefore the value of ms_weight) would be the same if it
|
|
* was to be recalculated at this point.
|
|
*
|
|
* In addition we set the nodirty flag so metaslab_weight() does
|
|
* not dirty the metaslab for future TXGs (e.g. when trying to
|
|
* force condensing to upgrade the metaslab spacemaps).
|
|
*/
|
|
msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
|
|
|
|
VERIFY3U(max_segsize, ==, msp->ms_max_size);
|
|
|
|
/*
|
|
* If the weight type changed then there is no point in doing
|
|
* verification. Revert fields to their original values.
|
|
*/
|
|
if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
|
|
(!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
|
|
msp->ms_fragmentation = frag;
|
|
msp->ms_weight = weight;
|
|
return;
|
|
}
|
|
|
|
VERIFY3U(msp->ms_fragmentation, ==, frag);
|
|
VERIFY3U(msp->ms_weight, ==, weight);
|
|
}
|
|
|
|
/*
|
|
* If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
|
|
* this class that was used longest ago, and attempt to unload it. We don't
|
|
* want to spend too much time in this loop to prevent performance
|
|
* degradation, and we expect that most of the time this operation will
|
|
* succeed. Between that and the normal unloading processing during txg sync,
|
|
* we expect this to keep the metaslab memory usage under control.
|
|
*/
|
|
static void
|
|
metaslab_potentially_evict(metaslab_class_t *mc)
|
|
{
|
|
#ifdef _KERNEL
|
|
uint64_t allmem = arc_all_memory();
|
|
uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
|
|
uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
|
|
int tries = 0;
|
|
for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
|
|
tries < multilist_get_num_sublists(mc->mc_metaslab_txg_list) * 2;
|
|
tries++) {
|
|
unsigned int idx = multilist_get_random_index(
|
|
mc->mc_metaslab_txg_list);
|
|
multilist_sublist_t *mls =
|
|
multilist_sublist_lock(mc->mc_metaslab_txg_list, idx);
|
|
metaslab_t *msp = multilist_sublist_head(mls);
|
|
multilist_sublist_unlock(mls);
|
|
while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
|
|
inuse * size) {
|
|
VERIFY3P(mls, ==, multilist_sublist_lock(
|
|
mc->mc_metaslab_txg_list, idx));
|
|
ASSERT3U(idx, ==,
|
|
metaslab_idx_func(mc->mc_metaslab_txg_list, msp));
|
|
|
|
if (!multilist_link_active(&msp->ms_class_txg_node)) {
|
|
multilist_sublist_unlock(mls);
|
|
break;
|
|
}
|
|
metaslab_t *next_msp = multilist_sublist_next(mls, msp);
|
|
multilist_sublist_unlock(mls);
|
|
/*
|
|
* If the metaslab is currently loading there are two
|
|
* cases. If it's the metaslab we're evicting, we
|
|
* can't continue on or we'll panic when we attempt to
|
|
* recursively lock the mutex. If it's another
|
|
* metaslab that's loading, it can be safely skipped,
|
|
* since we know it's very new and therefore not a
|
|
* good eviction candidate. We check later once the
|
|
* lock is held that the metaslab is fully loaded
|
|
* before actually unloading it.
|
|
*/
|
|
if (msp->ms_loading) {
|
|
msp = next_msp;
|
|
inuse =
|
|
spl_kmem_cache_inuse(zfs_btree_leaf_cache);
|
|
continue;
|
|
}
|
|
/*
|
|
* We can't unload metaslabs with no spacemap because
|
|
* they're not ready to be unloaded yet. We can't
|
|
* unload metaslabs with outstanding allocations
|
|
* because doing so could cause the metaslab's weight
|
|
* to decrease while it's unloaded, which violates an
|
|
* invariant that we use to prevent unnecessary
|
|
* loading. We also don't unload metaslabs that are
|
|
* currently active because they are high-weight
|
|
* metaslabs that are likely to be used in the near
|
|
* future.
|
|
*/
|
|
mutex_enter(&msp->ms_lock);
|
|
if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
|
|
msp->ms_allocating_total == 0) {
|
|
metaslab_unload(msp);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
msp = next_msp;
|
|
inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
metaslab_load_impl(metaslab_t *msp)
|
|
{
|
|
int error = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(msp->ms_loading);
|
|
ASSERT(!msp->ms_condensing);
|
|
|
|
/*
|
|
* We temporarily drop the lock to unblock other operations while we
|
|
* are reading the space map. Therefore, metaslab_sync() and
|
|
* metaslab_sync_done() can run at the same time as we do.
|
|
*
|
|
* If we are using the log space maps, metaslab_sync() can't write to
|
|
* the metaslab's space map while we are loading as we only write to
|
|
* it when we are flushing the metaslab, and that can't happen while
|
|
* we are loading it.
|
|
*
|
|
* If we are not using log space maps though, metaslab_sync() can
|
|
* append to the space map while we are loading. Therefore we load
|
|
* only entries that existed when we started the load. Additionally,
|
|
* metaslab_sync_done() has to wait for the load to complete because
|
|
* there are potential races like metaslab_load() loading parts of the
|
|
* space map that are currently being appended by metaslab_sync(). If
|
|
* we didn't, the ms_allocatable would have entries that
|
|
* metaslab_sync_done() would try to re-add later.
|
|
*
|
|
* That's why before dropping the lock we remember the synced length
|
|
* of the metaslab and read up to that point of the space map,
|
|
* ignoring entries appended by metaslab_sync() that happen after we
|
|
* drop the lock.
|
|
*/
|
|
uint64_t length = msp->ms_synced_length;
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
hrtime_t load_start = gethrtime();
|
|
metaslab_rt_arg_t *mrap;
|
|
if (msp->ms_allocatable->rt_arg == NULL) {
|
|
mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
|
|
} else {
|
|
mrap = msp->ms_allocatable->rt_arg;
|
|
msp->ms_allocatable->rt_ops = NULL;
|
|
msp->ms_allocatable->rt_arg = NULL;
|
|
}
|
|
mrap->mra_bt = &msp->ms_allocatable_by_size;
|
|
mrap->mra_floor_shift = metaslab_by_size_min_shift;
|
|
|
|
if (msp->ms_sm != NULL) {
|
|
error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
|
|
SM_FREE, length);
|
|
|
|
/* Now, populate the size-sorted tree. */
|
|
metaslab_rt_create(msp->ms_allocatable, mrap);
|
|
msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
|
|
msp->ms_allocatable->rt_arg = mrap;
|
|
|
|
struct mssa_arg arg = {0};
|
|
arg.rt = msp->ms_allocatable;
|
|
arg.mra = mrap;
|
|
range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
|
|
&arg);
|
|
} else {
|
|
/*
|
|
* Add the size-sorted tree first, since we don't need to load
|
|
* the metaslab from the spacemap.
|
|
*/
|
|
metaslab_rt_create(msp->ms_allocatable, mrap);
|
|
msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
|
|
msp->ms_allocatable->rt_arg = mrap;
|
|
/*
|
|
* The space map has not been allocated yet, so treat
|
|
* all the space in the metaslab as free and add it to the
|
|
* ms_allocatable tree.
|
|
*/
|
|
range_tree_add(msp->ms_allocatable,
|
|
msp->ms_start, msp->ms_size);
|
|
|
|
if (msp->ms_freed != NULL) {
|
|
/*
|
|
* If the ms_sm doesn't exist, this means that this
|
|
* metaslab hasn't gone through metaslab_sync() and
|
|
* thus has never been dirtied. So we shouldn't
|
|
* expect any unflushed allocs or frees from previous
|
|
* TXGs.
|
|
*
|
|
* Note: ms_freed and all the other trees except for
|
|
* the ms_allocatable, can be NULL at this point only
|
|
* if this is a new metaslab of a vdev that just got
|
|
* expanded.
|
|
*/
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We need to grab the ms_sync_lock to prevent metaslab_sync() from
|
|
* changing the ms_sm (or log_sm) and the metaslab's range trees
|
|
* while we are about to use them and populate the ms_allocatable.
|
|
* The ms_lock is insufficient for this because metaslab_sync() doesn't
|
|
* hold the ms_lock while writing the ms_checkpointing tree to disk.
|
|
*/
|
|
mutex_enter(&msp->ms_sync_lock);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
ASSERT(!msp->ms_condensing);
|
|
ASSERT(!msp->ms_flushing);
|
|
|
|
if (error != 0) {
|
|
mutex_exit(&msp->ms_sync_lock);
|
|
return (error);
|
|
}
|
|
|
|
ASSERT3P(msp->ms_group, !=, NULL);
|
|
msp->ms_loaded = B_TRUE;
|
|
|
|
/*
|
|
* Apply all the unflushed changes to ms_allocatable right
|
|
* away so any manipulations we do below have a clear view
|
|
* of what is allocated and what is free.
|
|
*/
|
|
range_tree_walk(msp->ms_unflushed_allocs,
|
|
range_tree_remove, msp->ms_allocatable);
|
|
range_tree_walk(msp->ms_unflushed_frees,
|
|
range_tree_add, msp->ms_allocatable);
|
|
|
|
msp->ms_loaded = B_TRUE;
|
|
|
|
ASSERT3P(msp->ms_group, !=, NULL);
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
if (spa_syncing_log_sm(spa) != NULL) {
|
|
ASSERT(spa_feature_is_enabled(spa,
|
|
SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
/*
|
|
* If we use a log space map we add all the segments
|
|
* that are in ms_unflushed_frees so they are available
|
|
* for allocation.
|
|
*
|
|
* ms_allocatable needs to contain all free segments
|
|
* that are ready for allocations (thus not segments
|
|
* from ms_freeing, ms_freed, and the ms_defer trees).
|
|
* But if we grab the lock in this code path at a sync
|
|
* pass later that 1, then it also contains the
|
|
* segments of ms_freed (they were added to it earlier
|
|
* in this path through ms_unflushed_frees). So we
|
|
* need to remove all the segments that exist in
|
|
* ms_freed from ms_allocatable as they will be added
|
|
* later in metaslab_sync_done().
|
|
*
|
|
* When there's no log space map, the ms_allocatable
|
|
* correctly doesn't contain any segments that exist
|
|
* in ms_freed [see ms_synced_length].
|
|
*/
|
|
range_tree_walk(msp->ms_freed,
|
|
range_tree_remove, msp->ms_allocatable);
|
|
}
|
|
|
|
/*
|
|
* If we are not using the log space map, ms_allocatable
|
|
* contains the segments that exist in the ms_defer trees
|
|
* [see ms_synced_length]. Thus we need to remove them
|
|
* from ms_allocatable as they will be added again in
|
|
* metaslab_sync_done().
|
|
*
|
|
* If we are using the log space map, ms_allocatable still
|
|
* contains the segments that exist in the ms_defer trees.
|
|
* Not because it read them through the ms_sm though. But
|
|
* because these segments are part of ms_unflushed_frees
|
|
* whose segments we add to ms_allocatable earlier in this
|
|
* code path.
|
|
*/
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_walk(msp->ms_defer[t],
|
|
range_tree_remove, msp->ms_allocatable);
|
|
}
|
|
|
|
/*
|
|
* Call metaslab_recalculate_weight_and_sort() now that the
|
|
* metaslab is loaded so we get the metaslab's real weight.
|
|
*
|
|
* Unless this metaslab was created with older software and
|
|
* has not yet been converted to use segment-based weight, we
|
|
* expect the new weight to be better or equal to the weight
|
|
* that the metaslab had while it was not loaded. This is
|
|
* because the old weight does not take into account the
|
|
* consolidation of adjacent segments between TXGs. [see
|
|
* comment for ms_synchist and ms_deferhist[] for more info]
|
|
*/
|
|
uint64_t weight = msp->ms_weight;
|
|
uint64_t max_size = msp->ms_max_size;
|
|
metaslab_recalculate_weight_and_sort(msp);
|
|
if (!WEIGHT_IS_SPACEBASED(weight))
|
|
ASSERT3U(weight, <=, msp->ms_weight);
|
|
msp->ms_max_size = metaslab_largest_allocatable(msp);
|
|
ASSERT3U(max_size, <=, msp->ms_max_size);
|
|
hrtime_t load_end = gethrtime();
|
|
msp->ms_load_time = load_end;
|
|
zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
|
|
"ms_id %llu, smp_length %llu, "
|
|
"unflushed_allocs %llu, unflushed_frees %llu, "
|
|
"freed %llu, defer %llu + %llu, unloaded time %llu ms, "
|
|
"loading_time %lld ms, ms_max_size %llu, "
|
|
"max size error %lld, "
|
|
"old_weight %llx, new_weight %llx",
|
|
spa_syncing_txg(spa), spa_name(spa),
|
|
msp->ms_group->mg_vd->vdev_id, msp->ms_id,
|
|
space_map_length(msp->ms_sm),
|
|
range_tree_space(msp->ms_unflushed_allocs),
|
|
range_tree_space(msp->ms_unflushed_frees),
|
|
range_tree_space(msp->ms_freed),
|
|
range_tree_space(msp->ms_defer[0]),
|
|
range_tree_space(msp->ms_defer[1]),
|
|
(longlong_t)((load_start - msp->ms_unload_time) / 1000000),
|
|
(longlong_t)((load_end - load_start) / 1000000),
|
|
msp->ms_max_size, msp->ms_max_size - max_size,
|
|
weight, msp->ms_weight);
|
|
|
|
metaslab_verify_space(msp, spa_syncing_txg(spa));
|
|
mutex_exit(&msp->ms_sync_lock);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
metaslab_load(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* There may be another thread loading the same metaslab, if that's
|
|
* the case just wait until the other thread is done and return.
|
|
*/
|
|
metaslab_load_wait(msp);
|
|
if (msp->ms_loaded)
|
|
return (0);
|
|
VERIFY(!msp->ms_loading);
|
|
ASSERT(!msp->ms_condensing);
|
|
|
|
/*
|
|
* We set the loading flag BEFORE potentially dropping the lock to
|
|
* wait for an ongoing flush (see ms_flushing below). This way other
|
|
* threads know that there is already a thread that is loading this
|
|
* metaslab.
|
|
*/
|
|
msp->ms_loading = B_TRUE;
|
|
|
|
/*
|
|
* Wait for any in-progress flushing to finish as we drop the ms_lock
|
|
* both here (during space_map_load()) and in metaslab_flush() (when
|
|
* we flush our changes to the ms_sm).
|
|
*/
|
|
if (msp->ms_flushing)
|
|
metaslab_flush_wait(msp);
|
|
|
|
/*
|
|
* In the possibility that we were waiting for the metaslab to be
|
|
* flushed (where we temporarily dropped the ms_lock), ensure that
|
|
* no one else loaded the metaslab somehow.
|
|
*/
|
|
ASSERT(!msp->ms_loaded);
|
|
|
|
/*
|
|
* If we're loading a metaslab in the normal class, consider evicting
|
|
* another one to keep our memory usage under the limit defined by the
|
|
* zfs_metaslab_mem_limit tunable.
|
|
*/
|
|
if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
|
|
msp->ms_group->mg_class) {
|
|
metaslab_potentially_evict(msp->ms_group->mg_class);
|
|
}
|
|
|
|
int error = metaslab_load_impl(msp);
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
msp->ms_loading = B_FALSE;
|
|
cv_broadcast(&msp->ms_load_cv);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
metaslab_unload(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* This can happen if a metaslab is selected for eviction (in
|
|
* metaslab_potentially_evict) and then unloaded during spa_sync (via
|
|
* metaslab_class_evict_old).
|
|
*/
|
|
if (!msp->ms_loaded)
|
|
return;
|
|
|
|
range_tree_vacate(msp->ms_allocatable, NULL, NULL);
|
|
msp->ms_loaded = B_FALSE;
|
|
msp->ms_unload_time = gethrtime();
|
|
|
|
msp->ms_activation_weight = 0;
|
|
msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
|
|
|
|
if (msp->ms_group != NULL) {
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
multilist_sublist_t *mls =
|
|
multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
|
|
if (multilist_link_active(&msp->ms_class_txg_node))
|
|
multilist_sublist_remove(mls, msp);
|
|
multilist_sublist_unlock(mls);
|
|
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
|
|
"ms_id %llu, weight %llx, "
|
|
"selected txg %llu (%llu ms ago), alloc_txg %llu, "
|
|
"loaded %llu ms ago, max_size %llu",
|
|
spa_syncing_txg(spa), spa_name(spa),
|
|
msp->ms_group->mg_vd->vdev_id, msp->ms_id,
|
|
msp->ms_weight,
|
|
msp->ms_selected_txg,
|
|
(msp->ms_unload_time - msp->ms_selected_time) / 1000 / 1000,
|
|
msp->ms_alloc_txg,
|
|
(msp->ms_unload_time - msp->ms_load_time) / 1000 / 1000,
|
|
msp->ms_max_size);
|
|
}
|
|
|
|
/*
|
|
* We explicitly recalculate the metaslab's weight based on its space
|
|
* map (as it is now not loaded). We want unload metaslabs to always
|
|
* have their weights calculated from the space map histograms, while
|
|
* loaded ones have it calculated from their in-core range tree
|
|
* [see metaslab_load()]. This way, the weight reflects the information
|
|
* available in-core, whether it is loaded or not.
|
|
*
|
|
* If ms_group == NULL means that we came here from metaslab_fini(),
|
|
* at which point it doesn't make sense for us to do the recalculation
|
|
* and the sorting.
|
|
*/
|
|
if (msp->ms_group != NULL)
|
|
metaslab_recalculate_weight_and_sort(msp);
|
|
}
|
|
|
|
/*
|
|
* We want to optimize the memory use of the per-metaslab range
|
|
* trees. To do this, we store the segments in the range trees in
|
|
* units of sectors, zero-indexing from the start of the metaslab. If
|
|
* the vdev_ms_shift - the vdev_ashift is less than 32, we can store
|
|
* the ranges using two uint32_ts, rather than two uint64_ts.
|
|
*/
|
|
range_seg_type_t
|
|
metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
|
|
uint64_t *start, uint64_t *shift)
|
|
{
|
|
if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
|
|
!zfs_metaslab_force_large_segs) {
|
|
*shift = vdev->vdev_ashift;
|
|
*start = msp->ms_start;
|
|
return (RANGE_SEG32);
|
|
} else {
|
|
*shift = 0;
|
|
*start = 0;
|
|
return (RANGE_SEG64);
|
|
}
|
|
}
|
|
|
|
void
|
|
metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
multilist_sublist_t *mls =
|
|
multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
|
|
if (multilist_link_active(&msp->ms_class_txg_node))
|
|
multilist_sublist_remove(mls, msp);
|
|
msp->ms_selected_txg = txg;
|
|
msp->ms_selected_time = gethrtime();
|
|
multilist_sublist_insert_tail(mls, msp);
|
|
multilist_sublist_unlock(mls);
|
|
}
|
|
|
|
void
|
|
metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
|
|
int64_t defer_delta, int64_t space_delta)
|
|
{
|
|
vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
|
|
|
|
ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
|
|
ASSERT(vd->vdev_ms_count != 0);
|
|
|
|
metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
|
|
vdev_deflated_space(vd, space_delta));
|
|
}
|
|
|
|
int
|
|
metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
|
|
uint64_t txg, metaslab_t **msp)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
metaslab_t *ms;
|
|
int error;
|
|
|
|
ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
|
|
mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
|
|
multilist_link_init(&ms->ms_class_txg_node);
|
|
|
|
ms->ms_id = id;
|
|
ms->ms_start = id << vd->vdev_ms_shift;
|
|
ms->ms_size = 1ULL << vd->vdev_ms_shift;
|
|
ms->ms_allocator = -1;
|
|
ms->ms_new = B_TRUE;
|
|
|
|
/*
|
|
* We only open space map objects that already exist. All others
|
|
* will be opened when we finally allocate an object for it.
|
|
*
|
|
* Note:
|
|
* When called from vdev_expand(), we can't call into the DMU as
|
|
* we are holding the spa_config_lock as a writer and we would
|
|
* deadlock [see relevant comment in vdev_metaslab_init()]. in
|
|
* that case, the object parameter is zero though, so we won't
|
|
* call into the DMU.
|
|
*/
|
|
if (object != 0) {
|
|
error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
|
|
ms->ms_size, vd->vdev_ashift);
|
|
|
|
if (error != 0) {
|
|
kmem_free(ms, sizeof (metaslab_t));
|
|
return (error);
|
|
}
|
|
|
|
ASSERT(ms->ms_sm != NULL);
|
|
ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
|
|
}
|
|
|
|
range_seg_type_t type;
|
|
uint64_t shift, start;
|
|
type = metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
|
|
|
|
/*
|
|
* We create the ms_allocatable here, but we don't create the
|
|
* other range trees until metaslab_sync_done(). This serves
|
|
* two purposes: it allows metaslab_sync_done() to detect the
|
|
* addition of new space; and for debugging, it ensures that
|
|
* we'd data fault on any attempt to use this metaslab before
|
|
* it's ready.
|
|
*/
|
|
ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
|
|
|
|
ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
|
|
|
|
metaslab_group_add(mg, ms);
|
|
metaslab_set_fragmentation(ms, B_FALSE);
|
|
|
|
/*
|
|
* If we're opening an existing pool (txg == 0) or creating
|
|
* a new one (txg == TXG_INITIAL), all space is available now.
|
|
* If we're adding space to an existing pool, the new space
|
|
* does not become available until after this txg has synced.
|
|
* The metaslab's weight will also be initialized when we sync
|
|
* out this txg. This ensures that we don't attempt to allocate
|
|
* from it before we have initialized it completely.
|
|
*/
|
|
if (txg <= TXG_INITIAL) {
|
|
metaslab_sync_done(ms, 0);
|
|
metaslab_space_update(vd, mg->mg_class,
|
|
metaslab_allocated_space(ms), 0, 0);
|
|
}
|
|
|
|
if (txg != 0) {
|
|
vdev_dirty(vd, 0, NULL, txg);
|
|
vdev_dirty(vd, VDD_METASLAB, ms, txg);
|
|
}
|
|
|
|
*msp = ms;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
metaslab_fini_flush_data(metaslab_t *msp)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
|
|
if (metaslab_unflushed_txg(msp) == 0) {
|
|
ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
|
|
==, NULL);
|
|
return;
|
|
}
|
|
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
mutex_enter(&spa->spa_flushed_ms_lock);
|
|
avl_remove(&spa->spa_metaslabs_by_flushed, msp);
|
|
mutex_exit(&spa->spa_flushed_ms_lock);
|
|
|
|
spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
|
|
spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp));
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_unflushed_changes_memused(metaslab_t *ms)
|
|
{
|
|
return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
|
|
range_tree_numsegs(ms->ms_unflushed_frees)) *
|
|
ms->ms_unflushed_allocs->rt_root.bt_elem_size);
|
|
}
|
|
|
|
void
|
|
metaslab_fini(metaslab_t *msp)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
metaslab_fini_flush_data(msp);
|
|
|
|
metaslab_group_remove(mg, msp);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
VERIFY(msp->ms_group == NULL);
|
|
metaslab_space_update(vd, mg->mg_class,
|
|
-metaslab_allocated_space(msp), 0, -msp->ms_size);
|
|
|
|
space_map_close(msp->ms_sm);
|
|
msp->ms_sm = NULL;
|
|
|
|
metaslab_unload(msp);
|
|
range_tree_destroy(msp->ms_allocatable);
|
|
range_tree_destroy(msp->ms_freeing);
|
|
range_tree_destroy(msp->ms_freed);
|
|
|
|
ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
|
|
metaslab_unflushed_changes_memused(msp));
|
|
spa->spa_unflushed_stats.sus_memused -=
|
|
metaslab_unflushed_changes_memused(msp);
|
|
range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
|
|
range_tree_destroy(msp->ms_unflushed_allocs);
|
|
range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
|
|
range_tree_destroy(msp->ms_unflushed_frees);
|
|
|
|
for (int t = 0; t < TXG_SIZE; t++) {
|
|
range_tree_destroy(msp->ms_allocating[t]);
|
|
}
|
|
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_destroy(msp->ms_defer[t]);
|
|
}
|
|
ASSERT0(msp->ms_deferspace);
|
|
|
|
range_tree_destroy(msp->ms_checkpointing);
|
|
|
|
for (int t = 0; t < TXG_SIZE; t++)
|
|
ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
|
|
|
|
range_tree_vacate(msp->ms_trim, NULL, NULL);
|
|
range_tree_destroy(msp->ms_trim);
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
cv_destroy(&msp->ms_load_cv);
|
|
cv_destroy(&msp->ms_flush_cv);
|
|
mutex_destroy(&msp->ms_lock);
|
|
mutex_destroy(&msp->ms_sync_lock);
|
|
ASSERT3U(msp->ms_allocator, ==, -1);
|
|
|
|
kmem_free(msp, sizeof (metaslab_t));
|
|
}
|
|
|
|
#define FRAGMENTATION_TABLE_SIZE 17
|
|
|
|
/*
|
|
* This table defines a segment size based fragmentation metric that will
|
|
* allow each metaslab to derive its own fragmentation value. This is done
|
|
* by calculating the space in each bucket of the spacemap histogram and
|
|
* multiplying that by the fragmentation metric in this table. Doing
|
|
* this for all buckets and dividing it by the total amount of free
|
|
* space in this metaslab (i.e. the total free space in all buckets) gives
|
|
* us the fragmentation metric. This means that a high fragmentation metric
|
|
* equates to most of the free space being comprised of small segments.
|
|
* Conversely, if the metric is low, then most of the free space is in
|
|
* large segments. A 10% change in fragmentation equates to approximately
|
|
* double the number of segments.
|
|
*
|
|
* This table defines 0% fragmented space using 16MB segments. Testing has
|
|
* shown that segments that are greater than or equal to 16MB do not suffer
|
|
* from drastic performance problems. Using this value, we derive the rest
|
|
* of the table. Since the fragmentation value is never stored on disk, it
|
|
* is possible to change these calculations in the future.
|
|
*/
|
|
int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
|
|
100, /* 512B */
|
|
100, /* 1K */
|
|
98, /* 2K */
|
|
95, /* 4K */
|
|
90, /* 8K */
|
|
80, /* 16K */
|
|
70, /* 32K */
|
|
60, /* 64K */
|
|
50, /* 128K */
|
|
40, /* 256K */
|
|
30, /* 512K */
|
|
20, /* 1M */
|
|
15, /* 2M */
|
|
10, /* 4M */
|
|
5, /* 8M */
|
|
0 /* 16M */
|
|
};
|
|
|
|
/*
|
|
* Calculate the metaslab's fragmentation metric and set ms_fragmentation.
|
|
* Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
|
|
* been upgraded and does not support this metric. Otherwise, the return
|
|
* value should be in the range [0, 100].
|
|
*/
|
|
static void
|
|
metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
uint64_t fragmentation = 0;
|
|
uint64_t total = 0;
|
|
boolean_t feature_enabled = spa_feature_is_enabled(spa,
|
|
SPA_FEATURE_SPACEMAP_HISTOGRAM);
|
|
|
|
if (!feature_enabled) {
|
|
msp->ms_fragmentation = ZFS_FRAG_INVALID;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A null space map means that the entire metaslab is free
|
|
* and thus is not fragmented.
|
|
*/
|
|
if (msp->ms_sm == NULL) {
|
|
msp->ms_fragmentation = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If this metaslab's space map has not been upgraded, flag it
|
|
* so that we upgrade next time we encounter it.
|
|
*/
|
|
if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
|
|
uint64_t txg = spa_syncing_txg(spa);
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
|
|
/*
|
|
* If we've reached the final dirty txg, then we must
|
|
* be shutting down the pool. We don't want to dirty
|
|
* any data past this point so skip setting the condense
|
|
* flag. We can retry this action the next time the pool
|
|
* is imported. We also skip marking this metaslab for
|
|
* condensing if the caller has explicitly set nodirty.
|
|
*/
|
|
if (!nodirty &&
|
|
spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
|
|
msp->ms_condense_wanted = B_TRUE;
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
|
|
zfs_dbgmsg("txg %llu, requesting force condense: "
|
|
"ms_id %llu, vdev_id %llu", txg, msp->ms_id,
|
|
vd->vdev_id);
|
|
}
|
|
msp->ms_fragmentation = ZFS_FRAG_INVALID;
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
uint64_t space = 0;
|
|
uint8_t shift = msp->ms_sm->sm_shift;
|
|
|
|
int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
|
|
FRAGMENTATION_TABLE_SIZE - 1);
|
|
|
|
if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
|
|
continue;
|
|
|
|
space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
|
|
total += space;
|
|
|
|
ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
|
|
fragmentation += space * zfs_frag_table[idx];
|
|
}
|
|
|
|
if (total > 0)
|
|
fragmentation /= total;
|
|
ASSERT3U(fragmentation, <=, 100);
|
|
|
|
msp->ms_fragmentation = fragmentation;
|
|
}
|
|
|
|
/*
|
|
* Compute a weight -- a selection preference value -- for the given metaslab.
|
|
* This is based on the amount of free space, the level of fragmentation,
|
|
* the LBA range, and whether the metaslab is loaded.
|
|
*/
|
|
static uint64_t
|
|
metaslab_space_weight(metaslab_t *msp)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
uint64_t weight, space;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* The baseline weight is the metaslab's free space.
|
|
*/
|
|
space = msp->ms_size - metaslab_allocated_space(msp);
|
|
|
|
if (metaslab_fragmentation_factor_enabled &&
|
|
msp->ms_fragmentation != ZFS_FRAG_INVALID) {
|
|
/*
|
|
* Use the fragmentation information to inversely scale
|
|
* down the baseline weight. We need to ensure that we
|
|
* don't exclude this metaslab completely when it's 100%
|
|
* fragmented. To avoid this we reduce the fragmented value
|
|
* by 1.
|
|
*/
|
|
space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
|
|
|
|
/*
|
|
* If space < SPA_MINBLOCKSIZE, then we will not allocate from
|
|
* this metaslab again. The fragmentation metric may have
|
|
* decreased the space to something smaller than
|
|
* SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
|
|
* so that we can consume any remaining space.
|
|
*/
|
|
if (space > 0 && space < SPA_MINBLOCKSIZE)
|
|
space = SPA_MINBLOCKSIZE;
|
|
}
|
|
weight = space;
|
|
|
|
/*
|
|
* Modern disks have uniform bit density and constant angular velocity.
|
|
* Therefore, the outer recording zones are faster (higher bandwidth)
|
|
* than the inner zones by the ratio of outer to inner track diameter,
|
|
* which is typically around 2:1. We account for this by assigning
|
|
* higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
|
|
* In effect, this means that we'll select the metaslab with the most
|
|
* free bandwidth rather than simply the one with the most free space.
|
|
*/
|
|
if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
|
|
weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
|
|
ASSERT(weight >= space && weight <= 2 * space);
|
|
}
|
|
|
|
/*
|
|
* If this metaslab is one we're actively using, adjust its
|
|
* weight to make it preferable to any inactive metaslab so
|
|
* we'll polish it off. If the fragmentation on this metaslab
|
|
* has exceed our threshold, then don't mark it active.
|
|
*/
|
|
if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
|
|
msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
|
|
weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
}
|
|
|
|
WEIGHT_SET_SPACEBASED(weight);
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Return the weight of the specified metaslab, according to the segment-based
|
|
* weighting algorithm. The metaslab must be loaded. This function can
|
|
* be called within a sync pass since it relies only on the metaslab's
|
|
* range tree which is always accurate when the metaslab is loaded.
|
|
*/
|
|
static uint64_t
|
|
metaslab_weight_from_range_tree(metaslab_t *msp)
|
|
{
|
|
uint64_t weight = 0;
|
|
uint32_t segments = 0;
|
|
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
|
|
i--) {
|
|
uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
|
|
int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
|
|
|
|
segments <<= 1;
|
|
segments += msp->ms_allocatable->rt_histogram[i];
|
|
|
|
/*
|
|
* The range tree provides more precision than the space map
|
|
* and must be downgraded so that all values fit within the
|
|
* space map's histogram. This allows us to compare loaded
|
|
* vs. unloaded metaslabs to determine which metaslab is
|
|
* considered "best".
|
|
*/
|
|
if (i > max_idx)
|
|
continue;
|
|
|
|
if (segments != 0) {
|
|
WEIGHT_SET_COUNT(weight, segments);
|
|
WEIGHT_SET_INDEX(weight, i);
|
|
WEIGHT_SET_ACTIVE(weight, 0);
|
|
break;
|
|
}
|
|
}
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Calculate the weight based on the on-disk histogram. Should be applied
|
|
* only to unloaded metaslabs (i.e no incoming allocations) in-order to
|
|
* give results consistent with the on-disk state
|
|
*/
|
|
static uint64_t
|
|
metaslab_weight_from_spacemap(metaslab_t *msp)
|
|
{
|
|
space_map_t *sm = msp->ms_sm;
|
|
ASSERT(!msp->ms_loaded);
|
|
ASSERT(sm != NULL);
|
|
ASSERT3U(space_map_object(sm), !=, 0);
|
|
ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
|
|
|
|
/*
|
|
* Create a joint histogram from all the segments that have made
|
|
* it to the metaslab's space map histogram, that are not yet
|
|
* available for allocation because they are still in the freeing
|
|
* pipeline (e.g. freeing, freed, and defer trees). Then subtract
|
|
* these segments from the space map's histogram to get a more
|
|
* accurate weight.
|
|
*/
|
|
uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
|
|
deferspace_histogram[i] += msp->ms_synchist[i];
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
deferspace_histogram[i] += msp->ms_deferhist[t][i];
|
|
}
|
|
}
|
|
|
|
uint64_t weight = 0;
|
|
for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
|
|
ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
|
|
deferspace_histogram[i]);
|
|
uint64_t count =
|
|
sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
|
|
if (count != 0) {
|
|
WEIGHT_SET_COUNT(weight, count);
|
|
WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
|
|
WEIGHT_SET_ACTIVE(weight, 0);
|
|
break;
|
|
}
|
|
}
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Compute a segment-based weight for the specified metaslab. The weight
|
|
* is determined by highest bucket in the histogram. The information
|
|
* for the highest bucket is encoded into the weight value.
|
|
*/
|
|
static uint64_t
|
|
metaslab_segment_weight(metaslab_t *msp)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
uint64_t weight = 0;
|
|
uint8_t shift = mg->mg_vd->vdev_ashift;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* The metaslab is completely free.
|
|
*/
|
|
if (metaslab_allocated_space(msp) == 0) {
|
|
int idx = highbit64(msp->ms_size) - 1;
|
|
int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
|
|
|
|
if (idx < max_idx) {
|
|
WEIGHT_SET_COUNT(weight, 1ULL);
|
|
WEIGHT_SET_INDEX(weight, idx);
|
|
} else {
|
|
WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
|
|
WEIGHT_SET_INDEX(weight, max_idx);
|
|
}
|
|
WEIGHT_SET_ACTIVE(weight, 0);
|
|
ASSERT(!WEIGHT_IS_SPACEBASED(weight));
|
|
return (weight);
|
|
}
|
|
|
|
ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
|
|
|
|
/*
|
|
* If the metaslab is fully allocated then just make the weight 0.
|
|
*/
|
|
if (metaslab_allocated_space(msp) == msp->ms_size)
|
|
return (0);
|
|
/*
|
|
* If the metaslab is already loaded, then use the range tree to
|
|
* determine the weight. Otherwise, we rely on the space map information
|
|
* to generate the weight.
|
|
*/
|
|
if (msp->ms_loaded) {
|
|
weight = metaslab_weight_from_range_tree(msp);
|
|
} else {
|
|
weight = metaslab_weight_from_spacemap(msp);
|
|
}
|
|
|
|
/*
|
|
* If the metaslab was active the last time we calculated its weight
|
|
* then keep it active. We want to consume the entire region that
|
|
* is associated with this weight.
|
|
*/
|
|
if (msp->ms_activation_weight != 0 && weight != 0)
|
|
WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Determine if we should attempt to allocate from this metaslab. If the
|
|
* metaslab is loaded, then we can determine if the desired allocation
|
|
* can be satisfied by looking at the size of the maximum free segment
|
|
* on that metaslab. Otherwise, we make our decision based on the metaslab's
|
|
* weight. For segment-based weighting we can determine the maximum
|
|
* allocation based on the index encoded in its value. For space-based
|
|
* weights we rely on the entire weight (excluding the weight-type bit).
|
|
*/
|
|
static boolean_t
|
|
metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
|
|
{
|
|
/*
|
|
* If the metaslab is loaded, ms_max_size is definitive and we can use
|
|
* the fast check. If it's not, the ms_max_size is a lower bound (once
|
|
* set), and we should use the fast check as long as we're not in
|
|
* try_hard and it's been less than zfs_metaslab_max_size_cache_sec
|
|
* seconds since the metaslab was unloaded.
|
|
*/
|
|
if (msp->ms_loaded ||
|
|
(msp->ms_max_size != 0 && !try_hard && gethrtime() <
|
|
msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
|
|
return (msp->ms_max_size >= asize);
|
|
|
|
boolean_t should_allocate;
|
|
if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
|
|
/*
|
|
* The metaslab segment weight indicates segments in the
|
|
* range [2^i, 2^(i+1)), where i is the index in the weight.
|
|
* Since the asize might be in the middle of the range, we
|
|
* should attempt the allocation if asize < 2^(i+1).
|
|
*/
|
|
should_allocate = (asize <
|
|
1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
|
|
} else {
|
|
should_allocate = (asize <=
|
|
(msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
|
|
}
|
|
|
|
return (should_allocate);
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_weight(metaslab_t *msp, boolean_t nodirty)
|
|
{
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t weight;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
metaslab_set_fragmentation(msp, nodirty);
|
|
|
|
/*
|
|
* Update the maximum size. If the metaslab is loaded, this will
|
|
* ensure that we get an accurate maximum size if newly freed space
|
|
* has been added back into the free tree. If the metaslab is
|
|
* unloaded, we check if there's a larger free segment in the
|
|
* unflushed frees. This is a lower bound on the largest allocatable
|
|
* segment size. Coalescing of adjacent entries may reveal larger
|
|
* allocatable segments, but we aren't aware of those until loading
|
|
* the space map into a range tree.
|
|
*/
|
|
if (msp->ms_loaded) {
|
|
msp->ms_max_size = metaslab_largest_allocatable(msp);
|
|
} else {
|
|
msp->ms_max_size = MAX(msp->ms_max_size,
|
|
metaslab_largest_unflushed_free(msp));
|
|
}
|
|
|
|
/*
|
|
* Segment-based weighting requires space map histogram support.
|
|
*/
|
|
if (zfs_metaslab_segment_weight_enabled &&
|
|
spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
|
|
(msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
|
|
sizeof (space_map_phys_t))) {
|
|
weight = metaslab_segment_weight(msp);
|
|
} else {
|
|
weight = metaslab_space_weight(msp);
|
|
}
|
|
return (weight);
|
|
}
|
|
|
|
void
|
|
metaslab_recalculate_weight_and_sort(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/* note: we preserve the mask (e.g. indication of primary, etc..) */
|
|
uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
|
|
metaslab_group_sort(msp->ms_group, msp,
|
|
metaslab_weight(msp, B_FALSE) | was_active);
|
|
}
|
|
|
|
static int
|
|
metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
|
|
int allocator, uint64_t activation_weight)
|
|
{
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* If we're activating for the claim code, we don't want to actually
|
|
* set the metaslab up for a specific allocator.
|
|
*/
|
|
if (activation_weight == METASLAB_WEIGHT_CLAIM) {
|
|
ASSERT0(msp->ms_activation_weight);
|
|
msp->ms_activation_weight = msp->ms_weight;
|
|
metaslab_group_sort(mg, msp, msp->ms_weight |
|
|
activation_weight);
|
|
return (0);
|
|
}
|
|
|
|
metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
|
|
&mga->mga_primary : &mga->mga_secondary);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
if (*mspp != NULL) {
|
|
mutex_exit(&mg->mg_lock);
|
|
return (EEXIST);
|
|
}
|
|
|
|
*mspp = msp;
|
|
ASSERT3S(msp->ms_allocator, ==, -1);
|
|
msp->ms_allocator = allocator;
|
|
msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
|
|
|
|
ASSERT0(msp->ms_activation_weight);
|
|
msp->ms_activation_weight = msp->ms_weight;
|
|
metaslab_group_sort_impl(mg, msp,
|
|
msp->ms_weight | activation_weight);
|
|
mutex_exit(&mg->mg_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* The current metaslab is already activated for us so there
|
|
* is nothing to do. Already activated though, doesn't mean
|
|
* that this metaslab is activated for our allocator nor our
|
|
* requested activation weight. The metaslab could have started
|
|
* as an active one for our allocator but changed allocators
|
|
* while we were waiting to grab its ms_lock or we stole it
|
|
* [see find_valid_metaslab()]. This means that there is a
|
|
* possibility of passivating a metaslab of another allocator
|
|
* or from a different activation mask, from this thread.
|
|
*/
|
|
if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
|
|
ASSERT(msp->ms_loaded);
|
|
return (0);
|
|
}
|
|
|
|
int error = metaslab_load(msp);
|
|
if (error != 0) {
|
|
metaslab_group_sort(msp->ms_group, msp, 0);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* When entering metaslab_load() we may have dropped the
|
|
* ms_lock because we were loading this metaslab, or we
|
|
* were waiting for another thread to load it for us. In
|
|
* that scenario, we recheck the weight of the metaslab
|
|
* to see if it was activated by another thread.
|
|
*
|
|
* If the metaslab was activated for another allocator or
|
|
* it was activated with a different activation weight (e.g.
|
|
* we wanted to make it a primary but it was activated as
|
|
* secondary) we return error (EBUSY).
|
|
*
|
|
* If the metaslab was activated for the same allocator
|
|
* and requested activation mask, skip activating it.
|
|
*/
|
|
if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
|
|
if (msp->ms_allocator != allocator)
|
|
return (EBUSY);
|
|
|
|
if ((msp->ms_weight & activation_weight) == 0)
|
|
return (SET_ERROR(EBUSY));
|
|
|
|
EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
|
|
msp->ms_primary);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the metaslab has literally 0 space, it will have weight 0. In
|
|
* that case, don't bother activating it. This can happen if the
|
|
* metaslab had space during find_valid_metaslab, but another thread
|
|
* loaded it and used all that space while we were waiting to grab the
|
|
* lock.
|
|
*/
|
|
if (msp->ms_weight == 0) {
|
|
ASSERT0(range_tree_space(msp->ms_allocatable));
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
if ((error = metaslab_activate_allocator(msp->ms_group, msp,
|
|
allocator, activation_weight)) != 0) {
|
|
return (error);
|
|
}
|
|
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
|
|
uint64_t weight)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
|
|
metaslab_group_sort(mg, msp, weight);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
ASSERT3P(msp->ms_group, ==, mg);
|
|
ASSERT3S(0, <=, msp->ms_allocator);
|
|
ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
|
|
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
|
|
if (msp->ms_primary) {
|
|
ASSERT3P(mga->mga_primary, ==, msp);
|
|
ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
|
|
mga->mga_primary = NULL;
|
|
} else {
|
|
ASSERT3P(mga->mga_secondary, ==, msp);
|
|
ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
|
|
mga->mga_secondary = NULL;
|
|
}
|
|
msp->ms_allocator = -1;
|
|
metaslab_group_sort_impl(mg, msp, weight);
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_passivate(metaslab_t *msp, uint64_t weight)
|
|
{
|
|
uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
|
|
|
|
/*
|
|
* If size < SPA_MINBLOCKSIZE, then we will not allocate from
|
|
* this metaslab again. In that case, it had better be empty,
|
|
* or we would be leaving space on the table.
|
|
*/
|
|
ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
|
|
size >= SPA_MINBLOCKSIZE ||
|
|
range_tree_space(msp->ms_allocatable) == 0);
|
|
ASSERT0(weight & METASLAB_ACTIVE_MASK);
|
|
|
|
ASSERT(msp->ms_activation_weight != 0);
|
|
msp->ms_activation_weight = 0;
|
|
metaslab_passivate_allocator(msp->ms_group, msp, weight);
|
|
ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
}
|
|
|
|
/*
|
|
* Segment-based metaslabs are activated once and remain active until
|
|
* we either fail an allocation attempt (similar to space-based metaslabs)
|
|
* or have exhausted the free space in zfs_metaslab_switch_threshold
|
|
* buckets since the metaslab was activated. This function checks to see
|
|
* if we've exhausted the zfs_metaslab_switch_threshold buckets in the
|
|
* metaslab and passivates it proactively. This will allow us to select a
|
|
* metaslab with a larger contiguous region, if any, remaining within this
|
|
* metaslab group. If we're in sync pass > 1, then we continue using this
|
|
* metaslab so that we don't dirty more block and cause more sync passes.
|
|
*/
|
|
static void
|
|
metaslab_segment_may_passivate(metaslab_t *msp)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
|
|
if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
|
|
return;
|
|
|
|
/*
|
|
* Since we are in the middle of a sync pass, the most accurate
|
|
* information that is accessible to us is the in-core range tree
|
|
* histogram; calculate the new weight based on that information.
|
|
*/
|
|
uint64_t weight = metaslab_weight_from_range_tree(msp);
|
|
int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
|
|
int current_idx = WEIGHT_GET_INDEX(weight);
|
|
|
|
if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
|
|
metaslab_passivate(msp, weight);
|
|
}
|
|
|
|
static void
|
|
metaslab_preload(void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
spa_t *spa = mc->mc_spa;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
|
|
ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
(void) metaslab_load(msp);
|
|
metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
|
|
mutex_exit(&msp->ms_lock);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_preload(metaslab_group_t *mg)
|
|
{
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
metaslab_t *msp;
|
|
avl_tree_t *t = &mg->mg_metaslab_tree;
|
|
int m = 0;
|
|
|
|
if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
|
|
taskq_wait_outstanding(mg->mg_taskq, 0);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
|
|
/*
|
|
* Load the next potential metaslabs
|
|
*/
|
|
for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
|
|
ASSERT3P(msp->ms_group, ==, mg);
|
|
|
|
/*
|
|
* We preload only the maximum number of metaslabs specified
|
|
* by metaslab_preload_limit. If a metaslab is being forced
|
|
* to condense then we preload it too. This will ensure
|
|
* that force condensing happens in the next txg.
|
|
*/
|
|
if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
|
|
continue;
|
|
}
|
|
|
|
VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
|
|
msp, TQ_SLEEP) != TASKQID_INVALID);
|
|
}
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
/*
|
|
* Determine if the space map's on-disk footprint is past our tolerance for
|
|
* inefficiency. We would like to use the following criteria to make our
|
|
* decision:
|
|
*
|
|
* 1. Do not condense if the size of the space map object would dramatically
|
|
* increase as a result of writing out the free space range tree.
|
|
*
|
|
* 2. Condense if the on on-disk space map representation is at least
|
|
* zfs_condense_pct/100 times the size of the optimal representation
|
|
* (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
|
|
*
|
|
* 3. Do not condense if the on-disk size of the space map does not actually
|
|
* decrease.
|
|
*
|
|
* Unfortunately, we cannot compute the on-disk size of the space map in this
|
|
* context because we cannot accurately compute the effects of compression, etc.
|
|
* Instead, we apply the heuristic described in the block comment for
|
|
* zfs_metaslab_condense_block_threshold - we only condense if the space used
|
|
* is greater than a threshold number of blocks.
|
|
*/
|
|
static boolean_t
|
|
metaslab_should_condense(metaslab_t *msp)
|
|
{
|
|
space_map_t *sm = msp->ms_sm;
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT(sm != NULL);
|
|
ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
|
|
|
|
/*
|
|
* We always condense metaslabs that are empty and metaslabs for
|
|
* which a condense request has been made.
|
|
*/
|
|
if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
|
|
msp->ms_condense_wanted)
|
|
return (B_TRUE);
|
|
|
|
uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
|
|
uint64_t object_size = space_map_length(sm);
|
|
uint64_t optimal_size = space_map_estimate_optimal_size(sm,
|
|
msp->ms_allocatable, SM_NO_VDEVID);
|
|
|
|
return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
|
|
object_size > zfs_metaslab_condense_block_threshold * record_size);
|
|
}
|
|
|
|
/*
|
|
* Condense the on-disk space map representation to its minimized form.
|
|
* The minimized form consists of a small number of allocations followed
|
|
* by the entries of the free range tree (ms_allocatable). The condensed
|
|
* spacemap contains all the entries of previous TXGs (including those in
|
|
* the pool-wide log spacemaps; thus this is effectively a superset of
|
|
* metaslab_flush()), but this TXG's entries still need to be written.
|
|
*/
|
|
static void
|
|
metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
|
|
{
|
|
range_tree_t *condense_tree;
|
|
space_map_t *sm = msp->ms_sm;
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT(msp->ms_sm != NULL);
|
|
|
|
/*
|
|
* In order to condense the space map, we need to change it so it
|
|
* only describes which segments are currently allocated and free.
|
|
*
|
|
* All the current free space resides in the ms_allocatable, all
|
|
* the ms_defer trees, and all the ms_allocating trees. We ignore
|
|
* ms_freed because it is empty because we're in sync pass 1. We
|
|
* ignore ms_freeing because these changes are not yet reflected
|
|
* in the spacemap (they will be written later this txg).
|
|
*
|
|
* So to truncate the space map to represent all the entries of
|
|
* previous TXGs we do the following:
|
|
*
|
|
* 1] We create a range tree (condense tree) that is 100% empty.
|
|
* 2] We add to it all segments found in the ms_defer trees
|
|
* as those segments are marked as free in the original space
|
|
* map. We do the same with the ms_allocating trees for the same
|
|
* reason. Adding these segments should be a relatively
|
|
* inexpensive operation since we expect these trees to have a
|
|
* small number of nodes.
|
|
* 3] We vacate any unflushed allocs, since they are not frees we
|
|
* need to add to the condense tree. Then we vacate any
|
|
* unflushed frees as they should already be part of ms_allocatable.
|
|
* 4] At this point, we would ideally like to add all segments
|
|
* in the ms_allocatable tree from the condense tree. This way
|
|
* we would write all the entries of the condense tree as the
|
|
* condensed space map, which would only contain freed
|
|
* segments with everything else assumed to be allocated.
|
|
*
|
|
* Doing so can be prohibitively expensive as ms_allocatable can
|
|
* be large, and therefore computationally expensive to add to
|
|
* the condense_tree. Instead we first sync out an entry marking
|
|
* everything as allocated, then the condense_tree and then the
|
|
* ms_allocatable, in the condensed space map. While this is not
|
|
* optimal, it is typically close to optimal and more importantly
|
|
* much cheaper to compute.
|
|
*
|
|
* 5] Finally, as both of the unflushed trees were written to our
|
|
* new and condensed metaslab space map, we basically flushed
|
|
* all the unflushed changes to disk, thus we call
|
|
* metaslab_flush_update().
|
|
*/
|
|
ASSERT3U(spa_sync_pass(spa), ==, 1);
|
|
ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
|
|
|
|
zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
|
|
"spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
|
|
msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
|
|
spa->spa_name, space_map_length(msp->ms_sm),
|
|
range_tree_numsegs(msp->ms_allocatable),
|
|
msp->ms_condense_wanted ? "TRUE" : "FALSE");
|
|
|
|
msp->ms_condense_wanted = B_FALSE;
|
|
|
|
range_seg_type_t type;
|
|
uint64_t shift, start;
|
|
type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
|
|
&start, &shift);
|
|
|
|
condense_tree = range_tree_create(NULL, type, NULL, start, shift);
|
|
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_walk(msp->ms_defer[t],
|
|
range_tree_add, condense_tree);
|
|
}
|
|
|
|
for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
|
|
range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
|
|
range_tree_add, condense_tree);
|
|
}
|
|
|
|
ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
|
|
metaslab_unflushed_changes_memused(msp));
|
|
spa->spa_unflushed_stats.sus_memused -=
|
|
metaslab_unflushed_changes_memused(msp);
|
|
range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
|
|
range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
|
|
|
|
/*
|
|
* We're about to drop the metaslab's lock thus allowing other
|
|
* consumers to change it's content. Set the metaslab's ms_condensing
|
|
* flag to ensure that allocations on this metaslab do not occur
|
|
* while we're in the middle of committing it to disk. This is only
|
|
* critical for ms_allocatable as all other range trees use per TXG
|
|
* views of their content.
|
|
*/
|
|
msp->ms_condensing = B_TRUE;
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
uint64_t object = space_map_object(msp->ms_sm);
|
|
space_map_truncate(sm,
|
|
spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
|
|
zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
|
|
|
|
/*
|
|
* space_map_truncate() may have reallocated the spacemap object.
|
|
* If so, update the vdev_ms_array.
|
|
*/
|
|
if (space_map_object(msp->ms_sm) != object) {
|
|
object = space_map_object(msp->ms_sm);
|
|
dmu_write(spa->spa_meta_objset,
|
|
msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
|
|
msp->ms_id, sizeof (uint64_t), &object, tx);
|
|
}
|
|
|
|
/*
|
|
* Note:
|
|
* When the log space map feature is enabled, each space map will
|
|
* always have ALLOCS followed by FREES for each sync pass. This is
|
|
* typically true even when the log space map feature is disabled,
|
|
* except from the case where a metaslab goes through metaslab_sync()
|
|
* and gets condensed. In that case the metaslab's space map will have
|
|
* ALLOCS followed by FREES (due to condensing) followed by ALLOCS
|
|
* followed by FREES (due to space_map_write() in metaslab_sync()) for
|
|
* sync pass 1.
|
|
*/
|
|
range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
|
|
shift);
|
|
range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
|
|
space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
|
|
space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
|
|
space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
|
|
|
|
range_tree_vacate(condense_tree, NULL, NULL);
|
|
range_tree_destroy(condense_tree);
|
|
range_tree_vacate(tmp_tree, NULL, NULL);
|
|
range_tree_destroy(tmp_tree);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
msp->ms_condensing = B_FALSE;
|
|
metaslab_flush_update(msp, tx);
|
|
}
|
|
|
|
/*
|
|
* Called when the metaslab has been flushed (its own spacemap now reflects
|
|
* all the contents of the pool-wide spacemap log). Updates the metaslab's
|
|
* metadata and any pool-wide related log space map data (e.g. summary,
|
|
* obsolete logs, etc..) to reflect that.
|
|
*/
|
|
static void
|
|
metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
ASSERT3U(spa_sync_pass(spa), ==, 1);
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
|
|
|
|
/*
|
|
* Just because a metaslab got flushed, that doesn't mean that
|
|
* it will pass through metaslab_sync_done(). Thus, make sure to
|
|
* update ms_synced_length here in case it doesn't.
|
|
*/
|
|
msp->ms_synced_length = space_map_length(msp->ms_sm);
|
|
|
|
/*
|
|
* We may end up here from metaslab_condense() without the
|
|
* feature being active. In that case this is a no-op.
|
|
*/
|
|
if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
|
|
return;
|
|
|
|
ASSERT(spa_syncing_log_sm(spa) != NULL);
|
|
ASSERT(msp->ms_sm != NULL);
|
|
ASSERT(metaslab_unflushed_txg(msp) != 0);
|
|
ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
|
|
|
|
VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
|
|
|
|
/* update metaslab's position in our flushing tree */
|
|
uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
|
|
mutex_enter(&spa->spa_flushed_ms_lock);
|
|
avl_remove(&spa->spa_metaslabs_by_flushed, msp);
|
|
metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
|
|
avl_add(&spa->spa_metaslabs_by_flushed, msp);
|
|
mutex_exit(&spa->spa_flushed_ms_lock);
|
|
|
|
/* update metaslab counts of spa_log_sm_t nodes */
|
|
spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
|
|
spa_log_sm_increment_current_mscount(spa);
|
|
|
|
/* cleanup obsolete logs if any */
|
|
uint64_t log_blocks_before = spa_log_sm_nblocks(spa);
|
|
spa_cleanup_old_sm_logs(spa, tx);
|
|
uint64_t log_blocks_after = spa_log_sm_nblocks(spa);
|
|
VERIFY3U(log_blocks_after, <=, log_blocks_before);
|
|
|
|
/* update log space map summary */
|
|
uint64_t blocks_gone = log_blocks_before - log_blocks_after;
|
|
spa_log_summary_add_flushed_metaslab(spa);
|
|
spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg);
|
|
spa_log_summary_decrement_blkcount(spa, blocks_gone);
|
|
}
|
|
|
|
boolean_t
|
|
metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT3U(spa_sync_pass(spa), ==, 1);
|
|
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
ASSERT(msp->ms_sm != NULL);
|
|
ASSERT(metaslab_unflushed_txg(msp) != 0);
|
|
ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
|
|
|
|
/*
|
|
* There is nothing wrong with flushing the same metaslab twice, as
|
|
* this codepath should work on that case. However, the current
|
|
* flushing scheme makes sure to avoid this situation as we would be
|
|
* making all these calls without having anything meaningful to write
|
|
* to disk. We assert this behavior here.
|
|
*/
|
|
ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
|
|
|
|
/*
|
|
* We can not flush while loading, because then we would
|
|
* not load the ms_unflushed_{allocs,frees}.
|
|
*/
|
|
if (msp->ms_loading)
|
|
return (B_FALSE);
|
|
|
|
metaslab_verify_space(msp, dmu_tx_get_txg(tx));
|
|
metaslab_verify_weight_and_frag(msp);
|
|
|
|
/*
|
|
* Metaslab condensing is effectively flushing. Therefore if the
|
|
* metaslab can be condensed we can just condense it instead of
|
|
* flushing it.
|
|
*
|
|
* Note that metaslab_condense() does call metaslab_flush_update()
|
|
* so we can just return immediately after condensing. We also
|
|
* don't need to care about setting ms_flushing or broadcasting
|
|
* ms_flush_cv, even if we temporarily drop the ms_lock in
|
|
* metaslab_condense(), as the metaslab is already loaded.
|
|
*/
|
|
if (msp->ms_loaded && metaslab_should_condense(msp)) {
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
|
|
/*
|
|
* For all histogram operations below refer to the
|
|
* comments of metaslab_sync() where we follow a
|
|
* similar procedure.
|
|
*/
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
metaslab_group_histogram_remove(mg, msp);
|
|
|
|
metaslab_condense(msp, tx);
|
|
|
|
space_map_histogram_clear(msp->ms_sm);
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
|
|
ASSERT(range_tree_is_empty(msp->ms_freed));
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
space_map_histogram_add(msp->ms_sm,
|
|
msp->ms_defer[t], tx);
|
|
}
|
|
metaslab_aux_histograms_update(msp);
|
|
|
|
metaslab_group_histogram_add(mg, msp);
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
|
|
metaslab_verify_space(msp, dmu_tx_get_txg(tx));
|
|
|
|
/*
|
|
* Since we recreated the histogram (and potentially
|
|
* the ms_sm too while condensing) ensure that the
|
|
* weight is updated too because we are not guaranteed
|
|
* that this metaslab is dirty and will go through
|
|
* metaslab_sync_done().
|
|
*/
|
|
metaslab_recalculate_weight_and_sort(msp);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
msp->ms_flushing = B_TRUE;
|
|
uint64_t sm_len_before = space_map_length(msp->ms_sm);
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
|
|
SM_NO_VDEVID, tx);
|
|
space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
|
|
SM_NO_VDEVID, tx);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
uint64_t sm_len_after = space_map_length(msp->ms_sm);
|
|
if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
|
|
zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
|
|
"ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
|
|
"appended %llu bytes", dmu_tx_get_txg(tx), spa_name(spa),
|
|
msp->ms_group->mg_vd->vdev_id, msp->ms_id,
|
|
range_tree_space(msp->ms_unflushed_allocs),
|
|
range_tree_space(msp->ms_unflushed_frees),
|
|
(sm_len_after - sm_len_before));
|
|
}
|
|
|
|
ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
|
|
metaslab_unflushed_changes_memused(msp));
|
|
spa->spa_unflushed_stats.sus_memused -=
|
|
metaslab_unflushed_changes_memused(msp);
|
|
range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
|
|
range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
|
|
|
|
metaslab_verify_space(msp, dmu_tx_get_txg(tx));
|
|
metaslab_verify_weight_and_frag(msp);
|
|
|
|
metaslab_flush_update(msp, tx);
|
|
|
|
metaslab_verify_space(msp, dmu_tx_get_txg(tx));
|
|
metaslab_verify_weight_and_frag(msp);
|
|
|
|
msp->ms_flushing = B_FALSE;
|
|
cv_broadcast(&msp->ms_flush_cv);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Write a metaslab to disk in the context of the specified transaction group.
|
|
*/
|
|
void
|
|
metaslab_sync(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa_meta_objset(spa);
|
|
range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
|
|
dmu_tx_t *tx;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
/*
|
|
* This metaslab has just been added so there's no work to do now.
|
|
*/
|
|
if (msp->ms_freeing == NULL) {
|
|
ASSERT3P(alloctree, ==, NULL);
|
|
return;
|
|
}
|
|
|
|
ASSERT3P(alloctree, !=, NULL);
|
|
ASSERT3P(msp->ms_freeing, !=, NULL);
|
|
ASSERT3P(msp->ms_freed, !=, NULL);
|
|
ASSERT3P(msp->ms_checkpointing, !=, NULL);
|
|
ASSERT3P(msp->ms_trim, !=, NULL);
|
|
|
|
/*
|
|
* Normally, we don't want to process a metaslab if there are no
|
|
* allocations or frees to perform. However, if the metaslab is being
|
|
* forced to condense, it's loaded and we're not beyond the final
|
|
* dirty txg, we need to let it through. Not condensing beyond the
|
|
* final dirty txg prevents an issue where metaslabs that need to be
|
|
* condensed but were loaded for other reasons could cause a panic
|
|
* here. By only checking the txg in that branch of the conditional,
|
|
* we preserve the utility of the VERIFY statements in all other
|
|
* cases.
|
|
*/
|
|
if (range_tree_is_empty(alloctree) &&
|
|
range_tree_is_empty(msp->ms_freeing) &&
|
|
range_tree_is_empty(msp->ms_checkpointing) &&
|
|
!(msp->ms_loaded && msp->ms_condense_wanted &&
|
|
txg <= spa_final_dirty_txg(spa)))
|
|
return;
|
|
|
|
|
|
VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
|
|
|
|
/*
|
|
* The only state that can actually be changing concurrently
|
|
* with metaslab_sync() is the metaslab's ms_allocatable. No
|
|
* other thread can be modifying this txg's alloc, freeing,
|
|
* freed, or space_map_phys_t. We drop ms_lock whenever we
|
|
* could call into the DMU, because the DMU can call down to
|
|
* us (e.g. via zio_free()) at any time.
|
|
*
|
|
* The spa_vdev_remove_thread() can be reading metaslab state
|
|
* concurrently, and it is locked out by the ms_sync_lock.
|
|
* Note that the ms_lock is insufficient for this, because it
|
|
* is dropped by space_map_write().
|
|
*/
|
|
tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
|
|
|
|
/*
|
|
* Generate a log space map if one doesn't exist already.
|
|
*/
|
|
spa_generate_syncing_log_sm(spa, tx);
|
|
|
|
if (msp->ms_sm == NULL) {
|
|
uint64_t new_object = space_map_alloc(mos,
|
|
spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
|
|
zfs_metaslab_sm_blksz_with_log :
|
|
zfs_metaslab_sm_blksz_no_log, tx);
|
|
VERIFY3U(new_object, !=, 0);
|
|
|
|
dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
|
|
msp->ms_id, sizeof (uint64_t), &new_object, tx);
|
|
|
|
VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
|
|
msp->ms_start, msp->ms_size, vd->vdev_ashift));
|
|
ASSERT(msp->ms_sm != NULL);
|
|
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
|
|
ASSERT0(metaslab_allocated_space(msp));
|
|
}
|
|
|
|
if (metaslab_unflushed_txg(msp) == 0 &&
|
|
spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
|
|
ASSERT(spa_syncing_log_sm(spa) != NULL);
|
|
|
|
metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
|
|
spa_log_sm_increment_current_mscount(spa);
|
|
spa_log_summary_add_flushed_metaslab(spa);
|
|
|
|
ASSERT(msp->ms_sm != NULL);
|
|
mutex_enter(&spa->spa_flushed_ms_lock);
|
|
avl_add(&spa->spa_metaslabs_by_flushed, msp);
|
|
mutex_exit(&spa->spa_flushed_ms_lock);
|
|
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
|
|
}
|
|
|
|
if (!range_tree_is_empty(msp->ms_checkpointing) &&
|
|
vd->vdev_checkpoint_sm == NULL) {
|
|
ASSERT(spa_has_checkpoint(spa));
|
|
|
|
uint64_t new_object = space_map_alloc(mos,
|
|
zfs_vdev_standard_sm_blksz, tx);
|
|
VERIFY3U(new_object, !=, 0);
|
|
|
|
VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
|
|
mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
|
|
ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
|
|
|
|
/*
|
|
* We save the space map object as an entry in vdev_top_zap
|
|
* so it can be retrieved when the pool is reopened after an
|
|
* export or through zdb.
|
|
*/
|
|
VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
|
|
sizeof (new_object), 1, &new_object, tx));
|
|
}
|
|
|
|
mutex_enter(&msp->ms_sync_lock);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* Note: metaslab_condense() clears the space map's histogram.
|
|
* Therefore we must verify and remove this histogram before
|
|
* condensing.
|
|
*/
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
metaslab_group_histogram_remove(mg, msp);
|
|
|
|
if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
|
|
metaslab_should_condense(msp))
|
|
metaslab_condense(msp, tx);
|
|
|
|
/*
|
|
* We'll be going to disk to sync our space accounting, thus we
|
|
* drop the ms_lock during that time so allocations coming from
|
|
* open-context (ZIL) for future TXGs do not block.
|
|
*/
|
|
mutex_exit(&msp->ms_lock);
|
|
space_map_t *log_sm = spa_syncing_log_sm(spa);
|
|
if (log_sm != NULL) {
|
|
ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
space_map_write(log_sm, alloctree, SM_ALLOC,
|
|
vd->vdev_id, tx);
|
|
space_map_write(log_sm, msp->ms_freeing, SM_FREE,
|
|
vd->vdev_id, tx);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
|
|
metaslab_unflushed_changes_memused(msp));
|
|
spa->spa_unflushed_stats.sus_memused -=
|
|
metaslab_unflushed_changes_memused(msp);
|
|
range_tree_remove_xor_add(alloctree,
|
|
msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
|
|
range_tree_remove_xor_add(msp->ms_freeing,
|
|
msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
|
|
spa->spa_unflushed_stats.sus_memused +=
|
|
metaslab_unflushed_changes_memused(msp);
|
|
} else {
|
|
ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
|
|
SM_NO_VDEVID, tx);
|
|
space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
|
|
SM_NO_VDEVID, tx);
|
|
mutex_enter(&msp->ms_lock);
|
|
}
|
|
|
|
msp->ms_allocated_space += range_tree_space(alloctree);
|
|
ASSERT3U(msp->ms_allocated_space, >=,
|
|
range_tree_space(msp->ms_freeing));
|
|
msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
|
|
|
|
if (!range_tree_is_empty(msp->ms_checkpointing)) {
|
|
ASSERT(spa_has_checkpoint(spa));
|
|
ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
|
|
|
|
/*
|
|
* Since we are doing writes to disk and the ms_checkpointing
|
|
* tree won't be changing during that time, we drop the
|
|
* ms_lock while writing to the checkpoint space map, for the
|
|
* same reason mentioned above.
|
|
*/
|
|
mutex_exit(&msp->ms_lock);
|
|
space_map_write(vd->vdev_checkpoint_sm,
|
|
msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
spa->spa_checkpoint_info.sci_dspace +=
|
|
range_tree_space(msp->ms_checkpointing);
|
|
vd->vdev_stat.vs_checkpoint_space +=
|
|
range_tree_space(msp->ms_checkpointing);
|
|
ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
|
|
-space_map_allocated(vd->vdev_checkpoint_sm));
|
|
|
|
range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
|
|
}
|
|
|
|
if (msp->ms_loaded) {
|
|
/*
|
|
* When the space map is loaded, we have an accurate
|
|
* histogram in the range tree. This gives us an opportunity
|
|
* to bring the space map's histogram up-to-date so we clear
|
|
* it first before updating it.
|
|
*/
|
|
space_map_histogram_clear(msp->ms_sm);
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
|
|
|
|
/*
|
|
* Since we've cleared the histogram we need to add back
|
|
* any free space that has already been processed, plus
|
|
* any deferred space. This allows the on-disk histogram
|
|
* to accurately reflect all free space even if some space
|
|
* is not yet available for allocation (i.e. deferred).
|
|
*/
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
|
|
|
|
/*
|
|
* Add back any deferred free space that has not been
|
|
* added back into the in-core free tree yet. This will
|
|
* ensure that we don't end up with a space map histogram
|
|
* that is completely empty unless the metaslab is fully
|
|
* allocated.
|
|
*/
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
space_map_histogram_add(msp->ms_sm,
|
|
msp->ms_defer[t], tx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Always add the free space from this sync pass to the space
|
|
* map histogram. We want to make sure that the on-disk histogram
|
|
* accounts for all free space. If the space map is not loaded,
|
|
* then we will lose some accuracy but will correct it the next
|
|
* time we load the space map.
|
|
*/
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
|
|
metaslab_aux_histograms_update(msp);
|
|
|
|
metaslab_group_histogram_add(mg, msp);
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
|
|
/*
|
|
* For sync pass 1, we avoid traversing this txg's free range tree
|
|
* and instead will just swap the pointers for freeing and freed.
|
|
* We can safely do this since the freed_tree is guaranteed to be
|
|
* empty on the initial pass.
|
|
*
|
|
* Keep in mind that even if we are currently using a log spacemap
|
|
* we want current frees to end up in the ms_allocatable (but not
|
|
* get appended to the ms_sm) so their ranges can be reused as usual.
|
|
*/
|
|
if (spa_sync_pass(spa) == 1) {
|
|
range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
|
|
ASSERT0(msp->ms_allocated_this_txg);
|
|
} else {
|
|
range_tree_vacate(msp->ms_freeing,
|
|
range_tree_add, msp->ms_freed);
|
|
}
|
|
msp->ms_allocated_this_txg += range_tree_space(alloctree);
|
|
range_tree_vacate(alloctree, NULL, NULL);
|
|
|
|
ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
|
|
ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
|
|
& TXG_MASK]));
|
|
ASSERT0(range_tree_space(msp->ms_freeing));
|
|
ASSERT0(range_tree_space(msp->ms_checkpointing));
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
/*
|
|
* Verify that the space map object ID has been recorded in the
|
|
* vdev_ms_array.
|
|
*/
|
|
uint64_t object;
|
|
VERIFY0(dmu_read(mos, vd->vdev_ms_array,
|
|
msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
|
|
VERIFY3U(object, ==, space_map_object(msp->ms_sm));
|
|
|
|
mutex_exit(&msp->ms_sync_lock);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
static void
|
|
metaslab_evict(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
if (!msp->ms_loaded || msp->ms_disabled != 0)
|
|
return;
|
|
|
|
for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
|
|
VERIFY0(range_tree_space(
|
|
msp->ms_allocating[(txg + t) & TXG_MASK]));
|
|
}
|
|
if (msp->ms_allocator != -1)
|
|
metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
|
|
|
|
if (!metaslab_debug_unload)
|
|
metaslab_unload(msp);
|
|
}
|
|
|
|
/*
|
|
* Called after a transaction group has completely synced to mark
|
|
* all of the metaslab's free space as usable.
|
|
*/
|
|
void
|
|
metaslab_sync_done(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
range_tree_t **defer_tree;
|
|
int64_t alloc_delta, defer_delta;
|
|
boolean_t defer_allowed = B_TRUE;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* If this metaslab is just becoming available, initialize its
|
|
* range trees and add its capacity to the vdev.
|
|
*/
|
|
if (msp->ms_freed == NULL) {
|
|
range_seg_type_t type;
|
|
uint64_t shift, start;
|
|
type = metaslab_calculate_range_tree_type(vd, msp, &start,
|
|
&shift);
|
|
|
|
for (int t = 0; t < TXG_SIZE; t++) {
|
|
ASSERT(msp->ms_allocating[t] == NULL);
|
|
|
|
msp->ms_allocating[t] = range_tree_create(NULL, type,
|
|
NULL, start, shift);
|
|
}
|
|
|
|
ASSERT3P(msp->ms_freeing, ==, NULL);
|
|
msp->ms_freeing = range_tree_create(NULL, type, NULL, start,
|
|
shift);
|
|
|
|
ASSERT3P(msp->ms_freed, ==, NULL);
|
|
msp->ms_freed = range_tree_create(NULL, type, NULL, start,
|
|
shift);
|
|
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
ASSERT3P(msp->ms_defer[t], ==, NULL);
|
|
msp->ms_defer[t] = range_tree_create(NULL, type, NULL,
|
|
start, shift);
|
|
}
|
|
|
|
ASSERT3P(msp->ms_checkpointing, ==, NULL);
|
|
msp->ms_checkpointing = range_tree_create(NULL, type, NULL,
|
|
start, shift);
|
|
|
|
ASSERT3P(msp->ms_unflushed_allocs, ==, NULL);
|
|
msp->ms_unflushed_allocs = range_tree_create(NULL, type, NULL,
|
|
start, shift);
|
|
|
|
metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
|
|
mrap->mra_bt = &msp->ms_unflushed_frees_by_size;
|
|
mrap->mra_floor_shift = metaslab_by_size_min_shift;
|
|
ASSERT3P(msp->ms_unflushed_frees, ==, NULL);
|
|
msp->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
|
|
type, mrap, start, shift);
|
|
|
|
metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
|
|
}
|
|
ASSERT0(range_tree_space(msp->ms_freeing));
|
|
ASSERT0(range_tree_space(msp->ms_checkpointing));
|
|
|
|
defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
|
|
|
|
uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
|
|
metaslab_class_get_alloc(spa_normal_class(spa));
|
|
if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
|
|
defer_allowed = B_FALSE;
|
|
}
|
|
|
|
defer_delta = 0;
|
|
alloc_delta = msp->ms_allocated_this_txg -
|
|
range_tree_space(msp->ms_freed);
|
|
|
|
if (defer_allowed) {
|
|
defer_delta = range_tree_space(msp->ms_freed) -
|
|
range_tree_space(*defer_tree);
|
|
} else {
|
|
defer_delta -= range_tree_space(*defer_tree);
|
|
}
|
|
metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
|
|
defer_delta, 0);
|
|
|
|
if (spa_syncing_log_sm(spa) == NULL) {
|
|
/*
|
|
* If there's a metaslab_load() in progress and we don't have
|
|
* a log space map, it means that we probably wrote to the
|
|
* metaslab's space map. If this is the case, we need to
|
|
* make sure that we wait for the load to complete so that we
|
|
* have a consistent view at the in-core side of the metaslab.
|
|
*/
|
|
metaslab_load_wait(msp);
|
|
} else {
|
|
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
}
|
|
|
|
/*
|
|
* When auto-trimming is enabled, free ranges which are added to
|
|
* ms_allocatable are also be added to ms_trim. The ms_trim tree is
|
|
* periodically consumed by the vdev_autotrim_thread() which issues
|
|
* trims for all ranges and then vacates the tree. The ms_trim tree
|
|
* can be discarded at any time with the sole consequence of recent
|
|
* frees not being trimmed.
|
|
*/
|
|
if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
|
|
range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
|
|
if (!defer_allowed) {
|
|
range_tree_walk(msp->ms_freed, range_tree_add,
|
|
msp->ms_trim);
|
|
}
|
|
} else {
|
|
range_tree_vacate(msp->ms_trim, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Move the frees from the defer_tree back to the free
|
|
* range tree (if it's loaded). Swap the freed_tree and
|
|
* the defer_tree -- this is safe to do because we've
|
|
* just emptied out the defer_tree.
|
|
*/
|
|
range_tree_vacate(*defer_tree,
|
|
msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
|
|
if (defer_allowed) {
|
|
range_tree_swap(&msp->ms_freed, defer_tree);
|
|
} else {
|
|
range_tree_vacate(msp->ms_freed,
|
|
msp->ms_loaded ? range_tree_add : NULL,
|
|
msp->ms_allocatable);
|
|
}
|
|
|
|
msp->ms_synced_length = space_map_length(msp->ms_sm);
|
|
|
|
msp->ms_deferspace += defer_delta;
|
|
ASSERT3S(msp->ms_deferspace, >=, 0);
|
|
ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
|
|
if (msp->ms_deferspace != 0) {
|
|
/*
|
|
* Keep syncing this metaslab until all deferred frees
|
|
* are back in circulation.
|
|
*/
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
|
|
}
|
|
metaslab_aux_histograms_update_done(msp, defer_allowed);
|
|
|
|
if (msp->ms_new) {
|
|
msp->ms_new = B_FALSE;
|
|
mutex_enter(&mg->mg_lock);
|
|
mg->mg_ms_ready++;
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
/*
|
|
* Re-sort metaslab within its group now that we've adjusted
|
|
* its allocatable space.
|
|
*/
|
|
metaslab_recalculate_weight_and_sort(msp);
|
|
|
|
ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
|
|
ASSERT0(range_tree_space(msp->ms_freeing));
|
|
ASSERT0(range_tree_space(msp->ms_freed));
|
|
ASSERT0(range_tree_space(msp->ms_checkpointing));
|
|
msp->ms_allocating_total -= msp->ms_allocated_this_txg;
|
|
msp->ms_allocated_this_txg = 0;
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_sync_reassess(metaslab_group_t *mg)
|
|
{
|
|
spa_t *spa = mg->mg_class->mc_spa;
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
|
|
metaslab_group_alloc_update(mg);
|
|
mg->mg_fragmentation = metaslab_group_fragmentation(mg);
|
|
|
|
/*
|
|
* Preload the next potential metaslabs but only on active
|
|
* metaslab groups. We can get into a state where the metaslab
|
|
* is no longer active since we dirty metaslabs as we remove a
|
|
* a device, thus potentially making the metaslab group eligible
|
|
* for preloading.
|
|
*/
|
|
if (mg->mg_activation_count > 0) {
|
|
metaslab_group_preload(mg);
|
|
}
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
}
|
|
|
|
/*
|
|
* When writing a ditto block (i.e. more than one DVA for a given BP) on
|
|
* the same vdev as an existing DVA of this BP, then try to allocate it
|
|
* on a different metaslab than existing DVAs (i.e. a unique metaslab).
|
|
*/
|
|
static boolean_t
|
|
metaslab_is_unique(metaslab_t *msp, dva_t *dva)
|
|
{
|
|
uint64_t dva_ms_id;
|
|
|
|
if (DVA_GET_ASIZE(dva) == 0)
|
|
return (B_TRUE);
|
|
|
|
if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
|
|
return (B_TRUE);
|
|
|
|
dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
|
|
|
|
return (msp->ms_id != dva_ms_id);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab allocation tracing facility
|
|
* ==========================================================================
|
|
*/
|
|
#ifdef _METASLAB_TRACING
|
|
|
|
/*
|
|
* Add an allocation trace element to the allocation tracing list.
|
|
*/
|
|
static void
|
|
metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
|
|
metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
|
|
int allocator)
|
|
{
|
|
metaslab_alloc_trace_t *mat;
|
|
|
|
if (!metaslab_trace_enabled)
|
|
return;
|
|
|
|
/*
|
|
* When the tracing list reaches its maximum we remove
|
|
* the second element in the list before adding a new one.
|
|
* By removing the second element we preserve the original
|
|
* entry as a clue to what allocations steps have already been
|
|
* performed.
|
|
*/
|
|
if (zal->zal_size == metaslab_trace_max_entries) {
|
|
metaslab_alloc_trace_t *mat_next;
|
|
#ifdef ZFS_DEBUG
|
|
panic("too many entries in allocation list");
|
|
#endif
|
|
METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
|
|
zal->zal_size--;
|
|
mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
|
|
list_remove(&zal->zal_list, mat_next);
|
|
kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
|
|
}
|
|
|
|
mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
|
|
list_link_init(&mat->mat_list_node);
|
|
mat->mat_mg = mg;
|
|
mat->mat_msp = msp;
|
|
mat->mat_size = psize;
|
|
mat->mat_dva_id = dva_id;
|
|
mat->mat_offset = offset;
|
|
mat->mat_weight = 0;
|
|
mat->mat_allocator = allocator;
|
|
|
|
if (msp != NULL)
|
|
mat->mat_weight = msp->ms_weight;
|
|
|
|
/*
|
|
* The list is part of the zio so locking is not required. Only
|
|
* a single thread will perform allocations for a given zio.
|
|
*/
|
|
list_insert_tail(&zal->zal_list, mat);
|
|
zal->zal_size++;
|
|
|
|
ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
|
|
}
|
|
|
|
void
|
|
metaslab_trace_init(zio_alloc_list_t *zal)
|
|
{
|
|
list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
|
|
offsetof(metaslab_alloc_trace_t, mat_list_node));
|
|
zal->zal_size = 0;
|
|
}
|
|
|
|
void
|
|
metaslab_trace_fini(zio_alloc_list_t *zal)
|
|
{
|
|
metaslab_alloc_trace_t *mat;
|
|
|
|
while ((mat = list_remove_head(&zal->zal_list)) != NULL)
|
|
kmem_cache_free(metaslab_alloc_trace_cache, mat);
|
|
list_destroy(&zal->zal_list);
|
|
zal->zal_size = 0;
|
|
}
|
|
#else
|
|
|
|
#define metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
|
|
|
|
void
|
|
metaslab_trace_init(zio_alloc_list_t *zal)
|
|
{
|
|
}
|
|
|
|
void
|
|
metaslab_trace_fini(zio_alloc_list_t *zal)
|
|
{
|
|
}
|
|
|
|
#endif /* _METASLAB_TRACING */
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab block operations
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static void
|
|
metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
|
|
int allocator)
|
|
{
|
|
if (!(flags & METASLAB_ASYNC_ALLOC) ||
|
|
(flags & METASLAB_DONT_THROTTLE))
|
|
return;
|
|
|
|
metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
|
|
if (!mg->mg_class->mc_alloc_throttle_enabled)
|
|
return;
|
|
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
|
|
{
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
uint64_t max = mg->mg_max_alloc_queue_depth;
|
|
uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
|
|
while (cur < max) {
|
|
if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
|
|
cur, cur + 1) == cur) {
|
|
atomic_inc_64(
|
|
&mg->mg_class->mc_alloc_max_slots[allocator]);
|
|
return;
|
|
}
|
|
cur = mga->mga_cur_max_alloc_queue_depth;
|
|
}
|
|
}
|
|
|
|
void
|
|
metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
|
|
int allocator, boolean_t io_complete)
|
|
{
|
|
if (!(flags & METASLAB_ASYNC_ALLOC) ||
|
|
(flags & METASLAB_DONT_THROTTLE))
|
|
return;
|
|
|
|
metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
|
|
if (!mg->mg_class->mc_alloc_throttle_enabled)
|
|
return;
|
|
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
|
|
if (io_complete)
|
|
metaslab_group_increment_qdepth(mg, allocator);
|
|
}
|
|
|
|
void
|
|
metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
|
|
int allocator)
|
|
{
|
|
#ifdef ZFS_DEBUG
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
|
|
for (int d = 0; d < ndvas; d++) {
|
|
uint64_t vdev = DVA_GET_VDEV(&dva[d]);
|
|
metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
|
|
{
|
|
uint64_t start;
|
|
range_tree_t *rt = msp->ms_allocatable;
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY0(msp->ms_disabled);
|
|
|
|
start = mc->mc_ops->msop_alloc(msp, size);
|
|
if (start != -1ULL) {
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
|
|
VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
|
|
range_tree_remove(rt, start, size);
|
|
range_tree_clear(msp->ms_trim, start, size);
|
|
|
|
if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
|
|
vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
|
|
|
|
range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
|
|
msp->ms_allocating_total += size;
|
|
|
|
/* Track the last successful allocation */
|
|
msp->ms_alloc_txg = txg;
|
|
metaslab_verify_space(msp, txg);
|
|
}
|
|
|
|
/*
|
|
* Now that we've attempted the allocation we need to update the
|
|
* metaslab's maximum block size since it may have changed.
|
|
*/
|
|
msp->ms_max_size = metaslab_largest_allocatable(msp);
|
|
return (start);
|
|
}
|
|
|
|
/*
|
|
* Find the metaslab with the highest weight that is less than what we've
|
|
* already tried. In the common case, this means that we will examine each
|
|
* metaslab at most once. Note that concurrent callers could reorder metaslabs
|
|
* by activation/passivation once we have dropped the mg_lock. If a metaslab is
|
|
* activated by another thread, and we fail to allocate from the metaslab we
|
|
* have selected, we may not try the newly-activated metaslab, and instead
|
|
* activate another metaslab. This is not optimal, but generally does not cause
|
|
* any problems (a possible exception being if every metaslab is completely full
|
|
* except for the newly-activated metaslab which we fail to examine).
|
|
*/
|
|
static metaslab_t *
|
|
find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
|
|
dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
|
|
boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
|
|
boolean_t *was_active)
|
|
{
|
|
avl_index_t idx;
|
|
avl_tree_t *t = &mg->mg_metaslab_tree;
|
|
metaslab_t *msp = avl_find(t, search, &idx);
|
|
if (msp == NULL)
|
|
msp = avl_nearest(t, idx, AVL_AFTER);
|
|
|
|
for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
|
|
int i;
|
|
if (!metaslab_should_allocate(msp, asize, try_hard)) {
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_TOO_SMALL, allocator);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the selected metaslab is condensing or disabled,
|
|
* skip it.
|
|
*/
|
|
if (msp->ms_condensing || msp->ms_disabled > 0)
|
|
continue;
|
|
|
|
*was_active = msp->ms_allocator != -1;
|
|
/*
|
|
* If we're activating as primary, this is our first allocation
|
|
* from this disk, so we don't need to check how close we are.
|
|
* If the metaslab under consideration was already active,
|
|
* we're getting desperate enough to steal another allocator's
|
|
* metaslab, so we still don't care about distances.
|
|
*/
|
|
if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
|
|
break;
|
|
|
|
for (i = 0; i < d; i++) {
|
|
if (want_unique &&
|
|
!metaslab_is_unique(msp, &dva[i]))
|
|
break; /* try another metaslab */
|
|
}
|
|
if (i == d)
|
|
break;
|
|
}
|
|
|
|
if (msp != NULL) {
|
|
search->ms_weight = msp->ms_weight;
|
|
search->ms_start = msp->ms_start + 1;
|
|
search->ms_allocator = msp->ms_allocator;
|
|
search->ms_primary = msp->ms_primary;
|
|
}
|
|
return (msp);
|
|
}
|
|
|
|
static void
|
|
metaslab_active_mask_verify(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
|
|
return;
|
|
|
|
if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
|
|
return;
|
|
|
|
if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
|
|
VERIFY3S(msp->ms_allocator, !=, -1);
|
|
VERIFY(msp->ms_primary);
|
|
return;
|
|
}
|
|
|
|
if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
|
|
VERIFY3S(msp->ms_allocator, !=, -1);
|
|
VERIFY(!msp->ms_primary);
|
|
return;
|
|
}
|
|
|
|
if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
|
|
VERIFY3S(msp->ms_allocator, ==, -1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static uint64_t
|
|
metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
|
|
uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
|
|
int allocator, boolean_t try_hard)
|
|
{
|
|
metaslab_t *msp = NULL;
|
|
uint64_t offset = -1ULL;
|
|
|
|
uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
|
|
for (int i = 0; i < d; i++) {
|
|
if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
|
|
DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
|
|
activation_weight = METASLAB_WEIGHT_SECONDARY;
|
|
} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
|
|
DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
|
|
activation_weight = METASLAB_WEIGHT_CLAIM;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we don't have enough metaslabs active to fill the entire array, we
|
|
* just use the 0th slot.
|
|
*/
|
|
if (mg->mg_ms_ready < mg->mg_allocators * 3)
|
|
allocator = 0;
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
|
|
ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
|
|
|
|
metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
|
|
search->ms_weight = UINT64_MAX;
|
|
search->ms_start = 0;
|
|
/*
|
|
* At the end of the metaslab tree are the already-active metaslabs,
|
|
* first the primaries, then the secondaries. When we resume searching
|
|
* through the tree, we need to consider ms_allocator and ms_primary so
|
|
* we start in the location right after where we left off, and don't
|
|
* accidentally loop forever considering the same metaslabs.
|
|
*/
|
|
search->ms_allocator = -1;
|
|
search->ms_primary = B_TRUE;
|
|
for (;;) {
|
|
boolean_t was_active = B_FALSE;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
|
|
if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
|
|
mga->mga_primary != NULL) {
|
|
msp = mga->mga_primary;
|
|
|
|
/*
|
|
* Even though we don't hold the ms_lock for the
|
|
* primary metaslab, those fields should not
|
|
* change while we hold the mg_lock. Thus it is
|
|
* safe to make assertions on them.
|
|
*/
|
|
ASSERT(msp->ms_primary);
|
|
ASSERT3S(msp->ms_allocator, ==, allocator);
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
was_active = B_TRUE;
|
|
ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
|
|
mga->mga_secondary != NULL) {
|
|
msp = mga->mga_secondary;
|
|
|
|
/*
|
|
* See comment above about the similar assertions
|
|
* for the primary metaslab.
|
|
*/
|
|
ASSERT(!msp->ms_primary);
|
|
ASSERT3S(msp->ms_allocator, ==, allocator);
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
was_active = B_TRUE;
|
|
ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
} else {
|
|
msp = find_valid_metaslab(mg, activation_weight, dva, d,
|
|
want_unique, asize, allocator, try_hard, zal,
|
|
search, &was_active);
|
|
}
|
|
|
|
mutex_exit(&mg->mg_lock);
|
|
if (msp == NULL) {
|
|
kmem_free(search, sizeof (*search));
|
|
return (-1ULL);
|
|
}
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
metaslab_active_mask_verify(msp);
|
|
|
|
/*
|
|
* This code is disabled out because of issues with
|
|
* tracepoints in non-gpl kernel modules.
|
|
*/
|
|
#if 0
|
|
DTRACE_PROBE3(ms__activation__attempt,
|
|
metaslab_t *, msp, uint64_t, activation_weight,
|
|
boolean_t, was_active);
|
|
#endif
|
|
|
|
/*
|
|
* Ensure that the metaslab we have selected is still
|
|
* capable of handling our request. It's possible that
|
|
* another thread may have changed the weight while we
|
|
* were blocked on the metaslab lock. We check the
|
|
* active status first to see if we need to set_selected_txg
|
|
* a new metaslab.
|
|
*/
|
|
if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
|
|
ASSERT3S(msp->ms_allocator, ==, -1);
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the metaslab was activated for another allocator
|
|
* while we were waiting in the ms_lock above, or it's
|
|
* a primary and we're seeking a secondary (or vice versa),
|
|
* we go back and select a new metaslab.
|
|
*/
|
|
if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
|
|
(msp->ms_allocator != -1) &&
|
|
(msp->ms_allocator != allocator || ((activation_weight ==
|
|
METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
|
|
msp->ms_allocator != -1);
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* This metaslab was used for claiming regions allocated
|
|
* by the ZIL during pool import. Once these regions are
|
|
* claimed we don't need to keep the CLAIM bit set
|
|
* anymore. Passivate this metaslab to zero its activation
|
|
* mask.
|
|
*/
|
|
if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
|
|
activation_weight != METASLAB_WEIGHT_CLAIM) {
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT3S(msp->ms_allocator, ==, -1);
|
|
metaslab_passivate(msp, msp->ms_weight &
|
|
~METASLAB_WEIGHT_CLAIM);
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
metaslab_set_selected_txg(msp, txg);
|
|
|
|
int activation_error =
|
|
metaslab_activate(msp, allocator, activation_weight);
|
|
metaslab_active_mask_verify(msp);
|
|
|
|
/*
|
|
* If the metaslab was activated by another thread for
|
|
* another allocator or activation_weight (EBUSY), or it
|
|
* failed because another metaslab was assigned as primary
|
|
* for this allocator (EEXIST) we continue using this
|
|
* metaslab for our allocation, rather than going on to a
|
|
* worse metaslab (we waited for that metaslab to be loaded
|
|
* after all).
|
|
*
|
|
* If the activation failed due to an I/O error or ENOSPC we
|
|
* skip to the next metaslab.
|
|
*/
|
|
boolean_t activated;
|
|
if (activation_error == 0) {
|
|
activated = B_TRUE;
|
|
} else if (activation_error == EBUSY ||
|
|
activation_error == EEXIST) {
|
|
activated = B_FALSE;
|
|
} else {
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
/*
|
|
* Now that we have the lock, recheck to see if we should
|
|
* continue to use this metaslab for this allocation. The
|
|
* the metaslab is now loaded so metaslab_should_allocate()
|
|
* can accurately determine if the allocation attempt should
|
|
* proceed.
|
|
*/
|
|
if (!metaslab_should_allocate(msp, asize, try_hard)) {
|
|
/* Passivate this metaslab and select a new one. */
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_TOO_SMALL, allocator);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* If this metaslab is currently condensing then pick again
|
|
* as we can't manipulate this metaslab until it's committed
|
|
* to disk. If this metaslab is being initialized, we shouldn't
|
|
* allocate from it since the allocated region might be
|
|
* overwritten after allocation.
|
|
*/
|
|
if (msp->ms_condensing) {
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_CONDENSING, allocator);
|
|
if (activated) {
|
|
metaslab_passivate(msp, msp->ms_weight &
|
|
~METASLAB_ACTIVE_MASK);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
} else if (msp->ms_disabled > 0) {
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_DISABLED, allocator);
|
|
if (activated) {
|
|
metaslab_passivate(msp, msp->ms_weight &
|
|
~METASLAB_ACTIVE_MASK);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
offset = metaslab_block_alloc(msp, asize, txg);
|
|
metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
|
|
|
|
if (offset != -1ULL) {
|
|
/* Proactively passivate the metaslab, if needed */
|
|
if (activated)
|
|
metaslab_segment_may_passivate(msp);
|
|
break;
|
|
}
|
|
next:
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
/*
|
|
* This code is disabled out because of issues with
|
|
* tracepoints in non-gpl kernel modules.
|
|
*/
|
|
#if 0
|
|
DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
|
|
uint64_t, asize);
|
|
#endif
|
|
|
|
/*
|
|
* We were unable to allocate from this metaslab so determine
|
|
* a new weight for this metaslab. Now that we have loaded
|
|
* the metaslab we can provide a better hint to the metaslab
|
|
* selector.
|
|
*
|
|
* For space-based metaslabs, we use the maximum block size.
|
|
* This information is only available when the metaslab
|
|
* is loaded and is more accurate than the generic free
|
|
* space weight that was calculated by metaslab_weight().
|
|
* This information allows us to quickly compare the maximum
|
|
* available allocation in the metaslab to the allocation
|
|
* size being requested.
|
|
*
|
|
* For segment-based metaslabs, determine the new weight
|
|
* based on the highest bucket in the range tree. We
|
|
* explicitly use the loaded segment weight (i.e. the range
|
|
* tree histogram) since it contains the space that is
|
|
* currently available for allocation and is accurate
|
|
* even within a sync pass.
|
|
*/
|
|
uint64_t weight;
|
|
if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
|
|
weight = metaslab_largest_allocatable(msp);
|
|
WEIGHT_SET_SPACEBASED(weight);
|
|
} else {
|
|
weight = metaslab_weight_from_range_tree(msp);
|
|
}
|
|
|
|
if (activated) {
|
|
metaslab_passivate(msp, weight);
|
|
} else {
|
|
/*
|
|
* For the case where we use the metaslab that is
|
|
* active for another allocator we want to make
|
|
* sure that we retain the activation mask.
|
|
*
|
|
* Note that we could attempt to use something like
|
|
* metaslab_recalculate_weight_and_sort() that
|
|
* retains the activation mask here. That function
|
|
* uses metaslab_weight() to set the weight though
|
|
* which is not as accurate as the calculations
|
|
* above.
|
|
*/
|
|
weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
|
|
metaslab_group_sort(mg, msp, weight);
|
|
}
|
|
metaslab_active_mask_verify(msp);
|
|
|
|
/*
|
|
* We have just failed an allocation attempt, check
|
|
* that metaslab_should_allocate() agrees. Otherwise,
|
|
* we may end up in an infinite loop retrying the same
|
|
* metaslab.
|
|
*/
|
|
ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
kmem_free(search, sizeof (*search));
|
|
return (offset);
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
|
|
uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
|
|
int allocator, boolean_t try_hard)
|
|
{
|
|
uint64_t offset;
|
|
ASSERT(mg->mg_initialized);
|
|
|
|
offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
|
|
dva, d, allocator, try_hard);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
if (offset == -1ULL) {
|
|
mg->mg_failed_allocations++;
|
|
metaslab_trace_add(zal, mg, NULL, asize, d,
|
|
TRACE_GROUP_FAILURE, allocator);
|
|
if (asize == SPA_GANGBLOCKSIZE) {
|
|
/*
|
|
* This metaslab group was unable to allocate
|
|
* the minimum gang block size so it must be out of
|
|
* space. We must notify the allocation throttle
|
|
* to start skipping allocation attempts to this
|
|
* metaslab group until more space becomes available.
|
|
* Note: this failure cannot be caused by the
|
|
* allocation throttle since the allocation throttle
|
|
* is only responsible for skipping devices and
|
|
* not failing block allocations.
|
|
*/
|
|
mg->mg_no_free_space = B_TRUE;
|
|
}
|
|
}
|
|
mg->mg_allocations++;
|
|
mutex_exit(&mg->mg_lock);
|
|
return (offset);
|
|
}
|
|
|
|
/*
|
|
* Allocate a block for the specified i/o.
|
|
*/
|
|
int
|
|
metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
|
|
dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
|
|
zio_alloc_list_t *zal, int allocator)
|
|
{
|
|
metaslab_group_t *mg, *fast_mg, *rotor;
|
|
vdev_t *vd;
|
|
boolean_t try_hard = B_FALSE;
|
|
|
|
ASSERT(!DVA_IS_VALID(&dva[d]));
|
|
|
|
/*
|
|
* For testing, make some blocks above a certain size be gang blocks.
|
|
* This will result in more split blocks when using device removal,
|
|
* and a large number of split blocks coupled with ztest-induced
|
|
* damage can result in extremely long reconstruction times. This
|
|
* will also test spilling from special to normal.
|
|
*/
|
|
if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) {
|
|
metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
|
|
allocator);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
/*
|
|
* Start at the rotor and loop through all mgs until we find something.
|
|
* Note that there's no locking on mc_rotor or mc_aliquot because
|
|
* nothing actually breaks if we miss a few updates -- we just won't
|
|
* allocate quite as evenly. It all balances out over time.
|
|
*
|
|
* If we are doing ditto or log blocks, try to spread them across
|
|
* consecutive vdevs. If we're forced to reuse a vdev before we've
|
|
* allocated all of our ditto blocks, then try and spread them out on
|
|
* that vdev as much as possible. If it turns out to not be possible,
|
|
* gradually lower our standards until anything becomes acceptable.
|
|
* Also, allocating on consecutive vdevs (as opposed to random vdevs)
|
|
* gives us hope of containing our fault domains to something we're
|
|
* able to reason about. Otherwise, any two top-level vdev failures
|
|
* will guarantee the loss of data. With consecutive allocation,
|
|
* only two adjacent top-level vdev failures will result in data loss.
|
|
*
|
|
* If we are doing gang blocks (hintdva is non-NULL), try to keep
|
|
* ourselves on the same vdev as our gang block header. That
|
|
* way, we can hope for locality in vdev_cache, plus it makes our
|
|
* fault domains something tractable.
|
|
*/
|
|
if (hintdva) {
|
|
vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
|
|
|
|
/*
|
|
* It's possible the vdev we're using as the hint no
|
|
* longer exists or its mg has been closed (e.g. by
|
|
* device removal). Consult the rotor when
|
|
* all else fails.
|
|
*/
|
|
if (vd != NULL && vd->vdev_mg != NULL) {
|
|
mg = vd->vdev_mg;
|
|
|
|
if (flags & METASLAB_HINTBP_AVOID &&
|
|
mg->mg_next != NULL)
|
|
mg = mg->mg_next;
|
|
} else {
|
|
mg = mc->mc_rotor;
|
|
}
|
|
} else if (d != 0) {
|
|
vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
|
|
mg = vd->vdev_mg->mg_next;
|
|
} else if (flags & METASLAB_FASTWRITE) {
|
|
mg = fast_mg = mc->mc_rotor;
|
|
|
|
do {
|
|
if (fast_mg->mg_vd->vdev_pending_fastwrite <
|
|
mg->mg_vd->vdev_pending_fastwrite)
|
|
mg = fast_mg;
|
|
} while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
|
|
|
|
} else {
|
|
ASSERT(mc->mc_rotor != NULL);
|
|
mg = mc->mc_rotor;
|
|
}
|
|
|
|
/*
|
|
* If the hint put us into the wrong metaslab class, or into a
|
|
* metaslab group that has been passivated, just follow the rotor.
|
|
*/
|
|
if (mg->mg_class != mc || mg->mg_activation_count <= 0)
|
|
mg = mc->mc_rotor;
|
|
|
|
rotor = mg;
|
|
top:
|
|
do {
|
|
boolean_t allocatable;
|
|
|
|
ASSERT(mg->mg_activation_count == 1);
|
|
vd = mg->mg_vd;
|
|
|
|
/*
|
|
* Don't allocate from faulted devices.
|
|
*/
|
|
if (try_hard) {
|
|
spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
|
|
allocatable = vdev_allocatable(vd);
|
|
spa_config_exit(spa, SCL_ZIO, FTAG);
|
|
} else {
|
|
allocatable = vdev_allocatable(vd);
|
|
}
|
|
|
|
/*
|
|
* Determine if the selected metaslab group is eligible
|
|
* for allocations. If we're ganging then don't allow
|
|
* this metaslab group to skip allocations since that would
|
|
* inadvertently return ENOSPC and suspend the pool
|
|
* even though space is still available.
|
|
*/
|
|
if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
|
|
allocatable = metaslab_group_allocatable(mg, rotor,
|
|
psize, allocator, d);
|
|
}
|
|
|
|
if (!allocatable) {
|
|
metaslab_trace_add(zal, mg, NULL, psize, d,
|
|
TRACE_NOT_ALLOCATABLE, allocator);
|
|
goto next;
|
|
}
|
|
|
|
ASSERT(mg->mg_initialized);
|
|
|
|
/*
|
|
* Avoid writing single-copy data to a failing,
|
|
* non-redundant vdev, unless we've already tried all
|
|
* other vdevs.
|
|
*/
|
|
if ((vd->vdev_stat.vs_write_errors > 0 ||
|
|
vd->vdev_state < VDEV_STATE_HEALTHY) &&
|
|
d == 0 && !try_hard && vd->vdev_children == 0) {
|
|
metaslab_trace_add(zal, mg, NULL, psize, d,
|
|
TRACE_VDEV_ERROR, allocator);
|
|
goto next;
|
|
}
|
|
|
|
ASSERT(mg->mg_class == mc);
|
|
|
|
uint64_t asize = vdev_psize_to_asize(vd, psize);
|
|
ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
|
|
|
|
/*
|
|
* If we don't need to try hard, then require that the
|
|
* block be on a different metaslab from any other DVAs
|
|
* in this BP (unique=true). If we are trying hard, then
|
|
* allow any metaslab to be used (unique=false).
|
|
*/
|
|
uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
|
|
!try_hard, dva, d, allocator, try_hard);
|
|
|
|
if (offset != -1ULL) {
|
|
/*
|
|
* If we've just selected this metaslab group,
|
|
* figure out whether the corresponding vdev is
|
|
* over- or under-used relative to the pool,
|
|
* and set an allocation bias to even it out.
|
|
*
|
|
* Bias is also used to compensate for unequally
|
|
* sized vdevs so that space is allocated fairly.
|
|
*/
|
|
if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
int64_t vs_free = vs->vs_space - vs->vs_alloc;
|
|
int64_t mc_free = mc->mc_space - mc->mc_alloc;
|
|
int64_t ratio;
|
|
|
|
/*
|
|
* Calculate how much more or less we should
|
|
* try to allocate from this device during
|
|
* this iteration around the rotor.
|
|
*
|
|
* This basically introduces a zero-centered
|
|
* bias towards the devices with the most
|
|
* free space, while compensating for vdev
|
|
* size differences.
|
|
*
|
|
* Examples:
|
|
* vdev V1 = 16M/128M
|
|
* vdev V2 = 16M/128M
|
|
* ratio(V1) = 100% ratio(V2) = 100%
|
|
*
|
|
* vdev V1 = 16M/128M
|
|
* vdev V2 = 64M/128M
|
|
* ratio(V1) = 127% ratio(V2) = 72%
|
|
*
|
|
* vdev V1 = 16M/128M
|
|
* vdev V2 = 64M/512M
|
|
* ratio(V1) = 40% ratio(V2) = 160%
|
|
*/
|
|
ratio = (vs_free * mc->mc_alloc_groups * 100) /
|
|
(mc_free + 1);
|
|
mg->mg_bias = ((ratio - 100) *
|
|
(int64_t)mg->mg_aliquot) / 100;
|
|
} else if (!metaslab_bias_enabled) {
|
|
mg->mg_bias = 0;
|
|
}
|
|
|
|
if ((flags & METASLAB_FASTWRITE) ||
|
|
atomic_add_64_nv(&mc->mc_aliquot, asize) >=
|
|
mg->mg_aliquot + mg->mg_bias) {
|
|
mc->mc_rotor = mg->mg_next;
|
|
mc->mc_aliquot = 0;
|
|
}
|
|
|
|
DVA_SET_VDEV(&dva[d], vd->vdev_id);
|
|
DVA_SET_OFFSET(&dva[d], offset);
|
|
DVA_SET_GANG(&dva[d],
|
|
((flags & METASLAB_GANG_HEADER) ? 1 : 0));
|
|
DVA_SET_ASIZE(&dva[d], asize);
|
|
|
|
if (flags & METASLAB_FASTWRITE) {
|
|
atomic_add_64(&vd->vdev_pending_fastwrite,
|
|
psize);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
next:
|
|
mc->mc_rotor = mg->mg_next;
|
|
mc->mc_aliquot = 0;
|
|
} while ((mg = mg->mg_next) != rotor);
|
|
|
|
/*
|
|
* If we haven't tried hard, do so now.
|
|
*/
|
|
if (!try_hard) {
|
|
try_hard = B_TRUE;
|
|
goto top;
|
|
}
|
|
|
|
bzero(&dva[d], sizeof (dva_t));
|
|
|
|
metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
void
|
|
metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
|
|
boolean_t checkpoint)
|
|
{
|
|
metaslab_t *msp;
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
|
|
ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
|
|
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY3U(offset, >=, msp->ms_start);
|
|
VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
|
|
VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
|
|
|
|
metaslab_check_free_impl(vd, offset, asize);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
if (range_tree_is_empty(msp->ms_freeing) &&
|
|
range_tree_is_empty(msp->ms_checkpointing)) {
|
|
vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
|
|
}
|
|
|
|
if (checkpoint) {
|
|
ASSERT(spa_has_checkpoint(spa));
|
|
range_tree_add(msp->ms_checkpointing, offset, asize);
|
|
} else {
|
|
range_tree_add(msp->ms_freeing, offset, asize);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
|
|
uint64_t size, void *arg)
|
|
{
|
|
boolean_t *checkpoint = arg;
|
|
|
|
ASSERT3P(checkpoint, !=, NULL);
|
|
|
|
if (vd->vdev_ops->vdev_op_remap != NULL)
|
|
vdev_indirect_mark_obsolete(vd, offset, size);
|
|
else
|
|
metaslab_free_impl(vd, offset, size, *checkpoint);
|
|
}
|
|
|
|
static void
|
|
metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
|
|
boolean_t checkpoint)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
|
|
|
|
if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
|
|
return;
|
|
|
|
if (spa->spa_vdev_removal != NULL &&
|
|
spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
|
|
vdev_is_concrete(vd)) {
|
|
/*
|
|
* Note: we check if the vdev is concrete because when
|
|
* we complete the removal, we first change the vdev to be
|
|
* an indirect vdev (in open context), and then (in syncing
|
|
* context) clear spa_vdev_removal.
|
|
*/
|
|
free_from_removing_vdev(vd, offset, size);
|
|
} else if (vd->vdev_ops->vdev_op_remap != NULL) {
|
|
vdev_indirect_mark_obsolete(vd, offset, size);
|
|
vd->vdev_ops->vdev_op_remap(vd, offset, size,
|
|
metaslab_free_impl_cb, &checkpoint);
|
|
} else {
|
|
metaslab_free_concrete(vd, offset, size, checkpoint);
|
|
}
|
|
}
|
|
|
|
typedef struct remap_blkptr_cb_arg {
|
|
blkptr_t *rbca_bp;
|
|
spa_remap_cb_t rbca_cb;
|
|
vdev_t *rbca_remap_vd;
|
|
uint64_t rbca_remap_offset;
|
|
void *rbca_cb_arg;
|
|
} remap_blkptr_cb_arg_t;
|
|
|
|
static void
|
|
remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
|
|
uint64_t size, void *arg)
|
|
{
|
|
remap_blkptr_cb_arg_t *rbca = arg;
|
|
blkptr_t *bp = rbca->rbca_bp;
|
|
|
|
/* We can not remap split blocks. */
|
|
if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
|
|
return;
|
|
ASSERT0(inner_offset);
|
|
|
|
if (rbca->rbca_cb != NULL) {
|
|
/*
|
|
* At this point we know that we are not handling split
|
|
* blocks and we invoke the callback on the previous
|
|
* vdev which must be indirect.
|
|
*/
|
|
ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
|
|
|
|
rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
|
|
rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
|
|
|
|
/* set up remap_blkptr_cb_arg for the next call */
|
|
rbca->rbca_remap_vd = vd;
|
|
rbca->rbca_remap_offset = offset;
|
|
}
|
|
|
|
/*
|
|
* The phys birth time is that of dva[0]. This ensures that we know
|
|
* when each dva was written, so that resilver can determine which
|
|
* blocks need to be scrubbed (i.e. those written during the time
|
|
* the vdev was offline). It also ensures that the key used in
|
|
* the ARC hash table is unique (i.e. dva[0] + phys_birth). If
|
|
* we didn't change the phys_birth, a lookup in the ARC for a
|
|
* remapped BP could find the data that was previously stored at
|
|
* this vdev + offset.
|
|
*/
|
|
vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
|
|
DVA_GET_VDEV(&bp->blk_dva[0]));
|
|
vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
|
|
bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
|
|
DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
|
|
|
|
DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
|
|
DVA_SET_OFFSET(&bp->blk_dva[0], offset);
|
|
}
|
|
|
|
/*
|
|
* If the block pointer contains any indirect DVAs, modify them to refer to
|
|
* concrete DVAs. Note that this will sometimes not be possible, leaving
|
|
* the indirect DVA in place. This happens if the indirect DVA spans multiple
|
|
* segments in the mapping (i.e. it is a "split block").
|
|
*
|
|
* If the BP was remapped, calls the callback on the original dva (note the
|
|
* callback can be called multiple times if the original indirect DVA refers
|
|
* to another indirect DVA, etc).
|
|
*
|
|
* Returns TRUE if the BP was remapped.
|
|
*/
|
|
boolean_t
|
|
spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
|
|
{
|
|
remap_blkptr_cb_arg_t rbca;
|
|
|
|
if (!zfs_remap_blkptr_enable)
|
|
return (B_FALSE);
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Dedup BP's can not be remapped, because ddt_phys_select() depends
|
|
* on DVA[0] being the same in the BP as in the DDT (dedup table).
|
|
*/
|
|
if (BP_GET_DEDUP(bp))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Gang blocks can not be remapped, because
|
|
* zio_checksum_gang_verifier() depends on the DVA[0] that's in
|
|
* the BP used to read the gang block header (GBH) being the same
|
|
* as the DVA[0] that we allocated for the GBH.
|
|
*/
|
|
if (BP_IS_GANG(bp))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Embedded BP's have no DVA to remap.
|
|
*/
|
|
if (BP_GET_NDVAS(bp) < 1)
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Note: we only remap dva[0]. If we remapped other dvas, we
|
|
* would no longer know what their phys birth txg is.
|
|
*/
|
|
dva_t *dva = &bp->blk_dva[0];
|
|
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
|
|
|
|
if (vd->vdev_ops->vdev_op_remap == NULL)
|
|
return (B_FALSE);
|
|
|
|
rbca.rbca_bp = bp;
|
|
rbca.rbca_cb = callback;
|
|
rbca.rbca_remap_vd = vd;
|
|
rbca.rbca_remap_offset = offset;
|
|
rbca.rbca_cb_arg = arg;
|
|
|
|
/*
|
|
* remap_blkptr_cb() will be called in order for each level of
|
|
* indirection, until a concrete vdev is reached or a split block is
|
|
* encountered. old_vd and old_offset are updated within the callback
|
|
* as we go from the one indirect vdev to the next one (either concrete
|
|
* or indirect again) in that order.
|
|
*/
|
|
vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
|
|
|
|
/* Check if the DVA wasn't remapped because it is a split block */
|
|
if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
|
|
return (B_FALSE);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Undo the allocation of a DVA which happened in the given transaction group.
|
|
*/
|
|
void
|
|
metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
|
|
{
|
|
metaslab_t *msp;
|
|
vdev_t *vd;
|
|
uint64_t vdev = DVA_GET_VDEV(dva);
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
|
|
ASSERT(DVA_IS_VALID(dva));
|
|
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
|
|
|
|
if (txg > spa_freeze_txg(spa))
|
|
return;
|
|
|
|
if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
|
|
(offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
|
|
zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
|
|
(u_longlong_t)vdev, (u_longlong_t)offset,
|
|
(u_longlong_t)size);
|
|
return;
|
|
}
|
|
|
|
ASSERT(!vd->vdev_removing);
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
|
|
ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
|
|
|
|
if (DVA_GET_GANG(dva))
|
|
size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
|
|
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
|
|
offset, size);
|
|
msp->ms_allocating_total -= size;
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY3U(offset, >=, msp->ms_start);
|
|
VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
|
|
VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
|
|
msp->ms_size);
|
|
VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
range_tree_add(msp->ms_allocatable, offset, size);
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
/*
|
|
* Free the block represented by the given DVA.
|
|
*/
|
|
void
|
|
metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
|
|
{
|
|
uint64_t vdev = DVA_GET_VDEV(dva);
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev);
|
|
|
|
ASSERT(DVA_IS_VALID(dva));
|
|
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
|
|
|
|
if (DVA_GET_GANG(dva)) {
|
|
size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
|
|
}
|
|
|
|
metaslab_free_impl(vd, offset, size, checkpoint);
|
|
}
|
|
|
|
/*
|
|
* Reserve some allocation slots. The reservation system must be called
|
|
* before we call into the allocator. If there aren't any available slots
|
|
* then the I/O will be throttled until an I/O completes and its slots are
|
|
* freed up. The function returns true if it was successful in placing
|
|
* the reservation.
|
|
*/
|
|
boolean_t
|
|
metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
|
|
zio_t *zio, int flags)
|
|
{
|
|
uint64_t available_slots = 0;
|
|
boolean_t slot_reserved = B_FALSE;
|
|
uint64_t max = mc->mc_alloc_max_slots[allocator];
|
|
|
|
ASSERT(mc->mc_alloc_throttle_enabled);
|
|
mutex_enter(&mc->mc_lock);
|
|
|
|
uint64_t reserved_slots =
|
|
zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
|
|
if (reserved_slots < max)
|
|
available_slots = max - reserved_slots;
|
|
|
|
if (slots <= available_slots || GANG_ALLOCATION(flags) ||
|
|
flags & METASLAB_MUST_RESERVE) {
|
|
/*
|
|
* We reserve the slots individually so that we can unreserve
|
|
* them individually when an I/O completes.
|
|
*/
|
|
for (int d = 0; d < slots; d++) {
|
|
reserved_slots =
|
|
zfs_refcount_add(&mc->mc_alloc_slots[allocator],
|
|
zio);
|
|
}
|
|
zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
|
|
slot_reserved = B_TRUE;
|
|
}
|
|
|
|
mutex_exit(&mc->mc_lock);
|
|
return (slot_reserved);
|
|
}
|
|
|
|
void
|
|
metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
|
|
int allocator, zio_t *zio)
|
|
{
|
|
ASSERT(mc->mc_alloc_throttle_enabled);
|
|
mutex_enter(&mc->mc_lock);
|
|
for (int d = 0; d < slots; d++) {
|
|
(void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
|
|
zio);
|
|
}
|
|
mutex_exit(&mc->mc_lock);
|
|
}
|
|
|
|
static int
|
|
metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
|
|
uint64_t txg)
|
|
{
|
|
metaslab_t *msp;
|
|
spa_t *spa = vd->vdev_spa;
|
|
int error = 0;
|
|
|
|
if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
ASSERT3P(vd->vdev_ms, !=, NULL);
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
|
|
error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
|
|
if (error == EBUSY) {
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
error = 0;
|
|
}
|
|
}
|
|
|
|
if (error == 0 &&
|
|
!range_tree_contains(msp->ms_allocatable, offset, size))
|
|
error = SET_ERROR(ENOENT);
|
|
|
|
if (error || txg == 0) { /* txg == 0 indicates dry run */
|
|
mutex_exit(&msp->ms_lock);
|
|
return (error);
|
|
}
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
|
|
msp->ms_size);
|
|
range_tree_remove(msp->ms_allocatable, offset, size);
|
|
range_tree_clear(msp->ms_trim, offset, size);
|
|
|
|
if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
multilist_sublist_t *mls =
|
|
multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
|
|
if (!multilist_link_active(&msp->ms_class_txg_node)) {
|
|
msp->ms_selected_txg = txg;
|
|
multilist_sublist_insert_head(mls, msp);
|
|
}
|
|
multilist_sublist_unlock(mls);
|
|
|
|
if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg);
|
|
range_tree_add(msp->ms_allocating[txg & TXG_MASK],
|
|
offset, size);
|
|
msp->ms_allocating_total += size;
|
|
}
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
typedef struct metaslab_claim_cb_arg_t {
|
|
uint64_t mcca_txg;
|
|
int mcca_error;
|
|
} metaslab_claim_cb_arg_t;
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
|
|
uint64_t size, void *arg)
|
|
{
|
|
metaslab_claim_cb_arg_t *mcca_arg = arg;
|
|
|
|
if (mcca_arg->mcca_error == 0) {
|
|
mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
|
|
size, mcca_arg->mcca_txg);
|
|
}
|
|
}
|
|
|
|
int
|
|
metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
|
|
{
|
|
if (vd->vdev_ops->vdev_op_remap != NULL) {
|
|
metaslab_claim_cb_arg_t arg;
|
|
|
|
/*
|
|
* Only zdb(8) can claim on indirect vdevs. This is used
|
|
* to detect leaks of mapped space (that are not accounted
|
|
* for in the obsolete counts, spacemap, or bpobj).
|
|
*/
|
|
ASSERT(!spa_writeable(vd->vdev_spa));
|
|
arg.mcca_error = 0;
|
|
arg.mcca_txg = txg;
|
|
|
|
vd->vdev_ops->vdev_op_remap(vd, offset, size,
|
|
metaslab_claim_impl_cb, &arg);
|
|
|
|
if (arg.mcca_error == 0) {
|
|
arg.mcca_error = metaslab_claim_concrete(vd,
|
|
offset, size, txg);
|
|
}
|
|
return (arg.mcca_error);
|
|
} else {
|
|
return (metaslab_claim_concrete(vd, offset, size, txg));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Intent log support: upon opening the pool after a crash, notify the SPA
|
|
* of blocks that the intent log has allocated for immediate write, but
|
|
* which are still considered free by the SPA because the last transaction
|
|
* group didn't commit yet.
|
|
*/
|
|
static int
|
|
metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
|
|
{
|
|
uint64_t vdev = DVA_GET_VDEV(dva);
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
vdev_t *vd;
|
|
|
|
if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
ASSERT(DVA_IS_VALID(dva));
|
|
|
|
if (DVA_GET_GANG(dva))
|
|
size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
|
|
|
|
return (metaslab_claim_impl(vd, offset, size, txg));
|
|
}
|
|
|
|
int
|
|
metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
|
|
int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
|
|
zio_alloc_list_t *zal, zio_t *zio, int allocator)
|
|
{
|
|
dva_t *dva = bp->blk_dva;
|
|
dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
|
|
int error = 0;
|
|
|
|
ASSERT(bp->blk_birth == 0);
|
|
ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
|
|
|
|
if (mc->mc_rotor == NULL) { /* no vdevs in this class */
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
|
|
ASSERT(BP_GET_NDVAS(bp) == 0);
|
|
ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
|
|
ASSERT3P(zal, !=, NULL);
|
|
|
|
for (int d = 0; d < ndvas; d++) {
|
|
error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
|
|
txg, flags, zal, allocator);
|
|
if (error != 0) {
|
|
for (d--; d >= 0; d--) {
|
|
metaslab_unalloc_dva(spa, &dva[d], txg);
|
|
metaslab_group_alloc_decrement(spa,
|
|
DVA_GET_VDEV(&dva[d]), zio, flags,
|
|
allocator, B_FALSE);
|
|
bzero(&dva[d], sizeof (dva_t));
|
|
}
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
return (error);
|
|
} else {
|
|
/*
|
|
* Update the metaslab group's queue depth
|
|
* based on the newly allocated dva.
|
|
*/
|
|
metaslab_group_alloc_increment(spa,
|
|
DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
|
|
}
|
|
|
|
}
|
|
ASSERT(error == 0);
|
|
ASSERT(BP_GET_NDVAS(bp) == ndvas);
|
|
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
BP_SET_BIRTH(bp, txg, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
|
|
|
|
/*
|
|
* If we have a checkpoint for the pool we need to make sure that
|
|
* the blocks that we free that are part of the checkpoint won't be
|
|
* reused until the checkpoint is discarded or we revert to it.
|
|
*
|
|
* The checkpoint flag is passed down the metaslab_free code path
|
|
* and is set whenever we want to add a block to the checkpoint's
|
|
* accounting. That is, we "checkpoint" blocks that existed at the
|
|
* time the checkpoint was created and are therefore referenced by
|
|
* the checkpointed uberblock.
|
|
*
|
|
* Note that, we don't checkpoint any blocks if the current
|
|
* syncing txg <= spa_checkpoint_txg. We want these frees to sync
|
|
* normally as they will be referenced by the checkpointed uberblock.
|
|
*/
|
|
boolean_t checkpoint = B_FALSE;
|
|
if (bp->blk_birth <= spa->spa_checkpoint_txg &&
|
|
spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
|
|
/*
|
|
* At this point, if the block is part of the checkpoint
|
|
* there is no way it was created in the current txg.
|
|
*/
|
|
ASSERT(!now);
|
|
ASSERT3U(spa_syncing_txg(spa), ==, txg);
|
|
checkpoint = B_TRUE;
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
|
|
|
|
for (int d = 0; d < ndvas; d++) {
|
|
if (now) {
|
|
metaslab_unalloc_dva(spa, &dva[d], txg);
|
|
} else {
|
|
ASSERT3U(txg, ==, spa_syncing_txg(spa));
|
|
metaslab_free_dva(spa, &dva[d], checkpoint);
|
|
}
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_FREE, FTAG);
|
|
}
|
|
|
|
int
|
|
metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
int error = 0;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
|
|
if (txg != 0) {
|
|
/*
|
|
* First do a dry run to make sure all DVAs are claimable,
|
|
* so we don't have to unwind from partial failures below.
|
|
*/
|
|
if ((error = metaslab_claim(spa, bp, 0)) != 0)
|
|
return (error);
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
|
|
|
|
for (int d = 0; d < ndvas; d++) {
|
|
error = metaslab_claim_dva(spa, &dva[d], txg);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
ASSERT(error == 0 || txg == 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
uint64_t psize = BP_GET_PSIZE(bp);
|
|
int d;
|
|
vdev_t *vd;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
ASSERT(psize > 0);
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < ndvas; d++) {
|
|
if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
|
|
continue;
|
|
atomic_add_64(&vd->vdev_pending_fastwrite, psize);
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
|
|
void
|
|
metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
uint64_t psize = BP_GET_PSIZE(bp);
|
|
int d;
|
|
vdev_t *vd;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
ASSERT(psize > 0);
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (d = 0; d < ndvas; d++) {
|
|
if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
|
|
continue;
|
|
ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
|
|
atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
|
|
uint64_t size, void *arg)
|
|
{
|
|
if (vd->vdev_ops == &vdev_indirect_ops)
|
|
return;
|
|
|
|
metaslab_check_free_impl(vd, offset, size);
|
|
}
|
|
|
|
static void
|
|
metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
|
|
{
|
|
metaslab_t *msp;
|
|
spa_t *spa __maybe_unused = vd->vdev_spa;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
|
|
return;
|
|
|
|
if (vd->vdev_ops->vdev_op_remap != NULL) {
|
|
vd->vdev_ops->vdev_op_remap(vd, offset, size,
|
|
metaslab_check_free_impl_cb, NULL);
|
|
return;
|
|
}
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
|
|
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
|
|
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
if (msp->ms_loaded) {
|
|
range_tree_verify_not_present(msp->ms_allocatable,
|
|
offset, size);
|
|
}
|
|
|
|
/*
|
|
* Check all segments that currently exist in the freeing pipeline.
|
|
*
|
|
* It would intuitively make sense to also check the current allocating
|
|
* tree since metaslab_unalloc_dva() exists for extents that are
|
|
* allocated and freed in the same sync pass within the same txg.
|
|
* Unfortunately there are places (e.g. the ZIL) where we allocate a
|
|
* segment but then we free part of it within the same txg
|
|
* [see zil_sync()]. Thus, we don't call range_tree_verify() in the
|
|
* current allocating tree.
|
|
*/
|
|
range_tree_verify_not_present(msp->ms_freeing, offset, size);
|
|
range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
|
|
range_tree_verify_not_present(msp->ms_freed, offset, size);
|
|
for (int j = 0; j < TXG_DEFER_SIZE; j++)
|
|
range_tree_verify_not_present(msp->ms_defer[j], offset, size);
|
|
range_tree_verify_not_present(msp->ms_trim, offset, size);
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_check_free(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
|
|
return;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
|
|
uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev);
|
|
uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
|
|
uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
|
|
|
|
if (DVA_GET_GANG(&bp->blk_dva[i]))
|
|
size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
|
|
|
|
ASSERT3P(vd, !=, NULL);
|
|
|
|
metaslab_check_free_impl(vd, offset, size);
|
|
}
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_disable_wait(metaslab_group_t *mg)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
|
|
while (mg->mg_disabled_updating) {
|
|
cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
metaslab_group_disabled_increment(metaslab_group_t *mg)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
|
|
ASSERT(mg->mg_disabled_updating);
|
|
|
|
while (mg->mg_ms_disabled >= max_disabled_ms) {
|
|
cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
|
|
}
|
|
mg->mg_ms_disabled++;
|
|
ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
|
|
}
|
|
|
|
/*
|
|
* Mark the metaslab as disabled to prevent any allocations on this metaslab.
|
|
* We must also track how many metaslabs are currently disabled within a
|
|
* metaslab group and limit them to prevent allocation failures from
|
|
* occurring because all metaslabs are disabled.
|
|
*/
|
|
void
|
|
metaslab_disable(metaslab_t *msp)
|
|
{
|
|
ASSERT(!MUTEX_HELD(&msp->ms_lock));
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
|
|
mutex_enter(&mg->mg_ms_disabled_lock);
|
|
|
|
/*
|
|
* To keep an accurate count of how many threads have disabled
|
|
* a specific metaslab group, we only allow one thread to mark
|
|
* the metaslab group at a time. This ensures that the value of
|
|
* ms_disabled will be accurate when we decide to mark a metaslab
|
|
* group as disabled. To do this we force all other threads
|
|
* to wait till the metaslab's mg_disabled_updating flag is no
|
|
* longer set.
|
|
*/
|
|
metaslab_group_disable_wait(mg);
|
|
mg->mg_disabled_updating = B_TRUE;
|
|
if (msp->ms_disabled == 0) {
|
|
metaslab_group_disabled_increment(mg);
|
|
}
|
|
mutex_enter(&msp->ms_lock);
|
|
msp->ms_disabled++;
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
mg->mg_disabled_updating = B_FALSE;
|
|
cv_broadcast(&mg->mg_ms_disabled_cv);
|
|
mutex_exit(&mg->mg_ms_disabled_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
|
|
/*
|
|
* Wait for the outstanding IO to be synced to prevent newly
|
|
* allocated blocks from being overwritten. This used by
|
|
* initialize and TRIM which are modifying unallocated space.
|
|
*/
|
|
if (sync)
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
|
|
mutex_enter(&mg->mg_ms_disabled_lock);
|
|
mutex_enter(&msp->ms_lock);
|
|
if (--msp->ms_disabled == 0) {
|
|
mg->mg_ms_disabled--;
|
|
cv_broadcast(&mg->mg_ms_disabled_cv);
|
|
if (unload)
|
|
metaslab_unload(msp);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
mutex_exit(&mg->mg_ms_disabled_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
|
|
{
|
|
vdev_t *vd = ms->ms_group->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa_meta_objset(spa);
|
|
|
|
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
metaslab_unflushed_phys_t entry = {
|
|
.msp_unflushed_txg = metaslab_unflushed_txg(ms),
|
|
};
|
|
uint64_t entry_size = sizeof (entry);
|
|
uint64_t entry_offset = ms->ms_id * entry_size;
|
|
|
|
uint64_t object = 0;
|
|
int err = zap_lookup(mos, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
|
|
&object);
|
|
if (err == ENOENT) {
|
|
object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
|
|
SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
|
|
VERIFY0(zap_add(mos, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
|
|
&object, tx));
|
|
} else {
|
|
VERIFY0(err);
|
|
}
|
|
|
|
dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
|
|
&entry, tx);
|
|
}
|
|
|
|
void
|
|
metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = ms->ms_group->mg_vd->vdev_spa;
|
|
|
|
if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
|
|
return;
|
|
|
|
ms->ms_unflushed_txg = txg;
|
|
metaslab_update_ondisk_flush_data(ms, tx);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_unflushed_txg(metaslab_t *ms)
|
|
{
|
|
return (ms->ms_unflushed_txg);
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW,
|
|
"Allocation granularity (a.k.a. stripe size)");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
|
|
"Load all metaslabs when pool is first opened");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
|
|
"Prevent metaslabs from being unloaded");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
|
|
"Preload potential metaslabs during reassessment");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW,
|
|
"Delay in txgs after metaslab was last used before unloading");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW,
|
|
"Delay in milliseconds after metaslab was last used before unloading");
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW,
|
|
"Percentage of metaslab group size that should be free to make it "
|
|
"eligible for allocation");
|
|
|
|
ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW,
|
|
"Percentage of metaslab group size that should be considered eligible "
|
|
"for allocations unless all metaslab groups within the metaslab class "
|
|
"have also crossed this threshold");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT,
|
|
ZMOD_RW, "Fragmentation for metaslab to allow allocation");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW,
|
|
"Use the fragmentation metric to prefer less fragmented metaslabs");
|
|
/* END CSTYLED */
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
|
|
"Prefer metaslabs with lower LBAs");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
|
|
"Enable metaslab group biasing");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
|
|
ZMOD_RW, "Enable segment-based metaslab selection");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
|
|
"Segment-based metaslab selection maximum buckets before switching");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW,
|
|
"Blocks larger than this size are forced to be gang blocks");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW,
|
|
"Max distance (bytes) to search forward before using size tree");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
|
|
"When looking in size tree, use largest segment instead of exact fit");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG,
|
|
ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW,
|
|
"Percentage of memory that can be used to store metaslab range trees");
|