mirror_zfs/module/os/freebsd/spl/spl_taskq.c
Alexander Motin 832f66b218
FreeBSD: Sync taskq_cancel_id() returns with Linux
Couple places in the code depend on 0 returned only if the task was
actually cancelled.  Doing otherwise could lead to extra references
being dropped.  The race could be small, but I believe CI hit it
from time to time.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #16565
2024-09-24 16:29:18 -07:00

528 lines
13 KiB
C

/*
* Copyright (c) 2009 Pawel Jakub Dawidek <pjd@FreeBSD.org>
* All rights reserved.
*
* Copyright (c) 2012 Spectra Logic Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/taskq.h>
#include <sys/taskqueue.h>
#include <sys/zfs_context.h>
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
#include <machine/pcb.h>
#endif
#include <vm/uma.h>
static uint_t taskq_tsd;
static uma_zone_t taskq_zone;
/*
* Global system-wide dynamic task queue available for all consumers. This
* taskq is not intended for long-running tasks; instead, a dedicated taskq
* should be created.
*/
taskq_t *system_taskq = NULL;
taskq_t *system_delay_taskq = NULL;
taskq_t *dynamic_taskq = NULL;
proc_t *system_proc;
static MALLOC_DEFINE(M_TASKQ, "taskq", "taskq structures");
static LIST_HEAD(tqenthashhead, taskq_ent) *tqenthashtbl;
static unsigned long tqenthash;
static unsigned long tqenthashlock;
static struct sx *tqenthashtbl_lock;
static taskqid_t tqidnext;
#define TQIDHASH(tqid) (&tqenthashtbl[(tqid) & tqenthash])
#define TQIDHASHLOCK(tqid) (&tqenthashtbl_lock[((tqid) & tqenthashlock)])
#define NORMAL_TASK 0
#define TIMEOUT_TASK 1
static void
system_taskq_init(void *arg)
{
int i;
tsd_create(&taskq_tsd, NULL);
tqenthashtbl = hashinit(mp_ncpus * 8, M_TASKQ, &tqenthash);
tqenthashlock = (tqenthash + 1) / 8;
if (tqenthashlock > 0)
tqenthashlock--;
tqenthashtbl_lock =
malloc(sizeof (*tqenthashtbl_lock) * (tqenthashlock + 1),
M_TASKQ, M_WAITOK | M_ZERO);
for (i = 0; i < tqenthashlock + 1; i++)
sx_init_flags(&tqenthashtbl_lock[i], "tqenthash", SX_DUPOK);
taskq_zone = uma_zcreate("taskq_zone", sizeof (taskq_ent_t),
NULL, NULL, NULL, NULL,
UMA_ALIGN_CACHE, 0);
system_taskq = taskq_create("system_taskq", mp_ncpus, minclsyspri,
0, 0, 0);
system_delay_taskq = taskq_create("system_delay_taskq", mp_ncpus,
minclsyspri, 0, 0, 0);
}
SYSINIT(system_taskq_init, SI_SUB_CONFIGURE, SI_ORDER_ANY, system_taskq_init,
NULL);
static void
system_taskq_fini(void *arg)
{
int i;
taskq_destroy(system_delay_taskq);
taskq_destroy(system_taskq);
uma_zdestroy(taskq_zone);
tsd_destroy(&taskq_tsd);
for (i = 0; i < tqenthashlock + 1; i++)
sx_destroy(&tqenthashtbl_lock[i]);
for (i = 0; i < tqenthash + 1; i++)
VERIFY(LIST_EMPTY(&tqenthashtbl[i]));
free(tqenthashtbl_lock, M_TASKQ);
free(tqenthashtbl, M_TASKQ);
}
SYSUNINIT(system_taskq_fini, SI_SUB_CONFIGURE, SI_ORDER_ANY, system_taskq_fini,
NULL);
#ifdef __LP64__
static taskqid_t
__taskq_genid(void)
{
taskqid_t tqid;
/*
* Assume a 64-bit counter will not wrap in practice.
*/
tqid = atomic_add_64_nv(&tqidnext, 1);
VERIFY(tqid);
return (tqid);
}
#else
static taskqid_t
__taskq_genid(void)
{
taskqid_t tqid;
for (;;) {
tqid = atomic_add_32_nv(&tqidnext, 1);
if (__predict_true(tqid != 0))
break;
}
VERIFY(tqid);
return (tqid);
}
#endif
static taskq_ent_t *
taskq_lookup(taskqid_t tqid)
{
taskq_ent_t *ent = NULL;
if (tqid == 0)
return (NULL);
sx_slock(TQIDHASHLOCK(tqid));
LIST_FOREACH(ent, TQIDHASH(tqid), tqent_hash) {
if (ent->tqent_id == tqid)
break;
}
if (ent != NULL)
refcount_acquire(&ent->tqent_rc);
sx_sunlock(TQIDHASHLOCK(tqid));
return (ent);
}
static taskqid_t
taskq_insert(taskq_ent_t *ent)
{
taskqid_t tqid = __taskq_genid();
ent->tqent_id = tqid;
sx_xlock(TQIDHASHLOCK(tqid));
LIST_INSERT_HEAD(TQIDHASH(tqid), ent, tqent_hash);
sx_xunlock(TQIDHASHLOCK(tqid));
return (tqid);
}
static void
taskq_remove(taskq_ent_t *ent)
{
taskqid_t tqid = ent->tqent_id;
if (tqid == 0)
return;
sx_xlock(TQIDHASHLOCK(tqid));
if (ent->tqent_id != 0) {
LIST_REMOVE(ent, tqent_hash);
ent->tqent_id = 0;
}
sx_xunlock(TQIDHASHLOCK(tqid));
}
static void
taskq_tsd_set(void *context)
{
taskq_t *tq = context;
#if defined(__amd64__) || defined(__i386__) || defined(__aarch64__)
if (context != NULL && tsd_get(taskq_tsd) == NULL)
fpu_kern_thread(FPU_KERN_NORMAL);
#endif
tsd_set(taskq_tsd, tq);
}
static taskq_t *
taskq_create_impl(const char *name, int nthreads, pri_t pri,
proc_t *proc __maybe_unused, uint_t flags)
{
taskq_t *tq;
if ((flags & TASKQ_THREADS_CPU_PCT) != 0)
nthreads = MAX((mp_ncpus * nthreads) / 100, 1);
tq = kmem_alloc(sizeof (*tq), KM_SLEEP);
tq->tq_nthreads = nthreads;
tq->tq_queue = taskqueue_create(name, M_WAITOK,
taskqueue_thread_enqueue, &tq->tq_queue);
taskqueue_set_callback(tq->tq_queue, TASKQUEUE_CALLBACK_TYPE_INIT,
taskq_tsd_set, tq);
taskqueue_set_callback(tq->tq_queue, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN,
taskq_tsd_set, NULL);
(void) taskqueue_start_threads_in_proc(&tq->tq_queue, nthreads, pri,
proc, "%s", name);
return ((taskq_t *)tq);
}
taskq_t *
taskq_create(const char *name, int nthreads, pri_t pri, int minalloc __unused,
int maxalloc __unused, uint_t flags)
{
return (taskq_create_impl(name, nthreads, pri, system_proc, flags));
}
taskq_t *
taskq_create_proc(const char *name, int nthreads, pri_t pri,
int minalloc __unused, int maxalloc __unused, proc_t *proc, uint_t flags)
{
return (taskq_create_impl(name, nthreads, pri, proc, flags));
}
void
taskq_destroy(taskq_t *tq)
{
taskqueue_free(tq->tq_queue);
kmem_free(tq, sizeof (*tq));
}
static void taskq_sync_assign(void *arg);
typedef struct taskq_sync_arg {
kthread_t *tqa_thread;
kcondvar_t tqa_cv;
kmutex_t tqa_lock;
int tqa_ready;
} taskq_sync_arg_t;
static void
taskq_sync_assign(void *arg)
{
taskq_sync_arg_t *tqa = arg;
mutex_enter(&tqa->tqa_lock);
tqa->tqa_thread = curthread;
tqa->tqa_ready = 1;
cv_signal(&tqa->tqa_cv);
while (tqa->tqa_ready == 1)
cv_wait(&tqa->tqa_cv, &tqa->tqa_lock);
mutex_exit(&tqa->tqa_lock);
}
/*
* Create a taskq with a specified number of pool threads. Allocate
* and return an array of nthreads kthread_t pointers, one for each
* thread in the pool. The array is not ordered and must be freed
* by the caller.
*/
taskq_t *
taskq_create_synced(const char *name, int nthreads, pri_t pri,
int minalloc, int maxalloc, uint_t flags, kthread_t ***ktpp)
{
taskq_t *tq;
taskq_sync_arg_t *tqs = kmem_zalloc(sizeof (*tqs) * nthreads, KM_SLEEP);
kthread_t **kthreads = kmem_zalloc(sizeof (*kthreads) * nthreads,
KM_SLEEP);
flags &= ~(TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT | TASKQ_DC_BATCH);
tq = taskq_create(name, nthreads, minclsyspri, nthreads, INT_MAX,
flags | TASKQ_PREPOPULATE);
VERIFY(tq != NULL);
VERIFY(tq->tq_nthreads == nthreads);
/* spawn all syncthreads */
for (int i = 0; i < nthreads; i++) {
cv_init(&tqs[i].tqa_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&tqs[i].tqa_lock, NULL, MUTEX_DEFAULT, NULL);
(void) taskq_dispatch(tq, taskq_sync_assign,
&tqs[i], TQ_FRONT);
}
/* wait on all syncthreads to start */
for (int i = 0; i < nthreads; i++) {
mutex_enter(&tqs[i].tqa_lock);
while (tqs[i].tqa_ready == 0)
cv_wait(&tqs[i].tqa_cv, &tqs[i].tqa_lock);
mutex_exit(&tqs[i].tqa_lock);
}
/* let all syncthreads resume, finish */
for (int i = 0; i < nthreads; i++) {
mutex_enter(&tqs[i].tqa_lock);
tqs[i].tqa_ready = 2;
cv_broadcast(&tqs[i].tqa_cv);
mutex_exit(&tqs[i].tqa_lock);
}
taskq_wait(tq);
for (int i = 0; i < nthreads; i++) {
kthreads[i] = tqs[i].tqa_thread;
mutex_destroy(&tqs[i].tqa_lock);
cv_destroy(&tqs[i].tqa_cv);
}
kmem_free(tqs, sizeof (*tqs) * nthreads);
*ktpp = kthreads;
return (tq);
}
int
taskq_member(taskq_t *tq, kthread_t *thread)
{
return (taskqueue_member(tq->tq_queue, thread));
}
taskq_t *
taskq_of_curthread(void)
{
return (tsd_get(taskq_tsd));
}
static void
taskq_free(taskq_ent_t *task)
{
taskq_remove(task);
if (refcount_release(&task->tqent_rc))
uma_zfree(taskq_zone, task);
}
int
taskq_cancel_id(taskq_t *tq, taskqid_t tid)
{
uint32_t pend;
int rc;
taskq_ent_t *ent;
if ((ent = taskq_lookup(tid)) == NULL)
return (ENOENT);
if (ent->tqent_type == NORMAL_TASK) {
rc = taskqueue_cancel(tq->tq_queue, &ent->tqent_task, &pend);
if (rc == EBUSY)
taskqueue_drain(tq->tq_queue, &ent->tqent_task);
} else {
rc = taskqueue_cancel_timeout(tq->tq_queue,
&ent->tqent_timeout_task, &pend);
if (rc == EBUSY) {
taskqueue_drain_timeout(tq->tq_queue,
&ent->tqent_timeout_task);
}
}
if (pend) {
/*
* Tasks normally free themselves when run, but here the task
* was cancelled so it did not free itself.
*/
taskq_free(ent);
}
/* Free the extra reference we added with taskq_lookup. */
taskq_free(ent);
return (pend ? 0 : ENOENT);
}
static void
taskq_run(void *arg, int pending)
{
taskq_ent_t *task = arg;
if (pending == 0)
return;
task->tqent_func(task->tqent_arg);
taskq_free(task);
}
taskqid_t
taskq_dispatch_delay(taskq_t *tq, task_func_t func, void *arg,
uint_t flags, clock_t expire_time)
{
taskq_ent_t *task;
taskqid_t tqid;
clock_t timo;
int mflag;
timo = expire_time - ddi_get_lbolt();
if (timo <= 0)
return (taskq_dispatch(tq, func, arg, flags));
if ((flags & (TQ_SLEEP | TQ_NOQUEUE)) == TQ_SLEEP)
mflag = M_WAITOK;
else
mflag = M_NOWAIT;
task = uma_zalloc(taskq_zone, mflag);
if (task == NULL)
return (0);
task->tqent_func = func;
task->tqent_arg = arg;
task->tqent_type = TIMEOUT_TASK;
refcount_init(&task->tqent_rc, 1);
tqid = taskq_insert(task);
TIMEOUT_TASK_INIT(tq->tq_queue, &task->tqent_timeout_task, 0,
taskq_run, task);
taskqueue_enqueue_timeout(tq->tq_queue, &task->tqent_timeout_task,
timo);
return (tqid);
}
taskqid_t
taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
{
taskq_ent_t *task;
int mflag, prio;
taskqid_t tqid;
if ((flags & (TQ_SLEEP | TQ_NOQUEUE)) == TQ_SLEEP)
mflag = M_WAITOK;
else
mflag = M_NOWAIT;
/*
* If TQ_FRONT is given, we want higher priority for this task, so it
* can go at the front of the queue.
*/
prio = !!(flags & TQ_FRONT);
task = uma_zalloc(taskq_zone, mflag);
if (task == NULL)
return (0);
refcount_init(&task->tqent_rc, 1);
task->tqent_func = func;
task->tqent_arg = arg;
task->tqent_type = NORMAL_TASK;
tqid = taskq_insert(task);
TASK_INIT(&task->tqent_task, prio, taskq_run, task);
taskqueue_enqueue(tq->tq_queue, &task->tqent_task);
return (tqid);
}
static void
taskq_run_ent(void *arg, int pending)
{
taskq_ent_t *task = arg;
if (pending == 0)
return;
task->tqent_func(task->tqent_arg);
}
void
taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint32_t flags,
taskq_ent_t *task)
{
/*
* If TQ_FRONT is given, we want higher priority for this task, so it
* can go at the front of the queue.
*/
task->tqent_task.ta_priority = !!(flags & TQ_FRONT);
task->tqent_func = func;
task->tqent_arg = arg;
taskqueue_enqueue(tq->tq_queue, &task->tqent_task);
}
void
taskq_init_ent(taskq_ent_t *task)
{
TASK_INIT(&task->tqent_task, 0, taskq_run_ent, task);
task->tqent_func = NULL;
task->tqent_arg = NULL;
task->tqent_id = 0;
task->tqent_type = NORMAL_TASK;
task->tqent_rc = 0;
}
int
taskq_empty_ent(taskq_ent_t *task)
{
return (task->tqent_task.ta_pending == 0);
}
void
taskq_wait(taskq_t *tq)
{
taskqueue_quiesce(tq->tq_queue);
}
void
taskq_wait_id(taskq_t *tq, taskqid_t tid)
{
taskq_ent_t *ent;
if ((ent = taskq_lookup(tid)) == NULL)
return;
if (ent->tqent_type == NORMAL_TASK)
taskqueue_drain(tq->tq_queue, &ent->tqent_task);
else
taskqueue_drain_timeout(tq->tq_queue, &ent->tqent_timeout_task);
taskq_free(ent);
}
void
taskq_wait_outstanding(taskq_t *tq, taskqid_t id __unused)
{
taskqueue_drain_all(tq->tq_queue);
}