mirror_zfs/lib/libzfs/libzfs_util.c
Chris Williamson 23de906c72 Illumos 5745 - zfs set allows only one dataset property to be set at a time
5745 zfs set allows only one dataset property to be set at a time
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: George Wilson <george@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Bayard Bell <buffer.g.overflow@gmail.com>
Reviewed by: Richard PALO <richard@NetBSD.org>
Reviewed by: Steven Hartland <killing@multiplay.co.uk>
Approved by: Rich Lowe <richlowe@richlowe.net>

References:
  https://www.illumos.org/issues/5745
  https://github.com/illumos/illumos-gate/commit/3092556

Porting notes:
- Fix the missing braces around initializer, zfs_cmd_t zc = {"\0"};
- Remove extra format argument in zfs_do_set()
- Declare at the top:
  - zfs_prop_t prop;
  - nvpair_t *elem;
  - nvpair_t *next;
  - int i;
- Additionally initialize:
  - int added_resv = 0;
  - zfs_prop_t prop = 0;
- Assign 0 install of NULL for uint64_t types.
  - zc->zc_nvlist_conf = '\0';
  - zc->zc_nvlist_src = '\0';
  - zc->zc_nvlist_dst = '\0';

Ported-by: kernelOfTruth kerneloftruth@gmail.com
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3574
2015-12-29 16:59:26 -08:00

1842 lines
44 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
* Copyright (c) 2011, 2014 by Delphix. All rights reserved.
*/
/*
* Internal utility routines for the ZFS library.
*/
#include <errno.h>
#include <fcntl.h>
#include <libintl.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <ctype.h>
#include <math.h>
#include <sys/stat.h>
#include <sys/mnttab.h>
#include <sys/mntent.h>
#include <sys/types.h>
#include <wait.h>
#include <libzfs.h>
#include <libzfs_core.h>
#include "libzfs_impl.h"
#include "zfs_prop.h"
#include "zfeature_common.h"
int
libzfs_errno(libzfs_handle_t *hdl)
{
return (hdl->libzfs_error);
}
const char *
libzfs_error_init(int error)
{
switch (error) {
case ENXIO:
return (dgettext(TEXT_DOMAIN, "The ZFS modules are not "
"loaded.\nTry running '/sbin/modprobe zfs' as root "
"to load them.\n"));
case ENOENT:
return (dgettext(TEXT_DOMAIN, "The /dev/zfs device is "
"missing and must be created.\nTry running 'udevadm "
"trigger' as root to create it.\n"));
case ENOEXEC:
return (dgettext(TEXT_DOMAIN, "The ZFS modules cannot be "
"auto-loaded.\nTry running '/sbin/modprobe zfs' as "
"root to manually load them.\n"));
case EACCES:
return (dgettext(TEXT_DOMAIN, "Permission denied the "
"ZFS utilities must be run as root.\n"));
default:
return (dgettext(TEXT_DOMAIN, "Failed to initialize the "
"libzfs library.\n"));
}
}
const char *
libzfs_error_action(libzfs_handle_t *hdl)
{
return (hdl->libzfs_action);
}
const char *
libzfs_error_description(libzfs_handle_t *hdl)
{
if (hdl->libzfs_desc[0] != '\0')
return (hdl->libzfs_desc);
switch (hdl->libzfs_error) {
case EZFS_NOMEM:
return (dgettext(TEXT_DOMAIN, "out of memory"));
case EZFS_BADPROP:
return (dgettext(TEXT_DOMAIN, "invalid property value"));
case EZFS_PROPREADONLY:
return (dgettext(TEXT_DOMAIN, "read-only property"));
case EZFS_PROPTYPE:
return (dgettext(TEXT_DOMAIN, "property doesn't apply to "
"datasets of this type"));
case EZFS_PROPNONINHERIT:
return (dgettext(TEXT_DOMAIN, "property cannot be inherited"));
case EZFS_PROPSPACE:
return (dgettext(TEXT_DOMAIN, "invalid quota or reservation"));
case EZFS_BADTYPE:
return (dgettext(TEXT_DOMAIN, "operation not applicable to "
"datasets of this type"));
case EZFS_BUSY:
return (dgettext(TEXT_DOMAIN, "pool or dataset is busy"));
case EZFS_EXISTS:
return (dgettext(TEXT_DOMAIN, "pool or dataset exists"));
case EZFS_NOENT:
return (dgettext(TEXT_DOMAIN, "no such pool or dataset"));
case EZFS_BADSTREAM:
return (dgettext(TEXT_DOMAIN, "invalid backup stream"));
case EZFS_DSREADONLY:
return (dgettext(TEXT_DOMAIN, "dataset is read-only"));
case EZFS_VOLTOOBIG:
return (dgettext(TEXT_DOMAIN, "volume size exceeds limit for "
"this system"));
case EZFS_INVALIDNAME:
return (dgettext(TEXT_DOMAIN, "invalid name"));
case EZFS_BADRESTORE:
return (dgettext(TEXT_DOMAIN, "unable to restore to "
"destination"));
case EZFS_BADBACKUP:
return (dgettext(TEXT_DOMAIN, "backup failed"));
case EZFS_BADTARGET:
return (dgettext(TEXT_DOMAIN, "invalid target vdev"));
case EZFS_NODEVICE:
return (dgettext(TEXT_DOMAIN, "no such device in pool"));
case EZFS_BADDEV:
return (dgettext(TEXT_DOMAIN, "invalid device"));
case EZFS_NOREPLICAS:
return (dgettext(TEXT_DOMAIN, "no valid replicas"));
case EZFS_RESILVERING:
return (dgettext(TEXT_DOMAIN, "currently resilvering"));
case EZFS_BADVERSION:
return (dgettext(TEXT_DOMAIN, "unsupported version or "
"feature"));
case EZFS_POOLUNAVAIL:
return (dgettext(TEXT_DOMAIN, "pool is unavailable"));
case EZFS_DEVOVERFLOW:
return (dgettext(TEXT_DOMAIN, "too many devices in one vdev"));
case EZFS_BADPATH:
return (dgettext(TEXT_DOMAIN, "must be an absolute path"));
case EZFS_CROSSTARGET:
return (dgettext(TEXT_DOMAIN, "operation crosses datasets or "
"pools"));
case EZFS_ZONED:
return (dgettext(TEXT_DOMAIN, "dataset in use by local zone"));
case EZFS_MOUNTFAILED:
return (dgettext(TEXT_DOMAIN, "mount failed"));
case EZFS_UMOUNTFAILED:
return (dgettext(TEXT_DOMAIN, "umount failed"));
case EZFS_UNSHARENFSFAILED:
return (dgettext(TEXT_DOMAIN, "unshare(1M) failed"));
case EZFS_SHARENFSFAILED:
return (dgettext(TEXT_DOMAIN, "share(1M) failed"));
case EZFS_UNSHARESMBFAILED:
return (dgettext(TEXT_DOMAIN, "smb remove share failed"));
case EZFS_SHARESMBFAILED:
return (dgettext(TEXT_DOMAIN, "smb add share failed"));
case EZFS_PERM:
return (dgettext(TEXT_DOMAIN, "permission denied"));
case EZFS_NOSPC:
return (dgettext(TEXT_DOMAIN, "out of space"));
case EZFS_FAULT:
return (dgettext(TEXT_DOMAIN, "bad address"));
case EZFS_IO:
return (dgettext(TEXT_DOMAIN, "I/O error"));
case EZFS_INTR:
return (dgettext(TEXT_DOMAIN, "signal received"));
case EZFS_ISSPARE:
return (dgettext(TEXT_DOMAIN, "device is reserved as a hot "
"spare"));
case EZFS_INVALCONFIG:
return (dgettext(TEXT_DOMAIN, "invalid vdev configuration"));
case EZFS_RECURSIVE:
return (dgettext(TEXT_DOMAIN, "recursive dataset dependency"));
case EZFS_NOHISTORY:
return (dgettext(TEXT_DOMAIN, "no history available"));
case EZFS_POOLPROPS:
return (dgettext(TEXT_DOMAIN, "failed to retrieve "
"pool properties"));
case EZFS_POOL_NOTSUP:
return (dgettext(TEXT_DOMAIN, "operation not supported "
"on this type of pool"));
case EZFS_POOL_INVALARG:
return (dgettext(TEXT_DOMAIN, "invalid argument for "
"this pool operation"));
case EZFS_NAMETOOLONG:
return (dgettext(TEXT_DOMAIN, "dataset name is too long"));
case EZFS_OPENFAILED:
return (dgettext(TEXT_DOMAIN, "open failed"));
case EZFS_NOCAP:
return (dgettext(TEXT_DOMAIN,
"disk capacity information could not be retrieved"));
case EZFS_LABELFAILED:
return (dgettext(TEXT_DOMAIN, "write of label failed"));
case EZFS_BADWHO:
return (dgettext(TEXT_DOMAIN, "invalid user/group"));
case EZFS_BADPERM:
return (dgettext(TEXT_DOMAIN, "invalid permission"));
case EZFS_BADPERMSET:
return (dgettext(TEXT_DOMAIN, "invalid permission set name"));
case EZFS_NODELEGATION:
return (dgettext(TEXT_DOMAIN, "delegated administration is "
"disabled on pool"));
case EZFS_BADCACHE:
return (dgettext(TEXT_DOMAIN, "invalid or missing cache file"));
case EZFS_ISL2CACHE:
return (dgettext(TEXT_DOMAIN, "device is in use as a cache"));
case EZFS_VDEVNOTSUP:
return (dgettext(TEXT_DOMAIN, "vdev specification is not "
"supported"));
case EZFS_NOTSUP:
return (dgettext(TEXT_DOMAIN, "operation not supported "
"on this dataset"));
case EZFS_ACTIVE_SPARE:
return (dgettext(TEXT_DOMAIN, "pool has active shared spare "
"device"));
case EZFS_UNPLAYED_LOGS:
return (dgettext(TEXT_DOMAIN, "log device has unplayed intent "
"logs"));
case EZFS_REFTAG_RELE:
return (dgettext(TEXT_DOMAIN, "no such tag on this dataset"));
case EZFS_REFTAG_HOLD:
return (dgettext(TEXT_DOMAIN, "tag already exists on this "
"dataset"));
case EZFS_TAGTOOLONG:
return (dgettext(TEXT_DOMAIN, "tag too long"));
case EZFS_PIPEFAILED:
return (dgettext(TEXT_DOMAIN, "pipe create failed"));
case EZFS_THREADCREATEFAILED:
return (dgettext(TEXT_DOMAIN, "thread create failed"));
case EZFS_POSTSPLIT_ONLINE:
return (dgettext(TEXT_DOMAIN, "disk was split from this pool "
"into a new one"));
case EZFS_SCRUBBING:
return (dgettext(TEXT_DOMAIN, "currently scrubbing; "
"use 'zpool scrub -s' to cancel current scrub"));
case EZFS_NO_SCRUB:
return (dgettext(TEXT_DOMAIN, "there is no active scrub"));
case EZFS_DIFF:
return (dgettext(TEXT_DOMAIN, "unable to generate diffs"));
case EZFS_DIFFDATA:
return (dgettext(TEXT_DOMAIN, "invalid diff data"));
case EZFS_POOLREADONLY:
return (dgettext(TEXT_DOMAIN, "pool is read-only"));
case EZFS_UNKNOWN:
return (dgettext(TEXT_DOMAIN, "unknown error"));
default:
assert(hdl->libzfs_error == 0);
return (dgettext(TEXT_DOMAIN, "no error"));
}
}
/*PRINTFLIKE2*/
void
zfs_error_aux(libzfs_handle_t *hdl, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
(void) vsnprintf(hdl->libzfs_desc, sizeof (hdl->libzfs_desc),
fmt, ap);
hdl->libzfs_desc_active = 1;
va_end(ap);
}
static void
zfs_verror(libzfs_handle_t *hdl, int error, const char *fmt, va_list ap)
{
(void) vsnprintf(hdl->libzfs_action, sizeof (hdl->libzfs_action),
fmt, ap);
hdl->libzfs_error = error;
if (hdl->libzfs_desc_active)
hdl->libzfs_desc_active = 0;
else
hdl->libzfs_desc[0] = '\0';
if (hdl->libzfs_printerr) {
if (error == EZFS_UNKNOWN) {
(void) fprintf(stderr, dgettext(TEXT_DOMAIN, "internal "
"error: %s\n"), libzfs_error_description(hdl));
abort();
}
(void) fprintf(stderr, "%s: %s\n", hdl->libzfs_action,
libzfs_error_description(hdl));
if (error == EZFS_NOMEM)
exit(1);
}
}
int
zfs_error(libzfs_handle_t *hdl, int error, const char *msg)
{
return (zfs_error_fmt(hdl, error, "%s", msg));
}
/*PRINTFLIKE3*/
int
zfs_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
zfs_verror(hdl, error, fmt, ap);
va_end(ap);
return (-1);
}
static int
zfs_common_error(libzfs_handle_t *hdl, int error, const char *fmt,
va_list ap)
{
switch (error) {
case EPERM:
case EACCES:
zfs_verror(hdl, EZFS_PERM, fmt, ap);
return (-1);
case ECANCELED:
zfs_verror(hdl, EZFS_NODELEGATION, fmt, ap);
return (-1);
case EIO:
zfs_verror(hdl, EZFS_IO, fmt, ap);
return (-1);
case EFAULT:
zfs_verror(hdl, EZFS_FAULT, fmt, ap);
return (-1);
case EINTR:
zfs_verror(hdl, EZFS_INTR, fmt, ap);
return (-1);
}
return (0);
}
int
zfs_standard_error(libzfs_handle_t *hdl, int error, const char *msg)
{
return (zfs_standard_error_fmt(hdl, error, "%s", msg));
}
/*PRINTFLIKE3*/
int
zfs_standard_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
if (zfs_common_error(hdl, error, fmt, ap) != 0) {
va_end(ap);
return (-1);
}
switch (error) {
case ENXIO:
case ENODEV:
case EPIPE:
zfs_verror(hdl, EZFS_IO, fmt, ap);
break;
case ENOENT:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset does not exist"));
zfs_verror(hdl, EZFS_NOENT, fmt, ap);
break;
case ENOSPC:
case EDQUOT:
zfs_verror(hdl, EZFS_NOSPC, fmt, ap);
return (-1);
case EEXIST:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset already exists"));
zfs_verror(hdl, EZFS_EXISTS, fmt, ap);
break;
case EBUSY:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"dataset is busy"));
zfs_verror(hdl, EZFS_BUSY, fmt, ap);
break;
case EROFS:
zfs_verror(hdl, EZFS_POOLREADONLY, fmt, ap);
break;
case ENAMETOOLONG:
zfs_verror(hdl, EZFS_NAMETOOLONG, fmt, ap);
break;
case ENOTSUP:
zfs_verror(hdl, EZFS_BADVERSION, fmt, ap);
break;
case EAGAIN:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool I/O is currently suspended"));
zfs_verror(hdl, EZFS_POOLUNAVAIL, fmt, ap);
break;
default:
zfs_error_aux(hdl, strerror(error));
zfs_verror(hdl, EZFS_UNKNOWN, fmt, ap);
break;
}
va_end(ap);
return (-1);
}
int
zpool_standard_error(libzfs_handle_t *hdl, int error, const char *msg)
{
return (zpool_standard_error_fmt(hdl, error, "%s", msg));
}
/*PRINTFLIKE3*/
int
zpool_standard_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
if (zfs_common_error(hdl, error, fmt, ap) != 0) {
va_end(ap);
return (-1);
}
switch (error) {
case ENODEV:
zfs_verror(hdl, EZFS_NODEVICE, fmt, ap);
break;
case ENOENT:
zfs_error_aux(hdl,
dgettext(TEXT_DOMAIN, "no such pool or dataset"));
zfs_verror(hdl, EZFS_NOENT, fmt, ap);
break;
case EEXIST:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool already exists"));
zfs_verror(hdl, EZFS_EXISTS, fmt, ap);
break;
case EBUSY:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool is busy"));
zfs_verror(hdl, EZFS_BUSY, fmt, ap);
break;
case ENXIO:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"one or more devices is currently unavailable"));
zfs_verror(hdl, EZFS_BADDEV, fmt, ap);
break;
case ENAMETOOLONG:
zfs_verror(hdl, EZFS_DEVOVERFLOW, fmt, ap);
break;
case ENOTSUP:
zfs_verror(hdl, EZFS_POOL_NOTSUP, fmt, ap);
break;
case EINVAL:
zfs_verror(hdl, EZFS_POOL_INVALARG, fmt, ap);
break;
case ENOSPC:
case EDQUOT:
zfs_verror(hdl, EZFS_NOSPC, fmt, ap);
return (-1);
case EAGAIN:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"pool I/O is currently suspended"));
zfs_verror(hdl, EZFS_POOLUNAVAIL, fmt, ap);
break;
case EROFS:
zfs_verror(hdl, EZFS_POOLREADONLY, fmt, ap);
break;
case EDOM:
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"block size out of range or does not match"));
zfs_verror(hdl, EZFS_BADPROP, fmt, ap);
break;
default:
zfs_error_aux(hdl, strerror(error));
zfs_verror(hdl, EZFS_UNKNOWN, fmt, ap);
}
va_end(ap);
return (-1);
}
/*
* Display an out of memory error message and abort the current program.
*/
int
no_memory(libzfs_handle_t *hdl)
{
return (zfs_error(hdl, EZFS_NOMEM, "internal error"));
}
/*
* A safe form of malloc() which will die if the allocation fails.
*/
void *
zfs_alloc(libzfs_handle_t *hdl, size_t size)
{
void *data;
if ((data = calloc(1, size)) == NULL)
(void) no_memory(hdl);
return (data);
}
/*
* A safe form of asprintf() which will die if the allocation fails.
*/
/*PRINTFLIKE2*/
char *
zfs_asprintf(libzfs_handle_t *hdl, const char *fmt, ...)
{
va_list ap;
char *ret;
int err;
va_start(ap, fmt);
err = vasprintf(&ret, fmt, ap);
va_end(ap);
if (err < 0)
(void) no_memory(hdl);
return (ret);
}
/*
* A safe form of realloc(), which also zeroes newly allocated space.
*/
void *
zfs_realloc(libzfs_handle_t *hdl, void *ptr, size_t oldsize, size_t newsize)
{
void *ret;
if ((ret = realloc(ptr, newsize)) == NULL) {
(void) no_memory(hdl);
return (NULL);
}
bzero((char *)ret + oldsize, (newsize - oldsize));
return (ret);
}
/*
* A safe form of strdup() which will die if the allocation fails.
*/
char *
zfs_strdup(libzfs_handle_t *hdl, const char *str)
{
char *ret;
if ((ret = strdup(str)) == NULL)
(void) no_memory(hdl);
return (ret);
}
/*
* Convert a number to an appropriately human-readable output.
*/
void
zfs_nicenum(uint64_t num, char *buf, size_t buflen)
{
uint64_t n = num;
int index = 0;
char u;
while (n >= 1024 && index < 6) {
n /= 1024;
index++;
}
u = " KMGTPE"[index];
if (index == 0) {
(void) snprintf(buf, buflen, "%llu", (u_longlong_t) n);
} else if ((num & ((1ULL << 10 * index) - 1)) == 0) {
/*
* If this is an even multiple of the base, always display
* without any decimal precision.
*/
(void) snprintf(buf, buflen, "%llu%c", (u_longlong_t) n, u);
} else {
/*
* We want to choose a precision that reflects the best choice
* for fitting in 5 characters. This can get rather tricky when
* we have numbers that are very close to an order of magnitude.
* For example, when displaying 10239 (which is really 9.999K),
* we want only a single place of precision for 10.0K. We could
* develop some complex heuristics for this, but it's much
* easier just to try each combination in turn.
*/
int i;
for (i = 2; i >= 0; i--) {
if (snprintf(buf, buflen, "%.*f%c", i,
(double)num / (1ULL << 10 * index), u) <= 5)
break;
}
}
}
void
libzfs_print_on_error(libzfs_handle_t *hdl, boolean_t printerr)
{
hdl->libzfs_printerr = printerr;
}
static int
libzfs_module_loaded(const char *module)
{
const char path_prefix[] = "/sys/module/";
char path[256];
memcpy(path, path_prefix, sizeof (path_prefix) - 1);
strcpy(path + sizeof (path_prefix) - 1, module);
return (access(path, F_OK) == 0);
}
int
libzfs_run_process(const char *path, char *argv[], int flags)
{
pid_t pid;
int error, devnull_fd;
pid = vfork();
if (pid == 0) {
devnull_fd = open("/dev/null", O_WRONLY);
if (devnull_fd < 0)
_exit(-1);
if (!(flags & STDOUT_VERBOSE))
(void) dup2(devnull_fd, STDOUT_FILENO);
if (!(flags & STDERR_VERBOSE))
(void) dup2(devnull_fd, STDERR_FILENO);
close(devnull_fd);
(void) execvp(path, argv);
_exit(-1);
} else if (pid > 0) {
int status;
while ((error = waitpid(pid, &status, 0)) == -1 &&
errno == EINTR);
if (error < 0 || !WIFEXITED(status))
return (-1);
return (WEXITSTATUS(status));
}
return (-1);
}
/*
* Verify the required ZFS_DEV device is available and optionally attempt
* to load the ZFS modules. Under normal circumstances the modules
* should already have been loaded by some external mechanism.
*
* Environment variables:
* - ZFS_MODULE_LOADING="YES|yes|ON|on" - Attempt to load modules.
* - ZFS_MODULE_TIMEOUT="<seconds>" - Seconds to wait for ZFS_DEV
*/
static int
libzfs_load_module(const char *module)
{
char *argv[4] = {"/sbin/modprobe", "-q", (char *)module, (char *)0};
char *load_str, *timeout_str;
long timeout = 10; /* seconds */
long busy_timeout = 10; /* milliseconds */
int load = 0, fd;
hrtime_t start;
/* Optionally request module loading */
if (!libzfs_module_loaded(module)) {
load_str = getenv("ZFS_MODULE_LOADING");
if (load_str) {
if (!strncasecmp(load_str, "YES", strlen("YES")) ||
!strncasecmp(load_str, "ON", strlen("ON")))
load = 1;
else
load = 0;
}
if (load && libzfs_run_process("/sbin/modprobe", argv, 0))
return (ENOEXEC);
}
/* Module loading is synchronous it must be available */
if (!libzfs_module_loaded(module))
return (ENXIO);
/*
* Device creation by udev is asynchronous and waiting may be
* required. Busy wait for 10ms and then fall back to polling every
* 10ms for the allowed timeout (default 10s, max 10m). This is
* done to optimize for the common case where the device is
* immediately available and to avoid penalizing the possible
* case where udev is slow or unable to create the device.
*/
timeout_str = getenv("ZFS_MODULE_TIMEOUT");
if (timeout_str) {
timeout = strtol(timeout_str, NULL, 0);
timeout = MAX(MIN(timeout, (10 * 60)), 0); /* 0 <= N <= 600 */
}
start = gethrtime();
do {
fd = open(ZFS_DEV, O_RDWR);
if (fd >= 0) {
(void) close(fd);
return (0);
} else if (errno != ENOENT) {
return (errno);
} else if (NSEC2MSEC(gethrtime() - start) < busy_timeout) {
sched_yield();
} else {
usleep(10 * MILLISEC);
}
} while (NSEC2MSEC(gethrtime() - start) < (timeout * MILLISEC));
return (ENOENT);
}
libzfs_handle_t *
libzfs_init(void)
{
libzfs_handle_t *hdl;
int error;
error = libzfs_load_module(ZFS_DRIVER);
if (error) {
errno = error;
return (NULL);
}
if ((hdl = calloc(1, sizeof (libzfs_handle_t))) == NULL) {
return (NULL);
}
if ((hdl->libzfs_fd = open(ZFS_DEV, O_RDWR)) < 0) {
free(hdl);
return (NULL);
}
#ifdef HAVE_SETMNTENT
if ((hdl->libzfs_mnttab = setmntent(MNTTAB, "r")) == NULL) {
#else
if ((hdl->libzfs_mnttab = fopen(MNTTAB, "r")) == NULL) {
#endif
(void) close(hdl->libzfs_fd);
free(hdl);
return (NULL);
}
hdl->libzfs_sharetab = fopen("/etc/dfs/sharetab", "r");
if (libzfs_core_init() != 0) {
(void) close(hdl->libzfs_fd);
(void) fclose(hdl->libzfs_mnttab);
(void) fclose(hdl->libzfs_sharetab);
free(hdl);
return (NULL);
}
zfs_prop_init();
zpool_prop_init();
zpool_feature_init();
libzfs_mnttab_init(hdl);
return (hdl);
}
void
libzfs_fini(libzfs_handle_t *hdl)
{
(void) close(hdl->libzfs_fd);
if (hdl->libzfs_mnttab)
#ifdef HAVE_SETMNTENT
(void) endmntent(hdl->libzfs_mnttab);
#else
(void) fclose(hdl->libzfs_mnttab);
#endif
if (hdl->libzfs_sharetab)
(void) fclose(hdl->libzfs_sharetab);
zfs_uninit_libshare(hdl);
zpool_free_handles(hdl);
libzfs_fru_clear(hdl, B_TRUE);
namespace_clear(hdl);
libzfs_mnttab_fini(hdl);
libzfs_core_fini();
free(hdl);
}
libzfs_handle_t *
zpool_get_handle(zpool_handle_t *zhp)
{
return (zhp->zpool_hdl);
}
libzfs_handle_t *
zfs_get_handle(zfs_handle_t *zhp)
{
return (zhp->zfs_hdl);
}
zpool_handle_t *
zfs_get_pool_handle(const zfs_handle_t *zhp)
{
return (zhp->zpool_hdl);
}
/*
* Given a name, determine whether or not it's a valid path
* (starts with '/' or "./"). If so, walk the mnttab trying
* to match the device number. If not, treat the path as an
* fs/vol/snap name.
*/
zfs_handle_t *
zfs_path_to_zhandle(libzfs_handle_t *hdl, char *path, zfs_type_t argtype)
{
struct stat64 statbuf;
struct extmnttab entry;
int ret;
if (path[0] != '/' && strncmp(path, "./", strlen("./")) != 0) {
/*
* It's not a valid path, assume it's a name of type 'argtype'.
*/
return (zfs_open(hdl, path, argtype));
}
if (stat64(path, &statbuf) != 0) {
(void) fprintf(stderr, "%s: %s\n", path, strerror(errno));
return (NULL);
}
/* Reopen MNTTAB to prevent reading stale data from open file */
if (freopen(MNTTAB, "r", hdl->libzfs_mnttab) == NULL)
return (NULL);
while ((ret = getextmntent(hdl->libzfs_mnttab, &entry, 0)) == 0) {
if (makedevice(entry.mnt_major, entry.mnt_minor) ==
statbuf.st_dev) {
break;
}
}
if (ret != 0) {
return (NULL);
}
if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) {
(void) fprintf(stderr, gettext("'%s': not a ZFS filesystem\n"),
path);
return (NULL);
}
return (zfs_open(hdl, entry.mnt_special, ZFS_TYPE_FILESYSTEM));
}
/*
* Append partition suffix to an otherwise fully qualified device path.
* This is used to generate the name the full path as its stored in
* ZPOOL_CONFIG_PATH for whole disk devices. On success the new length
* of 'path' will be returned on error a negative value is returned.
*/
int
zfs_append_partition(char *path, size_t max_len)
{
int len = strlen(path);
if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0) {
if (len + 6 >= max_len)
return (-1);
(void) strcat(path, "-part1");
len += 6;
} else {
if (len + 2 >= max_len)
return (-1);
if (isdigit(path[len-1])) {
(void) strcat(path, "p1");
len += 2;
} else {
(void) strcat(path, "1");
len += 1;
}
}
return (len);
}
/*
* Given a shorthand device name check if a file by that name exists in any
* of the 'zpool_default_import_path' or ZPOOL_IMPORT_PATH directories. If
* one is found, store its fully qualified path in the 'path' buffer passed
* by the caller and return 0, otherwise return an error.
*/
int
zfs_resolve_shortname(const char *name, char *path, size_t len)
{
int i, error = -1;
char *dir, *env, *envdup;
env = getenv("ZPOOL_IMPORT_PATH");
errno = ENOENT;
if (env) {
envdup = strdup(env);
dir = strtok(envdup, ":");
while (dir && error) {
(void) snprintf(path, len, "%s/%s", dir, name);
error = access(path, F_OK);
dir = strtok(NULL, ":");
}
free(envdup);
} else {
for (i = 0; i < DEFAULT_IMPORT_PATH_SIZE && error < 0; i++) {
(void) snprintf(path, len, "%s/%s",
zpool_default_import_path[i], name);
error = access(path, F_OK);
}
}
return (error ? ENOENT : 0);
}
/*
* Given a shorthand device name look for a match against 'cmp_name'. This
* is done by checking all prefix expansions using either the default
* 'zpool_default_import_paths' or the ZPOOL_IMPORT_PATH environment
* variable. Proper partition suffixes will be appended if this is a
* whole disk. When a match is found 0 is returned otherwise ENOENT.
*/
static int
zfs_strcmp_shortname(char *name, char *cmp_name, int wholedisk)
{
int path_len, cmp_len, i = 0, error = ENOENT;
char *dir, *env, *envdup = NULL;
char path_name[MAXPATHLEN];
cmp_len = strlen(cmp_name);
env = getenv("ZPOOL_IMPORT_PATH");
if (env) {
envdup = strdup(env);
dir = strtok(envdup, ":");
} else {
dir = zpool_default_import_path[i];
}
while (dir) {
/* Trim trailing directory slashes from ZPOOL_IMPORT_PATH */
while (dir[strlen(dir)-1] == '/')
dir[strlen(dir)-1] = '\0';
path_len = snprintf(path_name, MAXPATHLEN, "%s/%s", dir, name);
if (wholedisk)
path_len = zfs_append_partition(path_name, MAXPATHLEN);
if ((path_len == cmp_len) && strcmp(path_name, cmp_name) == 0) {
error = 0;
break;
}
if (env) {
dir = strtok(NULL, ":");
} else if (++i < DEFAULT_IMPORT_PATH_SIZE) {
dir = zpool_default_import_path[i];
} else {
dir = NULL;
}
}
if (env)
free(envdup);
return (error);
}
/*
* Given either a shorthand or fully qualified path name look for a match
* against 'cmp'. The passed name will be expanded as needed for comparison
* purposes and redundant slashes stripped to ensure an accurate match.
*/
int
zfs_strcmp_pathname(char *name, char *cmp, int wholedisk)
{
int path_len, cmp_len;
char path_name[MAXPATHLEN];
char cmp_name[MAXPATHLEN];
char *dir;
/* Strip redundant slashes if one exists due to ZPOOL_IMPORT_PATH */
memset(cmp_name, 0, MAXPATHLEN);
dir = strtok(cmp, "/");
while (dir) {
strcat(cmp_name, "/");
strcat(cmp_name, dir);
dir = strtok(NULL, "/");
}
if (name[0] != '/')
return (zfs_strcmp_shortname(name, cmp_name, wholedisk));
(void) strlcpy(path_name, name, MAXPATHLEN);
path_len = strlen(path_name);
cmp_len = strlen(cmp_name);
if (wholedisk) {
path_len = zfs_append_partition(path_name, MAXPATHLEN);
if (path_len == -1)
return (ENOMEM);
}
if ((path_len != cmp_len) || strcmp(path_name, cmp_name))
return (ENOENT);
return (0);
}
/*
* Initialize the zc_nvlist_dst member to prepare for receiving an nvlist from
* an ioctl().
*/
int
zcmd_alloc_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, size_t len)
{
if (len == 0)
len = 16 * 1024;
zc->zc_nvlist_dst_size = len;
zc->zc_nvlist_dst =
(uint64_t)(uintptr_t)zfs_alloc(hdl, zc->zc_nvlist_dst_size);
if (zc->zc_nvlist_dst == 0)
return (-1);
return (0);
}
/*
* Called when an ioctl() which returns an nvlist fails with ENOMEM. This will
* expand the nvlist to the size specified in 'zc_nvlist_dst_size', which was
* filled in by the kernel to indicate the actual required size.
*/
int
zcmd_expand_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc)
{
free((void *)(uintptr_t)zc->zc_nvlist_dst);
zc->zc_nvlist_dst =
(uint64_t)(uintptr_t)zfs_alloc(hdl, zc->zc_nvlist_dst_size);
if (zc->zc_nvlist_dst == 0)
return (-1);
return (0);
}
/*
* Called to free the src and dst nvlists stored in the command structure.
*/
void
zcmd_free_nvlists(zfs_cmd_t *zc)
{
free((void *)(uintptr_t)zc->zc_nvlist_conf);
free((void *)(uintptr_t)zc->zc_nvlist_src);
free((void *)(uintptr_t)zc->zc_nvlist_dst);
zc->zc_nvlist_conf = 0;
zc->zc_nvlist_src = 0;
zc->zc_nvlist_dst = 0;
}
static int
zcmd_write_nvlist_com(libzfs_handle_t *hdl, uint64_t *outnv, uint64_t *outlen,
nvlist_t *nvl)
{
char *packed;
size_t len;
verify(nvlist_size(nvl, &len, NV_ENCODE_NATIVE) == 0);
if ((packed = zfs_alloc(hdl, len)) == NULL)
return (-1);
verify(nvlist_pack(nvl, &packed, &len, NV_ENCODE_NATIVE, 0) == 0);
*outnv = (uint64_t)(uintptr_t)packed;
*outlen = len;
return (0);
}
int
zcmd_write_conf_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl)
{
return (zcmd_write_nvlist_com(hdl, &zc->zc_nvlist_conf,
&zc->zc_nvlist_conf_size, nvl));
}
int
zcmd_write_src_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl)
{
return (zcmd_write_nvlist_com(hdl, &zc->zc_nvlist_src,
&zc->zc_nvlist_src_size, nvl));
}
/*
* Unpacks an nvlist from the ZFS ioctl command structure.
*/
int
zcmd_read_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t **nvlp)
{
if (nvlist_unpack((void *)(uintptr_t)zc->zc_nvlist_dst,
zc->zc_nvlist_dst_size, nvlp, 0) != 0)
return (no_memory(hdl));
return (0);
}
int
zfs_ioctl(libzfs_handle_t *hdl, int request, zfs_cmd_t *zc)
{
return (ioctl(hdl->libzfs_fd, request, zc));
}
/*
* ================================================================
* API shared by zfs and zpool property management
* ================================================================
*/
static void
zprop_print_headers(zprop_get_cbdata_t *cbp, zfs_type_t type)
{
zprop_list_t *pl = cbp->cb_proplist;
int i;
char *title;
size_t len;
cbp->cb_first = B_FALSE;
if (cbp->cb_scripted)
return;
/*
* Start with the length of the column headers.
*/
cbp->cb_colwidths[GET_COL_NAME] = strlen(dgettext(TEXT_DOMAIN, "NAME"));
cbp->cb_colwidths[GET_COL_PROPERTY] = strlen(dgettext(TEXT_DOMAIN,
"PROPERTY"));
cbp->cb_colwidths[GET_COL_VALUE] = strlen(dgettext(TEXT_DOMAIN,
"VALUE"));
cbp->cb_colwidths[GET_COL_RECVD] = strlen(dgettext(TEXT_DOMAIN,
"RECEIVED"));
cbp->cb_colwidths[GET_COL_SOURCE] = strlen(dgettext(TEXT_DOMAIN,
"SOURCE"));
/* first property is always NAME */
assert(cbp->cb_proplist->pl_prop ==
((type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME : ZFS_PROP_NAME));
/*
* Go through and calculate the widths for each column. For the
* 'source' column, we kludge it up by taking the worst-case scenario of
* inheriting from the longest name. This is acceptable because in the
* majority of cases 'SOURCE' is the last column displayed, and we don't
* use the width anyway. Note that the 'VALUE' column can be oversized,
* if the name of the property is much longer than any values we find.
*/
for (pl = cbp->cb_proplist; pl != NULL; pl = pl->pl_next) {
/*
* 'PROPERTY' column
*/
if (pl->pl_prop != ZPROP_INVAL) {
const char *propname = (type == ZFS_TYPE_POOL) ?
zpool_prop_to_name(pl->pl_prop) :
zfs_prop_to_name(pl->pl_prop);
len = strlen(propname);
if (len > cbp->cb_colwidths[GET_COL_PROPERTY])
cbp->cb_colwidths[GET_COL_PROPERTY] = len;
} else {
len = strlen(pl->pl_user_prop);
if (len > cbp->cb_colwidths[GET_COL_PROPERTY])
cbp->cb_colwidths[GET_COL_PROPERTY] = len;
}
/*
* 'VALUE' column. The first property is always the 'name'
* property that was tacked on either by /sbin/zfs's
* zfs_do_get() or when calling zprop_expand_list(), so we
* ignore its width. If the user specified the name property
* to display, then it will be later in the list in any case.
*/
if (pl != cbp->cb_proplist &&
pl->pl_width > cbp->cb_colwidths[GET_COL_VALUE])
cbp->cb_colwidths[GET_COL_VALUE] = pl->pl_width;
/* 'RECEIVED' column. */
if (pl != cbp->cb_proplist &&
pl->pl_recvd_width > cbp->cb_colwidths[GET_COL_RECVD])
cbp->cb_colwidths[GET_COL_RECVD] = pl->pl_recvd_width;
/*
* 'NAME' and 'SOURCE' columns
*/
if (pl->pl_prop == (type == ZFS_TYPE_POOL ? ZPOOL_PROP_NAME :
ZFS_PROP_NAME) &&
pl->pl_width > cbp->cb_colwidths[GET_COL_NAME]) {
cbp->cb_colwidths[GET_COL_NAME] = pl->pl_width;
cbp->cb_colwidths[GET_COL_SOURCE] = pl->pl_width +
strlen(dgettext(TEXT_DOMAIN, "inherited from"));
}
}
/*
* Now go through and print the headers.
*/
for (i = 0; i < ZFS_GET_NCOLS; i++) {
switch (cbp->cb_columns[i]) {
case GET_COL_NAME:
title = dgettext(TEXT_DOMAIN, "NAME");
break;
case GET_COL_PROPERTY:
title = dgettext(TEXT_DOMAIN, "PROPERTY");
break;
case GET_COL_VALUE:
title = dgettext(TEXT_DOMAIN, "VALUE");
break;
case GET_COL_RECVD:
title = dgettext(TEXT_DOMAIN, "RECEIVED");
break;
case GET_COL_SOURCE:
title = dgettext(TEXT_DOMAIN, "SOURCE");
break;
default:
title = NULL;
}
if (title != NULL) {
if (i == (ZFS_GET_NCOLS - 1) ||
cbp->cb_columns[i + 1] == GET_COL_NONE)
(void) printf("%s", title);
else
(void) printf("%-*s ",
cbp->cb_colwidths[cbp->cb_columns[i]],
title);
}
}
(void) printf("\n");
}
/*
* Display a single line of output, according to the settings in the callback
* structure.
*/
void
zprop_print_one_property(const char *name, zprop_get_cbdata_t *cbp,
const char *propname, const char *value, zprop_source_t sourcetype,
const char *source, const char *recvd_value)
{
int i;
const char *str = NULL;
char buf[128];
/*
* Ignore those source types that the user has chosen to ignore.
*/
if ((sourcetype & cbp->cb_sources) == 0)
return;
if (cbp->cb_first)
zprop_print_headers(cbp, cbp->cb_type);
for (i = 0; i < ZFS_GET_NCOLS; i++) {
switch (cbp->cb_columns[i]) {
case GET_COL_NAME:
str = name;
break;
case GET_COL_PROPERTY:
str = propname;
break;
case GET_COL_VALUE:
str = value;
break;
case GET_COL_SOURCE:
switch (sourcetype) {
case ZPROP_SRC_NONE:
str = "-";
break;
case ZPROP_SRC_DEFAULT:
str = "default";
break;
case ZPROP_SRC_LOCAL:
str = "local";
break;
case ZPROP_SRC_TEMPORARY:
str = "temporary";
break;
case ZPROP_SRC_INHERITED:
(void) snprintf(buf, sizeof (buf),
"inherited from %s", source);
str = buf;
break;
case ZPROP_SRC_RECEIVED:
str = "received";
break;
}
break;
case GET_COL_RECVD:
str = (recvd_value == NULL ? "-" : recvd_value);
break;
default:
continue;
}
if (cbp->cb_columns[i + 1] == GET_COL_NONE)
(void) printf("%s", str);
else if (cbp->cb_scripted)
(void) printf("%s\t", str);
else
(void) printf("%-*s ",
cbp->cb_colwidths[cbp->cb_columns[i]],
str);
}
(void) printf("\n");
}
/*
* Given a numeric suffix, convert the value into a number of bits that the
* resulting value must be shifted.
*/
static int
str2shift(libzfs_handle_t *hdl, const char *buf)
{
const char *ends = "BKMGTPEZ";
int i;
if (buf[0] == '\0')
return (0);
for (i = 0; i < strlen(ends); i++) {
if (toupper(buf[0]) == ends[i])
break;
}
if (i == strlen(ends)) {
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid numeric suffix '%s'"), buf);
return (-1);
}
/*
* Allow 'G' = 'GB' = 'GiB', case-insensitively.
* However, 'BB' and 'BiB' are disallowed.
*/
if (buf[1] == '\0' ||
(toupper(buf[0]) != 'B' &&
((toupper(buf[1]) == 'B' && buf[2] == '\0') ||
(toupper(buf[1]) == 'I' && toupper(buf[2]) == 'B' &&
buf[3] == '\0'))))
return (10 * i);
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid numeric suffix '%s'"), buf);
return (-1);
}
/*
* Convert a string of the form '100G' into a real number. Used when setting
* properties or creating a volume. 'buf' is used to place an extended error
* message for the caller to use.
*/
int
zfs_nicestrtonum(libzfs_handle_t *hdl, const char *value, uint64_t *num)
{
char *end;
int shift;
*num = 0;
/* Check to see if this looks like a number. */
if ((value[0] < '0' || value[0] > '9') && value[0] != '.') {
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"bad numeric value '%s'"), value);
return (-1);
}
/* Rely on strtoull() to process the numeric portion. */
errno = 0;
*num = strtoull(value, &end, 10);
/*
* Check for ERANGE, which indicates that the value is too large to fit
* in a 64-bit value.
*/
if (errno == ERANGE) {
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"numeric value is too large"));
return (-1);
}
/*
* If we have a decimal value, then do the computation with floating
* point arithmetic. Otherwise, use standard arithmetic.
*/
if (*end == '.') {
double fval = strtod(value, &end);
if ((shift = str2shift(hdl, end)) == -1)
return (-1);
fval *= pow(2, shift);
if (fval > UINT64_MAX) {
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"numeric value is too large"));
return (-1);
}
*num = (uint64_t)fval;
} else {
if ((shift = str2shift(hdl, end)) == -1)
return (-1);
/* Check for overflow */
if (shift >= 64 || (*num << shift) >> shift != *num) {
if (hdl)
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"numeric value is too large"));
return (-1);
}
*num <<= shift;
}
return (0);
}
/*
* Given a propname=value nvpair to set, parse any numeric properties
* (index, boolean, etc) if they are specified as strings and add the
* resulting nvpair to the returned nvlist.
*
* At the DSL layer, all properties are either 64-bit numbers or strings.
* We want the user to be able to ignore this fact and specify properties
* as native values (numbers, for example) or as strings (to simplify
* command line utilities). This also handles converting index types
* (compression, checksum, etc) from strings to their on-disk index.
*/
int
zprop_parse_value(libzfs_handle_t *hdl, nvpair_t *elem, int prop,
zfs_type_t type, nvlist_t *ret, char **svalp, uint64_t *ivalp,
const char *errbuf)
{
data_type_t datatype = nvpair_type(elem);
zprop_type_t proptype;
const char *propname;
char *value;
boolean_t isnone = B_FALSE;
if (type == ZFS_TYPE_POOL) {
proptype = zpool_prop_get_type(prop);
propname = zpool_prop_to_name(prop);
} else {
proptype = zfs_prop_get_type(prop);
propname = zfs_prop_to_name(prop);
}
/*
* Convert any properties to the internal DSL value types.
*/
*svalp = NULL;
*ivalp = 0;
switch (proptype) {
case PROP_TYPE_STRING:
if (datatype != DATA_TYPE_STRING) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a string"), nvpair_name(elem));
goto error;
}
(void) nvpair_value_string(elem, svalp);
if (strlen(*svalp) >= ZFS_MAXPROPLEN) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' is too long"), nvpair_name(elem));
goto error;
}
break;
case PROP_TYPE_NUMBER:
if (datatype == DATA_TYPE_STRING) {
(void) nvpair_value_string(elem, &value);
if (strcmp(value, "none") == 0) {
isnone = B_TRUE;
} else if (zfs_nicestrtonum(hdl, value, ivalp)
!= 0) {
goto error;
}
} else if (datatype == DATA_TYPE_UINT64) {
(void) nvpair_value_uint64(elem, ivalp);
} else {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a number"), nvpair_name(elem));
goto error;
}
/*
* Quota special: force 'none' and don't allow 0.
*/
if ((type & ZFS_TYPE_DATASET) && *ivalp == 0 && !isnone &&
(prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_REFQUOTA)) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"use 'none' to disable quota/refquota"));
goto error;
}
/*
* Special handling for "*_limit=none". In this case it's not
* 0 but UINT64_MAX.
*/
if ((type & ZFS_TYPE_DATASET) && isnone &&
(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
prop == ZFS_PROP_SNAPSHOT_LIMIT)) {
*ivalp = UINT64_MAX;
}
break;
case PROP_TYPE_INDEX:
if (datatype != DATA_TYPE_STRING) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be a string"), nvpair_name(elem));
goto error;
}
(void) nvpair_value_string(elem, &value);
if (zprop_string_to_index(prop, value, ivalp, type) != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"'%s' must be one of '%s'"), propname,
zprop_values(prop, type));
goto error;
}
break;
default:
abort();
}
/*
* Add the result to our return set of properties.
*/
if (*svalp != NULL) {
if (nvlist_add_string(ret, propname, *svalp) != 0) {
(void) no_memory(hdl);
return (-1);
}
} else {
if (nvlist_add_uint64(ret, propname, *ivalp) != 0) {
(void) no_memory(hdl);
return (-1);
}
}
return (0);
error:
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
return (-1);
}
static int
addlist(libzfs_handle_t *hdl, char *propname, zprop_list_t **listp,
zfs_type_t type)
{
int prop;
zprop_list_t *entry;
prop = zprop_name_to_prop(propname, type);
if (prop != ZPROP_INVAL && !zprop_valid_for_type(prop, type, B_FALSE))
prop = ZPROP_INVAL;
/*
* When no property table entry can be found, return failure if
* this is a pool property or if this isn't a user-defined
* dataset property,
*/
if (prop == ZPROP_INVAL && ((type == ZFS_TYPE_POOL &&
!zpool_prop_feature(propname) &&
!zpool_prop_unsupported(propname)) ||
(type == ZFS_TYPE_DATASET && !zfs_prop_user(propname) &&
!zfs_prop_userquota(propname) && !zfs_prop_written(propname)))) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"invalid property '%s'"), propname);
return (zfs_error(hdl, EZFS_BADPROP,
dgettext(TEXT_DOMAIN, "bad property list")));
}
if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL)
return (-1);
entry->pl_prop = prop;
if (prop == ZPROP_INVAL) {
if ((entry->pl_user_prop = zfs_strdup(hdl, propname)) ==
NULL) {
free(entry);
return (-1);
}
entry->pl_width = strlen(propname);
} else {
entry->pl_width = zprop_width(prop, &entry->pl_fixed,
type);
}
*listp = entry;
return (0);
}
/*
* Given a comma-separated list of properties, construct a property list
* containing both user-defined and native properties. This function will
* return a NULL list if 'all' is specified, which can later be expanded
* by zprop_expand_list().
*/
int
zprop_get_list(libzfs_handle_t *hdl, char *props, zprop_list_t **listp,
zfs_type_t type)
{
*listp = NULL;
/*
* If 'all' is specified, return a NULL list.
*/
if (strcmp(props, "all") == 0)
return (0);
/*
* If no props were specified, return an error.
*/
if (props[0] == '\0') {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"no properties specified"));
return (zfs_error(hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN,
"bad property list")));
}
/*
* It would be nice to use getsubopt() here, but the inclusion of column
* aliases makes this more effort than it's worth.
*/
while (*props != '\0') {
size_t len;
char *p;
char c;
if ((p = strchr(props, ',')) == NULL) {
len = strlen(props);
p = props + len;
} else {
len = p - props;
}
/*
* Check for empty options.
*/
if (len == 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"empty property name"));
return (zfs_error(hdl, EZFS_BADPROP,
dgettext(TEXT_DOMAIN, "bad property list")));
}
/*
* Check all regular property names.
*/
c = props[len];
props[len] = '\0';
if (strcmp(props, "space") == 0) {
static char *spaceprops[] = {
"name", "avail", "used", "usedbysnapshots",
"usedbydataset", "usedbyrefreservation",
"usedbychildren", NULL
};
int i;
for (i = 0; spaceprops[i]; i++) {
if (addlist(hdl, spaceprops[i], listp, type))
return (-1);
listp = &(*listp)->pl_next;
}
} else {
if (addlist(hdl, props, listp, type))
return (-1);
listp = &(*listp)->pl_next;
}
props = p;
if (c == ',')
props++;
}
return (0);
}
void
zprop_free_list(zprop_list_t *pl)
{
zprop_list_t *next;
while (pl != NULL) {
next = pl->pl_next;
free(pl->pl_user_prop);
free(pl);
pl = next;
}
}
typedef struct expand_data {
zprop_list_t **last;
libzfs_handle_t *hdl;
zfs_type_t type;
} expand_data_t;
int
zprop_expand_list_cb(int prop, void *cb)
{
zprop_list_t *entry;
expand_data_t *edp = cb;
if ((entry = zfs_alloc(edp->hdl, sizeof (zprop_list_t))) == NULL)
return (ZPROP_INVAL);
entry->pl_prop = prop;
entry->pl_width = zprop_width(prop, &entry->pl_fixed, edp->type);
entry->pl_all = B_TRUE;
*(edp->last) = entry;
edp->last = &entry->pl_next;
return (ZPROP_CONT);
}
int
zprop_expand_list(libzfs_handle_t *hdl, zprop_list_t **plp, zfs_type_t type)
{
zprop_list_t *entry;
zprop_list_t **last;
expand_data_t exp;
if (*plp == NULL) {
/*
* If this is the very first time we've been called for an 'all'
* specification, expand the list to include all native
* properties.
*/
last = plp;
exp.last = last;
exp.hdl = hdl;
exp.type = type;
if (zprop_iter_common(zprop_expand_list_cb, &exp, B_FALSE,
B_FALSE, type) == ZPROP_INVAL)
return (-1);
/*
* Add 'name' to the beginning of the list, which is handled
* specially.
*/
if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL)
return (-1);
entry->pl_prop = (type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME :
ZFS_PROP_NAME;
entry->pl_width = zprop_width(entry->pl_prop,
&entry->pl_fixed, type);
entry->pl_all = B_TRUE;
entry->pl_next = *plp;
*plp = entry;
}
return (0);
}
int
zprop_iter(zprop_func func, void *cb, boolean_t show_all, boolean_t ordered,
zfs_type_t type)
{
return (zprop_iter_common(func, cb, show_all, ordered, type));
}