mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-17 18:11:00 +03:00
bc17f1047a
Linux has read-ahead logic designed to accelerate sequential workloads. ZFS has its own read-ahead logic called zprefetch that operates on both ZVOLs and datasets. Having two prefetchers active at the same time can cause overprefetching, which unnecessarily reduces IOPS performance on CoW filesystems like ZFS. Testing shows that entirely disabling the Linux prefetch results in a significant performance penalty for reads while commensurate benefits are seen in random writes. It appears that read-ahead benefits are inversely proportional to random write benefits, and so a single page of Linux-layer read-ahead appears to offer the middle ground for both workloads. Reviewed-by: Chunwei Chen <david.chen@osnexus.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <ryao@gentoo.org> Issue #5902
2324 lines
55 KiB
C
2324 lines
55 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
*
|
|
* ZFS volume emulation driver.
|
|
*
|
|
* Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
|
|
* Volumes are accessed through the symbolic links named:
|
|
*
|
|
* /dev/<pool_name>/<dataset_name>
|
|
*
|
|
* Volumes are persistent through reboot and module load. No user command
|
|
* needs to be run before opening and using a device.
|
|
*
|
|
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_rlock.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zvol.h>
|
|
#include <linux/blkdev_compat.h>
|
|
|
|
unsigned int zvol_inhibit_dev = 0;
|
|
unsigned int zvol_major = ZVOL_MAJOR;
|
|
unsigned int zvol_threads = 32;
|
|
unsigned int zvol_request_sync = 1;
|
|
unsigned int zvol_prefetch_bytes = (128 * 1024);
|
|
unsigned long zvol_max_discard_blocks = 16384;
|
|
|
|
static taskq_t *zvol_taskq;
|
|
static kmutex_t zvol_state_lock;
|
|
static list_t zvol_state_list;
|
|
|
|
#define ZVOL_HT_SIZE 1024
|
|
static struct hlist_head *zvol_htable;
|
|
#define ZVOL_HT_HEAD(hash) (&zvol_htable[(hash) & (ZVOL_HT_SIZE-1)])
|
|
|
|
static struct ida zvol_ida;
|
|
|
|
/*
|
|
* The in-core state of each volume.
|
|
*/
|
|
struct zvol_state {
|
|
char zv_name[MAXNAMELEN]; /* name */
|
|
uint64_t zv_volsize; /* advertised space */
|
|
uint64_t zv_volblocksize; /* volume block size */
|
|
objset_t *zv_objset; /* objset handle */
|
|
uint32_t zv_flags; /* ZVOL_* flags */
|
|
uint32_t zv_open_count; /* open counts */
|
|
uint32_t zv_changed; /* disk changed */
|
|
zilog_t *zv_zilog; /* ZIL handle */
|
|
zfs_rlock_t zv_range_lock; /* range lock */
|
|
dmu_buf_t *zv_dbuf; /* bonus handle */
|
|
dev_t zv_dev; /* device id */
|
|
struct gendisk *zv_disk; /* generic disk */
|
|
struct request_queue *zv_queue; /* request queue */
|
|
list_node_t zv_next; /* next zvol_state_t linkage */
|
|
uint64_t zv_hash; /* name hash */
|
|
struct hlist_node zv_hlink; /* hash link */
|
|
atomic_t zv_suspend_ref; /* refcount for suspend */
|
|
krwlock_t zv_suspend_lock; /* suspend lock */
|
|
};
|
|
|
|
typedef enum {
|
|
ZVOL_ASYNC_CREATE_MINORS,
|
|
ZVOL_ASYNC_REMOVE_MINORS,
|
|
ZVOL_ASYNC_RENAME_MINORS,
|
|
ZVOL_ASYNC_SET_SNAPDEV,
|
|
ZVOL_ASYNC_MAX
|
|
} zvol_async_op_t;
|
|
|
|
typedef struct {
|
|
zvol_async_op_t op;
|
|
char pool[MAXNAMELEN];
|
|
char name1[MAXNAMELEN];
|
|
char name2[MAXNAMELEN];
|
|
zprop_source_t source;
|
|
uint64_t snapdev;
|
|
} zvol_task_t;
|
|
|
|
#define ZVOL_RDONLY 0x1
|
|
|
|
static uint64_t
|
|
zvol_name_hash(const char *name)
|
|
{
|
|
int i;
|
|
uint64_t crc = -1ULL;
|
|
uint8_t *p = (uint8_t *)name;
|
|
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
|
|
for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
|
|
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
|
|
}
|
|
return (crc);
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the full major+minor dev_t.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_dev(dev_t dev)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
for (zv = list_head(&zvol_state_list); zv != NULL;
|
|
zv = list_next(&zvol_state_list, zv)) {
|
|
if (zv->zv_dev == dev)
|
|
return (zv);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the name and hash generated by zvol_name_hash.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_name_hash(const char *name, uint64_t hash)
|
|
{
|
|
zvol_state_t *zv;
|
|
struct hlist_node *p;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
|
|
zv = hlist_entry(p, zvol_state_t, zv_hlink);
|
|
if (zv->zv_hash == hash &&
|
|
strncmp(zv->zv_name, name, MAXNAMELEN) == 0)
|
|
return (zv);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the name provided at zvol_alloc() time.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_name(const char *name)
|
|
{
|
|
return (zvol_find_by_name_hash(name, zvol_name_hash(name)));
|
|
}
|
|
|
|
|
|
/*
|
|
* Given a path, return TRUE if path is a ZVOL.
|
|
*/
|
|
boolean_t
|
|
zvol_is_zvol(const char *device)
|
|
{
|
|
struct block_device *bdev;
|
|
unsigned int major;
|
|
|
|
bdev = vdev_lookup_bdev(device);
|
|
if (IS_ERR(bdev))
|
|
return (B_FALSE);
|
|
|
|
major = MAJOR(bdev->bd_dev);
|
|
bdput(bdev);
|
|
|
|
if (major == zvol_major)
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
|
|
*/
|
|
void
|
|
zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
|
|
{
|
|
zfs_creat_t *zct = arg;
|
|
nvlist_t *nvprops = zct->zct_props;
|
|
int error;
|
|
uint64_t volblocksize, volsize;
|
|
|
|
VERIFY(nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
|
|
if (nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
|
|
volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
|
|
|
|
/*
|
|
* These properties must be removed from the list so the generic
|
|
* property setting step won't apply to them.
|
|
*/
|
|
VERIFY(nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
|
|
(void) nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
|
|
|
|
error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
|
|
ASSERT(error == 0);
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_OBJSET_STATS entry point.
|
|
*/
|
|
int
|
|
zvol_get_stats(objset_t *os, nvlist_t *nv)
|
|
{
|
|
int error;
|
|
dmu_object_info_t *doi;
|
|
uint64_t val;
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
|
|
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
|
|
if (error == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
|
|
doi->doi_data_block_size);
|
|
}
|
|
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
static void
|
|
zvol_size_changed(zvol_state_t *zv, uint64_t volsize)
|
|
{
|
|
struct block_device *bdev;
|
|
|
|
bdev = bdget_disk(zv->zv_disk, 0);
|
|
if (bdev == NULL)
|
|
return;
|
|
set_capacity(zv->zv_disk, volsize >> 9);
|
|
zv->zv_volsize = volsize;
|
|
check_disk_size_change(zv->zv_disk, bdev);
|
|
|
|
bdput(bdev);
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume size.
|
|
*/
|
|
int
|
|
zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
|
|
{
|
|
if (volsize == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (volsize % blocksize != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
#ifdef _ILP32
|
|
if (volsize - 1 > SPEC_MAXOFFSET_T)
|
|
return (SET_ERROR(EOVERFLOW));
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Ensure the zap is flushed then inform the VFS of the capacity change.
|
|
*/
|
|
static int
|
|
zvol_update_volsize(uint64_t volsize, objset_t *os)
|
|
{
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
uint64_t txg;
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
|
|
dmu_tx_mark_netfree(tx);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
return (SET_ERROR(error));
|
|
}
|
|
txg = dmu_tx_get_txg(tx);
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
|
|
&volsize, tx);
|
|
dmu_tx_commit(tx);
|
|
|
|
txg_wait_synced(dmu_objset_pool(os), txg);
|
|
|
|
if (error == 0)
|
|
error = dmu_free_long_range(os,
|
|
ZVOL_OBJ, volsize, DMU_OBJECT_END);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_update_live_volsize(zvol_state_t *zv, uint64_t volsize)
|
|
{
|
|
zvol_size_changed(zv, volsize);
|
|
|
|
/*
|
|
* We should post a event here describing the expansion. However,
|
|
* the zfs_ereport_post() interface doesn't nicely support posting
|
|
* events for zvols, it assumes events relate to vdevs or zios.
|
|
*/
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLSIZE set entry point.
|
|
*/
|
|
int
|
|
zvol_set_volsize(const char *name, uint64_t volsize)
|
|
{
|
|
zvol_state_t *zv = NULL;
|
|
objset_t *os = NULL;
|
|
int error;
|
|
dmu_object_info_t *doi;
|
|
uint64_t readonly;
|
|
boolean_t owned = B_FALSE;
|
|
|
|
error = dsl_prop_get_integer(name,
|
|
zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
|
|
if (error != 0)
|
|
return (SET_ERROR(error));
|
|
if (readonly)
|
|
return (SET_ERROR(EROFS));
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
zv = zvol_find_by_name(name);
|
|
|
|
if (zv == NULL || zv->zv_objset == NULL) {
|
|
if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE,
|
|
FTAG, &os)) != 0) {
|
|
mutex_exit(&zvol_state_lock);
|
|
return (SET_ERROR(error));
|
|
}
|
|
owned = B_TRUE;
|
|
if (zv != NULL)
|
|
zv->zv_objset = os;
|
|
} else {
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
os = zv->zv_objset;
|
|
}
|
|
|
|
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
|
|
|
|
if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
|
|
(error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
|
|
goto out;
|
|
|
|
error = zvol_update_volsize(volsize, os);
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
|
|
if (error == 0 && zv != NULL)
|
|
error = zvol_update_live_volsize(zv, volsize);
|
|
out:
|
|
if (owned) {
|
|
dmu_objset_disown(os, FTAG);
|
|
if (zv != NULL)
|
|
zv->zv_objset = NULL;
|
|
} else {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
}
|
|
mutex_exit(&zvol_state_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume block size.
|
|
*/
|
|
int
|
|
zvol_check_volblocksize(const char *name, uint64_t volblocksize)
|
|
{
|
|
/* Record sizes above 128k need the feature to be enabled */
|
|
if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
|
|
spa_t *spa;
|
|
int error;
|
|
|
|
if ((error = spa_open(name, &spa, FTAG)) != 0)
|
|
return (error);
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
|
|
spa_close(spa, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* We don't allow setting the property above 1MB,
|
|
* unless the tunable has been changed.
|
|
*/
|
|
if (volblocksize > zfs_max_recordsize)
|
|
return (SET_ERROR(EDOM));
|
|
|
|
spa_close(spa, FTAG);
|
|
}
|
|
|
|
if (volblocksize < SPA_MINBLOCKSIZE ||
|
|
volblocksize > SPA_MAXBLOCKSIZE ||
|
|
!ISP2(volblocksize))
|
|
return (SET_ERROR(EDOM));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLBLOCKSIZE set entry point.
|
|
*/
|
|
int
|
|
zvol_set_volblocksize(const char *name, uint64_t volblocksize)
|
|
{
|
|
zvol_state_t *zv;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
|
|
zv = zvol_find_by_name(name);
|
|
if (zv == NULL) {
|
|
error = SET_ERROR(ENXIO);
|
|
goto out;
|
|
}
|
|
|
|
if (zv->zv_flags & ZVOL_RDONLY) {
|
|
error = SET_ERROR(EROFS);
|
|
goto out;
|
|
}
|
|
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_hold_bonus(tx, ZVOL_OBJ);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
|
|
volblocksize, 0, tx);
|
|
if (error == ENOTSUP)
|
|
error = SET_ERROR(EBUSY);
|
|
dmu_tx_commit(tx);
|
|
if (error == 0)
|
|
zv->zv_volblocksize = volblocksize;
|
|
}
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
out:
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
|
|
* implement DKIOCFREE/free-long-range.
|
|
*/
|
|
static int
|
|
zvol_replay_truncate(zvol_state_t *zv, lr_truncate_t *lr, boolean_t byteswap)
|
|
{
|
|
uint64_t offset, length;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
offset = lr->lr_offset;
|
|
length = lr->lr_length;
|
|
|
|
return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length));
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_WRITE ZIL transaction that didn't get committed
|
|
* after a system failure
|
|
*/
|
|
static int
|
|
zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
|
|
{
|
|
objset_t *os = zv->zv_objset;
|
|
char *data = (char *)(lr + 1); /* data follows lr_write_t */
|
|
uint64_t off = lr->lr_offset;
|
|
uint64_t len = lr->lr_length;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
dmu_write(os, ZVOL_OBJ, off, len, data, tx);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
static int
|
|
zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
|
|
{
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* Callback vectors for replaying records.
|
|
* Only TX_WRITE and TX_TRUNCATE are needed for zvol.
|
|
*/
|
|
zil_replay_func_t zvol_replay_vector[TX_MAX_TYPE] = {
|
|
(zil_replay_func_t)zvol_replay_err, /* no such transaction type */
|
|
(zil_replay_func_t)zvol_replay_err, /* TX_CREATE */
|
|
(zil_replay_func_t)zvol_replay_err, /* TX_MKDIR */
|
|
(zil_replay_func_t)zvol_replay_err, /* TX_MKXATTR */
|
|
(zil_replay_func_t)zvol_replay_err, /* TX_SYMLINK */
|
|
(zil_replay_func_t)zvol_replay_err, /* TX_REMOVE */
|
|
(zil_replay_func_t)zvol_replay_err, /* TX_RMDIR */
|
|
(zil_replay_func_t)zvol_replay_err, /* TX_LINK */
|
|
(zil_replay_func_t)zvol_replay_err, /* TX_RENAME */
|
|
(zil_replay_func_t)zvol_replay_write, /* TX_WRITE */
|
|
(zil_replay_func_t)zvol_replay_truncate, /* TX_TRUNCATE */
|
|
(zil_replay_func_t)zvol_replay_err, /* TX_SETATTR */
|
|
(zil_replay_func_t)zvol_replay_err, /* TX_ACL */
|
|
};
|
|
|
|
/*
|
|
* zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
|
|
*
|
|
* We store data in the log buffers if it's small enough.
|
|
* Otherwise we will later flush the data out via dmu_sync().
|
|
*/
|
|
ssize_t zvol_immediate_write_sz = 32768;
|
|
|
|
static void
|
|
zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
|
|
uint64_t size, int sync)
|
|
{
|
|
uint32_t blocksize = zv->zv_volblocksize;
|
|
zilog_t *zilog = zv->zv_zilog;
|
|
boolean_t slogging;
|
|
ssize_t immediate_write_sz;
|
|
|
|
if (zil_replaying(zilog, tx))
|
|
return;
|
|
|
|
immediate_write_sz = (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
|
|
? 0 : zvol_immediate_write_sz;
|
|
slogging = spa_has_slogs(zilog->zl_spa) &&
|
|
(zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
|
|
|
|
while (size) {
|
|
itx_t *itx;
|
|
lr_write_t *lr;
|
|
ssize_t len;
|
|
itx_wr_state_t write_state;
|
|
|
|
/*
|
|
* Unlike zfs_log_write() we can be called with
|
|
* up to DMU_MAX_ACCESS/2 (5MB) writes.
|
|
*/
|
|
if (blocksize > immediate_write_sz && !slogging &&
|
|
size >= blocksize && offset % blocksize == 0) {
|
|
write_state = WR_INDIRECT; /* uses dmu_sync */
|
|
len = blocksize;
|
|
} else if (sync) {
|
|
write_state = WR_COPIED;
|
|
len = MIN(ZIL_MAX_LOG_DATA, size);
|
|
} else {
|
|
write_state = WR_NEED_COPY;
|
|
len = MIN(ZIL_MAX_LOG_DATA, size);
|
|
}
|
|
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
|
|
(write_state == WR_COPIED ? len : 0));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
if (write_state == WR_COPIED && dmu_read(zv->zv_objset,
|
|
ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
|
|
zil_itx_destroy(itx);
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
write_state = WR_NEED_COPY;
|
|
}
|
|
|
|
itx->itx_wr_state = write_state;
|
|
if (write_state == WR_NEED_COPY)
|
|
itx->itx_sod += len;
|
|
lr->lr_foid = ZVOL_OBJ;
|
|
lr->lr_offset = offset;
|
|
lr->lr_length = len;
|
|
lr->lr_blkoff = 0;
|
|
BP_ZERO(&lr->lr_blkptr);
|
|
|
|
itx->itx_private = zv;
|
|
itx->itx_sync = sync;
|
|
|
|
(void) zil_itx_assign(zilog, itx, tx);
|
|
|
|
offset += len;
|
|
size -= len;
|
|
}
|
|
}
|
|
|
|
typedef struct zv_request {
|
|
zvol_state_t *zv;
|
|
struct bio *bio;
|
|
rl_t *rl;
|
|
} zv_request_t;
|
|
|
|
static void
|
|
uio_from_bio(uio_t *uio, struct bio *bio)
|
|
{
|
|
uio->uio_bvec = &bio->bi_io_vec[BIO_BI_IDX(bio)];
|
|
uio->uio_skip = BIO_BI_SKIP(bio);
|
|
uio->uio_resid = BIO_BI_SIZE(bio);
|
|
uio->uio_iovcnt = bio->bi_vcnt - BIO_BI_IDX(bio);
|
|
uio->uio_loffset = BIO_BI_SECTOR(bio) << 9;
|
|
uio->uio_limit = MAXOFFSET_T;
|
|
uio->uio_segflg = UIO_BVEC;
|
|
}
|
|
|
|
static void
|
|
zvol_write(void *arg)
|
|
{
|
|
zv_request_t *zvr = arg;
|
|
struct bio *bio = zvr->bio;
|
|
uio_t uio;
|
|
zvol_state_t *zv = zvr->zv;
|
|
uint64_t volsize = zv->zv_volsize;
|
|
boolean_t sync;
|
|
int error = 0;
|
|
unsigned long start_jif;
|
|
|
|
uio_from_bio(&uio, bio);
|
|
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
|
|
start_jif = jiffies;
|
|
generic_start_io_acct(WRITE, bio_sectors(bio), &zv->zv_disk->part0);
|
|
|
|
sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
|
|
|
|
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
|
|
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
|
|
uint64_t off = uio.uio_loffset;
|
|
dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
|
|
|
|
if (bytes > volsize - off) /* don't write past the end */
|
|
bytes = volsize - off;
|
|
|
|
dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
|
|
|
|
/* This will only fail for ENOSPC */
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
break;
|
|
}
|
|
error = dmu_write_uio_dbuf(zv->zv_dbuf, &uio, bytes, tx);
|
|
if (error == 0)
|
|
zvol_log_write(zv, tx, off, bytes, sync);
|
|
dmu_tx_commit(tx);
|
|
|
|
if (error)
|
|
break;
|
|
}
|
|
zfs_range_unlock(zvr->rl);
|
|
if (sync)
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
generic_end_io_acct(WRITE, &zv->zv_disk->part0, start_jif);
|
|
BIO_END_IO(bio, -error);
|
|
kmem_free(zvr, sizeof (zv_request_t));
|
|
}
|
|
|
|
/*
|
|
* Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
|
|
*/
|
|
static void
|
|
zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
|
|
boolean_t sync)
|
|
{
|
|
itx_t *itx;
|
|
lr_truncate_t *lr;
|
|
zilog_t *zilog = zv->zv_zilog;
|
|
|
|
if (zil_replaying(zilog, tx))
|
|
return;
|
|
|
|
itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
|
|
lr = (lr_truncate_t *)&itx->itx_lr;
|
|
lr->lr_foid = ZVOL_OBJ;
|
|
lr->lr_offset = off;
|
|
lr->lr_length = len;
|
|
|
|
itx->itx_sync = sync;
|
|
zil_itx_assign(zilog, itx, tx);
|
|
}
|
|
|
|
static void
|
|
zvol_discard(void *arg)
|
|
{
|
|
zv_request_t *zvr = arg;
|
|
struct bio *bio = zvr->bio;
|
|
zvol_state_t *zv = zvr->zv;
|
|
uint64_t start = BIO_BI_SECTOR(bio) << 9;
|
|
uint64_t size = BIO_BI_SIZE(bio);
|
|
uint64_t end = start + size;
|
|
int error = 0;
|
|
dmu_tx_t *tx;
|
|
unsigned long start_jif;
|
|
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
|
|
start_jif = jiffies;
|
|
generic_start_io_acct(WRITE, bio_sectors(bio), &zv->zv_disk->part0);
|
|
|
|
if (end > zv->zv_volsize) {
|
|
error = SET_ERROR(EIO);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Align the request to volume block boundaries when a secure erase is
|
|
* not required. This will prevent dnode_free_range() from zeroing out
|
|
* the unaligned parts which is slow (read-modify-write) and useless
|
|
* since we are not freeing any space by doing so.
|
|
*/
|
|
if (!bio_is_secure_erase(bio)) {
|
|
start = P2ROUNDUP(start, zv->zv_volblocksize);
|
|
end = P2ALIGN(end, zv->zv_volblocksize);
|
|
size = end - start;
|
|
}
|
|
|
|
if (start >= end)
|
|
goto out;
|
|
|
|
tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_mark_netfree(tx);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
zvol_log_truncate(zv, tx, start, size, B_TRUE);
|
|
dmu_tx_commit(tx);
|
|
error = dmu_free_long_range(zv->zv_objset,
|
|
ZVOL_OBJ, start, size);
|
|
}
|
|
|
|
out:
|
|
zfs_range_unlock(zvr->rl);
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
generic_end_io_acct(WRITE, &zv->zv_disk->part0, start_jif);
|
|
BIO_END_IO(bio, -error);
|
|
kmem_free(zvr, sizeof (zv_request_t));
|
|
}
|
|
|
|
static void
|
|
zvol_read(void *arg)
|
|
{
|
|
zv_request_t *zvr = arg;
|
|
struct bio *bio = zvr->bio;
|
|
uio_t uio;
|
|
zvol_state_t *zv = zvr->zv;
|
|
uint64_t volsize = zv->zv_volsize;
|
|
int error = 0;
|
|
unsigned long start_jif;
|
|
|
|
uio_from_bio(&uio, bio);
|
|
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
|
|
start_jif = jiffies;
|
|
generic_start_io_acct(READ, bio_sectors(bio), &zv->zv_disk->part0);
|
|
|
|
while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
|
|
uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
|
|
|
|
/* don't read past the end */
|
|
if (bytes > volsize - uio.uio_loffset)
|
|
bytes = volsize - uio.uio_loffset;
|
|
|
|
error = dmu_read_uio_dbuf(zv->zv_dbuf, &uio, bytes);
|
|
if (error) {
|
|
/* convert checksum errors into IO errors */
|
|
if (error == ECKSUM)
|
|
error = SET_ERROR(EIO);
|
|
break;
|
|
}
|
|
}
|
|
zfs_range_unlock(zvr->rl);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
generic_end_io_acct(READ, &zv->zv_disk->part0, start_jif);
|
|
BIO_END_IO(bio, -error);
|
|
kmem_free(zvr, sizeof (zv_request_t));
|
|
}
|
|
|
|
static MAKE_REQUEST_FN_RET
|
|
zvol_request(struct request_queue *q, struct bio *bio)
|
|
{
|
|
zvol_state_t *zv = q->queuedata;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
uint64_t offset = BIO_BI_SECTOR(bio) << 9;
|
|
uint64_t size = BIO_BI_SIZE(bio);
|
|
int rw = bio_data_dir(bio);
|
|
zv_request_t *zvr;
|
|
|
|
if (bio_has_data(bio) && offset + size > zv->zv_volsize) {
|
|
printk(KERN_INFO
|
|
"%s: bad access: offset=%llu, size=%lu\n",
|
|
zv->zv_disk->disk_name,
|
|
(long long unsigned)offset,
|
|
(long unsigned)size);
|
|
|
|
BIO_END_IO(bio, -SET_ERROR(EIO));
|
|
goto out;
|
|
}
|
|
|
|
if (rw == WRITE) {
|
|
if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
|
|
BIO_END_IO(bio, -SET_ERROR(EROFS));
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* To be released in the I/O function. See the comment on
|
|
* zfs_range_lock below.
|
|
*/
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
/* bio marked as FLUSH need to flush before write */
|
|
if (bio_is_flush(bio))
|
|
zil_commit(zv->zv_zilog, ZVOL_OBJ);
|
|
|
|
/* Some requests are just for flush and nothing else. */
|
|
if (size == 0) {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
BIO_END_IO(bio, 0);
|
|
goto out;
|
|
}
|
|
|
|
zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
|
|
zvr->zv = zv;
|
|
zvr->bio = bio;
|
|
|
|
/*
|
|
* To be released in the I/O function. Since the I/O functions
|
|
* are asynchronous, we take it here synchronously to make
|
|
* sure overlapped I/Os are properly ordered.
|
|
*/
|
|
zvr->rl = zfs_range_lock(&zv->zv_range_lock, offset, size,
|
|
RL_WRITER);
|
|
if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
|
|
if (zvol_request_sync || taskq_dispatch(zvol_taskq,
|
|
zvol_discard, zvr, TQ_SLEEP) == TASKQID_INVALID)
|
|
zvol_discard(zvr);
|
|
} else {
|
|
if (zvol_request_sync || taskq_dispatch(zvol_taskq,
|
|
zvol_write, zvr, TQ_SLEEP) == TASKQID_INVALID)
|
|
zvol_write(zvr);
|
|
}
|
|
} else {
|
|
zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
|
|
zvr->zv = zv;
|
|
zvr->bio = bio;
|
|
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
zvr->rl = zfs_range_lock(&zv->zv_range_lock, offset, size,
|
|
RL_READER);
|
|
if (zvol_request_sync || taskq_dispatch(zvol_taskq,
|
|
zvol_read, zvr, TQ_SLEEP) == TASKQID_INVALID)
|
|
zvol_read(zvr);
|
|
}
|
|
|
|
out:
|
|
spl_fstrans_unmark(cookie);
|
|
#ifdef HAVE_MAKE_REQUEST_FN_RET_INT
|
|
return (0);
|
|
#elif defined(HAVE_MAKE_REQUEST_FN_RET_QC)
|
|
return (BLK_QC_T_NONE);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
zvol_get_done(zgd_t *zgd, int error)
|
|
{
|
|
if (zgd->zgd_db)
|
|
dmu_buf_rele(zgd->zgd_db, zgd);
|
|
|
|
zfs_range_unlock(zgd->zgd_rl);
|
|
|
|
if (error == 0 && zgd->zgd_bp)
|
|
zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
|
|
|
|
kmem_free(zgd, sizeof (zgd_t));
|
|
}
|
|
|
|
/*
|
|
* Get data to generate a TX_WRITE intent log record.
|
|
*/
|
|
static int
|
|
zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
|
|
{
|
|
zvol_state_t *zv = arg;
|
|
objset_t *os = zv->zv_objset;
|
|
uint64_t object = ZVOL_OBJ;
|
|
uint64_t offset = lr->lr_offset;
|
|
uint64_t size = lr->lr_length;
|
|
blkptr_t *bp = &lr->lr_blkptr;
|
|
dmu_buf_t *db;
|
|
zgd_t *zgd;
|
|
int error;
|
|
|
|
ASSERT(zio != NULL);
|
|
ASSERT(size != 0);
|
|
|
|
zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
|
|
zgd->zgd_zilog = zv->zv_zilog;
|
|
zgd->zgd_rl = zfs_range_lock(&zv->zv_range_lock, offset, size,
|
|
RL_READER);
|
|
|
|
/*
|
|
* Write records come in two flavors: immediate and indirect.
|
|
* For small writes it's cheaper to store the data with the
|
|
* log record (immediate); for large writes it's cheaper to
|
|
* sync the data and get a pointer to it (indirect) so that
|
|
* we don't have to write the data twice.
|
|
*/
|
|
if (buf != NULL) { /* immediate write */
|
|
error = dmu_read(os, object, offset, size, buf,
|
|
DMU_READ_NO_PREFETCH);
|
|
} else {
|
|
size = zv->zv_volblocksize;
|
|
offset = P2ALIGN_TYPED(offset, size, uint64_t);
|
|
error = dmu_buf_hold(os, object, offset, zgd, &db,
|
|
DMU_READ_NO_PREFETCH);
|
|
if (error == 0) {
|
|
blkptr_t *obp = dmu_buf_get_blkptr(db);
|
|
if (obp) {
|
|
ASSERT(BP_IS_HOLE(bp));
|
|
*bp = *obp;
|
|
}
|
|
|
|
zgd->zgd_db = db;
|
|
zgd->zgd_bp = &lr->lr_blkptr;
|
|
|
|
ASSERT(db != NULL);
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == size);
|
|
|
|
error = dmu_sync(zio, lr->lr_common.lrc_txg,
|
|
zvol_get_done, zgd);
|
|
|
|
if (error == 0)
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
zvol_get_done(zgd, error);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
|
|
*/
|
|
static void
|
|
zvol_insert(zvol_state_t *zv)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
ASSERT3U(MINOR(zv->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
|
|
list_insert_head(&zvol_state_list, zv);
|
|
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
|
|
}
|
|
|
|
/*
|
|
* Simply remove the zvol from to list of zvols.
|
|
*/
|
|
static void
|
|
zvol_remove(zvol_state_t *zv)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
list_remove(&zvol_state_list, zv);
|
|
hlist_del(&zv->zv_hlink);
|
|
}
|
|
|
|
/*
|
|
* Setup zv after we just own the zv->objset
|
|
*/
|
|
static int
|
|
zvol_setup_zv(zvol_state_t *zv)
|
|
{
|
|
uint64_t volsize;
|
|
int error;
|
|
uint64_t ro;
|
|
objset_t *os = zv->zv_objset;
|
|
|
|
error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
error = dmu_bonus_hold(os, ZVOL_OBJ, zv, &zv->zv_dbuf);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
set_capacity(zv->zv_disk, volsize >> 9);
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_zilog = zil_open(os, zvol_get_data);
|
|
|
|
if (ro || dmu_objset_is_snapshot(os) ||
|
|
!spa_writeable(dmu_objset_spa(os))) {
|
|
set_disk_ro(zv->zv_disk, 1);
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
} else {
|
|
set_disk_ro(zv->zv_disk, 0);
|
|
zv->zv_flags &= ~ZVOL_RDONLY;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Shutdown every zv_objset related stuff except zv_objset itself.
|
|
* The is the reverse of zvol_setup_zv.
|
|
*/
|
|
static void
|
|
zvol_shutdown_zv(zvol_state_t *zv)
|
|
{
|
|
zil_close(zv->zv_zilog);
|
|
zv->zv_zilog = NULL;
|
|
|
|
dmu_buf_rele(zv->zv_dbuf, zv);
|
|
zv->zv_dbuf = NULL;
|
|
|
|
/*
|
|
* Evict cached data
|
|
*/
|
|
if (dsl_dataset_is_dirty(dmu_objset_ds(zv->zv_objset)) &&
|
|
!(zv->zv_flags & ZVOL_RDONLY))
|
|
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
|
|
(void) dmu_objset_evict_dbufs(zv->zv_objset);
|
|
}
|
|
|
|
/*
|
|
* return the proper tag for rollback and recv
|
|
*/
|
|
void *
|
|
zvol_tag(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
return (zv->zv_open_count > 0 ? zv : NULL);
|
|
}
|
|
|
|
/*
|
|
* Suspend the zvol for recv and rollback.
|
|
*/
|
|
zvol_state_t *
|
|
zvol_suspend(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
zv = zvol_find_by_name(name);
|
|
if (zv == NULL)
|
|
goto out;
|
|
|
|
/* block all I/O, release in zvol_resume. */
|
|
rw_enter(&zv->zv_suspend_lock, RW_WRITER);
|
|
|
|
atomic_inc(&zv->zv_suspend_ref);
|
|
|
|
if (zv->zv_open_count > 0)
|
|
zvol_shutdown_zv(zv);
|
|
out:
|
|
mutex_exit(&zvol_state_lock);
|
|
return (zv);
|
|
}
|
|
|
|
int
|
|
zvol_resume(zvol_state_t *zv)
|
|
{
|
|
int error = 0;
|
|
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
if (zv->zv_open_count > 0) {
|
|
VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
|
|
VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
|
|
VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
|
|
dmu_objset_rele(zv->zv_objset, zv);
|
|
|
|
error = zvol_setup_zv(zv);
|
|
}
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
/*
|
|
* We need this because we don't hold zvol_state_lock while releasing
|
|
* zv_suspend_lock. zvol_remove_minors_impl thus cannot check
|
|
* zv_suspend_lock to determine it is safe to free because rwlock is
|
|
* not inherent atomic.
|
|
*/
|
|
atomic_dec(&zv->zv_suspend_ref);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
static int
|
|
zvol_first_open(zvol_state_t *zv)
|
|
{
|
|
objset_t *os;
|
|
int error;
|
|
|
|
/* lie and say we're read-only */
|
|
error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zv, &os);
|
|
if (error)
|
|
return (SET_ERROR(-error));
|
|
|
|
zv->zv_objset = os;
|
|
|
|
error = zvol_setup_zv(zv);
|
|
|
|
if (error) {
|
|
dmu_objset_disown(os, zv);
|
|
zv->zv_objset = NULL;
|
|
}
|
|
|
|
return (SET_ERROR(-error));
|
|
}
|
|
|
|
static void
|
|
zvol_last_close(zvol_state_t *zv)
|
|
{
|
|
zvol_shutdown_zv(zv);
|
|
|
|
dmu_objset_disown(zv->zv_objset, zv);
|
|
zv->zv_objset = NULL;
|
|
}
|
|
|
|
static int
|
|
zvol_open(struct block_device *bdev, fmode_t flag)
|
|
{
|
|
zvol_state_t *zv;
|
|
int error = 0, drop_mutex = 0, drop_suspend = 0;
|
|
|
|
/*
|
|
* If the caller is already holding the mutex do not take it
|
|
* again, this will happen as part of zvol_create_minor_impl().
|
|
* Once add_disk() is called the device is live and the kernel
|
|
* will attempt to open it to read the partition information.
|
|
*/
|
|
if (!mutex_owned(&zvol_state_lock)) {
|
|
mutex_enter(&zvol_state_lock);
|
|
drop_mutex = 1;
|
|
}
|
|
|
|
/*
|
|
* Obtain a copy of private_data under the lock to make sure
|
|
* that either the result of zvol_free() setting
|
|
* bdev->bd_disk->private_data to NULL is observed, or zvol_free()
|
|
* is not called on this zv because of the positive zv_open_count.
|
|
*/
|
|
zv = bdev->bd_disk->private_data;
|
|
if (zv == NULL) {
|
|
error = -ENXIO;
|
|
goto out_mutex;
|
|
}
|
|
|
|
if (zv->zv_open_count == 0) {
|
|
/* make sure zvol is not suspended when first open */
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
drop_suspend = 1;
|
|
|
|
error = zvol_first_open(zv);
|
|
if (error)
|
|
goto out_mutex;
|
|
}
|
|
|
|
if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
|
|
error = -EROFS;
|
|
goto out_open_count;
|
|
}
|
|
|
|
zv->zv_open_count++;
|
|
|
|
check_disk_change(bdev);
|
|
|
|
out_open_count:
|
|
if (zv->zv_open_count == 0)
|
|
zvol_last_close(zv);
|
|
out_mutex:
|
|
if (drop_suspend)
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
if (drop_mutex)
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
#ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
|
|
static void
|
|
#else
|
|
static int
|
|
#endif
|
|
zvol_release(struct gendisk *disk, fmode_t mode)
|
|
{
|
|
zvol_state_t *zv = disk->private_data;
|
|
int drop_mutex = 0;
|
|
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
|
|
if (!mutex_owned(&zvol_state_lock)) {
|
|
mutex_enter(&zvol_state_lock);
|
|
drop_mutex = 1;
|
|
}
|
|
|
|
/* make sure zvol is not suspended when last close */
|
|
if (zv->zv_open_count == 1)
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
zv->zv_open_count--;
|
|
if (zv->zv_open_count == 0) {
|
|
zvol_last_close(zv);
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
}
|
|
|
|
if (drop_mutex)
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
#ifndef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
|
|
return (0);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
zvol_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
int error = 0;
|
|
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
|
|
switch (cmd) {
|
|
case BLKFLSBUF:
|
|
fsync_bdev(bdev);
|
|
invalidate_bdev(bdev);
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
|
|
if (dsl_dataset_is_dirty(dmu_objset_ds(zv->zv_objset)) &&
|
|
!(zv->zv_flags & ZVOL_RDONLY))
|
|
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
break;
|
|
|
|
case BLKZNAME:
|
|
mutex_enter(&zvol_state_lock);
|
|
error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
|
|
mutex_exit(&zvol_state_lock);
|
|
break;
|
|
|
|
default:
|
|
error = -ENOTTY;
|
|
break;
|
|
}
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int
|
|
zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg)
|
|
{
|
|
return (zvol_ioctl(bdev, mode, cmd, arg));
|
|
}
|
|
#else
|
|
#define zvol_compat_ioctl NULL
|
|
#endif
|
|
|
|
static int zvol_media_changed(struct gendisk *disk)
|
|
{
|
|
zvol_state_t *zv = disk->private_data;
|
|
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
|
|
return (zv->zv_changed);
|
|
}
|
|
|
|
static int zvol_revalidate_disk(struct gendisk *disk)
|
|
{
|
|
zvol_state_t *zv = disk->private_data;
|
|
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
|
|
zv->zv_changed = 0;
|
|
set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Provide a simple virtual geometry for legacy compatibility. For devices
|
|
* smaller than 1 MiB a small head and sector count is used to allow very
|
|
* tiny devices. For devices over 1 Mib a standard head and sector count
|
|
* is used to keep the cylinders count reasonable.
|
|
*/
|
|
static int
|
|
zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
zvol_state_t *zv = bdev->bd_disk->private_data;
|
|
sector_t sectors;
|
|
|
|
ASSERT(zv && zv->zv_open_count > 0);
|
|
|
|
sectors = get_capacity(zv->zv_disk);
|
|
|
|
if (sectors > 2048) {
|
|
geo->heads = 16;
|
|
geo->sectors = 63;
|
|
} else {
|
|
geo->heads = 2;
|
|
geo->sectors = 4;
|
|
}
|
|
|
|
geo->start = 0;
|
|
geo->cylinders = sectors / (geo->heads * geo->sectors);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct kobject *
|
|
zvol_probe(dev_t dev, int *part, void *arg)
|
|
{
|
|
zvol_state_t *zv;
|
|
struct kobject *kobj;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
zv = zvol_find_by_dev(dev);
|
|
kobj = zv ? get_disk(zv->zv_disk) : NULL;
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
return (kobj);
|
|
}
|
|
|
|
#ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS
|
|
static struct block_device_operations zvol_ops = {
|
|
.open = zvol_open,
|
|
.release = zvol_release,
|
|
.ioctl = zvol_ioctl,
|
|
.compat_ioctl = zvol_compat_ioctl,
|
|
.media_changed = zvol_media_changed,
|
|
.revalidate_disk = zvol_revalidate_disk,
|
|
.getgeo = zvol_getgeo,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
#else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
|
|
|
|
static int
|
|
zvol_open_by_inode(struct inode *inode, struct file *file)
|
|
{
|
|
return (zvol_open(inode->i_bdev, file->f_mode));
|
|
}
|
|
|
|
static int
|
|
zvol_release_by_inode(struct inode *inode, struct file *file)
|
|
{
|
|
return (zvol_release(inode->i_bdev->bd_disk, file->f_mode));
|
|
}
|
|
|
|
static int
|
|
zvol_ioctl_by_inode(struct inode *inode, struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
if (file == NULL || inode == NULL)
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
return (zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg));
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static long
|
|
zvol_compat_ioctl_by_inode(struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
if (file == NULL)
|
|
return (SET_ERROR(-EINVAL));
|
|
|
|
return (zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev,
|
|
file->f_mode, cmd, arg));
|
|
}
|
|
#else
|
|
#define zvol_compat_ioctl_by_inode NULL
|
|
#endif
|
|
|
|
static struct block_device_operations zvol_ops = {
|
|
.open = zvol_open_by_inode,
|
|
.release = zvol_release_by_inode,
|
|
.ioctl = zvol_ioctl_by_inode,
|
|
.compat_ioctl = zvol_compat_ioctl_by_inode,
|
|
.media_changed = zvol_media_changed,
|
|
.revalidate_disk = zvol_revalidate_disk,
|
|
.getgeo = zvol_getgeo,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
#endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
|
|
|
|
/*
|
|
* Allocate memory for a new zvol_state_t and setup the required
|
|
* request queue and generic disk structures for the block device.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_alloc(dev_t dev, const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
|
|
|
|
list_link_init(&zv->zv_next);
|
|
|
|
zv->zv_queue = blk_alloc_queue(GFP_ATOMIC);
|
|
if (zv->zv_queue == NULL)
|
|
goto out_kmem;
|
|
|
|
blk_queue_make_request(zv->zv_queue, zvol_request);
|
|
blk_queue_set_write_cache(zv->zv_queue, B_TRUE, B_TRUE);
|
|
|
|
/* Limit read-ahead to a single page to prevent over-prefetching. */
|
|
blk_queue_set_read_ahead(zv->zv_queue, 1);
|
|
|
|
/* Disable write merging in favor of the ZIO pipeline. */
|
|
queue_flag_set(QUEUE_FLAG_NOMERGES, zv->zv_queue);
|
|
|
|
zv->zv_disk = alloc_disk(ZVOL_MINORS);
|
|
if (zv->zv_disk == NULL)
|
|
goto out_queue;
|
|
|
|
zv->zv_queue->queuedata = zv;
|
|
zv->zv_dev = dev;
|
|
zv->zv_open_count = 0;
|
|
strlcpy(zv->zv_name, name, MAXNAMELEN);
|
|
|
|
zfs_rlock_init(&zv->zv_range_lock);
|
|
rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
|
|
|
|
zv->zv_disk->major = zvol_major;
|
|
zv->zv_disk->first_minor = (dev & MINORMASK);
|
|
zv->zv_disk->fops = &zvol_ops;
|
|
zv->zv_disk->private_data = zv;
|
|
zv->zv_disk->queue = zv->zv_queue;
|
|
snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
|
|
ZVOL_DEV_NAME, (dev & MINORMASK));
|
|
|
|
return (zv);
|
|
|
|
out_queue:
|
|
blk_cleanup_queue(zv->zv_queue);
|
|
out_kmem:
|
|
kmem_free(zv, sizeof (zvol_state_t));
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Used for taskq, if used out side zvol_state_lock, you need to clear
|
|
* zv_disk->private_data inside lock first.
|
|
*/
|
|
static void
|
|
zvol_free_impl(void *arg)
|
|
{
|
|
zvol_state_t *zv = arg;
|
|
ASSERT(zv->zv_open_count == 0);
|
|
|
|
rw_destroy(&zv->zv_suspend_lock);
|
|
zfs_rlock_destroy(&zv->zv_range_lock);
|
|
|
|
zv->zv_disk->private_data = NULL;
|
|
|
|
del_gendisk(zv->zv_disk);
|
|
blk_cleanup_queue(zv->zv_queue);
|
|
put_disk(zv->zv_disk);
|
|
|
|
ida_simple_remove(&zvol_ida, MINOR(zv->zv_dev) >> ZVOL_MINOR_BITS);
|
|
kmem_free(zv, sizeof (zvol_state_t));
|
|
}
|
|
|
|
/*
|
|
* Cleanup then free a zvol_state_t which was created by zvol_alloc().
|
|
*/
|
|
static void
|
|
zvol_free(zvol_state_t *zv)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
zvol_free_impl(zv);
|
|
}
|
|
|
|
/*
|
|
* Create a block device minor node and setup the linkage between it
|
|
* and the specified volume. Once this function returns the block
|
|
* device is live and ready for use.
|
|
*/
|
|
static int
|
|
zvol_create_minor_impl(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
objset_t *os;
|
|
dmu_object_info_t *doi;
|
|
uint64_t volsize;
|
|
uint64_t len;
|
|
unsigned minor = 0;
|
|
int error = 0;
|
|
int idx;
|
|
uint64_t hash = zvol_name_hash(name);
|
|
|
|
idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
|
|
if (idx < 0)
|
|
return (SET_ERROR(-idx));
|
|
minor = idx << ZVOL_MINOR_BITS;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
|
|
zv = zvol_find_by_name_hash(name, hash);
|
|
if (zv) {
|
|
error = SET_ERROR(EEXIST);
|
|
goto out;
|
|
}
|
|
|
|
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
|
|
|
|
error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, FTAG, &os);
|
|
if (error)
|
|
goto out_doi;
|
|
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
|
if (error)
|
|
goto out_dmu_objset_disown;
|
|
|
|
zv = zvol_alloc(MKDEV(zvol_major, minor), name);
|
|
if (zv == NULL) {
|
|
error = SET_ERROR(EAGAIN);
|
|
goto out_dmu_objset_disown;
|
|
}
|
|
zv->zv_hash = hash;
|
|
|
|
if (dmu_objset_is_snapshot(os))
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
|
|
zv->zv_volblocksize = doi->doi_data_block_size;
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_objset = os;
|
|
|
|
set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
|
|
|
|
blk_queue_max_hw_sectors(zv->zv_queue, (DMU_MAX_ACCESS / 4) >> 9);
|
|
blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
|
|
blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
|
|
blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
|
|
blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
|
|
blk_queue_max_discard_sectors(zv->zv_queue,
|
|
(zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
|
|
blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
|
|
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zv->zv_queue);
|
|
#ifdef QUEUE_FLAG_NONROT
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zv->zv_queue);
|
|
#endif
|
|
#ifdef QUEUE_FLAG_ADD_RANDOM
|
|
queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zv->zv_queue);
|
|
#endif
|
|
|
|
if (spa_writeable(dmu_objset_spa(os))) {
|
|
if (zil_replay_disable)
|
|
zil_destroy(dmu_objset_zil(os), B_FALSE);
|
|
else
|
|
zil_replay(os, zv, zvol_replay_vector);
|
|
}
|
|
|
|
/*
|
|
* When udev detects the addition of the device it will immediately
|
|
* invoke blkid(8) to determine the type of content on the device.
|
|
* Prefetching the blocks commonly scanned by blkid(8) will speed
|
|
* up this process.
|
|
*/
|
|
len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
|
|
if (len > 0) {
|
|
dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
|
|
dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
|
|
ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
|
|
zv->zv_objset = NULL;
|
|
out_dmu_objset_disown:
|
|
dmu_objset_disown(os, FTAG);
|
|
out_doi:
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
out:
|
|
|
|
if (error == 0) {
|
|
zvol_insert(zv);
|
|
/*
|
|
* Drop the lock to prevent deadlock with sys_open() ->
|
|
* zvol_open(), which first takes bd_disk->bd_mutex and then
|
|
* takes zvol_state_lock, whereas this code path first takes
|
|
* zvol_state_lock, and then takes bd_disk->bd_mutex.
|
|
*/
|
|
mutex_exit(&zvol_state_lock);
|
|
add_disk(zv->zv_disk);
|
|
} else {
|
|
mutex_exit(&zvol_state_lock);
|
|
ida_simple_remove(&zvol_ida, idx);
|
|
}
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Rename a block device minor mode for the specified volume.
|
|
*/
|
|
static void
|
|
zvol_rename_minor(zvol_state_t *zv, const char *newname)
|
|
{
|
|
int readonly = get_disk_ro(zv->zv_disk);
|
|
|
|
ASSERT(MUTEX_HELD(&zvol_state_lock));
|
|
|
|
rw_enter(&zv->zv_suspend_lock, RW_READER);
|
|
strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
|
|
/* move to new hashtable entry */
|
|
zv->zv_hash = zvol_name_hash(zv->zv_name);
|
|
hlist_del(&zv->zv_hlink);
|
|
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
|
|
|
|
/*
|
|
* The block device's read-only state is briefly changed causing
|
|
* a KOBJ_CHANGE uevent to be issued. This ensures udev detects
|
|
* the name change and fixes the symlinks. This does not change
|
|
* ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
|
|
* changes. This would normally be done using kobject_uevent() but
|
|
* that is a GPL-only symbol which is why we need this workaround.
|
|
*/
|
|
set_disk_ro(zv->zv_disk, !readonly);
|
|
set_disk_ro(zv->zv_disk, readonly);
|
|
}
|
|
|
|
typedef struct minors_job {
|
|
list_t *list;
|
|
list_node_t link;
|
|
/* input */
|
|
char *name;
|
|
/* output */
|
|
int error;
|
|
} minors_job_t;
|
|
|
|
/*
|
|
* Prefetch zvol dnodes for the minors_job
|
|
*/
|
|
static void
|
|
zvol_prefetch_minors_impl(void *arg)
|
|
{
|
|
minors_job_t *job = arg;
|
|
char *dsname = job->name;
|
|
objset_t *os = NULL;
|
|
|
|
job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, FTAG,
|
|
&os);
|
|
if (job->error == 0) {
|
|
dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
|
|
dmu_objset_disown(os, FTAG);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mask errors to continue dmu_objset_find() traversal
|
|
*/
|
|
static int
|
|
zvol_create_snap_minor_cb(const char *dsname, void *arg)
|
|
{
|
|
minors_job_t *j = arg;
|
|
list_t *minors_list = j->list;
|
|
const char *name = j->name;
|
|
|
|
ASSERT0(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
/* skip the designated dataset */
|
|
if (name && strcmp(dsname, name) == 0)
|
|
return (0);
|
|
|
|
/* at this point, the dsname should name a snapshot */
|
|
if (strchr(dsname, '@') == 0) {
|
|
dprintf("zvol_create_snap_minor_cb(): "
|
|
"%s is not a shapshot name\n", dsname);
|
|
} else {
|
|
minors_job_t *job;
|
|
char *n = strdup(dsname);
|
|
if (n == NULL)
|
|
return (0);
|
|
|
|
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
|
|
job->name = n;
|
|
job->list = minors_list;
|
|
job->error = 0;
|
|
list_insert_tail(minors_list, job);
|
|
/* don't care if dispatch fails, because job->error is 0 */
|
|
taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
|
|
TQ_SLEEP);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Mask errors to continue dmu_objset_find() traversal
|
|
*/
|
|
static int
|
|
zvol_create_minors_cb(const char *dsname, void *arg)
|
|
{
|
|
uint64_t snapdev;
|
|
int error;
|
|
list_t *minors_list = arg;
|
|
|
|
ASSERT0(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
|
|
if (error)
|
|
return (0);
|
|
|
|
/*
|
|
* Given the name and the 'snapdev' property, create device minor nodes
|
|
* with the linkages to zvols/snapshots as needed.
|
|
* If the name represents a zvol, create a minor node for the zvol, then
|
|
* check if its snapshots are 'visible', and if so, iterate over the
|
|
* snapshots and create device minor nodes for those.
|
|
*/
|
|
if (strchr(dsname, '@') == 0) {
|
|
minors_job_t *job;
|
|
char *n = strdup(dsname);
|
|
if (n == NULL)
|
|
return (0);
|
|
|
|
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
|
|
job->name = n;
|
|
job->list = minors_list;
|
|
job->error = 0;
|
|
list_insert_tail(minors_list, job);
|
|
/* don't care if dispatch fails, because job->error is 0 */
|
|
taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
|
|
TQ_SLEEP);
|
|
|
|
if (snapdev == ZFS_SNAPDEV_VISIBLE) {
|
|
/*
|
|
* traverse snapshots only, do not traverse children,
|
|
* and skip the 'dsname'
|
|
*/
|
|
error = dmu_objset_find((char *)dsname,
|
|
zvol_create_snap_minor_cb, (void *)job,
|
|
DS_FIND_SNAPSHOTS);
|
|
}
|
|
} else {
|
|
dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
|
|
dsname);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create minors for the specified dataset, including children and snapshots.
|
|
* Pay attention to the 'snapdev' property and iterate over the snapshots
|
|
* only if they are 'visible'. This approach allows one to assure that the
|
|
* snapshot metadata is read from disk only if it is needed.
|
|
*
|
|
* The name can represent a dataset to be recursively scanned for zvols and
|
|
* their snapshots, or a single zvol snapshot. If the name represents a
|
|
* dataset, the scan is performed in two nested stages:
|
|
* - scan the dataset for zvols, and
|
|
* - for each zvol, create a minor node, then check if the zvol's snapshots
|
|
* are 'visible', and only then iterate over the snapshots if needed
|
|
*
|
|
* If the name represents a snapshot, a check is performed if the snapshot is
|
|
* 'visible' (which also verifies that the parent is a zvol), and if so,
|
|
* a minor node for that snapshot is created.
|
|
*/
|
|
static int
|
|
zvol_create_minors_impl(const char *name)
|
|
{
|
|
int error = 0;
|
|
fstrans_cookie_t cookie;
|
|
char *atp, *parent;
|
|
list_t minors_list;
|
|
minors_job_t *job;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return (0);
|
|
|
|
/*
|
|
* This is the list for prefetch jobs. Whenever we found a match
|
|
* during dmu_objset_find, we insert a minors_job to the list and do
|
|
* taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
|
|
* any lock because all list operation is done on the current thread.
|
|
*
|
|
* We will use this list to do zvol_create_minor_impl after prefetch
|
|
* so we don't have to traverse using dmu_objset_find again.
|
|
*/
|
|
list_create(&minors_list, sizeof (minors_job_t),
|
|
offsetof(minors_job_t, link));
|
|
|
|
parent = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
(void) strlcpy(parent, name, MAXPATHLEN);
|
|
|
|
if ((atp = strrchr(parent, '@')) != NULL) {
|
|
uint64_t snapdev;
|
|
|
|
*atp = '\0';
|
|
error = dsl_prop_get_integer(parent, "snapdev",
|
|
&snapdev, NULL);
|
|
|
|
if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
|
|
error = zvol_create_minor_impl(name);
|
|
} else {
|
|
cookie = spl_fstrans_mark();
|
|
error = dmu_objset_find(parent, zvol_create_minors_cb,
|
|
&minors_list, DS_FIND_CHILDREN);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
kmem_free(parent, MAXPATHLEN);
|
|
taskq_wait_outstanding(system_taskq, 0);
|
|
|
|
/*
|
|
* Prefetch is completed, we can do zvol_create_minor_impl
|
|
* sequentially.
|
|
*/
|
|
while ((job = list_head(&minors_list)) != NULL) {
|
|
list_remove(&minors_list, job);
|
|
if (!job->error)
|
|
zvol_create_minor_impl(job->name);
|
|
strfree(job->name);
|
|
kmem_free(job, sizeof (minors_job_t));
|
|
}
|
|
|
|
list_destroy(&minors_list);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Remove minors for specified dataset including children and snapshots.
|
|
*/
|
|
static void
|
|
zvol_remove_minors_impl(const char *name)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
int namelen = ((name) ? strlen(name) : 0);
|
|
taskqid_t t, tid = TASKQID_INVALID;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
|
|
(strncmp(zv->zv_name, name, namelen) == 0 &&
|
|
(zv->zv_name[namelen] == '/' ||
|
|
zv->zv_name[namelen] == '@'))) {
|
|
|
|
/* If in use, leave alone */
|
|
if (zv->zv_open_count > 0 ||
|
|
atomic_read(&zv->zv_suspend_ref))
|
|
continue;
|
|
|
|
zvol_remove(zv);
|
|
|
|
/* clear this so zvol_open won't open it */
|
|
zv->zv_disk->private_data = NULL;
|
|
|
|
/* try parallel zv_free, if failed do it in place */
|
|
t = taskq_dispatch(system_taskq, zvol_free_impl, zv,
|
|
TQ_SLEEP);
|
|
if (t == TASKQID_INVALID)
|
|
zvol_free(zv);
|
|
else
|
|
tid = t;
|
|
}
|
|
}
|
|
mutex_exit(&zvol_state_lock);
|
|
if (tid != TASKQID_INVALID)
|
|
taskq_wait_outstanding(system_taskq, tid);
|
|
}
|
|
|
|
/* Remove minor for this specific snapshot only */
|
|
static void
|
|
zvol_remove_minor_impl(const char *name)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
if (strchr(name, '@') == NULL)
|
|
return;
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
if (strcmp(zv->zv_name, name) == 0) {
|
|
/* If in use, leave alone */
|
|
if (zv->zv_open_count > 0 ||
|
|
atomic_read(&zv->zv_suspend_ref))
|
|
continue;
|
|
zvol_remove(zv);
|
|
zvol_free(zv);
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&zvol_state_lock);
|
|
}
|
|
|
|
/*
|
|
* Rename minors for specified dataset including children and snapshots.
|
|
*/
|
|
static void
|
|
zvol_rename_minors_impl(const char *oldname, const char *newname)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
int oldnamelen, newnamelen;
|
|
char *name;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
oldnamelen = strlen(oldname);
|
|
newnamelen = strlen(newname);
|
|
name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
|
|
|
|
mutex_enter(&zvol_state_lock);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
/* If in use, leave alone */
|
|
if (zv->zv_open_count > 0)
|
|
continue;
|
|
|
|
if (strcmp(zv->zv_name, oldname) == 0) {
|
|
zvol_rename_minor(zv, newname);
|
|
} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
|
|
(zv->zv_name[oldnamelen] == '/' ||
|
|
zv->zv_name[oldnamelen] == '@')) {
|
|
snprintf(name, MAXNAMELEN, "%s%c%s", newname,
|
|
zv->zv_name[oldnamelen],
|
|
zv->zv_name + oldnamelen + 1);
|
|
zvol_rename_minor(zv, name);
|
|
}
|
|
}
|
|
|
|
mutex_exit(&zvol_state_lock);
|
|
|
|
kmem_free(name, MAXNAMELEN);
|
|
}
|
|
|
|
typedef struct zvol_snapdev_cb_arg {
|
|
uint64_t snapdev;
|
|
} zvol_snapdev_cb_arg_t;
|
|
|
|
static int
|
|
zvol_set_snapdev_cb(const char *dsname, void *param)
|
|
{
|
|
zvol_snapdev_cb_arg_t *arg = param;
|
|
|
|
if (strchr(dsname, '@') == NULL)
|
|
return (0);
|
|
|
|
switch (arg->snapdev) {
|
|
case ZFS_SNAPDEV_VISIBLE:
|
|
(void) zvol_create_minor_impl(dsname);
|
|
break;
|
|
case ZFS_SNAPDEV_HIDDEN:
|
|
(void) zvol_remove_minor_impl(dsname);
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zvol_set_snapdev_impl(char *name, uint64_t snapdev)
|
|
{
|
|
zvol_snapdev_cb_arg_t arg = {snapdev};
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
/*
|
|
* The zvol_set_snapdev_sync() sets snapdev appropriately
|
|
* in the dataset hierarchy. Here, we only scan snapshots.
|
|
*/
|
|
dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
static zvol_task_t *
|
|
zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
|
|
uint64_t snapdev)
|
|
{
|
|
zvol_task_t *task;
|
|
char *delim;
|
|
|
|
/* Never allow tasks on hidden names. */
|
|
if (name1[0] == '$')
|
|
return (NULL);
|
|
|
|
task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
|
|
task->op = op;
|
|
task->snapdev = snapdev;
|
|
delim = strchr(name1, '/');
|
|
strlcpy(task->pool, name1, delim ? (delim - name1 + 1) : MAXNAMELEN);
|
|
|
|
strlcpy(task->name1, name1, MAXNAMELEN);
|
|
if (name2 != NULL)
|
|
strlcpy(task->name2, name2, MAXNAMELEN);
|
|
|
|
return (task);
|
|
}
|
|
|
|
static void
|
|
zvol_task_free(zvol_task_t *task)
|
|
{
|
|
kmem_free(task, sizeof (zvol_task_t));
|
|
}
|
|
|
|
/*
|
|
* The worker thread function performed asynchronously.
|
|
*/
|
|
static void
|
|
zvol_task_cb(void *param)
|
|
{
|
|
zvol_task_t *task = (zvol_task_t *)param;
|
|
|
|
switch (task->op) {
|
|
case ZVOL_ASYNC_CREATE_MINORS:
|
|
(void) zvol_create_minors_impl(task->name1);
|
|
break;
|
|
case ZVOL_ASYNC_REMOVE_MINORS:
|
|
zvol_remove_minors_impl(task->name1);
|
|
break;
|
|
case ZVOL_ASYNC_RENAME_MINORS:
|
|
zvol_rename_minors_impl(task->name1, task->name2);
|
|
break;
|
|
case ZVOL_ASYNC_SET_SNAPDEV:
|
|
zvol_set_snapdev_impl(task->name1, task->snapdev);
|
|
break;
|
|
default:
|
|
VERIFY(0);
|
|
break;
|
|
}
|
|
|
|
zvol_task_free(task);
|
|
}
|
|
|
|
typedef struct zvol_set_snapdev_arg {
|
|
const char *zsda_name;
|
|
uint64_t zsda_value;
|
|
zprop_source_t zsda_source;
|
|
dmu_tx_t *zsda_tx;
|
|
} zvol_set_snapdev_arg_t;
|
|
|
|
/*
|
|
* Sanity check the dataset for safe use by the sync task. No additional
|
|
* conditions are imposed.
|
|
*/
|
|
static int
|
|
zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_snapdev_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
int error;
|
|
|
|
error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
|
{
|
|
zvol_set_snapdev_arg_t *zsda = arg;
|
|
char dsname[MAXNAMELEN];
|
|
zvol_task_t *task;
|
|
|
|
dsl_dataset_name(ds, dsname);
|
|
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
|
|
zsda->zsda_source, sizeof (zsda->zsda_value), 1,
|
|
&zsda->zsda_value, zsda->zsda_tx);
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname,
|
|
NULL, zsda->zsda_value);
|
|
if (task == NULL)
|
|
return (0);
|
|
|
|
(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
|
|
task, TQ_SLEEP);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Traverse all child snapshot datasets and apply snapdev appropriately.
|
|
*/
|
|
static void
|
|
zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_snapdev_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
|
|
VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
|
|
zsda->zsda_tx = tx;
|
|
|
|
dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
|
|
zsda, DS_FIND_CHILDREN);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
}
|
|
|
|
int
|
|
zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
|
|
{
|
|
zvol_set_snapdev_arg_t zsda;
|
|
|
|
zsda.zsda_name = ddname;
|
|
zsda.zsda_source = source;
|
|
zsda.zsda_value = snapdev;
|
|
|
|
return (dsl_sync_task(ddname, zvol_set_snapdev_check,
|
|
zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
|
|
}
|
|
|
|
void
|
|
zvol_create_minors(spa_t *spa, const char *name, boolean_t async)
|
|
{
|
|
zvol_task_t *task;
|
|
taskqid_t id;
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_CREATE_MINORS, name, NULL, ~0ULL);
|
|
if (task == NULL)
|
|
return;
|
|
|
|
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
|
|
if ((async == B_FALSE) && (id != TASKQID_INVALID))
|
|
taskq_wait_id(spa->spa_zvol_taskq, id);
|
|
}
|
|
|
|
void
|
|
zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
|
|
{
|
|
zvol_task_t *task;
|
|
taskqid_t id;
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
|
|
if (task == NULL)
|
|
return;
|
|
|
|
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
|
|
if ((async == B_FALSE) && (id != TASKQID_INVALID))
|
|
taskq_wait_id(spa->spa_zvol_taskq, id);
|
|
}
|
|
|
|
void
|
|
zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
|
|
boolean_t async)
|
|
{
|
|
zvol_task_t *task;
|
|
taskqid_t id;
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
|
|
if (task == NULL)
|
|
return;
|
|
|
|
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
|
|
if ((async == B_FALSE) && (id != TASKQID_INVALID))
|
|
taskq_wait_id(spa->spa_zvol_taskq, id);
|
|
}
|
|
|
|
int
|
|
zvol_init(void)
|
|
{
|
|
int threads = MIN(MAX(zvol_threads, 1), 1024);
|
|
int i, error;
|
|
|
|
list_create(&zvol_state_list, sizeof (zvol_state_t),
|
|
offsetof(zvol_state_t, zv_next));
|
|
mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
ida_init(&zvol_ida);
|
|
|
|
zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
|
|
threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
|
|
if (zvol_taskq == NULL) {
|
|
printk(KERN_INFO "ZFS: taskq_create() failed\n");
|
|
error = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
|
|
KM_SLEEP);
|
|
if (!zvol_htable) {
|
|
error = -ENOMEM;
|
|
goto out_taskq;
|
|
}
|
|
for (i = 0; i < ZVOL_HT_SIZE; i++)
|
|
INIT_HLIST_HEAD(&zvol_htable[i]);
|
|
|
|
error = register_blkdev(zvol_major, ZVOL_DRIVER);
|
|
if (error) {
|
|
printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
|
|
goto out_free;
|
|
}
|
|
|
|
blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
|
|
THIS_MODULE, zvol_probe, NULL, NULL);
|
|
|
|
return (0);
|
|
|
|
out_free:
|
|
kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
|
|
out_taskq:
|
|
taskq_destroy(zvol_taskq);
|
|
out:
|
|
mutex_destroy(&zvol_state_lock);
|
|
list_destroy(&zvol_state_list);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
void
|
|
zvol_fini(void)
|
|
{
|
|
zvol_remove_minors_impl(NULL);
|
|
|
|
blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
|
|
unregister_blkdev(zvol_major, ZVOL_DRIVER);
|
|
kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
|
|
|
|
taskq_destroy(zvol_taskq);
|
|
list_destroy(&zvol_state_list);
|
|
mutex_destroy(&zvol_state_lock);
|
|
|
|
ida_destroy(&zvol_ida);
|
|
}
|
|
|
|
/* BEGIN CSTYLED */
|
|
module_param(zvol_inhibit_dev, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
|
|
|
|
module_param(zvol_major, uint, 0444);
|
|
MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
|
|
|
|
module_param(zvol_threads, uint, 0444);
|
|
MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
|
|
|
|
module_param(zvol_request_sync, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
|
|
|
|
module_param(zvol_max_discard_blocks, ulong, 0444);
|
|
MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
|
|
|
|
module_param(zvol_prefetch_bytes, uint, 0644);
|
|
MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
|
|
/* END CSTYLED */
|