mirror_zfs/module/zfs/zfs_ioctl.c
Ryan Moeller 818bc70c32 Wrap bare EINVAL returns with SET_ERROR
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes #11636
2021-06-23 13:22:14 -07:00

7684 lines
196 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Portions Copyright 2011 Martin Matuska
* Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
* Portions Copyright 2012 Pawel Jakub Dawidek <pawel@dawidek.net>
* Copyright (c) 2014, 2016 Joyent, Inc. All rights reserved.
* Copyright 2016 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
* Copyright (c) 2013 Steven Hartland. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2016 Toomas Soome <tsoome@me.com>
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
* Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
* Copyright 2017 RackTop Systems.
* Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
* Copyright (c) 2019 Datto Inc.
* Copyright (c) 2019, 2020 by Christian Schwarz. All rights reserved.
* Copyright (c) 2019, Klara Inc.
* Copyright (c) 2019, Allan Jude
*/
/*
* ZFS ioctls.
*
* This file handles the ioctls to /dev/zfs, used for configuring ZFS storage
* pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool.
*
* There are two ways that we handle ioctls: the legacy way where almost
* all of the logic is in the ioctl callback, and the new way where most
* of the marshalling is handled in the common entry point, zfsdev_ioctl().
*
* Non-legacy ioctls should be registered by calling
* zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked
* from userland by lzc_ioctl().
*
* The registration arguments are as follows:
*
* const char *name
* The name of the ioctl. This is used for history logging. If the
* ioctl returns successfully (the callback returns 0), and allow_log
* is true, then a history log entry will be recorded with the input &
* output nvlists. The log entry can be printed with "zpool history -i".
*
* zfs_ioc_t ioc
* The ioctl request number, which userland will pass to ioctl(2).
* We want newer versions of libzfs and libzfs_core to run against
* existing zfs kernel modules (i.e. a deferred reboot after an update).
* Therefore the ioctl numbers cannot change from release to release.
*
* zfs_secpolicy_func_t *secpolicy
* This function will be called before the zfs_ioc_func_t, to
* determine if this operation is permitted. It should return EPERM
* on failure, and 0 on success. Checks include determining if the
* dataset is visible in this zone, and if the user has either all
* zfs privileges in the zone (SYS_MOUNT), or has been granted permission
* to do this operation on this dataset with "zfs allow".
*
* zfs_ioc_namecheck_t namecheck
* This specifies what to expect in the zfs_cmd_t:zc_name -- a pool
* name, a dataset name, or nothing. If the name is not well-formed,
* the ioctl will fail and the callback will not be called.
* Therefore, the callback can assume that the name is well-formed
* (e.g. is null-terminated, doesn't have more than one '@' character,
* doesn't have invalid characters).
*
* zfs_ioc_poolcheck_t pool_check
* This specifies requirements on the pool state. If the pool does
* not meet them (is suspended or is readonly), the ioctl will fail
* and the callback will not be called. If any checks are specified
* (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME.
* Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED |
* POOL_CHECK_READONLY).
*
* zfs_ioc_key_t *nvl_keys
* The list of expected/allowable innvl input keys. This list is used
* to validate the nvlist input to the ioctl.
*
* boolean_t smush_outnvlist
* If smush_outnvlist is true, then the output is presumed to be a
* list of errors, and it will be "smushed" down to fit into the
* caller's buffer, by removing some entries and replacing them with a
* single "N_MORE_ERRORS" entry indicating how many were removed. See
* nvlist_smush() for details. If smush_outnvlist is false, and the
* outnvlist does not fit into the userland-provided buffer, then the
* ioctl will fail with ENOMEM.
*
* zfs_ioc_func_t *func
* The callback function that will perform the operation.
*
* The callback should return 0 on success, or an error number on
* failure. If the function fails, the userland ioctl will return -1,
* and errno will be set to the callback's return value. The callback
* will be called with the following arguments:
*
* const char *name
* The name of the pool or dataset to operate on, from
* zfs_cmd_t:zc_name. The 'namecheck' argument specifies the
* expected type (pool, dataset, or none).
*
* nvlist_t *innvl
* The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or
* NULL if no input nvlist was provided. Changes to this nvlist are
* ignored. If the input nvlist could not be deserialized, the
* ioctl will fail and the callback will not be called.
*
* nvlist_t *outnvl
* The output nvlist, initially empty. The callback can fill it in,
* and it will be returned to userland by serializing it into
* zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization
* fails (e.g. because the caller didn't supply a large enough
* buffer), then the overall ioctl will fail. See the
* 'smush_nvlist' argument above for additional behaviors.
*
* There are two typical uses of the output nvlist:
* - To return state, e.g. property values. In this case,
* smush_outnvlist should be false. If the buffer was not large
* enough, the caller will reallocate a larger buffer and try
* the ioctl again.
*
* - To return multiple errors from an ioctl which makes on-disk
* changes. In this case, smush_outnvlist should be true.
* Ioctls which make on-disk modifications should generally not
* use the outnvl if they succeed, because the caller can not
* distinguish between the operation failing, and
* deserialization failing.
*
* IOCTL Interface Errors
*
* The following ioctl input errors can be returned:
* ZFS_ERR_IOC_CMD_UNAVAIL the ioctl number is not supported by kernel
* ZFS_ERR_IOC_ARG_UNAVAIL an input argument is not supported by kernel
* ZFS_ERR_IOC_ARG_REQUIRED a required input argument is missing
* ZFS_ERR_IOC_ARG_BADTYPE an input argument has an invalid type
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/file.h>
#include <sys/kmem.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/zfs_ioctl.h>
#include <sys/zfs_quota.h>
#include <sys/zfs_vfsops.h>
#include <sys/zfs_znode.h>
#include <sys/zap.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/dmu.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_deleg.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_redact.h>
#include <sys/dmu_tx.h>
#include <sys/sunddi.h>
#include <sys/policy.h>
#include <sys/zone.h>
#include <sys/nvpair.h>
#include <sys/pathname.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_ctldir.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_onexit.h>
#include <sys/zvol.h>
#include <sys/dsl_scan.h>
#include <sys/fm/util.h>
#include <sys/dsl_crypt.h>
#include <sys/rrwlock.h>
#include <sys/zfs_file.h>
#include <sys/dmu_recv.h>
#include <sys/dmu_send.h>
#include <sys/dmu_recv.h>
#include <sys/dsl_destroy.h>
#include <sys/dsl_bookmark.h>
#include <sys/dsl_userhold.h>
#include <sys/zfeature.h>
#include <sys/zcp.h>
#include <sys/zio_checksum.h>
#include <sys/vdev_removal.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_initialize.h>
#include <sys/vdev_trim.h>
#include "zfs_namecheck.h"
#include "zfs_prop.h"
#include "zfs_deleg.h"
#include "zfs_comutil.h"
#include <sys/lua/lua.h>
#include <sys/lua/lauxlib.h>
#include <sys/zfs_ioctl_impl.h>
kmutex_t zfsdev_state_lock;
zfsdev_state_t *zfsdev_state_list;
/*
* Limit maximum nvlist size. We don't want users passing in insane values
* for zc->zc_nvlist_src_size, since we will need to allocate that much memory.
* Defaults to 0=auto which is handled by platform code.
*/
unsigned long zfs_max_nvlist_src_size = 0;
/*
* When logging the output nvlist of an ioctl in the on-disk history, limit
* the logged size to this many bytes. This must be less then DMU_MAX_ACCESS.
* This applies primarily to zfs_ioc_channel_program().
*/
unsigned long zfs_history_output_max = 1024 * 1024;
uint_t zfs_fsyncer_key;
uint_t zfs_allow_log_key;
/* DATA_TYPE_ANY is used when zkey_type can vary. */
#define DATA_TYPE_ANY DATA_TYPE_UNKNOWN
typedef struct zfs_ioc_vec {
zfs_ioc_legacy_func_t *zvec_legacy_func;
zfs_ioc_func_t *zvec_func;
zfs_secpolicy_func_t *zvec_secpolicy;
zfs_ioc_namecheck_t zvec_namecheck;
boolean_t zvec_allow_log;
zfs_ioc_poolcheck_t zvec_pool_check;
boolean_t zvec_smush_outnvlist;
const char *zvec_name;
const zfs_ioc_key_t *zvec_nvl_keys;
size_t zvec_nvl_key_count;
} zfs_ioc_vec_t;
/* This array is indexed by zfs_userquota_prop_t */
static const char *userquota_perms[] = {
ZFS_DELEG_PERM_USERUSED,
ZFS_DELEG_PERM_USERQUOTA,
ZFS_DELEG_PERM_GROUPUSED,
ZFS_DELEG_PERM_GROUPQUOTA,
ZFS_DELEG_PERM_USEROBJUSED,
ZFS_DELEG_PERM_USEROBJQUOTA,
ZFS_DELEG_PERM_GROUPOBJUSED,
ZFS_DELEG_PERM_GROUPOBJQUOTA,
ZFS_DELEG_PERM_PROJECTUSED,
ZFS_DELEG_PERM_PROJECTQUOTA,
ZFS_DELEG_PERM_PROJECTOBJUSED,
ZFS_DELEG_PERM_PROJECTOBJQUOTA,
};
static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc);
static int zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc);
static int zfs_check_settable(const char *name, nvpair_t *property,
cred_t *cr);
static int zfs_check_clearable(const char *dataset, nvlist_t *props,
nvlist_t **errors);
static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *,
boolean_t *);
int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *);
static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp);
static void
history_str_free(char *buf)
{
kmem_free(buf, HIS_MAX_RECORD_LEN);
}
static char *
history_str_get(zfs_cmd_t *zc)
{
char *buf;
if (zc->zc_history == 0)
return (NULL);
buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP);
if (copyinstr((void *)(uintptr_t)zc->zc_history,
buf, HIS_MAX_RECORD_LEN, NULL) != 0) {
history_str_free(buf);
return (NULL);
}
buf[HIS_MAX_RECORD_LEN -1] = '\0';
return (buf);
}
/*
* Return non-zero if the spa version is less than requested version.
*/
static int
zfs_earlier_version(const char *name, int version)
{
spa_t *spa;
if (spa_open(name, &spa, FTAG) == 0) {
if (spa_version(spa) < version) {
spa_close(spa, FTAG);
return (1);
}
spa_close(spa, FTAG);
}
return (0);
}
/*
* Return TRUE if the ZPL version is less than requested version.
*/
static boolean_t
zpl_earlier_version(const char *name, int version)
{
objset_t *os;
boolean_t rc = B_TRUE;
if (dmu_objset_hold(name, FTAG, &os) == 0) {
uint64_t zplversion;
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dmu_objset_rele(os, FTAG);
return (B_TRUE);
}
/* XXX reading from non-owned objset */
if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0)
rc = zplversion < version;
dmu_objset_rele(os, FTAG);
}
return (rc);
}
static void
zfs_log_history(zfs_cmd_t *zc)
{
spa_t *spa;
char *buf;
if ((buf = history_str_get(zc)) == NULL)
return;
if (spa_open(zc->zc_name, &spa, FTAG) == 0) {
if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY)
(void) spa_history_log(spa, buf);
spa_close(spa, FTAG);
}
history_str_free(buf);
}
/*
* Policy for top-level read operations (list pools). Requires no privileges,
* and can be used in the local zone, as there is no associated dataset.
*/
/* ARGSUSED */
static int
zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (0);
}
/*
* Policy for dataset read operations (list children, get statistics). Requires
* no privileges, but must be visible in the local zone.
*/
/* ARGSUSED */
static int
zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
if (INGLOBALZONE(curproc) ||
zone_dataset_visible(zc->zc_name, NULL))
return (0);
return (SET_ERROR(ENOENT));
}
static int
zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr)
{
int writable = 1;
/*
* The dataset must be visible by this zone -- check this first
* so they don't see EPERM on something they shouldn't know about.
*/
if (!INGLOBALZONE(curproc) &&
!zone_dataset_visible(dataset, &writable))
return (SET_ERROR(ENOENT));
if (INGLOBALZONE(curproc)) {
/*
* If the fs is zoned, only root can access it from the
* global zone.
*/
if (secpolicy_zfs(cr) && zoned)
return (SET_ERROR(EPERM));
} else {
/*
* If we are in a local zone, the 'zoned' property must be set.
*/
if (!zoned)
return (SET_ERROR(EPERM));
/* must be writable by this zone */
if (!writable)
return (SET_ERROR(EPERM));
}
return (0);
}
static int
zfs_dozonecheck(const char *dataset, cred_t *cr)
{
uint64_t zoned;
if (dsl_prop_get_integer(dataset, zfs_prop_to_name(ZFS_PROP_ZONED),
&zoned, NULL))
return (SET_ERROR(ENOENT));
return (zfs_dozonecheck_impl(dataset, zoned, cr));
}
static int
zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr)
{
uint64_t zoned;
if (dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned))
return (SET_ERROR(ENOENT));
return (zfs_dozonecheck_impl(dataset, zoned, cr));
}
static int
zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds,
const char *perm, cred_t *cr)
{
int error;
error = zfs_dozonecheck_ds(name, ds, cr);
if (error == 0) {
error = secpolicy_zfs(cr);
if (error != 0)
error = dsl_deleg_access_impl(ds, perm, cr);
}
return (error);
}
static int
zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr)
{
int error;
dsl_dataset_t *ds;
dsl_pool_t *dp;
/*
* First do a quick check for root in the global zone, which
* is allowed to do all write_perms. This ensures that zfs_ioc_*
* will get to handle nonexistent datasets.
*/
if (INGLOBALZONE(curproc) && secpolicy_zfs(cr) == 0)
return (0);
error = dsl_pool_hold(name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, name, FTAG, &ds);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
error = zfs_secpolicy_write_perms_ds(name, ds, perm, cr);
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
/*
* Policy for setting the security label property.
*
* Returns 0 for success, non-zero for access and other errors.
*/
static int
zfs_set_slabel_policy(const char *name, const char *strval, cred_t *cr)
{
#ifdef HAVE_MLSLABEL
char ds_hexsl[MAXNAMELEN];
bslabel_t ds_sl, new_sl;
boolean_t new_default = FALSE;
uint64_t zoned;
int needed_priv = -1;
int error;
/* First get the existing dataset label. */
error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1, sizeof (ds_hexsl), &ds_hexsl, NULL);
if (error != 0)
return (SET_ERROR(EPERM));
if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0)
new_default = TRUE;
/* The label must be translatable */
if (!new_default && (hexstr_to_label(strval, &new_sl) != 0))
return (SET_ERROR(EINVAL));
/*
* In a non-global zone, disallow attempts to set a label that
* doesn't match that of the zone; otherwise no other checks
* are needed.
*/
if (!INGLOBALZONE(curproc)) {
if (new_default || !blequal(&new_sl, CR_SL(CRED())))
return (SET_ERROR(EPERM));
return (0);
}
/*
* For global-zone datasets (i.e., those whose zoned property is
* "off", verify that the specified new label is valid for the
* global zone.
*/
if (dsl_prop_get_integer(name,
zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
return (SET_ERROR(EPERM));
if (!zoned) {
if (zfs_check_global_label(name, strval) != 0)
return (SET_ERROR(EPERM));
}
/*
* If the existing dataset label is nondefault, check if the
* dataset is mounted (label cannot be changed while mounted).
* Get the zfsvfs_t; if there isn't one, then the dataset isn't
* mounted (or isn't a dataset, doesn't exist, ...).
*/
if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) {
objset_t *os;
static const char *setsl_tag = "setsl_tag";
/*
* Try to own the dataset; abort if there is any error,
* (e.g., already mounted, in use, or other error).
*/
error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, B_TRUE,
setsl_tag, &os);
if (error != 0)
return (SET_ERROR(EPERM));
dmu_objset_disown(os, B_TRUE, setsl_tag);
if (new_default) {
needed_priv = PRIV_FILE_DOWNGRADE_SL;
goto out_check;
}
if (hexstr_to_label(strval, &new_sl) != 0)
return (SET_ERROR(EPERM));
if (blstrictdom(&ds_sl, &new_sl))
needed_priv = PRIV_FILE_DOWNGRADE_SL;
else if (blstrictdom(&new_sl, &ds_sl))
needed_priv = PRIV_FILE_UPGRADE_SL;
} else {
/* dataset currently has a default label */
if (!new_default)
needed_priv = PRIV_FILE_UPGRADE_SL;
}
out_check:
if (needed_priv != -1)
return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL));
return (0);
#else
return (SET_ERROR(ENOTSUP));
#endif /* HAVE_MLSLABEL */
}
static int
zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval,
cred_t *cr)
{
char *strval;
/*
* Check permissions for special properties.
*/
switch (prop) {
default:
break;
case ZFS_PROP_ZONED:
/*
* Disallow setting of 'zoned' from within a local zone.
*/
if (!INGLOBALZONE(curproc))
return (SET_ERROR(EPERM));
break;
case ZFS_PROP_QUOTA:
case ZFS_PROP_FILESYSTEM_LIMIT:
case ZFS_PROP_SNAPSHOT_LIMIT:
if (!INGLOBALZONE(curproc)) {
uint64_t zoned;
char setpoint[ZFS_MAX_DATASET_NAME_LEN];
/*
* Unprivileged users are allowed to modify the
* limit on things *under* (ie. contained by)
* the thing they own.
*/
if (dsl_prop_get_integer(dsname,
zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, setpoint))
return (SET_ERROR(EPERM));
if (!zoned || strlen(dsname) <= strlen(setpoint))
return (SET_ERROR(EPERM));
}
break;
case ZFS_PROP_MLSLABEL:
if (!is_system_labeled())
return (SET_ERROR(EPERM));
if (nvpair_value_string(propval, &strval) == 0) {
int err;
err = zfs_set_slabel_policy(dsname, strval, CRED());
if (err != 0)
return (err);
}
break;
}
return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int error;
error = zfs_dozonecheck(zc->zc_name, cr);
if (error != 0)
return (error);
/*
* permission to set permissions will be evaluated later in
* dsl_deleg_can_allow()
*/
return (0);
}
/* ARGSUSED */
static int
zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_ROLLBACK, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
dsl_pool_t *dp;
dsl_dataset_t *ds;
const char *cp;
int error;
/*
* Generate the current snapshot name from the given objsetid, then
* use that name for the secpolicy/zone checks.
*/
cp = strchr(zc->zc_name, '@');
if (cp == NULL)
return (SET_ERROR(EINVAL));
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
dsl_dataset_name(ds, zc->zc_name);
error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds,
ZFS_DELEG_PERM_SEND, cr);
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_SEND, cr));
}
static int
zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (SET_ERROR(ENOTSUP));
}
static int
zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (SET_ERROR(ENOTSUP));
}
static int
zfs_get_parent(const char *datasetname, char *parent, int parentsize)
{
char *cp;
/*
* Remove the @bla or /bla from the end of the name to get the parent.
*/
(void) strncpy(parent, datasetname, parentsize);
cp = strrchr(parent, '@');
if (cp != NULL) {
cp[0] = '\0';
} else {
cp = strrchr(parent, '/');
if (cp == NULL)
return (SET_ERROR(ENOENT));
cp[0] = '\0';
}
return (0);
}
int
zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
{
int error;
if ((error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_destroy_perms(zc->zc_name, cr));
}
/*
* Destroying snapshots with delegated permissions requires
* descendant mount and destroy permissions.
*/
/* ARGSUSED */
static int
zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvlist_t *snaps;
nvpair_t *pair, *nextpair;
int error = 0;
snaps = fnvlist_lookup_nvlist(innvl, "snaps");
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
pair = nextpair) {
nextpair = nvlist_next_nvpair(snaps, pair);
error = zfs_secpolicy_destroy_perms(nvpair_name(pair), cr);
if (error == ENOENT) {
/*
* Ignore any snapshots that don't exist (we consider
* them "already destroyed"). Remove the name from the
* nvl here in case the snapshot is created between
* now and when we try to destroy it (in which case
* we don't want to destroy it since we haven't
* checked for permission).
*/
fnvlist_remove_nvpair(snaps, pair);
error = 0;
}
if (error != 0)
break;
}
return (error);
}
int
zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
{
char parentname[ZFS_MAX_DATASET_NAME_LEN];
int error;
if ((error = zfs_secpolicy_write_perms(from,
ZFS_DELEG_PERM_RENAME, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(from,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
if ((error = zfs_get_parent(to, parentname,
sizeof (parentname))) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_CREATE, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
dsl_pool_t *dp;
dsl_dataset_t *clone;
int error;
error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_PROMOTE, cr);
if (error != 0)
return (error);
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &clone);
if (error == 0) {
char parentname[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_t *origin = NULL;
dsl_dir_t *dd;
dd = clone->ds_dir;
error = dsl_dataset_hold_obj(dd->dd_pool,
dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin);
if (error != 0) {
dsl_dataset_rele(clone, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
error = zfs_secpolicy_write_perms_ds(zc->zc_name, clone,
ZFS_DELEG_PERM_MOUNT, cr);
dsl_dataset_name(origin, parentname);
if (error == 0) {
error = zfs_secpolicy_write_perms_ds(parentname, origin,
ZFS_DELEG_PERM_PROMOTE, cr);
}
dsl_dataset_rele(clone, FTAG);
dsl_dataset_rele(origin, FTAG);
}
dsl_pool_rele(dp, FTAG);
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int error;
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_RECEIVE, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_MOUNT, cr)) != 0)
return (error);
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_CREATE, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_recv_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_recv(zc, innvl, cr));
}
int
zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
{
return (zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_SNAPSHOT, cr));
}
/*
* Check for permission to create each snapshot in the nvlist.
*/
/* ARGSUSED */
static int
zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvlist_t *snaps;
int error = 0;
nvpair_t *pair;
snaps = fnvlist_lookup_nvlist(innvl, "snaps");
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
pair = nvlist_next_nvpair(snaps, pair)) {
char *name = nvpair_name(pair);
char *atp = strchr(name, '@');
if (atp == NULL) {
error = SET_ERROR(EINVAL);
break;
}
*atp = '\0';
error = zfs_secpolicy_snapshot_perms(name, cr);
*atp = '@';
if (error != 0)
break;
}
return (error);
}
/*
* Check for permission to create each bookmark in the nvlist.
*/
/* ARGSUSED */
static int
zfs_secpolicy_bookmark(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int error = 0;
for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL);
pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) {
char *name = nvpair_name(pair);
char *hashp = strchr(name, '#');
if (hashp == NULL) {
error = SET_ERROR(EINVAL);
break;
}
*hashp = '\0';
error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_BOOKMARK, cr);
*hashp = '#';
if (error != 0)
break;
}
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_destroy_bookmarks(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvpair_t *pair, *nextpair;
int error = 0;
for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL;
pair = nextpair) {
char *name = nvpair_name(pair);
char *hashp = strchr(name, '#');
nextpair = nvlist_next_nvpair(innvl, pair);
if (hashp == NULL) {
error = SET_ERROR(EINVAL);
break;
}
*hashp = '\0';
error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_DESTROY, cr);
*hashp = '#';
if (error == ENOENT) {
/*
* Ignore any filesystems that don't exist (we consider
* their bookmarks "already destroyed"). Remove
* the name from the nvl here in case the filesystem
* is created between now and when we try to destroy
* the bookmark (in which case we don't want to
* destroy it since we haven't checked for permission).
*/
fnvlist_remove_nvpair(innvl, pair);
error = 0;
}
if (error != 0)
break;
}
return (error);
}
/* ARGSUSED */
static int
zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
/*
* Even root must have a proper TSD so that we know what pool
* to log to.
*/
if (tsd_get(zfs_allow_log_key) == NULL)
return (SET_ERROR(EPERM));
return (0);
}
static int
zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
char parentname[ZFS_MAX_DATASET_NAME_LEN];
int error;
char *origin;
if ((error = zfs_get_parent(zc->zc_name, parentname,
sizeof (parentname))) != 0)
return (error);
if (nvlist_lookup_string(innvl, "origin", &origin) == 0 &&
(error = zfs_secpolicy_write_perms(origin,
ZFS_DELEG_PERM_CLONE, cr)) != 0)
return (error);
if ((error = zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_CREATE, cr)) != 0)
return (error);
return (zfs_secpolicy_write_perms(parentname,
ZFS_DELEG_PERM_MOUNT, cr));
}
/*
* Policy for pool operations - create/destroy pools, add vdevs, etc. Requires
* SYS_CONFIG privilege, which is not available in a local zone.
*/
/* ARGSUSED */
int
zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
if (secpolicy_sys_config(cr, B_FALSE) != 0)
return (SET_ERROR(EPERM));
return (0);
}
/*
* Policy for object to name lookups.
*/
/* ARGSUSED */
static int
zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int error;
if ((error = secpolicy_sys_config(cr, B_FALSE)) == 0)
return (0);
error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr);
return (error);
}
/*
* Policy for fault injection. Requires all privileges.
*/
/* ARGSUSED */
static int
zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (secpolicy_zinject(cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
zfs_prop_t prop = zfs_name_to_prop(zc->zc_value);
if (prop == ZPROP_INVAL) {
if (!zfs_prop_user(zc->zc_value))
return (SET_ERROR(EINVAL));
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_USERPROP, cr));
} else {
return (zfs_secpolicy_setprop(zc->zc_name, prop,
NULL, cr));
}
}
static int
zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int err = zfs_secpolicy_read(zc, innvl, cr);
if (err)
return (err);
if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
return (SET_ERROR(EINVAL));
if (zc->zc_value[0] == 0) {
/*
* They are asking about a posix uid/gid. If it's
* themself, allow it.
*/
if (zc->zc_objset_type == ZFS_PROP_USERUSED ||
zc->zc_objset_type == ZFS_PROP_USERQUOTA ||
zc->zc_objset_type == ZFS_PROP_USEROBJUSED ||
zc->zc_objset_type == ZFS_PROP_USEROBJQUOTA) {
if (zc->zc_guid == crgetuid(cr))
return (0);
} else if (zc->zc_objset_type == ZFS_PROP_GROUPUSED ||
zc->zc_objset_type == ZFS_PROP_GROUPQUOTA ||
zc->zc_objset_type == ZFS_PROP_GROUPOBJUSED ||
zc->zc_objset_type == ZFS_PROP_GROUPOBJQUOTA) {
if (groupmember(zc->zc_guid, cr))
return (0);
}
/* else is for project quota/used */
}
return (zfs_secpolicy_write_perms(zc->zc_name,
userquota_perms[zc->zc_objset_type], cr));
}
static int
zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
int err = zfs_secpolicy_read(zc, innvl, cr);
if (err)
return (err);
if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
return (SET_ERROR(EINVAL));
return (zfs_secpolicy_write_perms(zc->zc_name,
userquota_perms[zc->zc_objset_type], cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION,
NULL, cr));
}
/* ARGSUSED */
static int
zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvpair_t *pair;
nvlist_t *holds;
int error;
holds = fnvlist_lookup_nvlist(innvl, "holds");
for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
pair = nvlist_next_nvpair(holds, pair)) {
char fsname[ZFS_MAX_DATASET_NAME_LEN];
error = dmu_fsname(nvpair_name(pair), fsname);
if (error != 0)
return (error);
error = zfs_secpolicy_write_perms(fsname,
ZFS_DELEG_PERM_HOLD, cr);
if (error != 0)
return (error);
}
return (0);
}
/* ARGSUSED */
static int
zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvpair_t *pair;
int error;
for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL;
pair = nvlist_next_nvpair(innvl, pair)) {
char fsname[ZFS_MAX_DATASET_NAME_LEN];
error = dmu_fsname(nvpair_name(pair), fsname);
if (error != 0)
return (error);
error = zfs_secpolicy_write_perms(fsname,
ZFS_DELEG_PERM_RELEASE, cr);
if (error != 0)
return (error);
}
return (0);
}
/*
* Policy for allowing temporary snapshots to be taken or released
*/
static int
zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
/*
* A temporary snapshot is the same as a snapshot,
* hold, destroy and release all rolled into one.
* Delegated diff alone is sufficient that we allow this.
*/
int error;
if ((error = zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_DIFF, cr)) == 0)
return (0);
error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr);
if (innvl != NULL) {
if (error == 0)
error = zfs_secpolicy_hold(zc, innvl, cr);
if (error == 0)
error = zfs_secpolicy_release(zc, innvl, cr);
if (error == 0)
error = zfs_secpolicy_destroy(zc, innvl, cr);
}
return (error);
}
static int
zfs_secpolicy_load_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_LOAD_KEY, cr));
}
static int
zfs_secpolicy_change_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
return (zfs_secpolicy_write_perms(zc->zc_name,
ZFS_DELEG_PERM_CHANGE_KEY, cr));
}
/*
* Returns the nvlist as specified by the user in the zfs_cmd_t.
*/
static int
get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp)
{
char *packed;
int error;
nvlist_t *list = NULL;
/*
* Read in and unpack the user-supplied nvlist.
*/
if (size == 0)
return (SET_ERROR(EINVAL));
packed = vmem_alloc(size, KM_SLEEP);
if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size,
iflag)) != 0) {
vmem_free(packed, size);
return (SET_ERROR(EFAULT));
}
if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) {
vmem_free(packed, size);
return (error);
}
vmem_free(packed, size);
*nvp = list;
return (0);
}
/*
* Reduce the size of this nvlist until it can be serialized in 'max' bytes.
* Entries will be removed from the end of the nvlist, and one int32 entry
* named "N_MORE_ERRORS" will be added indicating how many entries were
* removed.
*/
static int
nvlist_smush(nvlist_t *errors, size_t max)
{
size_t size;
size = fnvlist_size(errors);
if (size > max) {
nvpair_t *more_errors;
int n = 0;
if (max < 1024)
return (SET_ERROR(ENOMEM));
fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0);
more_errors = nvlist_prev_nvpair(errors, NULL);
do {
nvpair_t *pair = nvlist_prev_nvpair(errors,
more_errors);
fnvlist_remove_nvpair(errors, pair);
n++;
size = fnvlist_size(errors);
} while (size > max);
fnvlist_remove_nvpair(errors, more_errors);
fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n);
ASSERT3U(fnvlist_size(errors), <=, max);
}
return (0);
}
static int
put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl)
{
char *packed = NULL;
int error = 0;
size_t size;
size = fnvlist_size(nvl);
if (size > zc->zc_nvlist_dst_size) {
error = SET_ERROR(ENOMEM);
} else {
packed = fnvlist_pack(nvl, &size);
if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst,
size, zc->zc_iflags) != 0)
error = SET_ERROR(EFAULT);
fnvlist_pack_free(packed, size);
}
zc->zc_nvlist_dst_size = size;
zc->zc_nvlist_dst_filled = B_TRUE;
return (error);
}
int
getzfsvfs_impl(objset_t *os, zfsvfs_t **zfvp)
{
int error = 0;
if (dmu_objset_type(os) != DMU_OST_ZFS) {
return (SET_ERROR(EINVAL));
}
mutex_enter(&os->os_user_ptr_lock);
*zfvp = dmu_objset_get_user(os);
/* bump s_active only when non-zero to prevent umount race */
error = zfs_vfs_ref(zfvp);
mutex_exit(&os->os_user_ptr_lock);
return (error);
}
int
getzfsvfs(const char *dsname, zfsvfs_t **zfvp)
{
objset_t *os;
int error;
error = dmu_objset_hold(dsname, FTAG, &os);
if (error != 0)
return (error);
error = getzfsvfs_impl(os, zfvp);
dmu_objset_rele(os, FTAG);
return (error);
}
/*
* Find a zfsvfs_t for a mounted filesystem, or create our own, in which
* case its z_sb will be NULL, and it will be opened as the owner.
* If 'writer' is set, the z_teardown_lock will be held for RW_WRITER,
* which prevents all inode ops from running.
*/
static int
zfsvfs_hold(const char *name, void *tag, zfsvfs_t **zfvp, boolean_t writer)
{
int error = 0;
if (getzfsvfs(name, zfvp) != 0)
error = zfsvfs_create(name, B_FALSE, zfvp);
if (error == 0) {
rrm_enter(&(*zfvp)->z_teardown_lock, (writer) ? RW_WRITER :
RW_READER, tag);
if ((*zfvp)->z_unmounted) {
/*
* XXX we could probably try again, since the unmounting
* thread should be just about to disassociate the
* objset from the zfsvfs.
*/
rrm_exit(&(*zfvp)->z_teardown_lock, tag);
return (SET_ERROR(EBUSY));
}
}
return (error);
}
static void
zfsvfs_rele(zfsvfs_t *zfsvfs, void *tag)
{
rrm_exit(&zfsvfs->z_teardown_lock, tag);
if (zfs_vfs_held(zfsvfs)) {
zfs_vfs_rele(zfsvfs);
} else {
dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
zfsvfs_free(zfsvfs);
}
}
static int
zfs_ioc_pool_create(zfs_cmd_t *zc)
{
int error;
nvlist_t *config, *props = NULL;
nvlist_t *rootprops = NULL;
nvlist_t *zplprops = NULL;
dsl_crypto_params_t *dcp = NULL;
const char *spa_name = zc->zc_name;
boolean_t unload_wkey = B_TRUE;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config)))
return (error);
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props))) {
nvlist_free(config);
return (error);
}
if (props) {
nvlist_t *nvl = NULL;
nvlist_t *hidden_args = NULL;
uint64_t version = SPA_VERSION;
char *tname;
(void) nvlist_lookup_uint64(props,
zpool_prop_to_name(ZPOOL_PROP_VERSION), &version);
if (!SPA_VERSION_IS_SUPPORTED(version)) {
error = SET_ERROR(EINVAL);
goto pool_props_bad;
}
(void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl);
if (nvl) {
error = nvlist_dup(nvl, &rootprops, KM_SLEEP);
if (error != 0)
goto pool_props_bad;
(void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS);
}
(void) nvlist_lookup_nvlist(props, ZPOOL_HIDDEN_ARGS,
&hidden_args);
error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
rootprops, hidden_args, &dcp);
if (error != 0)
goto pool_props_bad;
(void) nvlist_remove_all(props, ZPOOL_HIDDEN_ARGS);
VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
error = zfs_fill_zplprops_root(version, rootprops,
zplprops, NULL);
if (error != 0)
goto pool_props_bad;
if (nvlist_lookup_string(props,
zpool_prop_to_name(ZPOOL_PROP_TNAME), &tname) == 0)
spa_name = tname;
}
error = spa_create(zc->zc_name, config, props, zplprops, dcp);
/*
* Set the remaining root properties
*/
if (!error && (error = zfs_set_prop_nvlist(spa_name,
ZPROP_SRC_LOCAL, rootprops, NULL)) != 0) {
(void) spa_destroy(spa_name);
unload_wkey = B_FALSE; /* spa_destroy() unloads wrapping keys */
}
pool_props_bad:
nvlist_free(rootprops);
nvlist_free(zplprops);
nvlist_free(config);
nvlist_free(props);
dsl_crypto_params_free(dcp, unload_wkey && !!error);
return (error);
}
static int
zfs_ioc_pool_destroy(zfs_cmd_t *zc)
{
int error;
zfs_log_history(zc);
error = spa_destroy(zc->zc_name);
return (error);
}
static int
zfs_ioc_pool_import(zfs_cmd_t *zc)
{
nvlist_t *config, *props = NULL;
uint64_t guid;
int error;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config)) != 0)
return (error);
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props))) {
nvlist_free(config);
return (error);
}
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
guid != zc->zc_guid)
error = SET_ERROR(EINVAL);
else
error = spa_import(zc->zc_name, config, props, zc->zc_cookie);
if (zc->zc_nvlist_dst != 0) {
int err;
if ((err = put_nvlist(zc, config)) != 0)
error = err;
}
nvlist_free(config);
nvlist_free(props);
return (error);
}
static int
zfs_ioc_pool_export(zfs_cmd_t *zc)
{
int error;
boolean_t force = (boolean_t)zc->zc_cookie;
boolean_t hardforce = (boolean_t)zc->zc_guid;
zfs_log_history(zc);
error = spa_export(zc->zc_name, NULL, force, hardforce);
return (error);
}
static int
zfs_ioc_pool_configs(zfs_cmd_t *zc)
{
nvlist_t *configs;
int error;
if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL)
return (SET_ERROR(EEXIST));
error = put_nvlist(zc, configs);
nvlist_free(configs);
return (error);
}
/*
* inputs:
* zc_name name of the pool
*
* outputs:
* zc_cookie real errno
* zc_nvlist_dst config nvlist
* zc_nvlist_dst_size size of config nvlist
*/
static int
zfs_ioc_pool_stats(zfs_cmd_t *zc)
{
nvlist_t *config;
int error;
int ret = 0;
error = spa_get_stats(zc->zc_name, &config, zc->zc_value,
sizeof (zc->zc_value));
if (config != NULL) {
ret = put_nvlist(zc, config);
nvlist_free(config);
/*
* The config may be present even if 'error' is non-zero.
* In this case we return success, and preserve the real errno
* in 'zc_cookie'.
*/
zc->zc_cookie = error;
} else {
ret = error;
}
return (ret);
}
/*
* Try to import the given pool, returning pool stats as appropriate so that
* user land knows which devices are available and overall pool health.
*/
static int
zfs_ioc_pool_tryimport(zfs_cmd_t *zc)
{
nvlist_t *tryconfig, *config = NULL;
int error;
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &tryconfig)) != 0)
return (error);
config = spa_tryimport(tryconfig);
nvlist_free(tryconfig);
if (config == NULL)
return (SET_ERROR(EINVAL));
error = put_nvlist(zc, config);
nvlist_free(config);
return (error);
}
/*
* inputs:
* zc_name name of the pool
* zc_cookie scan func (pool_scan_func_t)
* zc_flags scrub pause/resume flag (pool_scrub_cmd_t)
*/
static int
zfs_ioc_pool_scan(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if (zc->zc_flags >= POOL_SCRUB_FLAGS_END)
return (SET_ERROR(EINVAL));
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (zc->zc_flags == POOL_SCRUB_PAUSE)
error = spa_scrub_pause_resume(spa, POOL_SCRUB_PAUSE);
else if (zc->zc_cookie == POOL_SCAN_NONE)
error = spa_scan_stop(spa);
else
error = spa_scan(spa, zc->zc_cookie);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_freeze(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error == 0) {
spa_freeze(spa);
spa_close(spa, FTAG);
}
return (error);
}
static int
zfs_ioc_pool_upgrade(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (zc->zc_cookie < spa_version(spa) ||
!SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) {
spa_close(spa, FTAG);
return (SET_ERROR(EINVAL));
}
spa_upgrade(spa, zc->zc_cookie);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_get_history(zfs_cmd_t *zc)
{
spa_t *spa;
char *hist_buf;
uint64_t size;
int error;
if ((size = zc->zc_history_len) == 0)
return (SET_ERROR(EINVAL));
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
hist_buf = vmem_alloc(size, KM_SLEEP);
if ((error = spa_history_get(spa, &zc->zc_history_offset,
&zc->zc_history_len, hist_buf)) == 0) {
error = ddi_copyout(hist_buf,
(void *)(uintptr_t)zc->zc_history,
zc->zc_history_len, zc->zc_iflags);
}
spa_close(spa, FTAG);
vmem_free(hist_buf, size);
return (error);
}
static int
zfs_ioc_pool_reguid(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error == 0) {
error = spa_change_guid(spa);
spa_close(spa, FTAG);
}
return (error);
}
static int
zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc)
{
return (dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value));
}
/*
* inputs:
* zc_name name of filesystem
* zc_obj object to find
*
* outputs:
* zc_value name of object
*/
static int
zfs_ioc_obj_to_path(zfs_cmd_t *zc)
{
objset_t *os;
int error;
/* XXX reading from objset not owned */
if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE,
FTAG, &os)) != 0)
return (error);
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dmu_objset_rele_flags(os, B_TRUE, FTAG);
return (SET_ERROR(EINVAL));
}
error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value,
sizeof (zc->zc_value));
dmu_objset_rele_flags(os, B_TRUE, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_obj object to find
*
* outputs:
* zc_stat stats on object
* zc_value path to object
*/
static int
zfs_ioc_obj_to_stats(zfs_cmd_t *zc)
{
objset_t *os;
int error;
/* XXX reading from objset not owned */
if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE,
FTAG, &os)) != 0)
return (error);
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dmu_objset_rele_flags(os, B_TRUE, FTAG);
return (SET_ERROR(EINVAL));
}
error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value,
sizeof (zc->zc_value));
dmu_objset_rele_flags(os, B_TRUE, FTAG);
return (error);
}
static int
zfs_ioc_vdev_add(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
nvlist_t *config;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config);
if (error == 0) {
error = spa_vdev_add(spa, config);
nvlist_free(config);
}
spa_close(spa, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of the pool
* zc_guid guid of vdev to remove
* zc_cookie cancel removal
*/
static int
zfs_ioc_vdev_remove(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
if (zc->zc_cookie != 0) {
error = spa_vdev_remove_cancel(spa);
} else {
error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE);
}
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_set_state(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
vdev_state_t newstate = VDEV_STATE_UNKNOWN;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
switch (zc->zc_cookie) {
case VDEV_STATE_ONLINE:
error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate);
break;
case VDEV_STATE_OFFLINE:
error = vdev_offline(spa, zc->zc_guid, zc->zc_obj);
break;
case VDEV_STATE_FAULTED:
if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED &&
zc->zc_obj != VDEV_AUX_EXTERNAL &&
zc->zc_obj != VDEV_AUX_EXTERNAL_PERSIST)
zc->zc_obj = VDEV_AUX_ERR_EXCEEDED;
error = vdev_fault(spa, zc->zc_guid, zc->zc_obj);
break;
case VDEV_STATE_DEGRADED:
if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED &&
zc->zc_obj != VDEV_AUX_EXTERNAL)
zc->zc_obj = VDEV_AUX_ERR_EXCEEDED;
error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj);
break;
default:
error = SET_ERROR(EINVAL);
}
zc->zc_cookie = newstate;
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_attach(zfs_cmd_t *zc)
{
spa_t *spa;
nvlist_t *config;
int replacing = zc->zc_cookie;
int rebuild = zc->zc_simple;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config)) == 0) {
error = spa_vdev_attach(spa, zc->zc_guid, config, replacing,
rebuild);
nvlist_free(config);
}
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_detach(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_split(zfs_cmd_t *zc)
{
spa_t *spa;
nvlist_t *config, *props = NULL;
int error;
boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT);
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &config))) {
spa_close(spa, FTAG);
return (error);
}
if (zc->zc_nvlist_src_size != 0 && (error =
get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props))) {
spa_close(spa, FTAG);
nvlist_free(config);
return (error);
}
error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp);
spa_close(spa, FTAG);
nvlist_free(config);
nvlist_free(props);
return (error);
}
static int
zfs_ioc_vdev_setpath(zfs_cmd_t *zc)
{
spa_t *spa;
const char *path = zc->zc_value;
uint64_t guid = zc->zc_guid;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_setpath(spa, guid, path);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_vdev_setfru(zfs_cmd_t *zc)
{
spa_t *spa;
const char *fru = zc->zc_value;
uint64_t guid = zc->zc_guid;
int error;
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
error = spa_vdev_setfru(spa, guid, fru);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os)
{
int error = 0;
nvlist_t *nv;
dmu_objset_fast_stat(os, &zc->zc_objset_stats);
if (zc->zc_nvlist_dst != 0 &&
(error = dsl_prop_get_all(os, &nv)) == 0) {
dmu_objset_stats(os, nv);
/*
* NB: zvol_get_stats() will read the objset contents,
* which we aren't supposed to do with a
* DS_MODE_USER hold, because it could be
* inconsistent. So this is a bit of a workaround...
* XXX reading without owning
*/
if (!zc->zc_objset_stats.dds_inconsistent &&
dmu_objset_type(os) == DMU_OST_ZVOL) {
error = zvol_get_stats(os, nv);
if (error == EIO) {
nvlist_free(nv);
return (error);
}
VERIFY0(error);
}
if (error == 0)
error = put_nvlist(zc, nv);
nvlist_free(nv);
}
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_objset_stats(zfs_cmd_t *zc)
{
objset_t *os;
int error;
error = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (error == 0) {
error = zfs_ioc_objset_stats_impl(zc, os);
dmu_objset_rele(os, FTAG);
}
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_nvlist_dst received property nvlist
* zc_nvlist_dst_size size of received property nvlist
*
* Gets received properties (distinct from local properties on or after
* SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from
* local property values.
*/
static int
zfs_ioc_objset_recvd_props(zfs_cmd_t *zc)
{
int error = 0;
nvlist_t *nv;
/*
* Without this check, we would return local property values if the
* caller has not already received properties on or after
* SPA_VERSION_RECVD_PROPS.
*/
if (!dsl_prop_get_hasrecvd(zc->zc_name))
return (SET_ERROR(ENOTSUP));
if (zc->zc_nvlist_dst != 0 &&
(error = dsl_prop_get_received(zc->zc_name, &nv)) == 0) {
error = put_nvlist(zc, nv);
nvlist_free(nv);
}
return (error);
}
static int
nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop)
{
uint64_t value;
int error;
/*
* zfs_get_zplprop() will either find a value or give us
* the default value (if there is one).
*/
if ((error = zfs_get_zplprop(os, prop, &value)) != 0)
return (error);
VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0);
return (0);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_dst_size size of buffer for zpl property nvlist
*
* outputs:
* zc_nvlist_dst zpl property nvlist
* zc_nvlist_dst_size size of zpl property nvlist
*/
static int
zfs_ioc_objset_zplprops(zfs_cmd_t *zc)
{
objset_t *os;
int err;
/* XXX reading without owning */
if ((err = dmu_objset_hold(zc->zc_name, FTAG, &os)))
return (err);
dmu_objset_fast_stat(os, &zc->zc_objset_stats);
/*
* NB: nvl_add_zplprop() will read the objset contents,
* which we aren't supposed to do with a DS_MODE_USER
* hold, because it could be inconsistent.
*/
if (zc->zc_nvlist_dst != 0 &&
!zc->zc_objset_stats.dds_inconsistent &&
dmu_objset_type(os) == DMU_OST_ZFS) {
nvlist_t *nv;
VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 &&
(err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0)
err = put_nvlist(zc, nv);
nvlist_free(nv);
} else {
err = SET_ERROR(ENOENT);
}
dmu_objset_rele(os, FTAG);
return (err);
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_nvlist_dst_size size of buffer for property nvlist
*
* outputs:
* zc_name name of next filesystem
* zc_cookie zap cursor
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_dataset_list_next(zfs_cmd_t *zc)
{
objset_t *os;
int error;
char *p;
size_t orig_len = strlen(zc->zc_name);
top:
if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os))) {
if (error == ENOENT)
error = SET_ERROR(ESRCH);
return (error);
}
p = strrchr(zc->zc_name, '/');
if (p == NULL || p[1] != '\0')
(void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name));
p = zc->zc_name + strlen(zc->zc_name);
do {
error = dmu_dir_list_next(os,
sizeof (zc->zc_name) - (p - zc->zc_name), p,
NULL, &zc->zc_cookie);
if (error == ENOENT)
error = SET_ERROR(ESRCH);
} while (error == 0 && zfs_dataset_name_hidden(zc->zc_name));
dmu_objset_rele(os, FTAG);
/*
* If it's an internal dataset (ie. with a '$' in its name),
* don't try to get stats for it, otherwise we'll return ENOENT.
*/
if (error == 0 && strchr(zc->zc_name, '$') == NULL) {
error = zfs_ioc_objset_stats(zc); /* fill in the stats */
if (error == ENOENT) {
/* We lost a race with destroy, get the next one. */
zc->zc_name[orig_len] = '\0';
goto top;
}
}
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_nvlist_src iteration range nvlist
* zc_nvlist_src_size size of iteration range nvlist
*
* outputs:
* zc_name name of next snapshot
* zc_objset_stats stats
* zc_nvlist_dst property nvlist
* zc_nvlist_dst_size size of property nvlist
*/
static int
zfs_ioc_snapshot_list_next(zfs_cmd_t *zc)
{
int error;
objset_t *os, *ossnap;
dsl_dataset_t *ds;
uint64_t min_txg = 0, max_txg = 0;
if (zc->zc_nvlist_src_size != 0) {
nvlist_t *props = NULL;
error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props);
if (error != 0)
return (error);
(void) nvlist_lookup_uint64(props, SNAP_ITER_MIN_TXG,
&min_txg);
(void) nvlist_lookup_uint64(props, SNAP_ITER_MAX_TXG,
&max_txg);
nvlist_free(props);
}
error = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (error != 0) {
return (error == ENOENT ? SET_ERROR(ESRCH) : error);
}
/*
* A dataset name of maximum length cannot have any snapshots,
* so exit immediately.
*/
if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >=
ZFS_MAX_DATASET_NAME_LEN) {
dmu_objset_rele(os, FTAG);
return (SET_ERROR(ESRCH));
}
while (error == 0) {
if (issig(JUSTLOOKING) && issig(FORREAL)) {
error = SET_ERROR(EINTR);
break;
}
error = dmu_snapshot_list_next(os,
sizeof (zc->zc_name) - strlen(zc->zc_name),
zc->zc_name + strlen(zc->zc_name), &zc->zc_obj,
&zc->zc_cookie, NULL);
if (error == ENOENT) {
error = SET_ERROR(ESRCH);
break;
} else if (error != 0) {
break;
}
error = dsl_dataset_hold_obj(dmu_objset_pool(os), zc->zc_obj,
FTAG, &ds);
if (error != 0)
break;
if ((min_txg != 0 && dsl_get_creationtxg(ds) < min_txg) ||
(max_txg != 0 && dsl_get_creationtxg(ds) > max_txg)) {
dsl_dataset_rele(ds, FTAG);
/* undo snapshot name append */
*(strchr(zc->zc_name, '@') + 1) = '\0';
/* skip snapshot */
continue;
}
if (zc->zc_simple) {
dsl_dataset_rele(ds, FTAG);
break;
}
if ((error = dmu_objset_from_ds(ds, &ossnap)) != 0) {
dsl_dataset_rele(ds, FTAG);
break;
}
if ((error = zfs_ioc_objset_stats_impl(zc, ossnap)) != 0) {
dsl_dataset_rele(ds, FTAG);
break;
}
dsl_dataset_rele(ds, FTAG);
break;
}
dmu_objset_rele(os, FTAG);
/* if we failed, undo the @ that we tacked on to zc_name */
if (error != 0)
*strchr(zc->zc_name, '@') = '\0';
return (error);
}
static int
zfs_prop_set_userquota(const char *dsname, nvpair_t *pair)
{
const char *propname = nvpair_name(pair);
uint64_t *valary;
unsigned int vallen;
const char *dash, *domain;
zfs_userquota_prop_t type;
uint64_t rid;
uint64_t quota;
zfsvfs_t *zfsvfs;
int err;
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&pair) != 0)
return (SET_ERROR(EINVAL));
}
/*
* A correctly constructed propname is encoded as
* userquota@<rid>-<domain>.
*/
if ((dash = strchr(propname, '-')) == NULL ||
nvpair_value_uint64_array(pair, &valary, &vallen) != 0 ||
vallen != 3)
return (SET_ERROR(EINVAL));
domain = dash + 1;
type = valary[0];
rid = valary[1];
quota = valary[2];
err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE);
if (err == 0) {
err = zfs_set_userquota(zfsvfs, type, domain, rid, quota);
zfsvfs_rele(zfsvfs, FTAG);
}
return (err);
}
/*
* If the named property is one that has a special function to set its value,
* return 0 on success and a positive error code on failure; otherwise if it is
* not one of the special properties handled by this function, return -1.
*
* XXX: It would be better for callers of the property interface if we handled
* these special cases in dsl_prop.c (in the dsl layer).
*/
static int
zfs_prop_set_special(const char *dsname, zprop_source_t source,
nvpair_t *pair)
{
const char *propname = nvpair_name(pair);
zfs_prop_t prop = zfs_name_to_prop(propname);
uint64_t intval = 0;
const char *strval = NULL;
int err = -1;
if (prop == ZPROP_INVAL) {
if (zfs_prop_userquota(propname))
return (zfs_prop_set_userquota(dsname, pair));
return (-1);
}
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&pair) == 0);
}
/* all special properties are numeric except for keylocation */
if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) {
strval = fnvpair_value_string(pair);
} else {
intval = fnvpair_value_uint64(pair);
}
switch (prop) {
case ZFS_PROP_QUOTA:
err = dsl_dir_set_quota(dsname, source, intval);
break;
case ZFS_PROP_REFQUOTA:
err = dsl_dataset_set_refquota(dsname, source, intval);
break;
case ZFS_PROP_FILESYSTEM_LIMIT:
case ZFS_PROP_SNAPSHOT_LIMIT:
if (intval == UINT64_MAX) {
/* clearing the limit, just do it */
err = 0;
} else {
err = dsl_dir_activate_fs_ss_limit(dsname);
}
/*
* Set err to -1 to force the zfs_set_prop_nvlist code down the
* default path to set the value in the nvlist.
*/
if (err == 0)
err = -1;
break;
case ZFS_PROP_KEYLOCATION:
err = dsl_crypto_can_set_keylocation(dsname, strval);
/*
* Set err to -1 to force the zfs_set_prop_nvlist code down the
* default path to set the value in the nvlist.
*/
if (err == 0)
err = -1;
break;
case ZFS_PROP_RESERVATION:
err = dsl_dir_set_reservation(dsname, source, intval);
break;
case ZFS_PROP_REFRESERVATION:
err = dsl_dataset_set_refreservation(dsname, source, intval);
break;
case ZFS_PROP_COMPRESSION:
err = dsl_dataset_set_compression(dsname, source, intval);
/*
* Set err to -1 to force the zfs_set_prop_nvlist code down the
* default path to set the value in the nvlist.
*/
if (err == 0)
err = -1;
break;
case ZFS_PROP_VOLSIZE:
err = zvol_set_volsize(dsname, intval);
break;
case ZFS_PROP_SNAPDEV:
err = zvol_set_snapdev(dsname, source, intval);
break;
case ZFS_PROP_VOLMODE:
err = zvol_set_volmode(dsname, source, intval);
break;
case ZFS_PROP_VERSION:
{
zfsvfs_t *zfsvfs;
if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0)
break;
err = zfs_set_version(zfsvfs, intval);
zfsvfs_rele(zfsvfs, FTAG);
if (err == 0 && intval >= ZPL_VERSION_USERSPACE) {
zfs_cmd_t *zc;
zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP);
(void) strlcpy(zc->zc_name, dsname,
sizeof (zc->zc_name));
(void) zfs_ioc_userspace_upgrade(zc);
(void) zfs_ioc_id_quota_upgrade(zc);
kmem_free(zc, sizeof (zfs_cmd_t));
}
break;
}
default:
err = -1;
}
return (err);
}
/*
* This function is best effort. If it fails to set any of the given properties,
* it continues to set as many as it can and returns the last error
* encountered. If the caller provides a non-NULL errlist, it will be filled in
* with the list of names of all the properties that failed along with the
* corresponding error numbers.
*
* If every property is set successfully, zero is returned and errlist is not
* modified.
*/
int
zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl,
nvlist_t *errlist)
{
nvpair_t *pair;
nvpair_t *propval;
int rv = 0;
uint64_t intval;
const char *strval;
nvlist_t *genericnvl = fnvlist_alloc();
nvlist_t *retrynvl = fnvlist_alloc();
retry:
pair = NULL;
while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
const char *propname = nvpair_name(pair);
zfs_prop_t prop = zfs_name_to_prop(propname);
int err = 0;
/* decode the property value */
propval = pair;
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
attrs = fnvpair_value_nvlist(pair);
if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&propval) != 0)
err = SET_ERROR(EINVAL);
}
/* Validate value type */
if (err == 0 && source == ZPROP_SRC_INHERITED) {
/* inherited properties are expected to be booleans */
if (nvpair_type(propval) != DATA_TYPE_BOOLEAN)
err = SET_ERROR(EINVAL);
} else if (err == 0 && prop == ZPROP_INVAL) {
if (zfs_prop_user(propname)) {
if (nvpair_type(propval) != DATA_TYPE_STRING)
err = SET_ERROR(EINVAL);
} else if (zfs_prop_userquota(propname)) {
if (nvpair_type(propval) !=
DATA_TYPE_UINT64_ARRAY)
err = SET_ERROR(EINVAL);
} else {
err = SET_ERROR(EINVAL);
}
} else if (err == 0) {
if (nvpair_type(propval) == DATA_TYPE_STRING) {
if (zfs_prop_get_type(prop) != PROP_TYPE_STRING)
err = SET_ERROR(EINVAL);
} else if (nvpair_type(propval) == DATA_TYPE_UINT64) {
const char *unused;
intval = fnvpair_value_uint64(propval);
switch (zfs_prop_get_type(prop)) {
case PROP_TYPE_NUMBER:
break;
case PROP_TYPE_STRING:
err = SET_ERROR(EINVAL);
break;
case PROP_TYPE_INDEX:
if (zfs_prop_index_to_string(prop,
intval, &unused) != 0)
err =
SET_ERROR(ZFS_ERR_BADPROP);
break;
default:
cmn_err(CE_PANIC,
"unknown property type");
}
} else {
err = SET_ERROR(EINVAL);
}
}
/* Validate permissions */
if (err == 0)
err = zfs_check_settable(dsname, pair, CRED());
if (err == 0) {
if (source == ZPROP_SRC_INHERITED)
err = -1; /* does not need special handling */
else
err = zfs_prop_set_special(dsname, source,
pair);
if (err == -1) {
/*
* For better performance we build up a list of
* properties to set in a single transaction.
*/
err = nvlist_add_nvpair(genericnvl, pair);
} else if (err != 0 && nvl != retrynvl) {
/*
* This may be a spurious error caused by
* receiving quota and reservation out of order.
* Try again in a second pass.
*/
err = nvlist_add_nvpair(retrynvl, pair);
}
}
if (err != 0) {
if (errlist != NULL)
fnvlist_add_int32(errlist, propname, err);
rv = err;
}
}
if (nvl != retrynvl && !nvlist_empty(retrynvl)) {
nvl = retrynvl;
goto retry;
}
if (!nvlist_empty(genericnvl) &&
dsl_props_set(dsname, source, genericnvl) != 0) {
/*
* If this fails, we still want to set as many properties as we
* can, so try setting them individually.
*/
pair = NULL;
while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) {
const char *propname = nvpair_name(pair);
int err = 0;
propval = pair;
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
attrs = fnvpair_value_nvlist(pair);
propval = fnvlist_lookup_nvpair(attrs,
ZPROP_VALUE);
}
if (nvpair_type(propval) == DATA_TYPE_STRING) {
strval = fnvpair_value_string(propval);
err = dsl_prop_set_string(dsname, propname,
source, strval);
} else if (nvpair_type(propval) == DATA_TYPE_BOOLEAN) {
err = dsl_prop_inherit(dsname, propname,
source);
} else {
intval = fnvpair_value_uint64(propval);
err = dsl_prop_set_int(dsname, propname, source,
intval);
}
if (err != 0) {
if (errlist != NULL) {
fnvlist_add_int32(errlist, propname,
err);
}
rv = err;
}
}
}
nvlist_free(genericnvl);
nvlist_free(retrynvl);
return (rv);
}
/*
* Check that all the properties are valid user properties.
*/
static int
zfs_check_userprops(nvlist_t *nvl)
{
nvpair_t *pair = NULL;
while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) {
const char *propname = nvpair_name(pair);
if (!zfs_prop_user(propname) ||
nvpair_type(pair) != DATA_TYPE_STRING)
return (SET_ERROR(EINVAL));
if (strlen(propname) >= ZAP_MAXNAMELEN)
return (SET_ERROR(ENAMETOOLONG));
if (strlen(fnvpair_value_string(pair)) >= ZAP_MAXVALUELEN)
return (SET_ERROR(E2BIG));
}
return (0);
}
static void
props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops)
{
nvpair_t *pair;
VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
pair = NULL;
while ((pair = nvlist_next_nvpair(props, pair)) != NULL) {
if (nvlist_exists(skipped, nvpair_name(pair)))
continue;
VERIFY(nvlist_add_nvpair(*newprops, pair) == 0);
}
}
static int
clear_received_props(const char *dsname, nvlist_t *props,
nvlist_t *skipped)
{
int err = 0;
nvlist_t *cleared_props = NULL;
props_skip(props, skipped, &cleared_props);
if (!nvlist_empty(cleared_props)) {
/*
* Acts on local properties until the dataset has received
* properties at least once on or after SPA_VERSION_RECVD_PROPS.
*/
zprop_source_t flags = (ZPROP_SRC_NONE |
(dsl_prop_get_hasrecvd(dsname) ? ZPROP_SRC_RECEIVED : 0));
err = zfs_set_prop_nvlist(dsname, flags, cleared_props, NULL);
}
nvlist_free(cleared_props);
return (err);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value name of property to set
* zc_nvlist_src{_size} nvlist of properties to apply
* zc_cookie received properties flag
*
* outputs:
* zc_nvlist_dst{_size} error for each unapplied received property
*/
static int
zfs_ioc_set_prop(zfs_cmd_t *zc)
{
nvlist_t *nvl;
boolean_t received = zc->zc_cookie;
zprop_source_t source = (received ? ZPROP_SRC_RECEIVED :
ZPROP_SRC_LOCAL);
nvlist_t *errors;
int error;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &nvl)) != 0)
return (error);
if (received) {
nvlist_t *origprops;
if (dsl_prop_get_received(zc->zc_name, &origprops) == 0) {
(void) clear_received_props(zc->zc_name,
origprops, nvl);
nvlist_free(origprops);
}
error = dsl_prop_set_hasrecvd(zc->zc_name);
}
errors = fnvlist_alloc();
if (error == 0)
error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors);
if (zc->zc_nvlist_dst != 0 && errors != NULL) {
(void) put_nvlist(zc, errors);
}
nvlist_free(errors);
nvlist_free(nvl);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value name of property to inherit
* zc_cookie revert to received value if TRUE
*
* outputs: none
*/
static int
zfs_ioc_inherit_prop(zfs_cmd_t *zc)
{
const char *propname = zc->zc_value;
zfs_prop_t prop = zfs_name_to_prop(propname);
boolean_t received = zc->zc_cookie;
zprop_source_t source = (received
? ZPROP_SRC_NONE /* revert to received value, if any */
: ZPROP_SRC_INHERITED); /* explicitly inherit */
nvlist_t *dummy;
nvpair_t *pair;
zprop_type_t type;
int err;
if (!received) {
/*
* Only check this in the non-received case. We want to allow
* 'inherit -S' to revert non-inheritable properties like quota
* and reservation to the received or default values even though
* they are not considered inheritable.
*/
if (prop != ZPROP_INVAL && !zfs_prop_inheritable(prop))
return (SET_ERROR(EINVAL));
}
if (prop == ZPROP_INVAL) {
if (!zfs_prop_user(propname))
return (SET_ERROR(EINVAL));
type = PROP_TYPE_STRING;
} else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) {
return (SET_ERROR(EINVAL));
} else {
type = zfs_prop_get_type(prop);
}
/*
* zfs_prop_set_special() expects properties in the form of an
* nvpair with type info.
*/
dummy = fnvlist_alloc();
switch (type) {
case PROP_TYPE_STRING:
VERIFY(0 == nvlist_add_string(dummy, propname, ""));
break;
case PROP_TYPE_NUMBER:
case PROP_TYPE_INDEX:
VERIFY(0 == nvlist_add_uint64(dummy, propname, 0));
break;
default:
err = SET_ERROR(EINVAL);
goto errout;
}
pair = nvlist_next_nvpair(dummy, NULL);
if (pair == NULL) {
err = SET_ERROR(EINVAL);
} else {
err = zfs_prop_set_special(zc->zc_name, source, pair);
if (err == -1) /* property is not "special", needs handling */
err = dsl_prop_inherit(zc->zc_name, zc->zc_value,
source);
}
errout:
nvlist_free(dummy);
return (err);
}
static int
zfs_ioc_pool_set_props(zfs_cmd_t *zc)
{
nvlist_t *props;
spa_t *spa;
int error;
nvpair_t *pair;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &props)))
return (error);
/*
* If the only property is the configfile, then just do a spa_lookup()
* to handle the faulted case.
*/
pair = nvlist_next_nvpair(props, NULL);
if (pair != NULL && strcmp(nvpair_name(pair),
zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 &&
nvlist_next_nvpair(props, pair) == NULL) {
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(zc->zc_name)) != NULL) {
spa_configfile_set(spa, props, B_FALSE);
spa_write_cachefile(spa, B_FALSE, B_TRUE);
}
mutex_exit(&spa_namespace_lock);
if (spa != NULL) {
nvlist_free(props);
return (0);
}
}
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
nvlist_free(props);
return (error);
}
error = spa_prop_set(spa, props);
nvlist_free(props);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_pool_get_props(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
nvlist_t *nvp = NULL;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) {
/*
* If the pool is faulted, there may be properties we can still
* get (such as altroot and cachefile), so attempt to get them
* anyway.
*/
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(zc->zc_name)) != NULL)
error = spa_prop_get(spa, &nvp);
mutex_exit(&spa_namespace_lock);
} else {
error = spa_prop_get(spa, &nvp);
spa_close(spa, FTAG);
}
if (error == 0 && zc->zc_nvlist_dst != 0)
error = put_nvlist(zc, nvp);
else
error = SET_ERROR(EFAULT);
nvlist_free(nvp);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_nvlist_src{_size} nvlist of delegated permissions
* zc_perm_action allow/unallow flag
*
* outputs: none
*/
static int
zfs_ioc_set_fsacl(zfs_cmd_t *zc)
{
int error;
nvlist_t *fsaclnv = NULL;
if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &fsaclnv)) != 0)
return (error);
/*
* Verify nvlist is constructed correctly
*/
if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) {
nvlist_free(fsaclnv);
return (SET_ERROR(EINVAL));
}
/*
* If we don't have PRIV_SYS_MOUNT, then validate
* that user is allowed to hand out each permission in
* the nvlist(s)
*/
error = secpolicy_zfs(CRED());
if (error != 0) {
if (zc->zc_perm_action == B_FALSE) {
error = dsl_deleg_can_allow(zc->zc_name,
fsaclnv, CRED());
} else {
error = dsl_deleg_can_unallow(zc->zc_name,
fsaclnv, CRED());
}
}
if (error == 0)
error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action);
nvlist_free(fsaclnv);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* zc_nvlist_src{_size} nvlist of delegated permissions
*/
static int
zfs_ioc_get_fsacl(zfs_cmd_t *zc)
{
nvlist_t *nvp;
int error;
if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) {
error = put_nvlist(zc, nvp);
nvlist_free(nvp);
}
return (error);
}
/* ARGSUSED */
static void
zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
{
zfs_creat_t *zct = arg;
zfs_create_fs(os, cr, zct->zct_zplprops, tx);
}
#define ZFS_PROP_UNDEFINED ((uint64_t)-1)
/*
* inputs:
* os parent objset pointer (NULL if root fs)
* fuids_ok fuids allowed in this version of the spa?
* sa_ok SAs allowed in this version of the spa?
* createprops list of properties requested by creator
*
* outputs:
* zplprops values for the zplprops we attach to the master node object
* is_ci true if requested file system will be purely case-insensitive
*
* Determine the settings for utf8only, normalization and
* casesensitivity. Specific values may have been requested by the
* creator and/or we can inherit values from the parent dataset. If
* the file system is of too early a vintage, a creator can not
* request settings for these properties, even if the requested
* setting is the default value. We don't actually want to create dsl
* properties for these, so remove them from the source nvlist after
* processing.
*/
static int
zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver,
boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
uint64_t sense = ZFS_PROP_UNDEFINED;
uint64_t norm = ZFS_PROP_UNDEFINED;
uint64_t u8 = ZFS_PROP_UNDEFINED;
int error;
ASSERT(zplprops != NULL);
/* parent dataset must be a filesystem */
if (os != NULL && os->os_phys->os_type != DMU_OST_ZFS)
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
/*
* Pull out creator prop choices, if any.
*/
if (createprops) {
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_VERSION), &zplver);
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE));
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY));
(void) nvlist_lookup_uint64(createprops,
zfs_prop_to_name(ZFS_PROP_CASE), &sense);
(void) nvlist_remove_all(createprops,
zfs_prop_to_name(ZFS_PROP_CASE));
}
/*
* If the zpl version requested is whacky or the file system
* or pool is version is too "young" to support normalization
* and the creator tried to set a value for one of the props,
* error out.
*/
if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) ||
(zplver >= ZPL_VERSION_FUID && !fuids_ok) ||
(zplver >= ZPL_VERSION_SA && !sa_ok) ||
(zplver < ZPL_VERSION_NORMALIZATION &&
(norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED ||
sense != ZFS_PROP_UNDEFINED)))
return (SET_ERROR(ENOTSUP));
/*
* Put the version in the zplprops
*/
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0);
if (norm == ZFS_PROP_UNDEFINED &&
(error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm)) != 0)
return (error);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0);
/*
* If we're normalizing, names must always be valid UTF-8 strings.
*/
if (norm)
u8 = 1;
if (u8 == ZFS_PROP_UNDEFINED &&
(error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8)) != 0)
return (error);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0);
if (sense == ZFS_PROP_UNDEFINED &&
(error = zfs_get_zplprop(os, ZFS_PROP_CASE, &sense)) != 0)
return (error);
VERIFY(nvlist_add_uint64(zplprops,
zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0);
if (is_ci)
*is_ci = (sense == ZFS_CASE_INSENSITIVE);
return (0);
}
static int
zfs_fill_zplprops(const char *dataset, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
boolean_t fuids_ok, sa_ok;
uint64_t zplver = ZPL_VERSION;
objset_t *os = NULL;
char parentname[ZFS_MAX_DATASET_NAME_LEN];
spa_t *spa;
uint64_t spa_vers;
int error;
zfs_get_parent(dataset, parentname, sizeof (parentname));
if ((error = spa_open(dataset, &spa, FTAG)) != 0)
return (error);
spa_vers = spa_version(spa);
spa_close(spa, FTAG);
zplver = zfs_zpl_version_map(spa_vers);
fuids_ok = (zplver >= ZPL_VERSION_FUID);
sa_ok = (zplver >= ZPL_VERSION_SA);
/*
* Open parent object set so we can inherit zplprop values.
*/
if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0)
return (error);
error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops,
zplprops, is_ci);
dmu_objset_rele(os, FTAG);
return (error);
}
static int
zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops,
nvlist_t *zplprops, boolean_t *is_ci)
{
boolean_t fuids_ok;
boolean_t sa_ok;
uint64_t zplver = ZPL_VERSION;
int error;
zplver = zfs_zpl_version_map(spa_vers);
fuids_ok = (zplver >= ZPL_VERSION_FUID);
sa_ok = (zplver >= ZPL_VERSION_SA);
error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok,
createprops, zplprops, is_ci);
return (error);
}
/*
* innvl: {
* "type" -> dmu_objset_type_t (int32)
* (optional) "props" -> { prop -> value }
* (optional) "hidden_args" -> { "wkeydata" -> value }
* raw uint8_t array of encryption wrapping key data (32 bytes)
* }
*
* outnvl: propname -> error code (int32)
*/
static const zfs_ioc_key_t zfs_keys_create[] = {
{"type", DATA_TYPE_INT32, 0},
{"props", DATA_TYPE_NVLIST, ZK_OPTIONAL},
{"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL},
};
static int
zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
int error = 0;
zfs_creat_t zct = { 0 };
nvlist_t *nvprops = NULL;
nvlist_t *hidden_args = NULL;
void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx);
dmu_objset_type_t type;
boolean_t is_insensitive = B_FALSE;
dsl_crypto_params_t *dcp = NULL;
type = (dmu_objset_type_t)fnvlist_lookup_int32(innvl, "type");
(void) nvlist_lookup_nvlist(innvl, "props", &nvprops);
(void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args);
switch (type) {
case DMU_OST_ZFS:
cbfunc = zfs_create_cb;
break;
case DMU_OST_ZVOL:
cbfunc = zvol_create_cb;
break;
default:
cbfunc = NULL;
break;
}
if (strchr(fsname, '@') ||
strchr(fsname, '%'))
return (SET_ERROR(EINVAL));
zct.zct_props = nvprops;
if (cbfunc == NULL)
return (SET_ERROR(EINVAL));
if (type == DMU_OST_ZVOL) {
uint64_t volsize, volblocksize;
if (nvprops == NULL)
return (SET_ERROR(EINVAL));
if (nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0)
return (SET_ERROR(EINVAL));
if ((error = nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
&volblocksize)) != 0 && error != ENOENT)
return (SET_ERROR(EINVAL));
if (error != 0)
volblocksize = zfs_prop_default_numeric(
ZFS_PROP_VOLBLOCKSIZE);
if ((error = zvol_check_volblocksize(fsname,
volblocksize)) != 0 ||
(error = zvol_check_volsize(volsize,
volblocksize)) != 0)
return (error);
} else if (type == DMU_OST_ZFS) {
int error;
/*
* We have to have normalization and
* case-folding flags correct when we do the
* file system creation, so go figure them out
* now.
*/
VERIFY(nvlist_alloc(&zct.zct_zplprops,
NV_UNIQUE_NAME, KM_SLEEP) == 0);
error = zfs_fill_zplprops(fsname, nvprops,
zct.zct_zplprops, &is_insensitive);
if (error != 0) {
nvlist_free(zct.zct_zplprops);
return (error);
}
}
error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, nvprops,
hidden_args, &dcp);
if (error != 0) {
nvlist_free(zct.zct_zplprops);
return (error);
}
error = dmu_objset_create(fsname, type,
is_insensitive ? DS_FLAG_CI_DATASET : 0, dcp, cbfunc, &zct);
nvlist_free(zct.zct_zplprops);
dsl_crypto_params_free(dcp, !!error);
/*
* It would be nice to do this atomically.
*/
if (error == 0) {
error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL,
nvprops, outnvl);
if (error != 0) {
spa_t *spa;
int error2;
/*
* Volumes will return EBUSY and cannot be destroyed
* until all asynchronous minor handling (e.g. from
* setting the volmode property) has completed. Wait for
* the spa_zvol_taskq to drain then retry.
*/
error2 = dsl_destroy_head(fsname);
while ((error2 == EBUSY) && (type == DMU_OST_ZVOL)) {
error2 = spa_open(fsname, &spa, FTAG);
if (error2 == 0) {
taskq_wait(spa->spa_zvol_taskq);
spa_close(spa, FTAG);
}
error2 = dsl_destroy_head(fsname);
}
}
}
return (error);
}
/*
* innvl: {
* "origin" -> name of origin snapshot
* (optional) "props" -> { prop -> value }
* (optional) "hidden_args" -> { "wkeydata" -> value }
* raw uint8_t array of encryption wrapping key data (32 bytes)
* }
*
* outputs:
* outnvl: propname -> error code (int32)
*/
static const zfs_ioc_key_t zfs_keys_clone[] = {
{"origin", DATA_TYPE_STRING, 0},
{"props", DATA_TYPE_NVLIST, ZK_OPTIONAL},
{"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL},
};
static int
zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
int error = 0;
nvlist_t *nvprops = NULL;
const char *origin_name;
origin_name = fnvlist_lookup_string(innvl, "origin");
(void) nvlist_lookup_nvlist(innvl, "props", &nvprops);
if (strchr(fsname, '@') ||
strchr(fsname, '%'))
return (SET_ERROR(EINVAL));
if (dataset_namecheck(origin_name, NULL, NULL) != 0)
return (SET_ERROR(EINVAL));
error = dmu_objset_clone(fsname, origin_name);
/*
* It would be nice to do this atomically.
*/
if (error == 0) {
error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL,
nvprops, outnvl);
if (error != 0)
(void) dsl_destroy_head(fsname);
}
return (error);
}
static const zfs_ioc_key_t zfs_keys_remap[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_remap(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
/* This IOCTL is no longer supported. */
return (0);
}
/*
* innvl: {
* "snaps" -> { snapshot1, snapshot2 }
* (optional) "props" -> { prop -> value (string) }
* }
*
* outnvl: snapshot -> error code (int32)
*/
static const zfs_ioc_key_t zfs_keys_snapshot[] = {
{"snaps", DATA_TYPE_NVLIST, 0},
{"props", DATA_TYPE_NVLIST, ZK_OPTIONAL},
};
static int
zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
nvlist_t *snaps;
nvlist_t *props = NULL;
int error, poollen;
nvpair_t *pair;
(void) nvlist_lookup_nvlist(innvl, "props", &props);
if (!nvlist_empty(props) &&
zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS))
return (SET_ERROR(ENOTSUP));
if ((error = zfs_check_userprops(props)) != 0)
return (error);
snaps = fnvlist_lookup_nvlist(innvl, "snaps");
poollen = strlen(poolname);
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
pair = nvlist_next_nvpair(snaps, pair)) {
const char *name = nvpair_name(pair);
char *cp = strchr(name, '@');
/*
* The snap name must contain an @, and the part after it must
* contain only valid characters.
*/
if (cp == NULL ||
zfs_component_namecheck(cp + 1, NULL, NULL) != 0)
return (SET_ERROR(EINVAL));
/*
* The snap must be in the specified pool.
*/
if (strncmp(name, poolname, poollen) != 0 ||
(name[poollen] != '/' && name[poollen] != '@'))
return (SET_ERROR(EXDEV));
/*
* Check for permission to set the properties on the fs.
*/
if (!nvlist_empty(props)) {
*cp = '\0';
error = zfs_secpolicy_write_perms(name,
ZFS_DELEG_PERM_USERPROP, CRED());
*cp = '@';
if (error != 0)
return (error);
}
/* This must be the only snap of this fs. */
for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair);
pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) {
if (strncmp(name, nvpair_name(pair2), cp - name + 1)
== 0) {
return (SET_ERROR(EXDEV));
}
}
}
error = dsl_dataset_snapshot(snaps, props, outnvl);
return (error);
}
/*
* innvl: "message" -> string
*/
static const zfs_ioc_key_t zfs_keys_log_history[] = {
{"message", DATA_TYPE_STRING, 0},
};
/* ARGSUSED */
static int
zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl)
{
const char *message;
char *poolname;
spa_t *spa;
int error;
/*
* The poolname in the ioctl is not set, we get it from the TSD,
* which was set at the end of the last successful ioctl that allows
* logging. The secpolicy func already checked that it is set.
* Only one log ioctl is allowed after each successful ioctl, so
* we clear the TSD here.
*/
poolname = tsd_get(zfs_allow_log_key);
if (poolname == NULL)
return (SET_ERROR(EINVAL));
(void) tsd_set(zfs_allow_log_key, NULL);
error = spa_open(poolname, &spa, FTAG);
kmem_strfree(poolname);
if (error != 0)
return (error);
message = fnvlist_lookup_string(innvl, "message");
if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
error = spa_history_log(spa, message);
spa_close(spa, FTAG);
return (error);
}
/*
* This ioctl is used to set the bootenv configuration on the current
* pool. This configuration is stored in the second padding area of the label,
* and it is used by the bootloader(s) to store the bootloader and/or system
* specific data.
* The data is stored as nvlist data stream, and is protected by
* an embedded checksum.
* The version can have two possible values:
* VB_RAW: nvlist should have key GRUB_ENVMAP, value DATA_TYPE_STRING.
* VB_NVLIST: nvlist with arbitrary <key, value> pairs.
*/
static const zfs_ioc_key_t zfs_keys_set_bootenv[] = {
{"version", DATA_TYPE_UINT64, 0},
{"<keys>", DATA_TYPE_ANY, ZK_OPTIONAL | ZK_WILDCARDLIST},
};
static int
zfs_ioc_set_bootenv(const char *name, nvlist_t *innvl, nvlist_t *outnvl)
{
int error;
spa_t *spa;
if ((error = spa_open(name, &spa, FTAG)) != 0)
return (error);
spa_vdev_state_enter(spa, SCL_ALL);
error = vdev_label_write_bootenv(spa->spa_root_vdev, innvl);
(void) spa_vdev_state_exit(spa, NULL, 0);
spa_close(spa, FTAG);
return (error);
}
static const zfs_ioc_key_t zfs_keys_get_bootenv[] = {
/* no nvl keys */
};
static int
zfs_ioc_get_bootenv(const char *name, nvlist_t *innvl, nvlist_t *outnvl)
{
spa_t *spa;
int error;
if ((error = spa_open(name, &spa, FTAG)) != 0)
return (error);
spa_vdev_state_enter(spa, SCL_ALL);
error = vdev_label_read_bootenv(spa->spa_root_vdev, outnvl);
(void) spa_vdev_state_exit(spa, NULL, 0);
spa_close(spa, FTAG);
return (error);
}
/*
* The dp_config_rwlock must not be held when calling this, because the
* unmount may need to write out data.
*
* This function is best-effort. Callers must deal gracefully if it
* remains mounted (or is remounted after this call).
*
* Returns 0 if the argument is not a snapshot, or it is not currently a
* filesystem, or we were able to unmount it. Returns error code otherwise.
*/
void
zfs_unmount_snap(const char *snapname)
{
if (strchr(snapname, '@') == NULL)
return;
(void) zfsctl_snapshot_unmount(snapname, MNT_FORCE);
}
/* ARGSUSED */
static int
zfs_unmount_snap_cb(const char *snapname, void *arg)
{
zfs_unmount_snap(snapname);
return (0);
}
/*
* When a clone is destroyed, its origin may also need to be destroyed,
* in which case it must be unmounted. This routine will do that unmount
* if necessary.
*/
void
zfs_destroy_unmount_origin(const char *fsname)
{
int error;
objset_t *os;
dsl_dataset_t *ds;
error = dmu_objset_hold(fsname, FTAG, &os);
if (error != 0)
return;
ds = dmu_objset_ds(os);
if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) {
char originname[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_name(ds->ds_prev, originname);
dmu_objset_rele(os, FTAG);
zfs_unmount_snap(originname);
} else {
dmu_objset_rele(os, FTAG);
}
}
/*
* innvl: {
* "snaps" -> { snapshot1, snapshot2 }
* (optional boolean) "defer"
* }
*
* outnvl: snapshot -> error code (int32)
*/
static const zfs_ioc_key_t zfs_keys_destroy_snaps[] = {
{"snaps", DATA_TYPE_NVLIST, 0},
{"defer", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
int poollen;
nvlist_t *snaps;
nvpair_t *pair;
boolean_t defer;
spa_t *spa;
snaps = fnvlist_lookup_nvlist(innvl, "snaps");
defer = nvlist_exists(innvl, "defer");
poollen = strlen(poolname);
for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL;
pair = nvlist_next_nvpair(snaps, pair)) {
const char *name = nvpair_name(pair);
/*
* The snap must be in the specified pool to prevent the
* invalid removal of zvol minors below.
*/
if (strncmp(name, poolname, poollen) != 0 ||
(name[poollen] != '/' && name[poollen] != '@'))
return (SET_ERROR(EXDEV));
zfs_unmount_snap(nvpair_name(pair));
if (spa_open(name, &spa, FTAG) == 0) {
zvol_remove_minors(spa, name, B_TRUE);
spa_close(spa, FTAG);
}
}
return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl));
}
/*
* Create bookmarks. The bookmark names are of the form <fs>#<bmark>.
* All bookmarks and snapshots must be in the same pool.
* dsl_bookmark_create_nvl_validate describes the nvlist schema in more detail.
*
* innvl: {
* new_bookmark1 -> existing_snapshot,
* new_bookmark2 -> existing_bookmark,
* }
*
* outnvl: bookmark -> error code (int32)
*
*/
static const zfs_ioc_key_t zfs_keys_bookmark[] = {
{"<bookmark>...", DATA_TYPE_STRING, ZK_WILDCARDLIST},
};
/* ARGSUSED */
static int
zfs_ioc_bookmark(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
return (dsl_bookmark_create(innvl, outnvl));
}
/*
* innvl: {
* property 1, property 2, ...
* }
*
* outnvl: {
* bookmark name 1 -> { property 1, property 2, ... },
* bookmark name 2 -> { property 1, property 2, ... }
* }
*
*/
static const zfs_ioc_key_t zfs_keys_get_bookmarks[] = {
{"<property>...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST | ZK_OPTIONAL},
};
static int
zfs_ioc_get_bookmarks(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
return (dsl_get_bookmarks(fsname, innvl, outnvl));
}
/*
* innvl is not used.
*
* outnvl: {
* property 1, property 2, ...
* }
*
*/
static const zfs_ioc_key_t zfs_keys_get_bookmark_props[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_get_bookmark_props(const char *bookmark, nvlist_t *innvl,
nvlist_t *outnvl)
{
char fsname[ZFS_MAX_DATASET_NAME_LEN];
char *bmname;
bmname = strchr(bookmark, '#');
if (bmname == NULL)
return (SET_ERROR(EINVAL));
bmname++;
(void) strlcpy(fsname, bookmark, sizeof (fsname));
*(strchr(fsname, '#')) = '\0';
return (dsl_get_bookmark_props(fsname, bmname, outnvl));
}
/*
* innvl: {
* bookmark name 1, bookmark name 2
* }
*
* outnvl: bookmark -> error code (int32)
*
*/
static const zfs_ioc_key_t zfs_keys_destroy_bookmarks[] = {
{"<bookmark>...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST},
};
static int
zfs_ioc_destroy_bookmarks(const char *poolname, nvlist_t *innvl,
nvlist_t *outnvl)
{
int error, poollen;
poollen = strlen(poolname);
for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL);
pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) {
const char *name = nvpair_name(pair);
const char *cp = strchr(name, '#');
/*
* The bookmark name must contain an #, and the part after it
* must contain only valid characters.
*/
if (cp == NULL ||
zfs_component_namecheck(cp + 1, NULL, NULL) != 0)
return (SET_ERROR(EINVAL));
/*
* The bookmark must be in the specified pool.
*/
if (strncmp(name, poolname, poollen) != 0 ||
(name[poollen] != '/' && name[poollen] != '#'))
return (SET_ERROR(EXDEV));
}
error = dsl_bookmark_destroy(innvl, outnvl);
return (error);
}
static const zfs_ioc_key_t zfs_keys_channel_program[] = {
{"program", DATA_TYPE_STRING, 0},
{"arg", DATA_TYPE_ANY, 0},
{"sync", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL},
{"instrlimit", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"memlimit", DATA_TYPE_UINT64, ZK_OPTIONAL},
};
static int
zfs_ioc_channel_program(const char *poolname, nvlist_t *innvl,
nvlist_t *outnvl)
{
char *program;
uint64_t instrlimit, memlimit;
boolean_t sync_flag;
nvpair_t *nvarg = NULL;
program = fnvlist_lookup_string(innvl, ZCP_ARG_PROGRAM);
if (0 != nvlist_lookup_boolean_value(innvl, ZCP_ARG_SYNC, &sync_flag)) {
sync_flag = B_TRUE;
}
if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_INSTRLIMIT, &instrlimit)) {
instrlimit = ZCP_DEFAULT_INSTRLIMIT;
}
if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_MEMLIMIT, &memlimit)) {
memlimit = ZCP_DEFAULT_MEMLIMIT;
}
nvarg = fnvlist_lookup_nvpair(innvl, ZCP_ARG_ARGLIST);
if (instrlimit == 0 || instrlimit > zfs_lua_max_instrlimit)
return (SET_ERROR(EINVAL));
if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
return (SET_ERROR(EINVAL));
return (zcp_eval(poolname, program, sync_flag, instrlimit, memlimit,
nvarg, outnvl));
}
/*
* innvl: unused
* outnvl: empty
*/
static const zfs_ioc_key_t zfs_keys_pool_checkpoint[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_pool_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
return (spa_checkpoint(poolname));
}
/*
* innvl: unused
* outnvl: empty
*/
static const zfs_ioc_key_t zfs_keys_pool_discard_checkpoint[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_pool_discard_checkpoint(const char *poolname, nvlist_t *innvl,
nvlist_t *outnvl)
{
return (spa_checkpoint_discard(poolname));
}
/*
* inputs:
* zc_name name of dataset to destroy
* zc_defer_destroy mark for deferred destroy
*
* outputs: none
*/
static int
zfs_ioc_destroy(zfs_cmd_t *zc)
{
objset_t *os;
dmu_objset_type_t ost;
int err;
err = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (err != 0)
return (err);
ost = dmu_objset_type(os);
dmu_objset_rele(os, FTAG);
if (ost == DMU_OST_ZFS)
zfs_unmount_snap(zc->zc_name);
if (strchr(zc->zc_name, '@')) {
err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy);
} else {
err = dsl_destroy_head(zc->zc_name);
if (err == EEXIST) {
/*
* It is possible that the given DS may have
* hidden child (%recv) datasets - "leftovers"
* resulting from the previously interrupted
* 'zfs receive'.
*
* 6 extra bytes for /%recv
*/
char namebuf[ZFS_MAX_DATASET_NAME_LEN + 6];
if (snprintf(namebuf, sizeof (namebuf), "%s/%s",
zc->zc_name, recv_clone_name) >=
sizeof (namebuf))
return (SET_ERROR(EINVAL));
/*
* Try to remove the hidden child (%recv) and after
* that try to remove the target dataset.
* If the hidden child (%recv) does not exist
* the original error (EEXIST) will be returned
*/
err = dsl_destroy_head(namebuf);
if (err == 0)
err = dsl_destroy_head(zc->zc_name);
else if (err == ENOENT)
err = SET_ERROR(EEXIST);
}
}
return (err);
}
/*
* innvl: {
* "initialize_command" -> POOL_INITIALIZE_{CANCEL|START|SUSPEND} (uint64)
* "initialize_vdevs": { -> guids to initialize (nvlist)
* "vdev_path_1": vdev_guid_1, (uint64),
* "vdev_path_2": vdev_guid_2, (uint64),
* ...
* },
* }
*
* outnvl: {
* "initialize_vdevs": { -> initialization errors (nvlist)
* "vdev_path_1": errno, see function body for possible errnos (uint64)
* "vdev_path_2": errno, ... (uint64)
* ...
* }
* }
*
* EINVAL is returned for an unknown commands or if any of the provided vdev
* guids have be specified with a type other than uint64.
*/
static const zfs_ioc_key_t zfs_keys_pool_initialize[] = {
{ZPOOL_INITIALIZE_COMMAND, DATA_TYPE_UINT64, 0},
{ZPOOL_INITIALIZE_VDEVS, DATA_TYPE_NVLIST, 0}
};
static int
zfs_ioc_pool_initialize(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
uint64_t cmd_type;
if (nvlist_lookup_uint64(innvl, ZPOOL_INITIALIZE_COMMAND,
&cmd_type) != 0) {
return (SET_ERROR(EINVAL));
}
if (!(cmd_type == POOL_INITIALIZE_CANCEL ||
cmd_type == POOL_INITIALIZE_START ||
cmd_type == POOL_INITIALIZE_SUSPEND)) {
return (SET_ERROR(EINVAL));
}
nvlist_t *vdev_guids;
if (nvlist_lookup_nvlist(innvl, ZPOOL_INITIALIZE_VDEVS,
&vdev_guids) != 0) {
return (SET_ERROR(EINVAL));
}
for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL);
pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) {
uint64_t vdev_guid;
if (nvpair_value_uint64(pair, &vdev_guid) != 0) {
return (SET_ERROR(EINVAL));
}
}
spa_t *spa;
int error = spa_open(poolname, &spa, FTAG);
if (error != 0)
return (error);
nvlist_t *vdev_errlist = fnvlist_alloc();
int total_errors = spa_vdev_initialize(spa, vdev_guids, cmd_type,
vdev_errlist);
if (fnvlist_size(vdev_errlist) > 0) {
fnvlist_add_nvlist(outnvl, ZPOOL_INITIALIZE_VDEVS,
vdev_errlist);
}
fnvlist_free(vdev_errlist);
spa_close(spa, FTAG);
return (total_errors > 0 ? SET_ERROR(EINVAL) : 0);
}
/*
* innvl: {
* "trim_command" -> POOL_TRIM_{CANCEL|START|SUSPEND} (uint64)
* "trim_vdevs": { -> guids to TRIM (nvlist)
* "vdev_path_1": vdev_guid_1, (uint64),
* "vdev_path_2": vdev_guid_2, (uint64),
* ...
* },
* "trim_rate" -> Target TRIM rate in bytes/sec.
* "trim_secure" -> Set to request a secure TRIM.
* }
*
* outnvl: {
* "trim_vdevs": { -> TRIM errors (nvlist)
* "vdev_path_1": errno, see function body for possible errnos (uint64)
* "vdev_path_2": errno, ... (uint64)
* ...
* }
* }
*
* EINVAL is returned for an unknown commands or if any of the provided vdev
* guids have be specified with a type other than uint64.
*/
static const zfs_ioc_key_t zfs_keys_pool_trim[] = {
{ZPOOL_TRIM_COMMAND, DATA_TYPE_UINT64, 0},
{ZPOOL_TRIM_VDEVS, DATA_TYPE_NVLIST, 0},
{ZPOOL_TRIM_RATE, DATA_TYPE_UINT64, ZK_OPTIONAL},
{ZPOOL_TRIM_SECURE, DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL},
};
static int
zfs_ioc_pool_trim(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl)
{
uint64_t cmd_type;
if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_COMMAND, &cmd_type) != 0)
return (SET_ERROR(EINVAL));
if (!(cmd_type == POOL_TRIM_CANCEL ||
cmd_type == POOL_TRIM_START ||
cmd_type == POOL_TRIM_SUSPEND)) {
return (SET_ERROR(EINVAL));
}
nvlist_t *vdev_guids;
if (nvlist_lookup_nvlist(innvl, ZPOOL_TRIM_VDEVS, &vdev_guids) != 0)
return (SET_ERROR(EINVAL));
for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL);
pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) {
uint64_t vdev_guid;
if (nvpair_value_uint64(pair, &vdev_guid) != 0) {
return (SET_ERROR(EINVAL));
}
}
/* Optional, defaults to maximum rate when not provided */
uint64_t rate;
if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_RATE, &rate) != 0)
rate = 0;
/* Optional, defaults to standard TRIM when not provided */
boolean_t secure;
if (nvlist_lookup_boolean_value(innvl, ZPOOL_TRIM_SECURE,
&secure) != 0) {
secure = B_FALSE;
}
spa_t *spa;
int error = spa_open(poolname, &spa, FTAG);
if (error != 0)
return (error);
nvlist_t *vdev_errlist = fnvlist_alloc();
int total_errors = spa_vdev_trim(spa, vdev_guids, cmd_type,
rate, !!zfs_trim_metaslab_skip, secure, vdev_errlist);
if (fnvlist_size(vdev_errlist) > 0)
fnvlist_add_nvlist(outnvl, ZPOOL_TRIM_VDEVS, vdev_errlist);
fnvlist_free(vdev_errlist);
spa_close(spa, FTAG);
return (total_errors > 0 ? SET_ERROR(EINVAL) : 0);
}
/*
* This ioctl waits for activity of a particular type to complete. If there is
* no activity of that type in progress, it returns immediately, and the
* returned value "waited" is false. If there is activity in progress, and no
* tag is passed in, the ioctl blocks until all activity of that type is
* complete, and then returns with "waited" set to true.
*
* If a tag is provided, it identifies a particular instance of an activity to
* wait for. Currently, this is only valid for use with 'initialize', because
* that is the only activity for which there can be multiple instances running
* concurrently. In the case of 'initialize', the tag corresponds to the guid of
* the vdev on which to wait.
*
* If a thread waiting in the ioctl receives a signal, the call will return
* immediately, and the return value will be EINTR.
*
* innvl: {
* "wait_activity" -> int32_t
* (optional) "wait_tag" -> uint64_t
* }
*
* outnvl: "waited" -> boolean_t
*/
static const zfs_ioc_key_t zfs_keys_pool_wait[] = {
{ZPOOL_WAIT_ACTIVITY, DATA_TYPE_INT32, 0},
{ZPOOL_WAIT_TAG, DATA_TYPE_UINT64, ZK_OPTIONAL},
};
static int
zfs_ioc_wait(const char *name, nvlist_t *innvl, nvlist_t *outnvl)
{
int32_t activity;
uint64_t tag;
boolean_t waited;
int error;
if (nvlist_lookup_int32(innvl, ZPOOL_WAIT_ACTIVITY, &activity) != 0)
return (EINVAL);
if (nvlist_lookup_uint64(innvl, ZPOOL_WAIT_TAG, &tag) == 0)
error = spa_wait_tag(name, activity, tag, &waited);
else
error = spa_wait(name, activity, &waited);
if (error == 0)
fnvlist_add_boolean_value(outnvl, ZPOOL_WAIT_WAITED, waited);
return (error);
}
/*
* This ioctl waits for activity of a particular type to complete. If there is
* no activity of that type in progress, it returns immediately, and the
* returned value "waited" is false. If there is activity in progress, and no
* tag is passed in, the ioctl blocks until all activity of that type is
* complete, and then returns with "waited" set to true.
*
* If a thread waiting in the ioctl receives a signal, the call will return
* immediately, and the return value will be EINTR.
*
* innvl: {
* "wait_activity" -> int32_t
* }
*
* outnvl: "waited" -> boolean_t
*/
static const zfs_ioc_key_t zfs_keys_fs_wait[] = {
{ZFS_WAIT_ACTIVITY, DATA_TYPE_INT32, 0},
};
static int
zfs_ioc_wait_fs(const char *name, nvlist_t *innvl, nvlist_t *outnvl)
{
int32_t activity;
boolean_t waited = B_FALSE;
int error;
dsl_pool_t *dp;
dsl_dir_t *dd;
dsl_dataset_t *ds;
if (nvlist_lookup_int32(innvl, ZFS_WAIT_ACTIVITY, &activity) != 0)
return (SET_ERROR(EINVAL));
if (activity >= ZFS_WAIT_NUM_ACTIVITIES || activity < 0)
return (SET_ERROR(EINVAL));
if ((error = dsl_pool_hold(name, FTAG, &dp)) != 0)
return (error);
if ((error = dsl_dataset_hold(dp, name, FTAG, &ds)) != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
dd = ds->ds_dir;
mutex_enter(&dd->dd_activity_lock);
dd->dd_activity_waiters++;
/*
* We get a long-hold here so that the dsl_dataset_t and dsl_dir_t
* aren't evicted while we're waiting. Normally this is prevented by
* holding the pool, but we can't do that while we're waiting since
* that would prevent TXGs from syncing out. Some of the functionality
* of long-holds (e.g. preventing deletion) is unnecessary for this
* case, since we would cancel the waiters before proceeding with a
* deletion. An alternative mechanism for keeping the dataset around
* could be developed but this is simpler.
*/
dsl_dataset_long_hold(ds, FTAG);
dsl_pool_rele(dp, FTAG);
error = dsl_dir_wait(dd, ds, activity, &waited);
dsl_dataset_long_rele(ds, FTAG);
dd->dd_activity_waiters--;
if (dd->dd_activity_waiters == 0)
cv_signal(&dd->dd_activity_cv);
mutex_exit(&dd->dd_activity_lock);
dsl_dataset_rele(ds, FTAG);
if (error == 0)
fnvlist_add_boolean_value(outnvl, ZFS_WAIT_WAITED, waited);
return (error);
}
/*
* fsname is name of dataset to rollback (to most recent snapshot)
*
* innvl may contain name of expected target snapshot
*
* outnvl: "target" -> name of most recent snapshot
* }
*/
static const zfs_ioc_key_t zfs_keys_rollback[] = {
{"target", DATA_TYPE_STRING, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_rollback(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
zfsvfs_t *zfsvfs;
zvol_state_handle_t *zv;
char *target = NULL;
int error;
(void) nvlist_lookup_string(innvl, "target", &target);
if (target != NULL) {
const char *cp = strchr(target, '@');
/*
* The snap name must contain an @, and the part after it must
* contain only valid characters.
*/
if (cp == NULL ||
zfs_component_namecheck(cp + 1, NULL, NULL) != 0)
return (SET_ERROR(EINVAL));
}
if (getzfsvfs(fsname, &zfsvfs) == 0) {
dsl_dataset_t *ds;
ds = dmu_objset_ds(zfsvfs->z_os);
error = zfs_suspend_fs(zfsvfs);
if (error == 0) {
int resume_err;
error = dsl_dataset_rollback(fsname, target, zfsvfs,
outnvl);
resume_err = zfs_resume_fs(zfsvfs, ds);
error = error ? error : resume_err;
}
zfs_vfs_rele(zfsvfs);
} else if ((zv = zvol_suspend(fsname)) != NULL) {
error = dsl_dataset_rollback(fsname, target, zvol_tag(zv),
outnvl);
zvol_resume(zv);
} else {
error = dsl_dataset_rollback(fsname, target, NULL, outnvl);
}
return (error);
}
static int
recursive_unmount(const char *fsname, void *arg)
{
const char *snapname = arg;
char *fullname;
fullname = kmem_asprintf("%s@%s", fsname, snapname);
zfs_unmount_snap(fullname);
kmem_strfree(fullname);
return (0);
}
/*
*
* snapname is the snapshot to redact.
* innvl: {
* "bookname" -> (string)
* shortname of the redaction bookmark to generate
* "snapnv" -> (nvlist, values ignored)
* snapshots to redact snapname with respect to
* }
*
* outnvl is unused
*/
/* ARGSUSED */
static const zfs_ioc_key_t zfs_keys_redact[] = {
{"bookname", DATA_TYPE_STRING, 0},
{"snapnv", DATA_TYPE_NVLIST, 0},
};
static int
zfs_ioc_redact(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl)
{
nvlist_t *redactnvl = NULL;
char *redactbook = NULL;
if (nvlist_lookup_nvlist(innvl, "snapnv", &redactnvl) != 0)
return (SET_ERROR(EINVAL));
if (fnvlist_num_pairs(redactnvl) == 0)
return (SET_ERROR(ENXIO));
if (nvlist_lookup_string(innvl, "bookname", &redactbook) != 0)
return (SET_ERROR(EINVAL));
return (dmu_redact_snap(snapname, redactnvl, redactbook));
}
/*
* inputs:
* zc_name old name of dataset
* zc_value new name of dataset
* zc_cookie recursive flag (only valid for snapshots)
*
* outputs: none
*/
static int
zfs_ioc_rename(zfs_cmd_t *zc)
{
objset_t *os;
dmu_objset_type_t ost;
boolean_t recursive = zc->zc_cookie & 1;
boolean_t nounmount = !!(zc->zc_cookie & 2);
char *at;
int err;
/* "zfs rename" from and to ...%recv datasets should both fail */
zc->zc_name[sizeof (zc->zc_name) - 1] = '\0';
zc->zc_value[sizeof (zc->zc_value) - 1] = '\0';
if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 ||
dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
strchr(zc->zc_name, '%') || strchr(zc->zc_value, '%'))
return (SET_ERROR(EINVAL));
err = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (err != 0)
return (err);
ost = dmu_objset_type(os);
dmu_objset_rele(os, FTAG);
at = strchr(zc->zc_name, '@');
if (at != NULL) {
/* snaps must be in same fs */
int error;
if (strncmp(zc->zc_name, zc->zc_value, at - zc->zc_name + 1))
return (SET_ERROR(EXDEV));
*at = '\0';
if (ost == DMU_OST_ZFS && !nounmount) {
error = dmu_objset_find(zc->zc_name,
recursive_unmount, at + 1,
recursive ? DS_FIND_CHILDREN : 0);
if (error != 0) {
*at = '@';
return (error);
}
}
error = dsl_dataset_rename_snapshot(zc->zc_name,
at + 1, strchr(zc->zc_value, '@') + 1, recursive);
*at = '@';
return (error);
} else {
return (dsl_dir_rename(zc->zc_name, zc->zc_value));
}
}
static int
zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr)
{
const char *propname = nvpair_name(pair);
boolean_t issnap = (strchr(dsname, '@') != NULL);
zfs_prop_t prop = zfs_name_to_prop(propname);
uint64_t intval, compval;
int err;
if (prop == ZPROP_INVAL) {
if (zfs_prop_user(propname)) {
if ((err = zfs_secpolicy_write_perms(dsname,
ZFS_DELEG_PERM_USERPROP, cr)))
return (err);
return (0);
}
if (!issnap && zfs_prop_userquota(propname)) {
const char *perm = NULL;
const char *uq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA];
const char *gq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA];
const char *uiq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA];
const char *giq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA];
const char *pq_prefix =
zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA];
const char *piq_prefix = zfs_userquota_prop_prefixes[\
ZFS_PROP_PROJECTOBJQUOTA];
if (strncmp(propname, uq_prefix,
strlen(uq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_USERQUOTA;
} else if (strncmp(propname, uiq_prefix,
strlen(uiq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_USEROBJQUOTA;
} else if (strncmp(propname, gq_prefix,
strlen(gq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_GROUPQUOTA;
} else if (strncmp(propname, giq_prefix,
strlen(giq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_GROUPOBJQUOTA;
} else if (strncmp(propname, pq_prefix,
strlen(pq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_PROJECTQUOTA;
} else if (strncmp(propname, piq_prefix,
strlen(piq_prefix)) == 0) {
perm = ZFS_DELEG_PERM_PROJECTOBJQUOTA;
} else {
/* {USER|GROUP|PROJECT}USED are read-only */
return (SET_ERROR(EINVAL));
}
if ((err = zfs_secpolicy_write_perms(dsname, perm, cr)))
return (err);
return (0);
}
return (SET_ERROR(EINVAL));
}
if (issnap)
return (SET_ERROR(EINVAL));
if (nvpair_type(pair) == DATA_TYPE_NVLIST) {
/*
* dsl_prop_get_all_impl() returns properties in this
* format.
*/
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(pair, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&pair) == 0);
}
/*
* Check that this value is valid for this pool version
*/
switch (prop) {
case ZFS_PROP_COMPRESSION:
/*
* If the user specified gzip compression, make sure
* the SPA supports it. We ignore any errors here since
* we'll catch them later.
*/
if (nvpair_value_uint64(pair, &intval) == 0) {
compval = ZIO_COMPRESS_ALGO(intval);
if (compval >= ZIO_COMPRESS_GZIP_1 &&
compval <= ZIO_COMPRESS_GZIP_9 &&
zfs_earlier_version(dsname,
SPA_VERSION_GZIP_COMPRESSION)) {
return (SET_ERROR(ENOTSUP));
}
if (compval == ZIO_COMPRESS_ZLE &&
zfs_earlier_version(dsname,
SPA_VERSION_ZLE_COMPRESSION))
return (SET_ERROR(ENOTSUP));
if (compval == ZIO_COMPRESS_LZ4) {
spa_t *spa;
if ((err = spa_open(dsname, &spa, FTAG)) != 0)
return (err);
if (!spa_feature_is_enabled(spa,
SPA_FEATURE_LZ4_COMPRESS)) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
spa_close(spa, FTAG);
}
if (compval == ZIO_COMPRESS_ZSTD) {
spa_t *spa;
if ((err = spa_open(dsname, &spa, FTAG)) != 0)
return (err);
if (!spa_feature_is_enabled(spa,
SPA_FEATURE_ZSTD_COMPRESS)) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
spa_close(spa, FTAG);
}
}
break;
case ZFS_PROP_COPIES:
if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS))
return (SET_ERROR(ENOTSUP));
break;
case ZFS_PROP_VOLBLOCKSIZE:
case ZFS_PROP_RECORDSIZE:
/* Record sizes above 128k need the feature to be enabled */
if (nvpair_value_uint64(pair, &intval) == 0 &&
intval > SPA_OLD_MAXBLOCKSIZE) {
spa_t *spa;
/*
* We don't allow setting the property above 1MB,
* unless the tunable has been changed.
*/
if (intval > zfs_max_recordsize ||
intval > SPA_MAXBLOCKSIZE)
return (SET_ERROR(ERANGE));
if ((err = spa_open(dsname, &spa, FTAG)) != 0)
return (err);
if (!spa_feature_is_enabled(spa,
SPA_FEATURE_LARGE_BLOCKS)) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
spa_close(spa, FTAG);
}
break;
case ZFS_PROP_DNODESIZE:
/* Dnode sizes above 512 need the feature to be enabled */
if (nvpair_value_uint64(pair, &intval) == 0 &&
intval != ZFS_DNSIZE_LEGACY) {
spa_t *spa;
if ((err = spa_open(dsname, &spa, FTAG)) != 0)
return (err);
if (!spa_feature_is_enabled(spa,
SPA_FEATURE_LARGE_DNODE)) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
spa_close(spa, FTAG);
}
break;
case ZFS_PROP_SPECIAL_SMALL_BLOCKS:
/*
* This property could require the allocation classes
* feature to be active for setting, however we allow
* it so that tests of settable properties succeed.
* The CLI will issue a warning in this case.
*/
break;
case ZFS_PROP_SHARESMB:
if (zpl_earlier_version(dsname, ZPL_VERSION_FUID))
return (SET_ERROR(ENOTSUP));
break;
case ZFS_PROP_ACLINHERIT:
if (nvpair_type(pair) == DATA_TYPE_UINT64 &&
nvpair_value_uint64(pair, &intval) == 0) {
if (intval == ZFS_ACL_PASSTHROUGH_X &&
zfs_earlier_version(dsname,
SPA_VERSION_PASSTHROUGH_X))
return (SET_ERROR(ENOTSUP));
}
break;
case ZFS_PROP_CHECKSUM:
case ZFS_PROP_DEDUP:
{
spa_feature_t feature;
spa_t *spa;
int err;
/* dedup feature version checks */
if (prop == ZFS_PROP_DEDUP &&
zfs_earlier_version(dsname, SPA_VERSION_DEDUP))
return (SET_ERROR(ENOTSUP));
if (nvpair_type(pair) == DATA_TYPE_UINT64 &&
nvpair_value_uint64(pair, &intval) == 0) {
/* check prop value is enabled in features */
feature = zio_checksum_to_feature(
intval & ZIO_CHECKSUM_MASK);
if (feature == SPA_FEATURE_NONE)
break;
if ((err = spa_open(dsname, &spa, FTAG)) != 0)
return (err);
if (!spa_feature_is_enabled(spa, feature)) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
spa_close(spa, FTAG);
}
break;
}
default:
break;
}
return (zfs_secpolicy_setprop(dsname, prop, pair, CRED()));
}
/*
* Removes properties from the given props list that fail permission checks
* needed to clear them and to restore them in case of a receive error. For each
* property, make sure we have both set and inherit permissions.
*
* Returns the first error encountered if any permission checks fail. If the
* caller provides a non-NULL errlist, it also gives the complete list of names
* of all the properties that failed a permission check along with the
* corresponding error numbers. The caller is responsible for freeing the
* returned errlist.
*
* If every property checks out successfully, zero is returned and the list
* pointed at by errlist is NULL.
*/
static int
zfs_check_clearable(const char *dataset, nvlist_t *props, nvlist_t **errlist)
{
zfs_cmd_t *zc;
nvpair_t *pair, *next_pair;
nvlist_t *errors;
int err, rv = 0;
if (props == NULL)
return (0);
VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0);
zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP);
(void) strlcpy(zc->zc_name, dataset, sizeof (zc->zc_name));
pair = nvlist_next_nvpair(props, NULL);
while (pair != NULL) {
next_pair = nvlist_next_nvpair(props, pair);
(void) strlcpy(zc->zc_value, nvpair_name(pair),
sizeof (zc->zc_value));
if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 ||
(err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) {
VERIFY(nvlist_remove_nvpair(props, pair) == 0);
VERIFY(nvlist_add_int32(errors,
zc->zc_value, err) == 0);
}
pair = next_pair;
}
kmem_free(zc, sizeof (zfs_cmd_t));
if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) {
nvlist_free(errors);
errors = NULL;
} else {
VERIFY(nvpair_value_int32(pair, &rv) == 0);
}
if (errlist == NULL)
nvlist_free(errors);
else
*errlist = errors;
return (rv);
}
static boolean_t
propval_equals(nvpair_t *p1, nvpair_t *p2)
{
if (nvpair_type(p1) == DATA_TYPE_NVLIST) {
/* dsl_prop_get_all_impl() format */
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(p1, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&p1) == 0);
}
if (nvpair_type(p2) == DATA_TYPE_NVLIST) {
nvlist_t *attrs;
VERIFY(nvpair_value_nvlist(p2, &attrs) == 0);
VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE,
&p2) == 0);
}
if (nvpair_type(p1) != nvpair_type(p2))
return (B_FALSE);
if (nvpair_type(p1) == DATA_TYPE_STRING) {
char *valstr1, *valstr2;
VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0);
VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0);
return (strcmp(valstr1, valstr2) == 0);
} else {
uint64_t intval1, intval2;
VERIFY(nvpair_value_uint64(p1, &intval1) == 0);
VERIFY(nvpair_value_uint64(p2, &intval2) == 0);
return (intval1 == intval2);
}
}
/*
* Remove properties from props if they are not going to change (as determined
* by comparison with origprops). Remove them from origprops as well, since we
* do not need to clear or restore properties that won't change.
*/
static void
props_reduce(nvlist_t *props, nvlist_t *origprops)
{
nvpair_t *pair, *next_pair;
if (origprops == NULL)
return; /* all props need to be received */
pair = nvlist_next_nvpair(props, NULL);
while (pair != NULL) {
const char *propname = nvpair_name(pair);
nvpair_t *match;
next_pair = nvlist_next_nvpair(props, pair);
if ((nvlist_lookup_nvpair(origprops, propname,
&match) != 0) || !propval_equals(pair, match))
goto next; /* need to set received value */
/* don't clear the existing received value */
(void) nvlist_remove_nvpair(origprops, match);
/* don't bother receiving the property */
(void) nvlist_remove_nvpair(props, pair);
next:
pair = next_pair;
}
}
/*
* Extract properties that cannot be set PRIOR to the receipt of a dataset.
* For example, refquota cannot be set until after the receipt of a dataset,
* because in replication streams, an older/earlier snapshot may exceed the
* refquota. We want to receive the older/earlier snapshot, but setting
* refquota pre-receipt will set the dsl's ACTUAL quota, which will prevent
* the older/earlier snapshot from being received (with EDQUOT).
*
* The ZFS test "zfs_receive_011_pos" demonstrates such a scenario.
*
* libzfs will need to be judicious handling errors encountered by props
* extracted by this function.
*/
static nvlist_t *
extract_delay_props(nvlist_t *props)
{
nvlist_t *delayprops;
nvpair_t *nvp, *tmp;
static const zfs_prop_t delayable[] = {
ZFS_PROP_REFQUOTA,
ZFS_PROP_KEYLOCATION,
0
};
int i;
VERIFY(nvlist_alloc(&delayprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
for (nvp = nvlist_next_nvpair(props, NULL); nvp != NULL;
nvp = nvlist_next_nvpair(props, nvp)) {
/*
* strcmp() is safe because zfs_prop_to_name() always returns
* a bounded string.
*/
for (i = 0; delayable[i] != 0; i++) {
if (strcmp(zfs_prop_to_name(delayable[i]),
nvpair_name(nvp)) == 0) {
break;
}
}
if (delayable[i] != 0) {
tmp = nvlist_prev_nvpair(props, nvp);
VERIFY(nvlist_add_nvpair(delayprops, nvp) == 0);
VERIFY(nvlist_remove_nvpair(props, nvp) == 0);
nvp = tmp;
}
}
if (nvlist_empty(delayprops)) {
nvlist_free(delayprops);
delayprops = NULL;
}
return (delayprops);
}
static void
zfs_allow_log_destroy(void *arg)
{
char *poolname = arg;
if (poolname != NULL)
kmem_strfree(poolname);
}
#ifdef ZFS_DEBUG
static boolean_t zfs_ioc_recv_inject_err;
#endif
/*
* nvlist 'errors' is always allocated. It will contain descriptions of
* encountered errors, if any. It's the callers responsibility to free.
*/
static int
zfs_ioc_recv_impl(char *tofs, char *tosnap, char *origin, nvlist_t *recvprops,
nvlist_t *localprops, nvlist_t *hidden_args, boolean_t force,
boolean_t resumable, int input_fd,
dmu_replay_record_t *begin_record, uint64_t *read_bytes,
uint64_t *errflags, nvlist_t **errors)
{
dmu_recv_cookie_t drc;
int error = 0;
int props_error = 0;
offset_t off, noff;
nvlist_t *local_delayprops = NULL;
nvlist_t *recv_delayprops = NULL;
nvlist_t *origprops = NULL; /* existing properties */
nvlist_t *origrecvd = NULL; /* existing received properties */
boolean_t first_recvd_props = B_FALSE;
boolean_t tofs_was_redacted;
zfs_file_t *input_fp;
*read_bytes = 0;
*errflags = 0;
*errors = fnvlist_alloc();
off = 0;
if ((error = zfs_file_get(input_fd, &input_fp)))
return (error);
noff = off = zfs_file_off(input_fp);
error = dmu_recv_begin(tofs, tosnap, begin_record, force,
resumable, localprops, hidden_args, origin, &drc, input_fp,
&off);
if (error != 0)
goto out;
tofs_was_redacted = dsl_get_redacted(drc.drc_ds);
/*
* Set properties before we receive the stream so that they are applied
* to the new data. Note that we must call dmu_recv_stream() if
* dmu_recv_begin() succeeds.
*/
if (recvprops != NULL && !drc.drc_newfs) {
if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >=
SPA_VERSION_RECVD_PROPS &&
!dsl_prop_get_hasrecvd(tofs))
first_recvd_props = B_TRUE;
/*
* If new received properties are supplied, they are to
* completely replace the existing received properties,
* so stash away the existing ones.
*/
if (dsl_prop_get_received(tofs, &origrecvd) == 0) {
nvlist_t *errlist = NULL;
/*
* Don't bother writing a property if its value won't
* change (and avoid the unnecessary security checks).
*
* The first receive after SPA_VERSION_RECVD_PROPS is a
* special case where we blow away all local properties
* regardless.
*/
if (!first_recvd_props)
props_reduce(recvprops, origrecvd);
if (zfs_check_clearable(tofs, origrecvd, &errlist) != 0)
(void) nvlist_merge(*errors, errlist, 0);
nvlist_free(errlist);
if (clear_received_props(tofs, origrecvd,
first_recvd_props ? NULL : recvprops) != 0)
*errflags |= ZPROP_ERR_NOCLEAR;
} else {
*errflags |= ZPROP_ERR_NOCLEAR;
}
}
/*
* Stash away existing properties so we can restore them on error unless
* we're doing the first receive after SPA_VERSION_RECVD_PROPS, in which
* case "origrecvd" will take care of that.
*/
if (localprops != NULL && !drc.drc_newfs && !first_recvd_props) {
objset_t *os;
if (dmu_objset_hold(tofs, FTAG, &os) == 0) {
if (dsl_prop_get_all(os, &origprops) != 0) {
*errflags |= ZPROP_ERR_NOCLEAR;
}
dmu_objset_rele(os, FTAG);
} else {
*errflags |= ZPROP_ERR_NOCLEAR;
}
}
if (recvprops != NULL) {
props_error = dsl_prop_set_hasrecvd(tofs);
if (props_error == 0) {
recv_delayprops = extract_delay_props(recvprops);
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED,
recvprops, *errors);
}
}
if (localprops != NULL) {
nvlist_t *oprops = fnvlist_alloc();
nvlist_t *xprops = fnvlist_alloc();
nvpair_t *nvp = NULL;
while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) {
if (nvpair_type(nvp) == DATA_TYPE_BOOLEAN) {
/* -x property */
const char *name = nvpair_name(nvp);
zfs_prop_t prop = zfs_name_to_prop(name);
if (prop != ZPROP_INVAL) {
if (!zfs_prop_inheritable(prop))
continue;
} else if (!zfs_prop_user(name))
continue;
fnvlist_add_boolean(xprops, name);
} else {
/* -o property=value */
fnvlist_add_nvpair(oprops, nvp);
}
}
local_delayprops = extract_delay_props(oprops);
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL,
oprops, *errors);
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED,
xprops, *errors);
nvlist_free(oprops);
nvlist_free(xprops);
}
error = dmu_recv_stream(&drc, &off);
if (error == 0) {
zfsvfs_t *zfsvfs = NULL;
zvol_state_handle_t *zv = NULL;
if (getzfsvfs(tofs, &zfsvfs) == 0) {
/* online recv */
dsl_dataset_t *ds;
int end_err;
boolean_t stream_is_redacted = DMU_GET_FEATUREFLAGS(
begin_record->drr_u.drr_begin.
drr_versioninfo) & DMU_BACKUP_FEATURE_REDACTED;
ds = dmu_objset_ds(zfsvfs->z_os);
error = zfs_suspend_fs(zfsvfs);
/*
* If the suspend fails, then the recv_end will
* likely also fail, and clean up after itself.
*/
end_err = dmu_recv_end(&drc, zfsvfs);
/*
* If the dataset was not redacted, but we received a
* redacted stream onto it, we need to unmount the
* dataset. Otherwise, resume the filesystem.
*/
if (error == 0 && !drc.drc_newfs &&
stream_is_redacted && !tofs_was_redacted) {
error = zfs_end_fs(zfsvfs, ds);
} else if (error == 0) {
error = zfs_resume_fs(zfsvfs, ds);
}
error = error ? error : end_err;
zfs_vfs_rele(zfsvfs);
} else if ((zv = zvol_suspend(tofs)) != NULL) {
error = dmu_recv_end(&drc, zvol_tag(zv));
zvol_resume(zv);
} else {
error = dmu_recv_end(&drc, NULL);
}
/* Set delayed properties now, after we're done receiving. */
if (recv_delayprops != NULL && error == 0) {
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED,
recv_delayprops, *errors);
}
if (local_delayprops != NULL && error == 0) {
(void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL,
local_delayprops, *errors);
}
}
/*
* Merge delayed props back in with initial props, in case
* we're DEBUG and zfs_ioc_recv_inject_err is set (which means
* we have to make sure clear_received_props() includes
* the delayed properties).
*
* Since zfs_ioc_recv_inject_err is only in DEBUG kernels,
* using ASSERT() will be just like a VERIFY.
*/
if (recv_delayprops != NULL) {
ASSERT(nvlist_merge(recvprops, recv_delayprops, 0) == 0);
nvlist_free(recv_delayprops);
}
if (local_delayprops != NULL) {
ASSERT(nvlist_merge(localprops, local_delayprops, 0) == 0);
nvlist_free(local_delayprops);
}
*read_bytes = off - noff;
#ifdef ZFS_DEBUG
if (zfs_ioc_recv_inject_err) {
zfs_ioc_recv_inject_err = B_FALSE;
error = 1;
}
#endif
/*
* On error, restore the original props.
*/
if (error != 0 && recvprops != NULL && !drc.drc_newfs) {
if (clear_received_props(tofs, recvprops, NULL) != 0) {
/*
* We failed to clear the received properties.
* Since we may have left a $recvd value on the
* system, we can't clear the $hasrecvd flag.
*/
*errflags |= ZPROP_ERR_NORESTORE;
} else if (first_recvd_props) {
dsl_prop_unset_hasrecvd(tofs);
}
if (origrecvd == NULL && !drc.drc_newfs) {
/* We failed to stash the original properties. */
*errflags |= ZPROP_ERR_NORESTORE;
}
/*
* dsl_props_set() will not convert RECEIVED to LOCAL on or
* after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL
* explicitly if we're restoring local properties cleared in the
* first new-style receive.
*/
if (origrecvd != NULL &&
zfs_set_prop_nvlist(tofs, (first_recvd_props ?
ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED),
origrecvd, NULL) != 0) {
/*
* We stashed the original properties but failed to
* restore them.
*/
*errflags |= ZPROP_ERR_NORESTORE;
}
}
if (error != 0 && localprops != NULL && !drc.drc_newfs &&
!first_recvd_props) {
nvlist_t *setprops;
nvlist_t *inheritprops;
nvpair_t *nvp;
if (origprops == NULL) {
/* We failed to stash the original properties. */
*errflags |= ZPROP_ERR_NORESTORE;
goto out;
}
/* Restore original props */
setprops = fnvlist_alloc();
inheritprops = fnvlist_alloc();
nvp = NULL;
while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) {
const char *name = nvpair_name(nvp);
const char *source;
nvlist_t *attrs;
if (!nvlist_exists(origprops, name)) {
/*
* Property was not present or was explicitly
* inherited before the receive, restore this.
*/
fnvlist_add_boolean(inheritprops, name);
continue;
}
attrs = fnvlist_lookup_nvlist(origprops, name);
source = fnvlist_lookup_string(attrs, ZPROP_SOURCE);
/* Skip received properties */
if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0)
continue;
if (strcmp(source, tofs) == 0) {
/* Property was locally set */
fnvlist_add_nvlist(setprops, name, attrs);
} else {
/* Property was implicitly inherited */
fnvlist_add_boolean(inheritprops, name);
}
}
if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, setprops,
NULL) != 0)
*errflags |= ZPROP_ERR_NORESTORE;
if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, inheritprops,
NULL) != 0)
*errflags |= ZPROP_ERR_NORESTORE;
nvlist_free(setprops);
nvlist_free(inheritprops);
}
out:
zfs_file_put(input_fd);
nvlist_free(origrecvd);
nvlist_free(origprops);
if (error == 0)
error = props_error;
return (error);
}
/*
* inputs:
* zc_name name of containing filesystem (unused)
* zc_nvlist_src{_size} nvlist of properties to apply
* zc_nvlist_conf{_size} nvlist of properties to exclude
* (DATA_TYPE_BOOLEAN) and override (everything else)
* zc_value name of snapshot to create
* zc_string name of clone origin (if DRR_FLAG_CLONE)
* zc_cookie file descriptor to recv from
* zc_begin_record the BEGIN record of the stream (not byteswapped)
* zc_guid force flag
*
* outputs:
* zc_cookie number of bytes read
* zc_obj zprop_errflags_t
* zc_nvlist_dst{_size} error for each unapplied received property
*/
static int
zfs_ioc_recv(zfs_cmd_t *zc)
{
dmu_replay_record_t begin_record;
nvlist_t *errors = NULL;
nvlist_t *recvdprops = NULL;
nvlist_t *localprops = NULL;
char *origin = NULL;
char *tosnap;
char tofs[ZFS_MAX_DATASET_NAME_LEN];
int error = 0;
if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 ||
strchr(zc->zc_value, '@') == NULL ||
strchr(zc->zc_value, '%'))
return (SET_ERROR(EINVAL));
(void) strlcpy(tofs, zc->zc_value, sizeof (tofs));
tosnap = strchr(tofs, '@');
*tosnap++ = '\0';
if (zc->zc_nvlist_src != 0 &&
(error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &recvdprops)) != 0)
return (error);
if (zc->zc_nvlist_conf != 0 &&
(error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size,
zc->zc_iflags, &localprops)) != 0)
return (error);
if (zc->zc_string[0])
origin = zc->zc_string;
begin_record.drr_type = DRR_BEGIN;
begin_record.drr_payloadlen = 0;
begin_record.drr_u.drr_begin = zc->zc_begin_record;
error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvdprops, localprops,
NULL, zc->zc_guid, B_FALSE, zc->zc_cookie, &begin_record,
&zc->zc_cookie, &zc->zc_obj, &errors);
nvlist_free(recvdprops);
nvlist_free(localprops);
/*
* Now that all props, initial and delayed, are set, report the prop
* errors to the caller.
*/
if (zc->zc_nvlist_dst_size != 0 && errors != NULL &&
(nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 ||
put_nvlist(zc, errors) != 0)) {
/*
* Caller made zc->zc_nvlist_dst less than the minimum expected
* size or supplied an invalid address.
*/
error = SET_ERROR(EINVAL);
}
nvlist_free(errors);
return (error);
}
/*
* innvl: {
* "snapname" -> full name of the snapshot to create
* (optional) "props" -> received properties to set (nvlist)
* (optional) "localprops" -> override and exclude properties (nvlist)
* (optional) "origin" -> name of clone origin (DRR_FLAG_CLONE)
* "begin_record" -> non-byteswapped dmu_replay_record_t
* "input_fd" -> file descriptor to read stream from (int32)
* (optional) "force" -> force flag (value ignored)
* (optional) "resumable" -> resumable flag (value ignored)
* (optional) "cleanup_fd" -> unused
* (optional) "action_handle" -> unused
* (optional) "hidden_args" -> { "wkeydata" -> value }
* }
*
* outnvl: {
* "read_bytes" -> number of bytes read
* "error_flags" -> zprop_errflags_t
* "errors" -> error for each unapplied received property (nvlist)
* }
*/
static const zfs_ioc_key_t zfs_keys_recv_new[] = {
{"snapname", DATA_TYPE_STRING, 0},
{"props", DATA_TYPE_NVLIST, ZK_OPTIONAL},
{"localprops", DATA_TYPE_NVLIST, ZK_OPTIONAL},
{"origin", DATA_TYPE_STRING, ZK_OPTIONAL},
{"begin_record", DATA_TYPE_BYTE_ARRAY, 0},
{"input_fd", DATA_TYPE_INT32, 0},
{"force", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"resumable", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL},
{"action_handle", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL},
};
static int
zfs_ioc_recv_new(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
{
dmu_replay_record_t *begin_record;
uint_t begin_record_size;
nvlist_t *errors = NULL;
nvlist_t *recvprops = NULL;
nvlist_t *localprops = NULL;
nvlist_t *hidden_args = NULL;
char *snapname;
char *origin = NULL;
char *tosnap;
char tofs[ZFS_MAX_DATASET_NAME_LEN];
boolean_t force;
boolean_t resumable;
uint64_t read_bytes = 0;
uint64_t errflags = 0;
int input_fd = -1;
int error;
snapname = fnvlist_lookup_string(innvl, "snapname");
if (dataset_namecheck(snapname, NULL, NULL) != 0 ||
strchr(snapname, '@') == NULL ||
strchr(snapname, '%'))
return (SET_ERROR(EINVAL));
(void) strlcpy(tofs, snapname, sizeof (tofs));
tosnap = strchr(tofs, '@');
*tosnap++ = '\0';
error = nvlist_lookup_string(innvl, "origin", &origin);
if (error && error != ENOENT)
return (error);
error = nvlist_lookup_byte_array(innvl, "begin_record",
(uchar_t **)&begin_record, &begin_record_size);
if (error != 0 || begin_record_size != sizeof (*begin_record))
return (SET_ERROR(EINVAL));
input_fd = fnvlist_lookup_int32(innvl, "input_fd");
force = nvlist_exists(innvl, "force");
resumable = nvlist_exists(innvl, "resumable");
/* we still use "props" here for backwards compatibility */
error = nvlist_lookup_nvlist(innvl, "props", &recvprops);
if (error && error != ENOENT)
return (error);
error = nvlist_lookup_nvlist(innvl, "localprops", &localprops);
if (error && error != ENOENT)
return (error);
error = nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args);
if (error && error != ENOENT)
return (error);
error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvprops, localprops,
hidden_args, force, resumable, input_fd, begin_record,
&read_bytes, &errflags, &errors);
fnvlist_add_uint64(outnvl, "read_bytes", read_bytes);
fnvlist_add_uint64(outnvl, "error_flags", errflags);
fnvlist_add_nvlist(outnvl, "errors", errors);
nvlist_free(errors);
nvlist_free(recvprops);
nvlist_free(localprops);
return (error);
}
typedef struct dump_bytes_io {
zfs_file_t *dbi_fp;
caddr_t dbi_buf;
int dbi_len;
int dbi_err;
} dump_bytes_io_t;
static void
dump_bytes_cb(void *arg)
{
dump_bytes_io_t *dbi = (dump_bytes_io_t *)arg;
zfs_file_t *fp;
caddr_t buf;
fp = dbi->dbi_fp;
buf = dbi->dbi_buf;
dbi->dbi_err = zfs_file_write(fp, buf, dbi->dbi_len, NULL);
}
static int
dump_bytes(objset_t *os, void *buf, int len, void *arg)
{
dump_bytes_io_t dbi;
dbi.dbi_fp = arg;
dbi.dbi_buf = buf;
dbi.dbi_len = len;
#if defined(HAVE_LARGE_STACKS)
dump_bytes_cb(&dbi);
#else
/*
* The vn_rdwr() call is performed in a taskq to ensure that there is
* always enough stack space to write safely to the target filesystem.
* The ZIO_TYPE_FREE threads are used because there can be a lot of
* them and they are used in vdev_file.c for a similar purpose.
*/
spa_taskq_dispatch_sync(dmu_objset_spa(os), ZIO_TYPE_FREE,
ZIO_TASKQ_ISSUE, dump_bytes_cb, &dbi, TQ_SLEEP);
#endif /* HAVE_LARGE_STACKS */
return (dbi.dbi_err);
}
/*
* inputs:
* zc_name name of snapshot to send
* zc_cookie file descriptor to send stream to
* zc_obj fromorigin flag (mutually exclusive with zc_fromobj)
* zc_sendobj objsetid of snapshot to send
* zc_fromobj objsetid of incremental fromsnap (may be zero)
* zc_guid if set, estimate size of stream only. zc_cookie is ignored.
* output size in zc_objset_type.
* zc_flags lzc_send_flags
*
* outputs:
* zc_objset_type estimated size, if zc_guid is set
*
* NOTE: This is no longer the preferred interface, any new functionality
* should be added to zfs_ioc_send_new() instead.
*/
static int
zfs_ioc_send(zfs_cmd_t *zc)
{
int error;
offset_t off;
boolean_t estimate = (zc->zc_guid != 0);
boolean_t embedok = (zc->zc_flags & 0x1);
boolean_t large_block_ok = (zc->zc_flags & 0x2);
boolean_t compressok = (zc->zc_flags & 0x4);
boolean_t rawok = (zc->zc_flags & 0x8);
boolean_t savedok = (zc->zc_flags & 0x10);
if (zc->zc_obj != 0) {
dsl_pool_t *dp;
dsl_dataset_t *tosnap;
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
if (dsl_dir_is_clone(tosnap->ds_dir))
zc->zc_fromobj =
dsl_dir_phys(tosnap->ds_dir)->dd_origin_obj;
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
}
if (estimate) {
dsl_pool_t *dp;
dsl_dataset_t *tosnap;
dsl_dataset_t *fromsnap = NULL;
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold_obj(dp, zc->zc_sendobj,
FTAG, &tosnap);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
if (zc->zc_fromobj != 0) {
error = dsl_dataset_hold_obj(dp, zc->zc_fromobj,
FTAG, &fromsnap);
if (error != 0) {
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
}
error = dmu_send_estimate_fast(tosnap, fromsnap, NULL,
compressok || rawok, savedok, &zc->zc_objset_type);
if (fromsnap != NULL)
dsl_dataset_rele(fromsnap, FTAG);
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
} else {
zfs_file_t *fp;
dmu_send_outparams_t out = {0};
if ((error = zfs_file_get(zc->zc_cookie, &fp)))
return (error);
off = zfs_file_off(fp);
out.dso_outfunc = dump_bytes;
out.dso_arg = fp;
out.dso_dryrun = B_FALSE;
error = dmu_send_obj(zc->zc_name, zc->zc_sendobj,
zc->zc_fromobj, embedok, large_block_ok, compressok,
rawok, savedok, zc->zc_cookie, &off, &out);
zfs_file_put(zc->zc_cookie);
}
return (error);
}
/*
* inputs:
* zc_name name of snapshot on which to report progress
* zc_cookie file descriptor of send stream
*
* outputs:
* zc_cookie number of bytes written in send stream thus far
* zc_objset_type logical size of data traversed by send thus far
*/
static int
zfs_ioc_send_progress(zfs_cmd_t *zc)
{
dsl_pool_t *dp;
dsl_dataset_t *ds;
dmu_sendstatus_t *dsp = NULL;
int error;
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
mutex_enter(&ds->ds_sendstream_lock);
/*
* Iterate over all the send streams currently active on this dataset.
* If there's one which matches the specified file descriptor _and_ the
* stream was started by the current process, return the progress of
* that stream.
*/
for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL;
dsp = list_next(&ds->ds_sendstreams, dsp)) {
if (dsp->dss_outfd == zc->zc_cookie &&
zfs_proc_is_caller(dsp->dss_proc))
break;
}
if (dsp != NULL) {
zc->zc_cookie = atomic_cas_64((volatile uint64_t *)dsp->dss_off,
0, 0);
/* This is the closest thing we have to atomic_read_64. */
zc->zc_objset_type = atomic_cas_64(&dsp->dss_blocks, 0, 0);
} else {
error = SET_ERROR(ENOENT);
}
mutex_exit(&ds->ds_sendstream_lock);
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
static int
zfs_ioc_inject_fault(zfs_cmd_t *zc)
{
int id, error;
error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id,
&zc->zc_inject_record);
if (error == 0)
zc->zc_guid = (uint64_t)id;
return (error);
}
static int
zfs_ioc_clear_fault(zfs_cmd_t *zc)
{
return (zio_clear_fault((int)zc->zc_guid));
}
static int
zfs_ioc_inject_list_next(zfs_cmd_t *zc)
{
int id = (int)zc->zc_guid;
int error;
error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name),
&zc->zc_inject_record);
zc->zc_guid = id;
return (error);
}
static int
zfs_ioc_error_log(zfs_cmd_t *zc)
{
spa_t *spa;
int error;
size_t count = (size_t)zc->zc_nvlist_dst_size;
if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0)
return (error);
error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst,
&count);
if (error == 0)
zc->zc_nvlist_dst_size = count;
else
zc->zc_nvlist_dst_size = spa_get_errlog_size(spa);
spa_close(spa, FTAG);
return (error);
}
static int
zfs_ioc_clear(zfs_cmd_t *zc)
{
spa_t *spa;
vdev_t *vd;
int error;
/*
* On zpool clear we also fix up missing slogs
*/
mutex_enter(&spa_namespace_lock);
spa = spa_lookup(zc->zc_name);
if (spa == NULL) {
mutex_exit(&spa_namespace_lock);
return (SET_ERROR(EIO));
}
if (spa_get_log_state(spa) == SPA_LOG_MISSING) {
/* we need to let spa_open/spa_load clear the chains */
spa_set_log_state(spa, SPA_LOG_CLEAR);
}
spa->spa_last_open_failed = 0;
mutex_exit(&spa_namespace_lock);
if (zc->zc_cookie & ZPOOL_NO_REWIND) {
error = spa_open(zc->zc_name, &spa, FTAG);
} else {
nvlist_t *policy;
nvlist_t *config = NULL;
if (zc->zc_nvlist_src == 0)
return (SET_ERROR(EINVAL));
if ((error = get_nvlist(zc->zc_nvlist_src,
zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) {
error = spa_open_rewind(zc->zc_name, &spa, FTAG,
policy, &config);
if (config != NULL) {
int err;
if ((err = put_nvlist(zc, config)) != 0)
error = err;
nvlist_free(config);
}
nvlist_free(policy);
}
}
if (error != 0)
return (error);
/*
* If multihost is enabled, resuming I/O is unsafe as another
* host may have imported the pool.
*/
if (spa_multihost(spa) && spa_suspended(spa))
return (SET_ERROR(EINVAL));
spa_vdev_state_enter(spa, SCL_NONE);
if (zc->zc_guid == 0) {
vd = NULL;
} else {
vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE);
if (vd == NULL) {
error = SET_ERROR(ENODEV);
(void) spa_vdev_state_exit(spa, NULL, error);
spa_close(spa, FTAG);
return (error);
}
}
vdev_clear(spa, vd);
(void) spa_vdev_state_exit(spa, spa_suspended(spa) ?
NULL : spa->spa_root_vdev, 0);
/*
* Resume any suspended I/Os.
*/
if (zio_resume(spa) != 0)
error = SET_ERROR(EIO);
spa_close(spa, FTAG);
return (error);
}
/*
* Reopen all the vdevs associated with the pool.
*
* innvl: {
* "scrub_restart" -> when true and scrub is running, allow to restart
* scrub as the side effect of the reopen (boolean).
* }
*
* outnvl is unused
*/
static const zfs_ioc_key_t zfs_keys_pool_reopen[] = {
{"scrub_restart", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_pool_reopen(const char *pool, nvlist_t *innvl, nvlist_t *outnvl)
{
spa_t *spa;
int error;
boolean_t rc, scrub_restart = B_TRUE;
if (innvl) {
error = nvlist_lookup_boolean_value(innvl,
"scrub_restart", &rc);
if (error == 0)
scrub_restart = rc;
}
error = spa_open(pool, &spa, FTAG);
if (error != 0)
return (error);
spa_vdev_state_enter(spa, SCL_NONE);
/*
* If the scrub_restart flag is B_FALSE and a scrub is already
* in progress then set spa_scrub_reopen flag to B_TRUE so that
* we don't restart the scrub as a side effect of the reopen.
* Otherwise, let vdev_open() decided if a resilver is required.
*/
spa->spa_scrub_reopen = (!scrub_restart &&
dsl_scan_scrubbing(spa->spa_dsl_pool));
vdev_reopen(spa->spa_root_vdev);
spa->spa_scrub_reopen = B_FALSE;
(void) spa_vdev_state_exit(spa, NULL, 0);
spa_close(spa, FTAG);
return (0);
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* zc_string name of conflicting snapshot, if there is one
*/
static int
zfs_ioc_promote(zfs_cmd_t *zc)
{
dsl_pool_t *dp;
dsl_dataset_t *ds, *ods;
char origin[ZFS_MAX_DATASET_NAME_LEN];
char *cp;
int error;
zc->zc_name[sizeof (zc->zc_name) - 1] = '\0';
if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 ||
strchr(zc->zc_name, '%'))
return (SET_ERROR(EINVAL));
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
if (!dsl_dir_is_clone(ds->ds_dir)) {
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
return (SET_ERROR(EINVAL));
}
error = dsl_dataset_hold_obj(dp,
dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &ods);
if (error != 0) {
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
dsl_dataset_name(ods, origin);
dsl_dataset_rele(ods, FTAG);
dsl_dataset_rele(ds, FTAG);
dsl_pool_rele(dp, FTAG);
/*
* We don't need to unmount *all* the origin fs's snapshots, but
* it's easier.
*/
cp = strchr(origin, '@');
if (cp)
*cp = '\0';
(void) dmu_objset_find(origin,
zfs_unmount_snap_cb, NULL, DS_FIND_SNAPSHOTS);
return (dsl_dataset_promote(zc->zc_name, zc->zc_string));
}
/*
* Retrieve a single {user|group|project}{used|quota}@... property.
*
* inputs:
* zc_name name of filesystem
* zc_objset_type zfs_userquota_prop_t
* zc_value domain name (eg. "S-1-234-567-89")
* zc_guid RID/UID/GID
*
* outputs:
* zc_cookie property value
*/
static int
zfs_ioc_userspace_one(zfs_cmd_t *zc)
{
zfsvfs_t *zfsvfs;
int error;
if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS)
return (SET_ERROR(EINVAL));
error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE);
if (error != 0)
return (error);
error = zfs_userspace_one(zfsvfs,
zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie);
zfsvfs_rele(zfsvfs, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_cookie zap cursor
* zc_objset_type zfs_userquota_prop_t
* zc_nvlist_dst[_size] buffer to fill (not really an nvlist)
*
* outputs:
* zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t)
* zc_cookie zap cursor
*/
static int
zfs_ioc_userspace_many(zfs_cmd_t *zc)
{
zfsvfs_t *zfsvfs;
int bufsize = zc->zc_nvlist_dst_size;
if (bufsize <= 0)
return (SET_ERROR(ENOMEM));
int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE);
if (error != 0)
return (error);
void *buf = vmem_alloc(bufsize, KM_SLEEP);
error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie,
buf, &zc->zc_nvlist_dst_size);
if (error == 0) {
error = xcopyout(buf,
(void *)(uintptr_t)zc->zc_nvlist_dst,
zc->zc_nvlist_dst_size);
}
vmem_free(buf, bufsize);
zfsvfs_rele(zfsvfs, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* none
*/
static int
zfs_ioc_userspace_upgrade(zfs_cmd_t *zc)
{
int error = 0;
zfsvfs_t *zfsvfs;
if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) {
if (!dmu_objset_userused_enabled(zfsvfs->z_os)) {
/*
* If userused is not enabled, it may be because the
* objset needs to be closed & reopened (to grow the
* objset_phys_t). Suspend/resume the fs will do that.
*/
dsl_dataset_t *ds, *newds;
ds = dmu_objset_ds(zfsvfs->z_os);
error = zfs_suspend_fs(zfsvfs);
if (error == 0) {
dmu_objset_refresh_ownership(ds, &newds,
B_TRUE, zfsvfs);
error = zfs_resume_fs(zfsvfs, newds);
}
}
if (error == 0) {
mutex_enter(&zfsvfs->z_os->os_upgrade_lock);
if (zfsvfs->z_os->os_upgrade_id == 0) {
/* clear potential error code and retry */
zfsvfs->z_os->os_upgrade_status = 0;
mutex_exit(&zfsvfs->z_os->os_upgrade_lock);
dsl_pool_config_enter(
dmu_objset_pool(zfsvfs->z_os), FTAG);
dmu_objset_userspace_upgrade(zfsvfs->z_os);
dsl_pool_config_exit(
dmu_objset_pool(zfsvfs->z_os), FTAG);
} else {
mutex_exit(&zfsvfs->z_os->os_upgrade_lock);
}
taskq_wait_id(zfsvfs->z_os->os_spa->spa_upgrade_taskq,
zfsvfs->z_os->os_upgrade_id);
error = zfsvfs->z_os->os_upgrade_status;
}
zfs_vfs_rele(zfsvfs);
} else {
objset_t *os;
/* XXX kind of reading contents without owning */
error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os);
if (error != 0)
return (error);
mutex_enter(&os->os_upgrade_lock);
if (os->os_upgrade_id == 0) {
/* clear potential error code and retry */
os->os_upgrade_status = 0;
mutex_exit(&os->os_upgrade_lock);
dmu_objset_userspace_upgrade(os);
} else {
mutex_exit(&os->os_upgrade_lock);
}
dsl_pool_rele(dmu_objset_pool(os), FTAG);
taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id);
error = os->os_upgrade_status;
dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT,
FTAG);
}
return (error);
}
/*
* inputs:
* zc_name name of filesystem
*
* outputs:
* none
*/
static int
zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc)
{
objset_t *os;
int error;
error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os);
if (error != 0)
return (error);
if (dmu_objset_userobjspace_upgradable(os) ||
dmu_objset_projectquota_upgradable(os)) {
mutex_enter(&os->os_upgrade_lock);
if (os->os_upgrade_id == 0) {
/* clear potential error code and retry */
os->os_upgrade_status = 0;
mutex_exit(&os->os_upgrade_lock);
dmu_objset_id_quota_upgrade(os);
} else {
mutex_exit(&os->os_upgrade_lock);
}
dsl_pool_rele(dmu_objset_pool(os), FTAG);
taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id);
error = os->os_upgrade_status;
} else {
dsl_pool_rele(dmu_objset_pool(os), FTAG);
}
dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, FTAG);
return (error);
}
static int
zfs_ioc_share(zfs_cmd_t *zc)
{
return (SET_ERROR(ENOSYS));
}
ace_t full_access[] = {
{(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0}
};
/*
* inputs:
* zc_name name of containing filesystem
* zc_obj object # beyond which we want next in-use object #
*
* outputs:
* zc_obj next in-use object #
*/
static int
zfs_ioc_next_obj(zfs_cmd_t *zc)
{
objset_t *os = NULL;
int error;
error = dmu_objset_hold(zc->zc_name, FTAG, &os);
if (error != 0)
return (error);
error = dmu_object_next(os, &zc->zc_obj, B_FALSE, 0);
dmu_objset_rele(os, FTAG);
return (error);
}
/*
* inputs:
* zc_name name of filesystem
* zc_value prefix name for snapshot
* zc_cleanup_fd cleanup-on-exit file descriptor for calling process
*
* outputs:
* zc_value short name of new snapshot
*/
static int
zfs_ioc_tmp_snapshot(zfs_cmd_t *zc)
{
char *snap_name;
char *hold_name;
int error;
minor_t minor;
error = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor);
if (error != 0)
return (error);
snap_name = kmem_asprintf("%s-%016llx", zc->zc_value,
(u_longlong_t)ddi_get_lbolt64());
hold_name = kmem_asprintf("%%%s", zc->zc_value);
error = dsl_dataset_snapshot_tmp(zc->zc_name, snap_name, minor,
hold_name);
if (error == 0)
(void) strlcpy(zc->zc_value, snap_name,
sizeof (zc->zc_value));
kmem_strfree(snap_name);
kmem_strfree(hold_name);
zfs_onexit_fd_rele(zc->zc_cleanup_fd);
return (error);
}
/*
* inputs:
* zc_name name of "to" snapshot
* zc_value name of "from" snapshot
* zc_cookie file descriptor to write diff data on
*
* outputs:
* dmu_diff_record_t's to the file descriptor
*/
static int
zfs_ioc_diff(zfs_cmd_t *zc)
{
zfs_file_t *fp;
offset_t off;
int error;
if ((error = zfs_file_get(zc->zc_cookie, &fp)))
return (error);
off = zfs_file_off(fp);
error = dmu_diff(zc->zc_name, zc->zc_value, fp, &off);
zfs_file_put(zc->zc_cookie);
return (error);
}
static int
zfs_ioc_smb_acl(zfs_cmd_t *zc)
{
return (SET_ERROR(ENOTSUP));
}
/*
* innvl: {
* "holds" -> { snapname -> holdname (string), ... }
* (optional) "cleanup_fd" -> fd (int32)
* }
*
* outnvl: {
* snapname -> error value (int32)
* ...
* }
*/
static const zfs_ioc_key_t zfs_keys_hold[] = {
{"holds", DATA_TYPE_NVLIST, 0},
{"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist)
{
nvpair_t *pair;
nvlist_t *holds;
int cleanup_fd = -1;
int error;
minor_t minor = 0;
holds = fnvlist_lookup_nvlist(args, "holds");
/* make sure the user didn't pass us any invalid (empty) tags */
for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL;
pair = nvlist_next_nvpair(holds, pair)) {
char *htag;
error = nvpair_value_string(pair, &htag);
if (error != 0)
return (SET_ERROR(error));
if (strlen(htag) == 0)
return (SET_ERROR(EINVAL));
}
if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) {
error = zfs_onexit_fd_hold(cleanup_fd, &minor);
if (error != 0)
return (SET_ERROR(error));
}
error = dsl_dataset_user_hold(holds, minor, errlist);
if (minor != 0)
zfs_onexit_fd_rele(cleanup_fd);
return (SET_ERROR(error));
}
/*
* innvl is not used.
*
* outnvl: {
* holdname -> time added (uint64 seconds since epoch)
* ...
* }
*/
static const zfs_ioc_key_t zfs_keys_get_holds[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_get_holds(const char *snapname, nvlist_t *args, nvlist_t *outnvl)
{
return (dsl_dataset_get_holds(snapname, outnvl));
}
/*
* innvl: {
* snapname -> { holdname, ... }
* ...
* }
*
* outnvl: {
* snapname -> error value (int32)
* ...
* }
*/
static const zfs_ioc_key_t zfs_keys_release[] = {
{"<snapname>...", DATA_TYPE_NVLIST, ZK_WILDCARDLIST},
};
/* ARGSUSED */
static int
zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist)
{
return (dsl_dataset_user_release(holds, errlist));
}
/*
* inputs:
* zc_guid flags (ZEVENT_NONBLOCK)
* zc_cleanup_fd zevent file descriptor
*
* outputs:
* zc_nvlist_dst next nvlist event
* zc_cookie dropped events since last get
*/
static int
zfs_ioc_events_next(zfs_cmd_t *zc)
{
zfs_zevent_t *ze;
nvlist_t *event = NULL;
minor_t minor;
uint64_t dropped = 0;
int error;
error = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze);
if (error != 0)
return (error);
do {
error = zfs_zevent_next(ze, &event,
&zc->zc_nvlist_dst_size, &dropped);
if (event != NULL) {
zc->zc_cookie = dropped;
error = put_nvlist(zc, event);
nvlist_free(event);
}
if (zc->zc_guid & ZEVENT_NONBLOCK)
break;
if ((error == 0) || (error != ENOENT))
break;
error = zfs_zevent_wait(ze);
if (error != 0)
break;
} while (1);
zfs_zevent_fd_rele(zc->zc_cleanup_fd);
return (error);
}
/*
* outputs:
* zc_cookie cleared events count
*/
static int
zfs_ioc_events_clear(zfs_cmd_t *zc)
{
int count;
zfs_zevent_drain_all(&count);
zc->zc_cookie = count;
return (0);
}
/*
* inputs:
* zc_guid eid | ZEVENT_SEEK_START | ZEVENT_SEEK_END
* zc_cleanup zevent file descriptor
*/
static int
zfs_ioc_events_seek(zfs_cmd_t *zc)
{
zfs_zevent_t *ze;
minor_t minor;
int error;
error = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze);
if (error != 0)
return (error);
error = zfs_zevent_seek(ze, zc->zc_guid);
zfs_zevent_fd_rele(zc->zc_cleanup_fd);
return (error);
}
/*
* inputs:
* zc_name name of later filesystem or snapshot
* zc_value full name of old snapshot or bookmark
*
* outputs:
* zc_cookie space in bytes
* zc_objset_type compressed space in bytes
* zc_perm_action uncompressed space in bytes
*/
static int
zfs_ioc_space_written(zfs_cmd_t *zc)
{
int error;
dsl_pool_t *dp;
dsl_dataset_t *new;
error = dsl_pool_hold(zc->zc_name, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &new);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
if (strchr(zc->zc_value, '#') != NULL) {
zfs_bookmark_phys_t bmp;
error = dsl_bookmark_lookup(dp, zc->zc_value,
new, &bmp);
if (error == 0) {
error = dsl_dataset_space_written_bookmark(&bmp, new,
&zc->zc_cookie,
&zc->zc_objset_type, &zc->zc_perm_action);
}
} else {
dsl_dataset_t *old;
error = dsl_dataset_hold(dp, zc->zc_value, FTAG, &old);
if (error == 0) {
error = dsl_dataset_space_written(old, new,
&zc->zc_cookie,
&zc->zc_objset_type, &zc->zc_perm_action);
dsl_dataset_rele(old, FTAG);
}
}
dsl_dataset_rele(new, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
/*
* innvl: {
* "firstsnap" -> snapshot name
* }
*
* outnvl: {
* "used" -> space in bytes
* "compressed" -> compressed space in bytes
* "uncompressed" -> uncompressed space in bytes
* }
*/
static const zfs_ioc_key_t zfs_keys_space_snaps[] = {
{"firstsnap", DATA_TYPE_STRING, 0},
};
static int
zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl, nvlist_t *outnvl)
{
int error;
dsl_pool_t *dp;
dsl_dataset_t *new, *old;
char *firstsnap;
uint64_t used, comp, uncomp;
firstsnap = fnvlist_lookup_string(innvl, "firstsnap");
error = dsl_pool_hold(lastsnap, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, lastsnap, FTAG, &new);
if (error == 0 && !new->ds_is_snapshot) {
dsl_dataset_rele(new, FTAG);
error = SET_ERROR(EINVAL);
}
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
error = dsl_dataset_hold(dp, firstsnap, FTAG, &old);
if (error == 0 && !old->ds_is_snapshot) {
dsl_dataset_rele(old, FTAG);
error = SET_ERROR(EINVAL);
}
if (error != 0) {
dsl_dataset_rele(new, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
error = dsl_dataset_space_wouldfree(old, new, &used, &comp, &uncomp);
dsl_dataset_rele(old, FTAG);
dsl_dataset_rele(new, FTAG);
dsl_pool_rele(dp, FTAG);
fnvlist_add_uint64(outnvl, "used", used);
fnvlist_add_uint64(outnvl, "compressed", comp);
fnvlist_add_uint64(outnvl, "uncompressed", uncomp);
return (error);
}
/*
* innvl: {
* "fd" -> file descriptor to write stream to (int32)
* (optional) "fromsnap" -> full snap name to send an incremental from
* (optional) "largeblockok" -> (value ignored)
* indicates that blocks > 128KB are permitted
* (optional) "embedok" -> (value ignored)
* presence indicates DRR_WRITE_EMBEDDED records are permitted
* (optional) "compressok" -> (value ignored)
* presence indicates compressed DRR_WRITE records are permitted
* (optional) "rawok" -> (value ignored)
* presence indicates raw encrypted records should be used.
* (optional) "savedok" -> (value ignored)
* presence indicates we should send a partially received snapshot
* (optional) "resume_object" and "resume_offset" -> (uint64)
* if present, resume send stream from specified object and offset.
* (optional) "redactbook" -> (string)
* if present, use this bookmark's redaction list to generate a redacted
* send stream
* }
*
* outnvl is unused
*/
static const zfs_ioc_key_t zfs_keys_send_new[] = {
{"fd", DATA_TYPE_INT32, 0},
{"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL},
{"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"savedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"redactbook", DATA_TYPE_STRING, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_send_new(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl)
{
int error;
offset_t off;
char *fromname = NULL;
int fd;
zfs_file_t *fp;
boolean_t largeblockok;
boolean_t embedok;
boolean_t compressok;
boolean_t rawok;
boolean_t savedok;
uint64_t resumeobj = 0;
uint64_t resumeoff = 0;
char *redactbook = NULL;
fd = fnvlist_lookup_int32(innvl, "fd");
(void) nvlist_lookup_string(innvl, "fromsnap", &fromname);
largeblockok = nvlist_exists(innvl, "largeblockok");
embedok = nvlist_exists(innvl, "embedok");
compressok = nvlist_exists(innvl, "compressok");
rawok = nvlist_exists(innvl, "rawok");
savedok = nvlist_exists(innvl, "savedok");
(void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj);
(void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff);
(void) nvlist_lookup_string(innvl, "redactbook", &redactbook);
if ((error = zfs_file_get(fd, &fp)))
return (error);
off = zfs_file_off(fp);
dmu_send_outparams_t out = {0};
out.dso_outfunc = dump_bytes;
out.dso_arg = fp;
out.dso_dryrun = B_FALSE;
error = dmu_send(snapname, fromname, embedok, largeblockok,
compressok, rawok, savedok, resumeobj, resumeoff,
redactbook, fd, &off, &out);
zfs_file_put(fd);
return (error);
}
/* ARGSUSED */
static int
send_space_sum(objset_t *os, void *buf, int len, void *arg)
{
uint64_t *size = arg;
*size += len;
return (0);
}
/*
* Determine approximately how large a zfs send stream will be -- the number
* of bytes that will be written to the fd supplied to zfs_ioc_send_new().
*
* innvl: {
* (optional) "from" -> full snap or bookmark name to send an incremental
* from
* (optional) "largeblockok" -> (value ignored)
* indicates that blocks > 128KB are permitted
* (optional) "embedok" -> (value ignored)
* presence indicates DRR_WRITE_EMBEDDED records are permitted
* (optional) "compressok" -> (value ignored)
* presence indicates compressed DRR_WRITE records are permitted
* (optional) "rawok" -> (value ignored)
* presence indicates raw encrypted records should be used.
* (optional) "resume_object" and "resume_offset" -> (uint64)
* if present, resume send stream from specified object and offset.
* (optional) "fd" -> file descriptor to use as a cookie for progress
* tracking (int32)
* }
*
* outnvl: {
* "space" -> bytes of space (uint64)
* }
*/
static const zfs_ioc_key_t zfs_keys_send_space[] = {
{"from", DATA_TYPE_STRING, ZK_OPTIONAL},
{"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL},
{"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
{"fd", DATA_TYPE_INT32, ZK_OPTIONAL},
{"redactbook", DATA_TYPE_STRING, ZK_OPTIONAL},
{"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"bytes", DATA_TYPE_UINT64, ZK_OPTIONAL},
};
static int
zfs_ioc_send_space(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl)
{
dsl_pool_t *dp;
dsl_dataset_t *tosnap;
dsl_dataset_t *fromsnap = NULL;
int error;
char *fromname = NULL;
char *redactlist_book = NULL;
boolean_t largeblockok;
boolean_t embedok;
boolean_t compressok;
boolean_t rawok;
boolean_t savedok;
uint64_t space = 0;
boolean_t full_estimate = B_FALSE;
uint64_t resumeobj = 0;
uint64_t resumeoff = 0;
uint64_t resume_bytes = 0;
int32_t fd = -1;
zfs_bookmark_phys_t zbm = {0};
error = dsl_pool_hold(snapname, FTAG, &dp);
if (error != 0)
return (error);
error = dsl_dataset_hold(dp, snapname, FTAG, &tosnap);
if (error != 0) {
dsl_pool_rele(dp, FTAG);
return (error);
}
(void) nvlist_lookup_int32(innvl, "fd", &fd);
largeblockok = nvlist_exists(innvl, "largeblockok");
embedok = nvlist_exists(innvl, "embedok");
compressok = nvlist_exists(innvl, "compressok");
rawok = nvlist_exists(innvl, "rawok");
savedok = nvlist_exists(innvl, "savedok");
boolean_t from = (nvlist_lookup_string(innvl, "from", &fromname) == 0);
boolean_t altbook = (nvlist_lookup_string(innvl, "redactbook",
&redactlist_book) == 0);
(void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj);
(void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff);
(void) nvlist_lookup_uint64(innvl, "bytes", &resume_bytes);
if (altbook) {
full_estimate = B_TRUE;
} else if (from) {
if (strchr(fromname, '#')) {
error = dsl_bookmark_lookup(dp, fromname, tosnap, &zbm);
/*
* dsl_bookmark_lookup() will fail with EXDEV if
* the from-bookmark and tosnap are at the same txg.
* However, it's valid to do a send (and therefore,
* a send estimate) from and to the same time point,
* if the bookmark is redacted (the incremental send
* can change what's redacted on the target). In
* this case, dsl_bookmark_lookup() fills in zbm
* but returns EXDEV. Ignore this error.
*/
if (error == EXDEV && zbm.zbm_redaction_obj != 0 &&
zbm.zbm_guid ==
dsl_dataset_phys(tosnap)->ds_guid)
error = 0;
if (error != 0) {
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
if (zbm.zbm_redaction_obj != 0 || !(zbm.zbm_flags &
ZBM_FLAG_HAS_FBN)) {
full_estimate = B_TRUE;
}
} else if (strchr(fromname, '@')) {
error = dsl_dataset_hold(dp, fromname, FTAG, &fromsnap);
if (error != 0) {
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
return (error);
}
if (!dsl_dataset_is_before(tosnap, fromsnap, 0)) {
full_estimate = B_TRUE;
dsl_dataset_rele(fromsnap, FTAG);
}
} else {
/*
* from is not properly formatted as a snapshot or
* bookmark
*/
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
return (SET_ERROR(EINVAL));
}
}
if (full_estimate) {
dmu_send_outparams_t out = {0};
offset_t off = 0;
out.dso_outfunc = send_space_sum;
out.dso_arg = &space;
out.dso_dryrun = B_TRUE;
/*
* We have to release these holds so dmu_send can take them. It
* will do all the error checking we need.
*/
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
error = dmu_send(snapname, fromname, embedok, largeblockok,
compressok, rawok, savedok, resumeobj, resumeoff,
redactlist_book, fd, &off, &out);
} else {
error = dmu_send_estimate_fast(tosnap, fromsnap,
(from && strchr(fromname, '#') != NULL ? &zbm : NULL),
compressok || rawok, savedok, &space);
space -= resume_bytes;
if (fromsnap != NULL)
dsl_dataset_rele(fromsnap, FTAG);
dsl_dataset_rele(tosnap, FTAG);
dsl_pool_rele(dp, FTAG);
}
fnvlist_add_uint64(outnvl, "space", space);
return (error);
}
/*
* Sync the currently open TXG to disk for the specified pool.
* This is somewhat similar to 'zfs_sync()'.
* For cases that do not result in error this ioctl will wait for
* the currently open TXG to commit before returning back to the caller.
*
* innvl: {
* "force" -> when true, force uberblock update even if there is no dirty data.
* In addition this will cause the vdev configuration to be written
* out including updating the zpool cache file. (boolean_t)
* }
*
* onvl is unused
*/
static const zfs_ioc_key_t zfs_keys_pool_sync[] = {
{"force", DATA_TYPE_BOOLEAN_VALUE, 0},
};
/* ARGSUSED */
static int
zfs_ioc_pool_sync(const char *pool, nvlist_t *innvl, nvlist_t *onvl)
{
int err;
boolean_t rc, force = B_FALSE;
spa_t *spa;
if ((err = spa_open(pool, &spa, FTAG)) != 0)
return (err);
if (innvl) {
err = nvlist_lookup_boolean_value(innvl, "force", &rc);
if (err == 0)
force = rc;
}
if (force) {
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_WRITER);
vdev_config_dirty(spa->spa_root_vdev);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
txg_wait_synced(spa_get_dsl(spa), 0);
spa_close(spa, FTAG);
return (0);
}
/*
* Load a user's wrapping key into the kernel.
* innvl: {
* "hidden_args" -> { "wkeydata" -> value }
* raw uint8_t array of encryption wrapping key data (32 bytes)
* (optional) "noop" -> (value ignored)
* presence indicated key should only be verified, not loaded
* }
*/
static const zfs_ioc_key_t zfs_keys_load_key[] = {
{"hidden_args", DATA_TYPE_NVLIST, 0},
{"noop", DATA_TYPE_BOOLEAN, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_load_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl)
{
int ret;
dsl_crypto_params_t *dcp = NULL;
nvlist_t *hidden_args;
boolean_t noop = nvlist_exists(innvl, "noop");
if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) {
ret = SET_ERROR(EINVAL);
goto error;
}
hidden_args = fnvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS);
ret = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
hidden_args, &dcp);
if (ret != 0)
goto error;
ret = spa_keystore_load_wkey(dsname, dcp, noop);
if (ret != 0)
goto error;
dsl_crypto_params_free(dcp, noop);
return (0);
error:
dsl_crypto_params_free(dcp, B_TRUE);
return (ret);
}
/*
* Unload a user's wrapping key from the kernel.
* Both innvl and outnvl are unused.
*/
static const zfs_ioc_key_t zfs_keys_unload_key[] = {
/* no nvl keys */
};
/* ARGSUSED */
static int
zfs_ioc_unload_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl)
{
int ret = 0;
if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) {
ret = (SET_ERROR(EINVAL));
goto out;
}
ret = spa_keystore_unload_wkey(dsname);
if (ret != 0)
goto out;
out:
return (ret);
}
/*
* Changes a user's wrapping key used to decrypt a dataset. The keyformat,
* keylocation, pbkdf2salt, and pbkdf2iters properties can also be specified
* here to change how the key is derived in userspace.
*
* innvl: {
* "hidden_args" (optional) -> { "wkeydata" -> value }
* raw uint8_t array of new encryption wrapping key data (32 bytes)
* "props" (optional) -> { prop -> value }
* }
*
* outnvl is unused
*/
static const zfs_ioc_key_t zfs_keys_change_key[] = {
{"crypt_cmd", DATA_TYPE_UINT64, ZK_OPTIONAL},
{"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL},
{"props", DATA_TYPE_NVLIST, ZK_OPTIONAL},
};
/* ARGSUSED */
static int
zfs_ioc_change_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl)
{
int ret;
uint64_t cmd = DCP_CMD_NONE;
dsl_crypto_params_t *dcp = NULL;
nvlist_t *args = NULL, *hidden_args = NULL;
if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) {
ret = (SET_ERROR(EINVAL));
goto error;
}
(void) nvlist_lookup_uint64(innvl, "crypt_cmd", &cmd);
(void) nvlist_lookup_nvlist(innvl, "props", &args);
(void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args);
ret = dsl_crypto_params_create_nvlist(cmd, args, hidden_args, &dcp);
if (ret != 0)
goto error;
ret = spa_keystore_change_key(dsname, dcp);
if (ret != 0)
goto error;
dsl_crypto_params_free(dcp, B_FALSE);
return (0);
error:
dsl_crypto_params_free(dcp, B_TRUE);
return (ret);
}
static zfs_ioc_vec_t zfs_ioc_vec[ZFS_IOC_LAST - ZFS_IOC_FIRST];
static void
zfs_ioctl_register_legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck,
boolean_t log_history, zfs_ioc_poolcheck_t pool_check)
{
zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST];
ASSERT3U(ioc, >=, ZFS_IOC_FIRST);
ASSERT3U(ioc, <, ZFS_IOC_LAST);
ASSERT3P(vec->zvec_legacy_func, ==, NULL);
ASSERT3P(vec->zvec_func, ==, NULL);
vec->zvec_legacy_func = func;
vec->zvec_secpolicy = secpolicy;
vec->zvec_namecheck = namecheck;
vec->zvec_allow_log = log_history;
vec->zvec_pool_check = pool_check;
}
/*
* See the block comment at the beginning of this file for details on
* each argument to this function.
*/
void
zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func,
zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck,
zfs_ioc_poolcheck_t pool_check, boolean_t smush_outnvlist,
boolean_t allow_log, const zfs_ioc_key_t *nvl_keys, size_t num_keys)
{
zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST];
ASSERT3U(ioc, >=, ZFS_IOC_FIRST);
ASSERT3U(ioc, <, ZFS_IOC_LAST);
ASSERT3P(vec->zvec_legacy_func, ==, NULL);
ASSERT3P(vec->zvec_func, ==, NULL);
/* if we are logging, the name must be valid */
ASSERT(!allow_log || namecheck != NO_NAME);
vec->zvec_name = name;
vec->zvec_func = func;
vec->zvec_secpolicy = secpolicy;
vec->zvec_namecheck = namecheck;
vec->zvec_pool_check = pool_check;
vec->zvec_smush_outnvlist = smush_outnvlist;
vec->zvec_allow_log = allow_log;
vec->zvec_nvl_keys = nvl_keys;
vec->zvec_nvl_key_count = num_keys;
}
static void
zfs_ioctl_register_pool(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
zfs_secpolicy_func_t *secpolicy, boolean_t log_history,
zfs_ioc_poolcheck_t pool_check)
{
zfs_ioctl_register_legacy(ioc, func, secpolicy,
POOL_NAME, log_history, pool_check);
}
void
zfs_ioctl_register_dataset_nolog(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
zfs_secpolicy_func_t *secpolicy, zfs_ioc_poolcheck_t pool_check)
{
zfs_ioctl_register_legacy(ioc, func, secpolicy,
DATASET_NAME, B_FALSE, pool_check);
}
static void
zfs_ioctl_register_pool_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func)
{
zfs_ioctl_register_legacy(ioc, func, zfs_secpolicy_config,
POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
}
static void
zfs_ioctl_register_pool_meta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
zfs_secpolicy_func_t *secpolicy)
{
zfs_ioctl_register_legacy(ioc, func, secpolicy,
NO_NAME, B_FALSE, POOL_CHECK_NONE);
}
static void
zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc,
zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy)
{
zfs_ioctl_register_legacy(ioc, func, secpolicy,
DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED);
}
static void
zfs_ioctl_register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func)
{
zfs_ioctl_register_dataset_read_secpolicy(ioc, func,
zfs_secpolicy_read);
}
static void
zfs_ioctl_register_dataset_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func,
zfs_secpolicy_func_t *secpolicy)
{
zfs_ioctl_register_legacy(ioc, func, secpolicy,
DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
}
static void
zfs_ioctl_init(void)
{
zfs_ioctl_register("snapshot", ZFS_IOC_SNAPSHOT,
zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_snapshot, ARRAY_SIZE(zfs_keys_snapshot));
zfs_ioctl_register("log_history", ZFS_IOC_LOG_HISTORY,
zfs_ioc_log_history, zfs_secpolicy_log_history, NO_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE,
zfs_keys_log_history, ARRAY_SIZE(zfs_keys_log_history));
zfs_ioctl_register("space_snaps", ZFS_IOC_SPACE_SNAPS,
zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE,
zfs_keys_space_snaps, ARRAY_SIZE(zfs_keys_space_snaps));
zfs_ioctl_register("send", ZFS_IOC_SEND_NEW,
zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE,
zfs_keys_send_new, ARRAY_SIZE(zfs_keys_send_new));
zfs_ioctl_register("send_space", ZFS_IOC_SEND_SPACE,
zfs_ioc_send_space, zfs_secpolicy_read, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE,
zfs_keys_send_space, ARRAY_SIZE(zfs_keys_send_space));
zfs_ioctl_register("create", ZFS_IOC_CREATE,
zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_create, ARRAY_SIZE(zfs_keys_create));
zfs_ioctl_register("clone", ZFS_IOC_CLONE,
zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_clone, ARRAY_SIZE(zfs_keys_clone));
zfs_ioctl_register("remap", ZFS_IOC_REMAP,
zfs_ioc_remap, zfs_secpolicy_none, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE,
zfs_keys_remap, ARRAY_SIZE(zfs_keys_remap));
zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS,
zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_destroy_snaps, ARRAY_SIZE(zfs_keys_destroy_snaps));
zfs_ioctl_register("hold", ZFS_IOC_HOLD,
zfs_ioc_hold, zfs_secpolicy_hold, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_hold, ARRAY_SIZE(zfs_keys_hold));
zfs_ioctl_register("release", ZFS_IOC_RELEASE,
zfs_ioc_release, zfs_secpolicy_release, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_release, ARRAY_SIZE(zfs_keys_release));
zfs_ioctl_register("get_holds", ZFS_IOC_GET_HOLDS,
zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE,
zfs_keys_get_holds, ARRAY_SIZE(zfs_keys_get_holds));
zfs_ioctl_register("rollback", ZFS_IOC_ROLLBACK,
zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE,
zfs_keys_rollback, ARRAY_SIZE(zfs_keys_rollback));
zfs_ioctl_register("bookmark", ZFS_IOC_BOOKMARK,
zfs_ioc_bookmark, zfs_secpolicy_bookmark, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_bookmark, ARRAY_SIZE(zfs_keys_bookmark));
zfs_ioctl_register("get_bookmarks", ZFS_IOC_GET_BOOKMARKS,
zfs_ioc_get_bookmarks, zfs_secpolicy_read, DATASET_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE,
zfs_keys_get_bookmarks, ARRAY_SIZE(zfs_keys_get_bookmarks));
zfs_ioctl_register("get_bookmark_props", ZFS_IOC_GET_BOOKMARK_PROPS,
zfs_ioc_get_bookmark_props, zfs_secpolicy_read, ENTITY_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_bookmark_props,
ARRAY_SIZE(zfs_keys_get_bookmark_props));
zfs_ioctl_register("destroy_bookmarks", ZFS_IOC_DESTROY_BOOKMARKS,
zfs_ioc_destroy_bookmarks, zfs_secpolicy_destroy_bookmarks,
POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_destroy_bookmarks,
ARRAY_SIZE(zfs_keys_destroy_bookmarks));
zfs_ioctl_register("receive", ZFS_IOC_RECV_NEW,
zfs_ioc_recv_new, zfs_secpolicy_recv_new, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_recv_new, ARRAY_SIZE(zfs_keys_recv_new));
zfs_ioctl_register("load-key", ZFS_IOC_LOAD_KEY,
zfs_ioc_load_key, zfs_secpolicy_load_key,
DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE,
zfs_keys_load_key, ARRAY_SIZE(zfs_keys_load_key));
zfs_ioctl_register("unload-key", ZFS_IOC_UNLOAD_KEY,
zfs_ioc_unload_key, zfs_secpolicy_load_key,
DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE,
zfs_keys_unload_key, ARRAY_SIZE(zfs_keys_unload_key));
zfs_ioctl_register("change-key", ZFS_IOC_CHANGE_KEY,
zfs_ioc_change_key, zfs_secpolicy_change_key,
DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY,
B_TRUE, B_TRUE, zfs_keys_change_key,
ARRAY_SIZE(zfs_keys_change_key));
zfs_ioctl_register("sync", ZFS_IOC_POOL_SYNC,
zfs_ioc_pool_sync, zfs_secpolicy_none, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE,
zfs_keys_pool_sync, ARRAY_SIZE(zfs_keys_pool_sync));
zfs_ioctl_register("reopen", ZFS_IOC_POOL_REOPEN, zfs_ioc_pool_reopen,
zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED, B_TRUE,
B_TRUE, zfs_keys_pool_reopen, ARRAY_SIZE(zfs_keys_pool_reopen));
zfs_ioctl_register("channel_program", ZFS_IOC_CHANNEL_PROGRAM,
zfs_ioc_channel_program, zfs_secpolicy_config,
POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE,
B_TRUE, zfs_keys_channel_program,
ARRAY_SIZE(zfs_keys_channel_program));
zfs_ioctl_register("redact", ZFS_IOC_REDACT,
zfs_ioc_redact, zfs_secpolicy_config, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_redact, ARRAY_SIZE(zfs_keys_redact));
zfs_ioctl_register("zpool_checkpoint", ZFS_IOC_POOL_CHECKPOINT,
zfs_ioc_pool_checkpoint, zfs_secpolicy_config, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_pool_checkpoint, ARRAY_SIZE(zfs_keys_pool_checkpoint));
zfs_ioctl_register("zpool_discard_checkpoint",
ZFS_IOC_POOL_DISCARD_CHECKPOINT, zfs_ioc_pool_discard_checkpoint,
zfs_secpolicy_config, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_pool_discard_checkpoint,
ARRAY_SIZE(zfs_keys_pool_discard_checkpoint));
zfs_ioctl_register("initialize", ZFS_IOC_POOL_INITIALIZE,
zfs_ioc_pool_initialize, zfs_secpolicy_config, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_pool_initialize, ARRAY_SIZE(zfs_keys_pool_initialize));
zfs_ioctl_register("trim", ZFS_IOC_POOL_TRIM,
zfs_ioc_pool_trim, zfs_secpolicy_config, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE,
zfs_keys_pool_trim, ARRAY_SIZE(zfs_keys_pool_trim));
zfs_ioctl_register("wait", ZFS_IOC_WAIT,
zfs_ioc_wait, zfs_secpolicy_none, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE,
zfs_keys_pool_wait, ARRAY_SIZE(zfs_keys_pool_wait));
zfs_ioctl_register("wait_fs", ZFS_IOC_WAIT_FS,
zfs_ioc_wait_fs, zfs_secpolicy_none, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE,
zfs_keys_fs_wait, ARRAY_SIZE(zfs_keys_fs_wait));
zfs_ioctl_register("set_bootenv", ZFS_IOC_SET_BOOTENV,
zfs_ioc_set_bootenv, zfs_secpolicy_config, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE,
zfs_keys_set_bootenv, ARRAY_SIZE(zfs_keys_set_bootenv));
zfs_ioctl_register("get_bootenv", ZFS_IOC_GET_BOOTENV,
zfs_ioc_get_bootenv, zfs_secpolicy_none, POOL_NAME,
POOL_CHECK_SUSPENDED, B_FALSE, B_TRUE,
zfs_keys_get_bootenv, ARRAY_SIZE(zfs_keys_get_bootenv));
/* IOCTLS that use the legacy function signature */
zfs_ioctl_register_legacy(ZFS_IOC_POOL_FREEZE, zfs_ioc_pool_freeze,
zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY);
zfs_ioctl_register_pool(ZFS_IOC_POOL_CREATE, zfs_ioc_pool_create,
zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE);
zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SCAN,
zfs_ioc_pool_scan);
zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_UPGRADE,
zfs_ioc_pool_upgrade);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ADD,
zfs_ioc_vdev_add);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_REMOVE,
zfs_ioc_vdev_remove);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SET_STATE,
zfs_ioc_vdev_set_state);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ATTACH,
zfs_ioc_vdev_attach);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_DETACH,
zfs_ioc_vdev_detach);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETPATH,
zfs_ioc_vdev_setpath);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETFRU,
zfs_ioc_vdev_setfru);
zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SET_PROPS,
zfs_ioc_pool_set_props);
zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SPLIT,
zfs_ioc_vdev_split);
zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_REGUID,
zfs_ioc_pool_reguid);
zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_CONFIGS,
zfs_ioc_pool_configs, zfs_secpolicy_none);
zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_TRYIMPORT,
zfs_ioc_pool_tryimport, zfs_secpolicy_config);
zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_FAULT,
zfs_ioc_inject_fault, zfs_secpolicy_inject);
zfs_ioctl_register_pool_meta(ZFS_IOC_CLEAR_FAULT,
zfs_ioc_clear_fault, zfs_secpolicy_inject);
zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_LIST_NEXT,
zfs_ioc_inject_list_next, zfs_secpolicy_inject);
/*
* pool destroy, and export don't log the history as part of
* zfsdev_ioctl, but rather zfs_ioc_pool_export
* does the logging of those commands.
*/
zfs_ioctl_register_pool(ZFS_IOC_POOL_DESTROY, zfs_ioc_pool_destroy,
zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED);
zfs_ioctl_register_pool(ZFS_IOC_POOL_EXPORT, zfs_ioc_pool_export,
zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED);
zfs_ioctl_register_pool(ZFS_IOC_POOL_STATS, zfs_ioc_pool_stats,
zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE);
zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_PROPS, zfs_ioc_pool_get_props,
zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE);
zfs_ioctl_register_pool(ZFS_IOC_ERROR_LOG, zfs_ioc_error_log,
zfs_secpolicy_inject, B_FALSE, POOL_CHECK_SUSPENDED);
zfs_ioctl_register_pool(ZFS_IOC_DSOBJ_TO_DSNAME,
zfs_ioc_dsobj_to_dsname,
zfs_secpolicy_diff, B_FALSE, POOL_CHECK_SUSPENDED);
zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_HISTORY,
zfs_ioc_pool_get_history,
zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED);
zfs_ioctl_register_pool(ZFS_IOC_POOL_IMPORT, zfs_ioc_pool_import,
zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE);
zfs_ioctl_register_pool(ZFS_IOC_CLEAR, zfs_ioc_clear,
zfs_secpolicy_config, B_TRUE, POOL_CHECK_READONLY);
zfs_ioctl_register_dataset_read(ZFS_IOC_SPACE_WRITTEN,
zfs_ioc_space_written);
zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_RECVD_PROPS,
zfs_ioc_objset_recvd_props);
zfs_ioctl_register_dataset_read(ZFS_IOC_NEXT_OBJ,
zfs_ioc_next_obj);
zfs_ioctl_register_dataset_read(ZFS_IOC_GET_FSACL,
zfs_ioc_get_fsacl);
zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_STATS,
zfs_ioc_objset_stats);
zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_ZPLPROPS,
zfs_ioc_objset_zplprops);
zfs_ioctl_register_dataset_read(ZFS_IOC_DATASET_LIST_NEXT,
zfs_ioc_dataset_list_next);
zfs_ioctl_register_dataset_read(ZFS_IOC_SNAPSHOT_LIST_NEXT,
zfs_ioc_snapshot_list_next);
zfs_ioctl_register_dataset_read(ZFS_IOC_SEND_PROGRESS,
zfs_ioc_send_progress);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_DIFF,
zfs_ioc_diff, zfs_secpolicy_diff);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_STATS,
zfs_ioc_obj_to_stats, zfs_secpolicy_diff);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_PATH,
zfs_ioc_obj_to_path, zfs_secpolicy_diff);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_ONE,
zfs_ioc_userspace_one, zfs_secpolicy_userspace_one);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_MANY,
zfs_ioc_userspace_many, zfs_secpolicy_userspace_many);
zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_SEND,
zfs_ioc_send, zfs_secpolicy_send);
zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_PROP, zfs_ioc_set_prop,
zfs_secpolicy_none);
zfs_ioctl_register_dataset_modify(ZFS_IOC_DESTROY, zfs_ioc_destroy,
zfs_secpolicy_destroy);
zfs_ioctl_register_dataset_modify(ZFS_IOC_RENAME, zfs_ioc_rename,
zfs_secpolicy_rename);
zfs_ioctl_register_dataset_modify(ZFS_IOC_RECV, zfs_ioc_recv,
zfs_secpolicy_recv);
zfs_ioctl_register_dataset_modify(ZFS_IOC_PROMOTE, zfs_ioc_promote,
zfs_secpolicy_promote);
zfs_ioctl_register_dataset_modify(ZFS_IOC_INHERIT_PROP,
zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop);
zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_FSACL, zfs_ioc_set_fsacl,
zfs_secpolicy_set_fsacl);
zfs_ioctl_register_dataset_nolog(ZFS_IOC_SHARE, zfs_ioc_share,
zfs_secpolicy_share, POOL_CHECK_NONE);
zfs_ioctl_register_dataset_nolog(ZFS_IOC_SMB_ACL, zfs_ioc_smb_acl,
zfs_secpolicy_smb_acl, POOL_CHECK_NONE);
zfs_ioctl_register_dataset_nolog(ZFS_IOC_USERSPACE_UPGRADE,
zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
zfs_ioctl_register_dataset_nolog(ZFS_IOC_TMP_SNAPSHOT,
zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY);
zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_NEXT, zfs_ioc_events_next,
zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE);
zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_CLEAR, zfs_ioc_events_clear,
zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE);
zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_SEEK, zfs_ioc_events_seek,
zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE);
zfs_ioctl_init_os();
}
/*
* Verify that for non-legacy ioctls the input nvlist
* pairs match against the expected input.
*
* Possible errors are:
* ZFS_ERR_IOC_ARG_UNAVAIL An unrecognized nvpair was encountered
* ZFS_ERR_IOC_ARG_REQUIRED A required nvpair is missing
* ZFS_ERR_IOC_ARG_BADTYPE Invalid type for nvpair
*/
static int
zfs_check_input_nvpairs(nvlist_t *innvl, const zfs_ioc_vec_t *vec)
{
const zfs_ioc_key_t *nvl_keys = vec->zvec_nvl_keys;
boolean_t required_keys_found = B_FALSE;
/*
* examine each input pair
*/
for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL);
pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) {
char *name = nvpair_name(pair);
data_type_t type = nvpair_type(pair);
boolean_t identified = B_FALSE;
/*
* check pair against the documented names and type
*/
for (int k = 0; k < vec->zvec_nvl_key_count; k++) {
/* if not a wild card name, check for an exact match */
if ((nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) == 0 &&
strcmp(nvl_keys[k].zkey_name, name) != 0)
continue;
identified = B_TRUE;
if (nvl_keys[k].zkey_type != DATA_TYPE_ANY &&
nvl_keys[k].zkey_type != type) {
return (SET_ERROR(ZFS_ERR_IOC_ARG_BADTYPE));
}
if (nvl_keys[k].zkey_flags & ZK_OPTIONAL)
continue;
required_keys_found = B_TRUE;
break;
}
/* allow an 'optional' key, everything else is invalid */
if (!identified &&
(strcmp(name, "optional") != 0 ||
type != DATA_TYPE_NVLIST)) {
return (SET_ERROR(ZFS_ERR_IOC_ARG_UNAVAIL));
}
}
/* verify that all required keys were found */
for (int k = 0; k < vec->zvec_nvl_key_count; k++) {
if (nvl_keys[k].zkey_flags & ZK_OPTIONAL)
continue;
if (nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) {
/* at least one non-optional key is expected here */
if (!required_keys_found)
return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED));
continue;
}
if (!nvlist_exists(innvl, nvl_keys[k].zkey_name))
return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED));
}
return (0);
}
static int
pool_status_check(const char *name, zfs_ioc_namecheck_t type,
zfs_ioc_poolcheck_t check)
{
spa_t *spa;
int error;
ASSERT(type == POOL_NAME || type == DATASET_NAME ||
type == ENTITY_NAME);
if (check & POOL_CHECK_NONE)
return (0);
error = spa_open(name, &spa, FTAG);
if (error == 0) {
if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa))
error = SET_ERROR(EAGAIN);
else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa))
error = SET_ERROR(EROFS);
spa_close(spa, FTAG);
}
return (error);
}
int
zfsdev_getminor(int fd, minor_t *minorp)
{
zfsdev_state_t *zs, *fpd;
zfs_file_t *fp;
int rc;
ASSERT(!MUTEX_HELD(&zfsdev_state_lock));
if ((rc = zfs_file_get(fd, &fp)))
return (rc);
fpd = zfs_file_private(fp);
if (fpd == NULL)
return (SET_ERROR(EBADF));
mutex_enter(&zfsdev_state_lock);
for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) {
if (zs->zs_minor == -1)
continue;
if (fpd == zs) {
*minorp = fpd->zs_minor;
mutex_exit(&zfsdev_state_lock);
return (0);
}
}
mutex_exit(&zfsdev_state_lock);
return (SET_ERROR(EBADF));
}
static void *
zfsdev_get_state_impl(minor_t minor, enum zfsdev_state_type which)
{
zfsdev_state_t *zs;
for (zs = zfsdev_state_list; zs != NULL; zs = zs->zs_next) {
if (zs->zs_minor == minor) {
smp_rmb();
switch (which) {
case ZST_ONEXIT:
return (zs->zs_onexit);
case ZST_ZEVENT:
return (zs->zs_zevent);
case ZST_ALL:
return (zs);
}
}
}
return (NULL);
}
void *
zfsdev_get_state(minor_t minor, enum zfsdev_state_type which)
{
void *ptr;
ptr = zfsdev_get_state_impl(minor, which);
return (ptr);
}
/*
* Find a free minor number. The zfsdev_state_list is expected to
* be short since it is only a list of currently open file handles.
*/
minor_t
zfsdev_minor_alloc(void)
{
static minor_t last_minor = 0;
minor_t m;
ASSERT(MUTEX_HELD(&zfsdev_state_lock));
for (m = last_minor + 1; m != last_minor; m++) {
if (m > ZFSDEV_MAX_MINOR)
m = 1;
if (zfsdev_get_state_impl(m, ZST_ALL) == NULL) {
last_minor = m;
return (m);
}
}
return (0);
}
long
zfsdev_ioctl_common(uint_t vecnum, zfs_cmd_t *zc, int flag)
{
int error, cmd;
const zfs_ioc_vec_t *vec;
char *saved_poolname = NULL;
uint64_t max_nvlist_src_size;
size_t saved_poolname_len = 0;
nvlist_t *innvl = NULL;
fstrans_cookie_t cookie;
cmd = vecnum;
error = 0;
if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0]))
return (SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL));
vec = &zfs_ioc_vec[vecnum];
/*
* The registered ioctl list may be sparse, verify that either
* a normal or legacy handler are registered.
*/
if (vec->zvec_func == NULL && vec->zvec_legacy_func == NULL)
return (SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL));
zc->zc_iflags = flag & FKIOCTL;
max_nvlist_src_size = zfs_max_nvlist_src_size_os();
if (zc->zc_nvlist_src_size > max_nvlist_src_size) {
/*
* Make sure the user doesn't pass in an insane value for
* zc_nvlist_src_size. We have to check, since we will end
* up allocating that much memory inside of get_nvlist(). This
* prevents a nefarious user from allocating tons of kernel
* memory.
*
* Also, we return EINVAL instead of ENOMEM here. The reason
* being that returning ENOMEM from an ioctl() has a special
* connotation; that the user's size value is too small and
* needs to be expanded to hold the nvlist. See
* zcmd_expand_dst_nvlist() for details.
*/
error = SET_ERROR(EINVAL); /* User's size too big */
} else if (zc->zc_nvlist_src_size != 0) {
error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size,
zc->zc_iflags, &innvl);
if (error != 0)
goto out;
}
/*
* Ensure that all pool/dataset names are valid before we pass down to
* the lower layers.
*/
zc->zc_name[sizeof (zc->zc_name) - 1] = '\0';
switch (vec->zvec_namecheck) {
case POOL_NAME:
if (pool_namecheck(zc->zc_name, NULL, NULL) != 0)
error = SET_ERROR(EINVAL);
else
error = pool_status_check(zc->zc_name,
vec->zvec_namecheck, vec->zvec_pool_check);
break;
case DATASET_NAME:
if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0)
error = SET_ERROR(EINVAL);
else
error = pool_status_check(zc->zc_name,
vec->zvec_namecheck, vec->zvec_pool_check);
break;
case ENTITY_NAME:
if (entity_namecheck(zc->zc_name, NULL, NULL) != 0) {
error = SET_ERROR(EINVAL);
} else {
error = pool_status_check(zc->zc_name,
vec->zvec_namecheck, vec->zvec_pool_check);
}
break;
case NO_NAME:
break;
}
/*
* Ensure that all input pairs are valid before we pass them down
* to the lower layers.
*
* The vectored functions can use fnvlist_lookup_{type} for any
* required pairs since zfs_check_input_nvpairs() confirmed that
* they exist and are of the correct type.
*/
if (error == 0 && vec->zvec_func != NULL) {
error = zfs_check_input_nvpairs(innvl, vec);
if (error != 0)
goto out;
}
if (error == 0) {
cookie = spl_fstrans_mark();
error = vec->zvec_secpolicy(zc, innvl, CRED());
spl_fstrans_unmark(cookie);
}
if (error != 0)
goto out;
/* legacy ioctls can modify zc_name */
/*
* Can't use kmem_strdup() as we might truncate the string and
* kmem_strfree() would then free with incorrect size.
*/
saved_poolname_len = strlen(zc->zc_name) + 1;
saved_poolname = kmem_alloc(saved_poolname_len, KM_SLEEP);
strlcpy(saved_poolname, zc->zc_name, saved_poolname_len);
saved_poolname[strcspn(saved_poolname, "/@#")] = '\0';
if (vec->zvec_func != NULL) {
nvlist_t *outnvl;
int puterror = 0;
spa_t *spa;
nvlist_t *lognv = NULL;
ASSERT(vec->zvec_legacy_func == NULL);
/*
* Add the innvl to the lognv before calling the func,
* in case the func changes the innvl.
*/
if (vec->zvec_allow_log) {
lognv = fnvlist_alloc();
fnvlist_add_string(lognv, ZPOOL_HIST_IOCTL,
vec->zvec_name);
if (!nvlist_empty(innvl)) {
fnvlist_add_nvlist(lognv, ZPOOL_HIST_INPUT_NVL,
innvl);
}
}
outnvl = fnvlist_alloc();
cookie = spl_fstrans_mark();
error = vec->zvec_func(zc->zc_name, innvl, outnvl);
spl_fstrans_unmark(cookie);
/*
* Some commands can partially execute, modify state, and still
* return an error. In these cases, attempt to record what
* was modified.
*/
if ((error == 0 ||
(cmd == ZFS_IOC_CHANNEL_PROGRAM && error != EINVAL)) &&
vec->zvec_allow_log &&
spa_open(zc->zc_name, &spa, FTAG) == 0) {
if (!nvlist_empty(outnvl)) {
size_t out_size = fnvlist_size(outnvl);
if (out_size > zfs_history_output_max) {
fnvlist_add_int64(lognv,
ZPOOL_HIST_OUTPUT_SIZE, out_size);
} else {
fnvlist_add_nvlist(lognv,
ZPOOL_HIST_OUTPUT_NVL, outnvl);
}
}
if (error != 0) {
fnvlist_add_int64(lognv, ZPOOL_HIST_ERRNO,
error);
}
(void) spa_history_log_nvl(spa, lognv);
spa_close(spa, FTAG);
}
fnvlist_free(lognv);
if (!nvlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) {
int smusherror = 0;
if (vec->zvec_smush_outnvlist) {
smusherror = nvlist_smush(outnvl,
zc->zc_nvlist_dst_size);
}
if (smusherror == 0)
puterror = put_nvlist(zc, outnvl);
}
if (puterror != 0)
error = puterror;
nvlist_free(outnvl);
} else {
cookie = spl_fstrans_mark();
error = vec->zvec_legacy_func(zc);
spl_fstrans_unmark(cookie);
}
out:
nvlist_free(innvl);
if (error == 0 && vec->zvec_allow_log) {
char *s = tsd_get(zfs_allow_log_key);
if (s != NULL)
kmem_strfree(s);
(void) tsd_set(zfs_allow_log_key, kmem_strdup(saved_poolname));
}
if (saved_poolname != NULL)
kmem_free(saved_poolname, saved_poolname_len);
return (error);
}
int
zfs_kmod_init(void)
{
int error;
if ((error = zvol_init()) != 0)
return (error);
spa_init(SPA_MODE_READ | SPA_MODE_WRITE);
zfs_init();
zfs_ioctl_init();
mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL);
zfsdev_state_list = kmem_zalloc(sizeof (zfsdev_state_t), KM_SLEEP);
zfsdev_state_list->zs_minor = -1;
if ((error = zfsdev_attach()) != 0)
goto out;
tsd_create(&zfs_fsyncer_key, NULL);
tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
tsd_create(&zfs_allow_log_key, zfs_allow_log_destroy);
return (0);
out:
zfs_fini();
spa_fini();
zvol_fini();
return (error);
}
void
zfs_kmod_fini(void)
{
zfsdev_state_t *zs, *zsnext = NULL;
zfsdev_detach();
mutex_destroy(&zfsdev_state_lock);
for (zs = zfsdev_state_list; zs != NULL; zs = zsnext) {
zsnext = zs->zs_next;
if (zs->zs_onexit)
zfs_onexit_destroy(zs->zs_onexit);
if (zs->zs_zevent)
zfs_zevent_destroy(zs->zs_zevent);
kmem_free(zs, sizeof (zfsdev_state_t));
}
zfs_ereport_taskq_fini(); /* run before zfs_fini() on Linux */
zfs_fini();
spa_fini();
zvol_fini();
tsd_destroy(&zfs_fsyncer_key);
tsd_destroy(&rrw_tsd_key);
tsd_destroy(&zfs_allow_log_key);
}
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, max_nvlist_src_size, ULONG, ZMOD_RW,
"Maximum size in bytes allowed for src nvlist passed with ZFS ioctls");
ZFS_MODULE_PARAM(zfs, zfs_, history_output_max, ULONG, ZMOD_RW,
"Maximum size in bytes of ZFS ioctl output that will be logged");
/* END CSTYLED */