mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 20:50:30 +03:00
112c1bff94
These paths are never exercised, as the parameters given are always different cipher and plaintext `crypto_data_t` pointers. Reviewed-by: Richard Laager <rlaager@wiktel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Attila Fueloep <attila@fueloep.org> Signed-off-by: Dirkjan Bussink <d.bussink@gmail.com> Closes #9661 Closes #10015
646 lines
19 KiB
C
646 lines
19 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/crypto/common.h>
|
|
#include <sys/crypto/impl.h>
|
|
#include <sys/crypto/api.h>
|
|
#include <sys/crypto/spi.h>
|
|
#include <sys/crypto/sched_impl.h>
|
|
|
|
/*
|
|
* Message authentication codes routines.
|
|
*/
|
|
|
|
/*
|
|
* The following are the possible returned values common to all the routines
|
|
* below. The applicability of some of these return values depends on the
|
|
* presence of the arguments.
|
|
*
|
|
* CRYPTO_SUCCESS: The operation completed successfully.
|
|
* CRYPTO_QUEUED: A request was submitted successfully. The callback
|
|
* routine will be called when the operation is done.
|
|
* CRYPTO_INVALID_MECH_NUMBER, CRYPTO_INVALID_MECH_PARAM, or
|
|
* CRYPTO_INVALID_MECH for problems with the 'mech'.
|
|
* CRYPTO_INVALID_DATA for bogus 'data'
|
|
* CRYPTO_HOST_MEMORY for failure to allocate memory to handle this work.
|
|
* CRYPTO_INVALID_CONTEXT: Not a valid context.
|
|
* CRYPTO_BUSY: Cannot process the request now. Schedule a
|
|
* crypto_bufcall(), or try later.
|
|
* CRYPTO_NOT_SUPPORTED and CRYPTO_MECH_NOT_SUPPORTED: No provider is
|
|
* capable of a function or a mechanism.
|
|
* CRYPTO_INVALID_KEY: bogus 'key' argument.
|
|
* CRYPTO_INVALID_MAC: bogus 'mac' argument.
|
|
*/
|
|
|
|
/*
|
|
* crypto_mac_prov()
|
|
*
|
|
* Arguments:
|
|
* mech: crypto_mechanism_t pointer.
|
|
* mech_type is a valid value previously returned by
|
|
* crypto_mech2id();
|
|
* When the mech's parameter is not NULL, its definition depends
|
|
* on the standard definition of the mechanism.
|
|
* key: pointer to a crypto_key_t structure.
|
|
* data: The message to compute the MAC for.
|
|
* mac: Storage for the MAC. The length needed depends on the mechanism.
|
|
* tmpl: a crypto_ctx_template_t, opaque template of a context of a
|
|
* MAC with the 'mech' using 'key'. 'tmpl' is created by
|
|
* a previous call to crypto_create_ctx_template().
|
|
* cr: crypto_call_req_t calling conditions and call back info.
|
|
*
|
|
* Description:
|
|
* Asynchronously submits a request for, or synchronously performs a
|
|
* single-part message authentication of 'data' with the mechanism
|
|
* 'mech', using * the key 'key', on the specified provider with
|
|
* the specified session id.
|
|
* When complete and successful, 'mac' will contain the message
|
|
* authentication code.
|
|
*
|
|
* Context:
|
|
* Process or interrupt, according to the semantics dictated by the 'crq'.
|
|
*
|
|
* Returns:
|
|
* See comment in the beginning of the file.
|
|
*/
|
|
int
|
|
crypto_mac_prov(crypto_provider_t provider, crypto_session_id_t sid,
|
|
crypto_mechanism_t *mech, crypto_data_t *data, crypto_key_t *key,
|
|
crypto_ctx_template_t tmpl, crypto_data_t *mac, crypto_call_req_t *crq)
|
|
{
|
|
kcf_req_params_t params;
|
|
kcf_provider_desc_t *pd = provider;
|
|
kcf_provider_desc_t *real_provider = pd;
|
|
int rv;
|
|
|
|
ASSERT(KCF_PROV_REFHELD(pd));
|
|
|
|
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
|
|
rv = kcf_get_hardware_provider(mech->cm_type,
|
|
CRYPTO_MECH_INVALID, CHECK_RESTRICT(crq), pd,
|
|
&real_provider, CRYPTO_FG_MAC_ATOMIC);
|
|
|
|
if (rv != CRYPTO_SUCCESS)
|
|
return (rv);
|
|
}
|
|
|
|
KCF_WRAP_MAC_OPS_PARAMS(¶ms, KCF_OP_ATOMIC, sid, mech, key,
|
|
data, mac, tmpl);
|
|
rv = kcf_submit_request(real_provider, NULL, crq, ¶ms, B_FALSE);
|
|
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)
|
|
KCF_PROV_REFRELE(real_provider);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Same as crypto_mac_prov(), but relies on the KCF scheduler to choose
|
|
* a provider. See crypto_mac() comments for more information.
|
|
*/
|
|
int
|
|
crypto_mac(crypto_mechanism_t *mech, crypto_data_t *data,
|
|
crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_data_t *mac,
|
|
crypto_call_req_t *crq)
|
|
{
|
|
int error;
|
|
kcf_mech_entry_t *me;
|
|
kcf_req_params_t params;
|
|
kcf_provider_desc_t *pd;
|
|
kcf_ctx_template_t *ctx_tmpl;
|
|
crypto_spi_ctx_template_t spi_ctx_tmpl = NULL;
|
|
kcf_prov_tried_t *list = NULL;
|
|
|
|
retry:
|
|
/* The pd is returned held */
|
|
if ((pd = kcf_get_mech_provider(mech->cm_type, &me, &error,
|
|
list, CRYPTO_FG_MAC_ATOMIC, CHECK_RESTRICT(crq),
|
|
data->cd_length)) == NULL) {
|
|
if (list != NULL)
|
|
kcf_free_triedlist(list);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* For SW providers, check the validity of the context template
|
|
* It is very rare that the generation number mis-matches, so
|
|
* is acceptable to fail here, and let the consumer recover by
|
|
* freeing this tmpl and create a new one for the key and new SW
|
|
* provider
|
|
*/
|
|
if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) &&
|
|
((ctx_tmpl = (kcf_ctx_template_t *)tmpl) != NULL)) {
|
|
if (ctx_tmpl->ct_generation != me->me_gen_swprov) {
|
|
if (list != NULL)
|
|
kcf_free_triedlist(list);
|
|
KCF_PROV_REFRELE(pd);
|
|
return (CRYPTO_OLD_CTX_TEMPLATE);
|
|
} else {
|
|
spi_ctx_tmpl = ctx_tmpl->ct_prov_tmpl;
|
|
}
|
|
}
|
|
|
|
/* The fast path for SW providers. */
|
|
if (CHECK_FASTPATH(crq, pd)) {
|
|
crypto_mechanism_t lmech;
|
|
|
|
lmech = *mech;
|
|
KCF_SET_PROVIDER_MECHNUM(mech->cm_type, pd, &lmech);
|
|
|
|
error = KCF_PROV_MAC_ATOMIC(pd, pd->pd_sid, &lmech, key, data,
|
|
mac, spi_ctx_tmpl, KCF_SWFP_RHNDL(crq));
|
|
KCF_PROV_INCRSTATS(pd, error);
|
|
} else {
|
|
if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
|
|
(pd->pd_flags & CRYPTO_HASH_NO_UPDATE) &&
|
|
(data->cd_length > pd->pd_hash_limit)) {
|
|
/*
|
|
* XXX - We need a check to see if this is indeed
|
|
* a HMAC. So far, all kernel clients use
|
|
* this interface only for HMAC. So, this is fine
|
|
* for now.
|
|
*/
|
|
error = CRYPTO_BUFFER_TOO_BIG;
|
|
} else {
|
|
KCF_WRAP_MAC_OPS_PARAMS(¶ms, KCF_OP_ATOMIC,
|
|
pd->pd_sid, mech, key, data, mac, spi_ctx_tmpl);
|
|
|
|
error = kcf_submit_request(pd, NULL, crq, ¶ms,
|
|
KCF_ISDUALREQ(crq));
|
|
}
|
|
}
|
|
|
|
if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED &&
|
|
IS_RECOVERABLE(error)) {
|
|
/* Add pd to the linked list of providers tried. */
|
|
if (kcf_insert_triedlist(&list, pd, KCF_KMFLAG(crq)) != NULL)
|
|
goto retry;
|
|
}
|
|
|
|
if (list != NULL)
|
|
kcf_free_triedlist(list);
|
|
|
|
KCF_PROV_REFRELE(pd);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Single part operation to compute the MAC corresponding to the specified
|
|
* 'data' and to verify that it matches the MAC specified by 'mac'.
|
|
* The other arguments are the same as the function crypto_mac_prov().
|
|
*/
|
|
int
|
|
crypto_mac_verify_prov(crypto_provider_t provider, crypto_session_id_t sid,
|
|
crypto_mechanism_t *mech, crypto_data_t *data, crypto_key_t *key,
|
|
crypto_ctx_template_t tmpl, crypto_data_t *mac, crypto_call_req_t *crq)
|
|
{
|
|
kcf_req_params_t params;
|
|
kcf_provider_desc_t *pd = provider;
|
|
kcf_provider_desc_t *real_provider = pd;
|
|
int rv;
|
|
|
|
ASSERT(KCF_PROV_REFHELD(pd));
|
|
|
|
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
|
|
rv = kcf_get_hardware_provider(mech->cm_type,
|
|
CRYPTO_MECH_INVALID, CHECK_RESTRICT(crq), pd,
|
|
&real_provider, CRYPTO_FG_MAC_ATOMIC);
|
|
|
|
if (rv != CRYPTO_SUCCESS)
|
|
return (rv);
|
|
}
|
|
|
|
KCF_WRAP_MAC_OPS_PARAMS(¶ms, KCF_OP_MAC_VERIFY_ATOMIC, sid, mech,
|
|
key, data, mac, tmpl);
|
|
rv = kcf_submit_request(real_provider, NULL, crq, ¶ms, B_FALSE);
|
|
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)
|
|
KCF_PROV_REFRELE(real_provider);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Same as crypto_mac_verify_prov(), but relies on the KCF scheduler to choose
|
|
* a provider. See crypto_mac_verify_prov() comments for more information.
|
|
*/
|
|
int
|
|
crypto_mac_verify(crypto_mechanism_t *mech, crypto_data_t *data,
|
|
crypto_key_t *key, crypto_ctx_template_t tmpl, crypto_data_t *mac,
|
|
crypto_call_req_t *crq)
|
|
{
|
|
int error;
|
|
kcf_mech_entry_t *me;
|
|
kcf_req_params_t params;
|
|
kcf_provider_desc_t *pd;
|
|
kcf_ctx_template_t *ctx_tmpl;
|
|
crypto_spi_ctx_template_t spi_ctx_tmpl = NULL;
|
|
kcf_prov_tried_t *list = NULL;
|
|
|
|
retry:
|
|
/* The pd is returned held */
|
|
if ((pd = kcf_get_mech_provider(mech->cm_type, &me, &error,
|
|
list, CRYPTO_FG_MAC_ATOMIC, CHECK_RESTRICT(crq),
|
|
data->cd_length)) == NULL) {
|
|
if (list != NULL)
|
|
kcf_free_triedlist(list);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* For SW providers, check the validity of the context template
|
|
* It is very rare that the generation number mis-matches, so
|
|
* is acceptable to fail here, and let the consumer recover by
|
|
* freeing this tmpl and create a new one for the key and new SW
|
|
* provider
|
|
*/
|
|
if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) &&
|
|
((ctx_tmpl = (kcf_ctx_template_t *)tmpl) != NULL)) {
|
|
if (ctx_tmpl->ct_generation != me->me_gen_swprov) {
|
|
if (list != NULL)
|
|
kcf_free_triedlist(list);
|
|
KCF_PROV_REFRELE(pd);
|
|
return (CRYPTO_OLD_CTX_TEMPLATE);
|
|
} else {
|
|
spi_ctx_tmpl = ctx_tmpl->ct_prov_tmpl;
|
|
}
|
|
}
|
|
|
|
/* The fast path for SW providers. */
|
|
if (CHECK_FASTPATH(crq, pd)) {
|
|
crypto_mechanism_t lmech;
|
|
|
|
lmech = *mech;
|
|
KCF_SET_PROVIDER_MECHNUM(mech->cm_type, pd, &lmech);
|
|
|
|
error = KCF_PROV_MAC_VERIFY_ATOMIC(pd, pd->pd_sid, &lmech, key,
|
|
data, mac, spi_ctx_tmpl, KCF_SWFP_RHNDL(crq));
|
|
KCF_PROV_INCRSTATS(pd, error);
|
|
} else {
|
|
if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
|
|
(pd->pd_flags & CRYPTO_HASH_NO_UPDATE) &&
|
|
(data->cd_length > pd->pd_hash_limit)) {
|
|
/* see comments in crypto_mac() */
|
|
error = CRYPTO_BUFFER_TOO_BIG;
|
|
} else {
|
|
KCF_WRAP_MAC_OPS_PARAMS(¶ms,
|
|
KCF_OP_MAC_VERIFY_ATOMIC, pd->pd_sid, mech,
|
|
key, data, mac, spi_ctx_tmpl);
|
|
|
|
error = kcf_submit_request(pd, NULL, crq, ¶ms,
|
|
KCF_ISDUALREQ(crq));
|
|
}
|
|
}
|
|
|
|
if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED &&
|
|
IS_RECOVERABLE(error)) {
|
|
/* Add pd to the linked list of providers tried. */
|
|
if (kcf_insert_triedlist(&list, pd, KCF_KMFLAG(crq)) != NULL)
|
|
goto retry;
|
|
}
|
|
|
|
if (list != NULL)
|
|
kcf_free_triedlist(list);
|
|
|
|
KCF_PROV_REFRELE(pd);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* crypto_mac_init_prov()
|
|
*
|
|
* Arguments:
|
|
* pd: pointer to the descriptor of the provider to use for this
|
|
* operation.
|
|
* sid: provider session id.
|
|
* mech: crypto_mechanism_t pointer.
|
|
* mech_type is a valid value previously returned by
|
|
* crypto_mech2id();
|
|
* When the mech's parameter is not NULL, its definition depends
|
|
* on the standard definition of the mechanism.
|
|
* key: pointer to a crypto_key_t structure.
|
|
* tmpl: a crypto_ctx_template_t, opaque template of a context of a
|
|
* MAC with the 'mech' using 'key'. 'tmpl' is created by
|
|
* a previous call to crypto_create_ctx_template().
|
|
* ctxp: Pointer to a crypto_context_t.
|
|
* cr: crypto_call_req_t calling conditions and call back info.
|
|
*
|
|
* Description:
|
|
* Asynchronously submits a request for, or synchronously performs the
|
|
* initialization of a MAC operation on the specified provider with
|
|
* the specified session.
|
|
* When possible and applicable, will internally use the pre-computed MAC
|
|
* context from the context template, tmpl.
|
|
* When complete and successful, 'ctxp' will contain a crypto_context_t
|
|
* valid for later calls to mac_update() and mac_final().
|
|
* The caller should hold a reference on the specified provider
|
|
* descriptor before calling this function.
|
|
*
|
|
* Context:
|
|
* Process or interrupt, according to the semantics dictated by the 'cr'.
|
|
*
|
|
* Returns:
|
|
* See comment in the beginning of the file.
|
|
*/
|
|
int
|
|
crypto_mac_init_prov(crypto_provider_t provider, crypto_session_id_t sid,
|
|
crypto_mechanism_t *mech, crypto_key_t *key, crypto_spi_ctx_template_t tmpl,
|
|
crypto_context_t *ctxp, crypto_call_req_t *crq)
|
|
{
|
|
int rv;
|
|
crypto_ctx_t *ctx;
|
|
kcf_req_params_t params;
|
|
kcf_provider_desc_t *pd = provider;
|
|
kcf_provider_desc_t *real_provider = pd;
|
|
|
|
ASSERT(KCF_PROV_REFHELD(pd));
|
|
|
|
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
|
|
rv = kcf_get_hardware_provider(mech->cm_type,
|
|
CRYPTO_MECH_INVALID, CHECK_RESTRICT(crq), pd,
|
|
&real_provider, CRYPTO_FG_MAC);
|
|
|
|
if (rv != CRYPTO_SUCCESS)
|
|
return (rv);
|
|
}
|
|
|
|
/* Allocate and initialize the canonical context */
|
|
if ((ctx = kcf_new_ctx(crq, real_provider, sid)) == NULL) {
|
|
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)
|
|
KCF_PROV_REFRELE(real_provider);
|
|
return (CRYPTO_HOST_MEMORY);
|
|
}
|
|
|
|
/* The fast path for SW providers. */
|
|
if (CHECK_FASTPATH(crq, pd)) {
|
|
crypto_mechanism_t lmech;
|
|
|
|
lmech = *mech;
|
|
KCF_SET_PROVIDER_MECHNUM(mech->cm_type, real_provider, &lmech);
|
|
rv = KCF_PROV_MAC_INIT(real_provider, ctx, &lmech, key, tmpl,
|
|
KCF_SWFP_RHNDL(crq));
|
|
KCF_PROV_INCRSTATS(pd, rv);
|
|
} else {
|
|
KCF_WRAP_MAC_OPS_PARAMS(¶ms, KCF_OP_INIT, sid, mech, key,
|
|
NULL, NULL, tmpl);
|
|
rv = kcf_submit_request(real_provider, ctx, crq, ¶ms,
|
|
B_FALSE);
|
|
}
|
|
|
|
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER)
|
|
KCF_PROV_REFRELE(real_provider);
|
|
|
|
if ((rv == CRYPTO_SUCCESS) || (rv == CRYPTO_QUEUED))
|
|
*ctxp = (crypto_context_t)ctx;
|
|
else {
|
|
/* Release the hold done in kcf_new_ctx(). */
|
|
KCF_CONTEXT_REFRELE((kcf_context_t *)ctx->cc_framework_private);
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Same as crypto_mac_init_prov(), but relies on the KCF scheduler to
|
|
* choose a provider. See crypto_mac_init_prov() comments for more
|
|
* information.
|
|
*/
|
|
int
|
|
crypto_mac_init(crypto_mechanism_t *mech, crypto_key_t *key,
|
|
crypto_ctx_template_t tmpl, crypto_context_t *ctxp,
|
|
crypto_call_req_t *crq)
|
|
{
|
|
int error;
|
|
kcf_mech_entry_t *me;
|
|
kcf_provider_desc_t *pd;
|
|
kcf_ctx_template_t *ctx_tmpl;
|
|
crypto_spi_ctx_template_t spi_ctx_tmpl = NULL;
|
|
kcf_prov_tried_t *list = NULL;
|
|
|
|
retry:
|
|
/* The pd is returned held */
|
|
if ((pd = kcf_get_mech_provider(mech->cm_type, &me, &error,
|
|
list, CRYPTO_FG_MAC, CHECK_RESTRICT(crq), 0)) == NULL) {
|
|
if (list != NULL)
|
|
kcf_free_triedlist(list);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* For SW providers, check the validity of the context template
|
|
* It is very rare that the generation number mis-matches, so
|
|
* is acceptable to fail here, and let the consumer recover by
|
|
* freeing this tmpl and create a new one for the key and new SW
|
|
* provider
|
|
*/
|
|
|
|
if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) &&
|
|
((ctx_tmpl = (kcf_ctx_template_t *)tmpl) != NULL)) {
|
|
if (ctx_tmpl->ct_generation != me->me_gen_swprov) {
|
|
if (list != NULL)
|
|
kcf_free_triedlist(list);
|
|
KCF_PROV_REFRELE(pd);
|
|
return (CRYPTO_OLD_CTX_TEMPLATE);
|
|
} else {
|
|
spi_ctx_tmpl = ctx_tmpl->ct_prov_tmpl;
|
|
}
|
|
}
|
|
|
|
if (pd->pd_prov_type == CRYPTO_HW_PROVIDER &&
|
|
(pd->pd_flags & CRYPTO_HASH_NO_UPDATE)) {
|
|
/*
|
|
* The hardware provider has limited HMAC support.
|
|
* So, we fallback early here to using a software provider.
|
|
*
|
|
* XXX - need to enhance to do the fallback later in
|
|
* crypto_mac_update() if the size of accumulated input data
|
|
* exceeds the maximum size digestable by hardware provider.
|
|
*/
|
|
error = CRYPTO_BUFFER_TOO_BIG;
|
|
} else {
|
|
error = crypto_mac_init_prov(pd, pd->pd_sid, mech, key,
|
|
spi_ctx_tmpl, ctxp, crq);
|
|
}
|
|
if (error != CRYPTO_SUCCESS && error != CRYPTO_QUEUED &&
|
|
IS_RECOVERABLE(error)) {
|
|
/* Add pd to the linked list of providers tried. */
|
|
if (kcf_insert_triedlist(&list, pd, KCF_KMFLAG(crq)) != NULL)
|
|
goto retry;
|
|
}
|
|
|
|
if (list != NULL)
|
|
kcf_free_triedlist(list);
|
|
|
|
KCF_PROV_REFRELE(pd);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* crypto_mac_update()
|
|
*
|
|
* Arguments:
|
|
* context: A crypto_context_t initialized by mac_init().
|
|
* data: The message part to be MAC'ed
|
|
* cr: crypto_call_req_t calling conditions and call back info.
|
|
*
|
|
* Description:
|
|
* Asynchronously submits a request for, or synchronously performs a
|
|
* part of a MAC operation.
|
|
*
|
|
* Context:
|
|
* Process or interrupt, according to the semantics dictated by the 'cr'.
|
|
*
|
|
* Returns:
|
|
* See comment in the beginning of the file.
|
|
*/
|
|
int
|
|
crypto_mac_update(crypto_context_t context, crypto_data_t *data,
|
|
crypto_call_req_t *cr)
|
|
{
|
|
crypto_ctx_t *ctx = (crypto_ctx_t *)context;
|
|
kcf_context_t *kcf_ctx;
|
|
kcf_provider_desc_t *pd;
|
|
kcf_req_params_t params;
|
|
int rv;
|
|
|
|
if ((ctx == NULL) ||
|
|
((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) ||
|
|
((pd = kcf_ctx->kc_prov_desc) == NULL)) {
|
|
return (CRYPTO_INVALID_CONTEXT);
|
|
}
|
|
|
|
ASSERT(pd->pd_prov_type != CRYPTO_LOGICAL_PROVIDER);
|
|
|
|
/* The fast path for SW providers. */
|
|
if (CHECK_FASTPATH(cr, pd)) {
|
|
rv = KCF_PROV_MAC_UPDATE(pd, ctx, data, NULL);
|
|
KCF_PROV_INCRSTATS(pd, rv);
|
|
} else {
|
|
KCF_WRAP_MAC_OPS_PARAMS(¶ms, KCF_OP_UPDATE,
|
|
ctx->cc_session, NULL, NULL, data, NULL, NULL);
|
|
rv = kcf_submit_request(pd, ctx, cr, ¶ms, B_FALSE);
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* crypto_mac_final()
|
|
*
|
|
* Arguments:
|
|
* context: A crypto_context_t initialized by mac_init().
|
|
* mac: Storage for the message authentication code.
|
|
* cr: crypto_call_req_t calling conditions and call back info.
|
|
*
|
|
* Description:
|
|
* Asynchronously submits a request for, or synchronously performs a
|
|
* part of a message authentication operation.
|
|
*
|
|
* Context:
|
|
* Process or interrupt, according to the semantics dictated by the 'cr'.
|
|
*
|
|
* Returns:
|
|
* See comment in the beginning of the file.
|
|
*/
|
|
int
|
|
crypto_mac_final(crypto_context_t context, crypto_data_t *mac,
|
|
crypto_call_req_t *cr)
|
|
{
|
|
crypto_ctx_t *ctx = (crypto_ctx_t *)context;
|
|
kcf_context_t *kcf_ctx;
|
|
kcf_provider_desc_t *pd;
|
|
kcf_req_params_t params;
|
|
int rv;
|
|
|
|
if ((ctx == NULL) ||
|
|
((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) ||
|
|
((pd = kcf_ctx->kc_prov_desc) == NULL)) {
|
|
return (CRYPTO_INVALID_CONTEXT);
|
|
}
|
|
|
|
ASSERT(pd->pd_prov_type != CRYPTO_LOGICAL_PROVIDER);
|
|
|
|
/* The fast path for SW providers. */
|
|
if (CHECK_FASTPATH(cr, pd)) {
|
|
rv = KCF_PROV_MAC_FINAL(pd, ctx, mac, NULL);
|
|
KCF_PROV_INCRSTATS(pd, rv);
|
|
} else {
|
|
KCF_WRAP_MAC_OPS_PARAMS(¶ms, KCF_OP_FINAL,
|
|
ctx->cc_session, NULL, NULL, NULL, mac, NULL);
|
|
rv = kcf_submit_request(pd, ctx, cr, ¶ms, B_FALSE);
|
|
}
|
|
|
|
/* Release the hold done in kcf_new_ctx() during init step. */
|
|
KCF_CONTEXT_COND_RELEASE(rv, kcf_ctx);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* See comments for crypto_mac_update() and crypto_mac_final().
|
|
*/
|
|
int
|
|
crypto_mac_single(crypto_context_t context, crypto_data_t *data,
|
|
crypto_data_t *mac, crypto_call_req_t *cr)
|
|
{
|
|
crypto_ctx_t *ctx = (crypto_ctx_t *)context;
|
|
kcf_context_t *kcf_ctx;
|
|
kcf_provider_desc_t *pd;
|
|
int error;
|
|
kcf_req_params_t params;
|
|
|
|
|
|
if ((ctx == NULL) ||
|
|
((kcf_ctx = (kcf_context_t *)ctx->cc_framework_private) == NULL) ||
|
|
((pd = kcf_ctx->kc_prov_desc) == NULL)) {
|
|
return (CRYPTO_INVALID_CONTEXT);
|
|
}
|
|
|
|
|
|
/* The fast path for SW providers. */
|
|
if (CHECK_FASTPATH(cr, pd)) {
|
|
error = KCF_PROV_MAC(pd, ctx, data, mac, NULL);
|
|
KCF_PROV_INCRSTATS(pd, error);
|
|
} else {
|
|
KCF_WRAP_MAC_OPS_PARAMS(¶ms, KCF_OP_SINGLE, pd->pd_sid,
|
|
NULL, NULL, data, mac, NULL);
|
|
error = kcf_submit_request(pd, ctx, cr, ¶ms, B_FALSE);
|
|
}
|
|
|
|
/* Release the hold done in kcf_new_ctx() during init step. */
|
|
KCF_CONTEXT_COND_RELEASE(error, kcf_ctx);
|
|
return (error);
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
EXPORT_SYMBOL(crypto_mac_prov);
|
|
EXPORT_SYMBOL(crypto_mac);
|
|
EXPORT_SYMBOL(crypto_mac_verify_prov);
|
|
EXPORT_SYMBOL(crypto_mac_verify);
|
|
EXPORT_SYMBOL(crypto_mac_init_prov);
|
|
EXPORT_SYMBOL(crypto_mac_init);
|
|
EXPORT_SYMBOL(crypto_mac_update);
|
|
EXPORT_SYMBOL(crypto_mac_final);
|
|
EXPORT_SYMBOL(crypto_mac_single);
|
|
#endif
|