mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-26 01:44:31 +03:00
fdc2d30371
In #13871, zfs_vdev_aggregation_limit_non_rotating and zfs_vdev_aggregation_limit being signed was pointed out as a possible reason not to eliminate an unnecessary MAX(unsigned, 0) since the unsigned value was assigned from them. There is no reason for these module parameters to be signed and upon inspection, it was found that there are a number of other module parameters that are signed, but should not be, so we make them unsigned. Making them unsigned made it clear that some other variables in the code should also be unsigned, so we also make those unsigned. This prevents users from setting negative values that could potentially cause bad behaviors. It also makes the code slightly easier to understand. Mostly module parameters that deal with timeouts, limits, bitshifts and percentages are made unsigned by this. Any that are boolean are left signed, since whether booleans should be considered signed or unsigned does not matter. Making zfs_arc_lotsfree_percent unsigned caused a `zfs_arc_lotsfree_percent >= 0` check to become redundant, so it was removed. Removing the check was also necessary to prevent a compiler error from -Werror=type-limits. Several end of line comments had to be moved to their own lines because replacing int with uint_t caused us to exceed the 80 character limit enforced by cstyle.pl. The following were kept signed because they are passed to taskq_create(), which expects signed values and modifying the OpenSolaris/Illumos DDI is out of scope of this patch: * metaslab_load_pct * zfs_sync_taskq_batch_pct * zfs_zil_clean_taskq_nthr_pct * zfs_zil_clean_taskq_minalloc * zfs_zil_clean_taskq_maxalloc * zfs_arc_prune_task_threads Also, negative values in those parameters was found to be harmless. The following were left signed because either negative values make sense, or more analysis was needed to determine whether negative values should be disallowed: * zfs_metaslab_switch_threshold * zfs_pd_bytes_max * zfs_livelist_min_percent_shared zfs_multihost_history was made static to be consistent with other parameters. A number of module parameters were marked as signed, but in reality referenced unsigned variables. upgrade_errlog_limit is one of the numerous examples. In the case of zfs_vdev_async_read_max_active, it was already uint32_t, but zdb had an extern int declaration for it. Interestingly, the documentation in zfs.4 was right for upgrade_errlog_limit despite the module parameter being wrongly marked, while the documentation for zfs_vdev_async_read_max_active (and friends) was wrong. It was also wrong for zstd_abort_size, which was unsigned, but was documented as signed. Also, the documentation in zfs.4 incorrectly described the following parameters as ulong when they were int: * zfs_arc_meta_adjust_restarts * zfs_override_estimate_recordsize They are now uint_t as of this patch and thus the man page has been updated to describe them as uint. dbuf_state_index was left alone since it does nothing and perhaps should be removed in another patch. If any module parameters were missed, they were not found by `grep -r 'ZFS_MODULE_PARAM' | grep ', INT'`. I did find a few that grep missed, but only because they were in files that had hits. This patch intentionally did not attempt to address whether some of these module parameters should be elevated to 64-bit parameters, because the length of a long on 32-bit is 32-bit. Lastly, it was pointed out during review that uint_t is a better match for these variables than uint32_t because FreeBSD kernel parameter definitions are designed for uint_t, whose bit width can change in future memory models. As a result, we change the existing parameters that are uint32_t to use uint_t. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Neal Gompa <ngompa@datto.com> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13875
437 lines
12 KiB
C
437 lines
12 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
/*
|
|
* Copyright (c) 2013, 2016 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/kstat.h>
|
|
#include <sys/abd.h>
|
|
|
|
/*
|
|
* Virtual device read-ahead caching.
|
|
*
|
|
* This file implements a simple LRU read-ahead cache. When the DMU reads
|
|
* a given block, it will often want other, nearby blocks soon thereafter.
|
|
* We take advantage of this by reading a larger disk region and caching
|
|
* the result. In the best case, this can turn 128 back-to-back 512-byte
|
|
* reads into a single 64k read followed by 127 cache hits; this reduces
|
|
* latency dramatically. In the worst case, it can turn an isolated 512-byte
|
|
* read into a 64k read, which doesn't affect latency all that much but is
|
|
* terribly wasteful of bandwidth. A more intelligent version of the cache
|
|
* could keep track of access patterns and not do read-ahead unless it sees
|
|
* at least two temporally close I/Os to the same region. Currently, only
|
|
* metadata I/O is inflated. A further enhancement could take advantage of
|
|
* more semantic information about the I/O. And it could use something
|
|
* faster than an AVL tree; that was chosen solely for convenience.
|
|
*
|
|
* There are five cache operations: allocate, fill, read, write, evict.
|
|
*
|
|
* (1) Allocate. This reserves a cache entry for the specified region.
|
|
* We separate the allocate and fill operations so that multiple threads
|
|
* don't generate I/O for the same cache miss.
|
|
*
|
|
* (2) Fill. When the I/O for a cache miss completes, the fill routine
|
|
* places the data in the previously allocated cache entry.
|
|
*
|
|
* (3) Read. Read data from the cache.
|
|
*
|
|
* (4) Write. Update cache contents after write completion.
|
|
*
|
|
* (5) Evict. When allocating a new entry, we evict the oldest (LRU) entry
|
|
* if the total cache size exceeds zfs_vdev_cache_size.
|
|
*/
|
|
|
|
/*
|
|
* These tunables are for performance analysis.
|
|
*/
|
|
/*
|
|
* All i/os smaller than zfs_vdev_cache_max will be turned into
|
|
* 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
|
|
* track buffer). At most zfs_vdev_cache_size bytes will be kept in each
|
|
* vdev's vdev_cache.
|
|
*
|
|
* TODO: Note that with the current ZFS code, it turns out that the
|
|
* vdev cache is not helpful, and in some cases actually harmful. It
|
|
* is better if we disable this. Once some time has passed, we should
|
|
* actually remove this to simplify the code. For now we just disable
|
|
* it by setting the zfs_vdev_cache_size to zero. Note that Solaris 11
|
|
* has made these same changes.
|
|
*/
|
|
static uint_t zfs_vdev_cache_max = 1 << 14; /* 16KB */
|
|
static uint_t zfs_vdev_cache_size = 0;
|
|
static uint_t zfs_vdev_cache_bshift = 16;
|
|
|
|
#define VCBS (1 << zfs_vdev_cache_bshift) /* 64KB */
|
|
|
|
static kstat_t *vdc_ksp = NULL;
|
|
|
|
typedef struct vdc_stats {
|
|
kstat_named_t vdc_stat_delegations;
|
|
kstat_named_t vdc_stat_hits;
|
|
kstat_named_t vdc_stat_misses;
|
|
} vdc_stats_t;
|
|
|
|
static vdc_stats_t vdc_stats = {
|
|
{ "delegations", KSTAT_DATA_UINT64 },
|
|
{ "hits", KSTAT_DATA_UINT64 },
|
|
{ "misses", KSTAT_DATA_UINT64 }
|
|
};
|
|
|
|
#define VDCSTAT_BUMP(stat) atomic_inc_64(&vdc_stats.stat.value.ui64);
|
|
|
|
static inline int
|
|
vdev_cache_offset_compare(const void *a1, const void *a2)
|
|
{
|
|
const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1;
|
|
const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2;
|
|
|
|
return (TREE_CMP(ve1->ve_offset, ve2->ve_offset));
|
|
}
|
|
|
|
static int
|
|
vdev_cache_lastused_compare(const void *a1, const void *a2)
|
|
{
|
|
const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1;
|
|
const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2;
|
|
|
|
int cmp = TREE_CMP(ve1->ve_lastused, ve2->ve_lastused);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
/*
|
|
* Among equally old entries, sort by offset to ensure uniqueness.
|
|
*/
|
|
return (vdev_cache_offset_compare(a1, a2));
|
|
}
|
|
|
|
/*
|
|
* Evict the specified entry from the cache.
|
|
*/
|
|
static void
|
|
vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vc->vc_lock));
|
|
ASSERT3P(ve->ve_fill_io, ==, NULL);
|
|
ASSERT3P(ve->ve_abd, !=, NULL);
|
|
|
|
avl_remove(&vc->vc_lastused_tree, ve);
|
|
avl_remove(&vc->vc_offset_tree, ve);
|
|
abd_free(ve->ve_abd);
|
|
kmem_free(ve, sizeof (vdev_cache_entry_t));
|
|
}
|
|
|
|
/*
|
|
* Allocate an entry in the cache. At the point we don't have the data,
|
|
* we're just creating a placeholder so that multiple threads don't all
|
|
* go off and read the same blocks.
|
|
*/
|
|
static vdev_cache_entry_t *
|
|
vdev_cache_allocate(zio_t *zio)
|
|
{
|
|
vdev_cache_t *vc = &zio->io_vd->vdev_cache;
|
|
uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
|
|
vdev_cache_entry_t *ve;
|
|
|
|
ASSERT(MUTEX_HELD(&vc->vc_lock));
|
|
|
|
if (zfs_vdev_cache_size == 0)
|
|
return (NULL);
|
|
|
|
/*
|
|
* If adding a new entry would exceed the cache size,
|
|
* evict the oldest entry (LRU).
|
|
*/
|
|
if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
|
|
zfs_vdev_cache_size) {
|
|
ve = avl_first(&vc->vc_lastused_tree);
|
|
if (ve->ve_fill_io != NULL)
|
|
return (NULL);
|
|
ASSERT3U(ve->ve_hits, !=, 0);
|
|
vdev_cache_evict(vc, ve);
|
|
}
|
|
|
|
ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
|
|
ve->ve_offset = offset;
|
|
ve->ve_lastused = ddi_get_lbolt();
|
|
ve->ve_abd = abd_alloc_for_io(VCBS, B_TRUE);
|
|
|
|
avl_add(&vc->vc_offset_tree, ve);
|
|
avl_add(&vc->vc_lastused_tree, ve);
|
|
|
|
return (ve);
|
|
}
|
|
|
|
static void
|
|
vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
|
|
{
|
|
uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
|
|
|
|
ASSERT(MUTEX_HELD(&vc->vc_lock));
|
|
ASSERT3P(ve->ve_fill_io, ==, NULL);
|
|
|
|
if (ve->ve_lastused != ddi_get_lbolt()) {
|
|
avl_remove(&vc->vc_lastused_tree, ve);
|
|
ve->ve_lastused = ddi_get_lbolt();
|
|
avl_add(&vc->vc_lastused_tree, ve);
|
|
}
|
|
|
|
ve->ve_hits++;
|
|
abd_copy_off(zio->io_abd, ve->ve_abd, 0, cache_phase, zio->io_size);
|
|
}
|
|
|
|
/*
|
|
* Fill a previously allocated cache entry with data.
|
|
*/
|
|
static void
|
|
vdev_cache_fill(zio_t *fio)
|
|
{
|
|
vdev_t *vd = fio->io_vd;
|
|
vdev_cache_t *vc = &vd->vdev_cache;
|
|
vdev_cache_entry_t *ve = fio->io_private;
|
|
zio_t *pio;
|
|
|
|
ASSERT3U(fio->io_size, ==, VCBS);
|
|
|
|
/*
|
|
* Add data to the cache.
|
|
*/
|
|
mutex_enter(&vc->vc_lock);
|
|
|
|
ASSERT3P(ve->ve_fill_io, ==, fio);
|
|
ASSERT3U(ve->ve_offset, ==, fio->io_offset);
|
|
ASSERT3P(ve->ve_abd, ==, fio->io_abd);
|
|
|
|
ve->ve_fill_io = NULL;
|
|
|
|
/*
|
|
* Even if this cache line was invalidated by a missed write update,
|
|
* any reads that were queued up before the missed update are still
|
|
* valid, so we can satisfy them from this line before we evict it.
|
|
*/
|
|
zio_link_t *zl = NULL;
|
|
while ((pio = zio_walk_parents(fio, &zl)) != NULL)
|
|
vdev_cache_hit(vc, ve, pio);
|
|
|
|
if (fio->io_error || ve->ve_missed_update)
|
|
vdev_cache_evict(vc, ve);
|
|
|
|
mutex_exit(&vc->vc_lock);
|
|
}
|
|
|
|
/*
|
|
* Read data from the cache. Returns B_TRUE cache hit, B_FALSE on miss.
|
|
*/
|
|
boolean_t
|
|
vdev_cache_read(zio_t *zio)
|
|
{
|
|
vdev_cache_t *vc = &zio->io_vd->vdev_cache;
|
|
vdev_cache_entry_t *ve, ve_search;
|
|
uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
|
|
zio_t *fio;
|
|
uint64_t cache_phase __maybe_unused = P2PHASE(zio->io_offset, VCBS);
|
|
|
|
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
|
|
|
|
if (zfs_vdev_cache_size == 0)
|
|
return (B_FALSE);
|
|
|
|
if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
|
|
return (B_FALSE);
|
|
|
|
if (zio->io_size > zfs_vdev_cache_max)
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* If the I/O straddles two or more cache blocks, don't cache it.
|
|
*/
|
|
if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
|
|
return (B_FALSE);
|
|
|
|
ASSERT3U(cache_phase + zio->io_size, <=, VCBS);
|
|
|
|
mutex_enter(&vc->vc_lock);
|
|
|
|
ve_search.ve_offset = cache_offset;
|
|
ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
|
|
|
|
if (ve != NULL) {
|
|
if (ve->ve_missed_update) {
|
|
mutex_exit(&vc->vc_lock);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
if ((fio = ve->ve_fill_io) != NULL) {
|
|
zio_vdev_io_bypass(zio);
|
|
zio_add_child(zio, fio);
|
|
mutex_exit(&vc->vc_lock);
|
|
VDCSTAT_BUMP(vdc_stat_delegations);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
vdev_cache_hit(vc, ve, zio);
|
|
zio_vdev_io_bypass(zio);
|
|
|
|
mutex_exit(&vc->vc_lock);
|
|
VDCSTAT_BUMP(vdc_stat_hits);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
ve = vdev_cache_allocate(zio);
|
|
|
|
if (ve == NULL) {
|
|
mutex_exit(&vc->vc_lock);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
|
|
ve->ve_abd, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW,
|
|
ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
|
|
|
|
ve->ve_fill_io = fio;
|
|
zio_vdev_io_bypass(zio);
|
|
zio_add_child(zio, fio);
|
|
|
|
mutex_exit(&vc->vc_lock);
|
|
zio_nowait(fio);
|
|
VDCSTAT_BUMP(vdc_stat_misses);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Update cache contents upon write completion.
|
|
*/
|
|
void
|
|
vdev_cache_write(zio_t *zio)
|
|
{
|
|
vdev_cache_t *vc = &zio->io_vd->vdev_cache;
|
|
vdev_cache_entry_t *ve, ve_search;
|
|
uint64_t io_start = zio->io_offset;
|
|
uint64_t io_end = io_start + zio->io_size;
|
|
uint64_t min_offset = P2ALIGN(io_start, VCBS);
|
|
uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
|
|
avl_index_t where;
|
|
|
|
ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
|
|
|
|
mutex_enter(&vc->vc_lock);
|
|
|
|
ve_search.ve_offset = min_offset;
|
|
ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
|
|
|
|
if (ve == NULL)
|
|
ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
|
|
|
|
while (ve != NULL && ve->ve_offset < max_offset) {
|
|
uint64_t start = MAX(ve->ve_offset, io_start);
|
|
uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
|
|
|
|
if (ve->ve_fill_io != NULL) {
|
|
ve->ve_missed_update = 1;
|
|
} else {
|
|
abd_copy_off(ve->ve_abd, zio->io_abd,
|
|
start - ve->ve_offset, start - io_start,
|
|
end - start);
|
|
}
|
|
ve = AVL_NEXT(&vc->vc_offset_tree, ve);
|
|
}
|
|
mutex_exit(&vc->vc_lock);
|
|
}
|
|
|
|
void
|
|
vdev_cache_purge(vdev_t *vd)
|
|
{
|
|
vdev_cache_t *vc = &vd->vdev_cache;
|
|
vdev_cache_entry_t *ve;
|
|
|
|
mutex_enter(&vc->vc_lock);
|
|
while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
|
|
vdev_cache_evict(vc, ve);
|
|
mutex_exit(&vc->vc_lock);
|
|
}
|
|
|
|
void
|
|
vdev_cache_init(vdev_t *vd)
|
|
{
|
|
vdev_cache_t *vc = &vd->vdev_cache;
|
|
|
|
mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
|
|
sizeof (vdev_cache_entry_t),
|
|
offsetof(struct vdev_cache_entry, ve_offset_node));
|
|
|
|
avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
|
|
sizeof (vdev_cache_entry_t),
|
|
offsetof(struct vdev_cache_entry, ve_lastused_node));
|
|
}
|
|
|
|
void
|
|
vdev_cache_fini(vdev_t *vd)
|
|
{
|
|
vdev_cache_t *vc = &vd->vdev_cache;
|
|
|
|
vdev_cache_purge(vd);
|
|
|
|
avl_destroy(&vc->vc_offset_tree);
|
|
avl_destroy(&vc->vc_lastused_tree);
|
|
|
|
mutex_destroy(&vc->vc_lock);
|
|
}
|
|
|
|
void
|
|
vdev_cache_stat_init(void)
|
|
{
|
|
vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
|
|
KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
if (vdc_ksp != NULL) {
|
|
vdc_ksp->ks_data = &vdc_stats;
|
|
kstat_install(vdc_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_cache_stat_fini(void)
|
|
{
|
|
if (vdc_ksp != NULL) {
|
|
kstat_delete(vdc_ksp);
|
|
vdc_ksp = NULL;
|
|
}
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_max, UINT, ZMOD_RW,
|
|
"Inflate reads small than max");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_size, UINT, ZMOD_RD,
|
|
"Total size of the per-disk cache");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, cache_bshift, UINT, ZMOD_RW,
|
|
"Shift size to inflate reads too");
|