mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-18 10:21:01 +03:00
9a49d3f3d3
The device_rebuild feature enables sequential reconstruction when resilvering. Mirror vdevs can be rebuilt in LBA order which may more quickly restore redundancy depending on the pools average block size, overall fragmentation and the performance characteristics of the devices. However, block checksums cannot be verified as part of the rebuild thus a scrub is automatically started after the sequential resilver completes. The new '-s' option has been added to the `zpool attach` and `zpool replace` command to request sequential reconstruction instead of healing reconstruction when resilvering. zpool attach -s <pool> <existing vdev> <new vdev> zpool replace -s <pool> <old vdev> <new vdev> The `zpool status` output has been updated to report the progress of sequential resilvering in the same way as healing resilvering. The one notable difference is that multiple sequential resilvers may be in progress as long as they're operating on different top-level vdevs. The `zpool wait -t resilver` command was extended to wait on sequential resilvers. From this perspective they are no different than healing resilvers. Sequential resilvers cannot be supported for RAIDZ, but are compatible with the dRAID feature being developed. As part of this change the resilver_restart_* tests were moved in to the functional/replacement directory. Additionally, the replacement tests were renamed and extended to verify both resilvering and rebuilding. Original-patch-by: Isaac Huang <he.huang@intel.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: John Poduska <jpoduska@datto.com> Co-authored-by: Mark Maybee <mmaybee@cray.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #10349
4427 lines
135 KiB
C
4427 lines
135 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
|
|
* Copyright 2016 Gary Mills
|
|
* Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
|
|
* Copyright 2019 Joyent, Inc.
|
|
*/
|
|
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/sa_impl.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/range_tree.h>
|
|
#ifdef _KERNEL
|
|
#include <sys/zfs_vfsops.h>
|
|
#endif
|
|
|
|
/*
|
|
* Grand theory statement on scan queue sorting
|
|
*
|
|
* Scanning is implemented by recursively traversing all indirection levels
|
|
* in an object and reading all blocks referenced from said objects. This
|
|
* results in us approximately traversing the object from lowest logical
|
|
* offset to the highest. For best performance, we would want the logical
|
|
* blocks to be physically contiguous. However, this is frequently not the
|
|
* case with pools given the allocation patterns of copy-on-write filesystems.
|
|
* So instead, we put the I/Os into a reordering queue and issue them in a
|
|
* way that will most benefit physical disks (LBA-order).
|
|
*
|
|
* Queue management:
|
|
*
|
|
* Ideally, we would want to scan all metadata and queue up all block I/O
|
|
* prior to starting to issue it, because that allows us to do an optimal
|
|
* sorting job. This can however consume large amounts of memory. Therefore
|
|
* we continuously monitor the size of the queues and constrain them to 5%
|
|
* (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
|
|
* limit, we clear out a few of the largest extents at the head of the queues
|
|
* to make room for more scanning. Hopefully, these extents will be fairly
|
|
* large and contiguous, allowing us to approach sequential I/O throughput
|
|
* even without a fully sorted tree.
|
|
*
|
|
* Metadata scanning takes place in dsl_scan_visit(), which is called from
|
|
* dsl_scan_sync() every spa_sync(). If we have either fully scanned all
|
|
* metadata on the pool, or we need to make room in memory because our
|
|
* queues are too large, dsl_scan_visit() is postponed and
|
|
* scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
|
|
* that metadata scanning and queued I/O issuing are mutually exclusive. This
|
|
* allows us to provide maximum sequential I/O throughput for the majority of
|
|
* I/O's issued since sequential I/O performance is significantly negatively
|
|
* impacted if it is interleaved with random I/O.
|
|
*
|
|
* Implementation Notes
|
|
*
|
|
* One side effect of the queued scanning algorithm is that the scanning code
|
|
* needs to be notified whenever a block is freed. This is needed to allow
|
|
* the scanning code to remove these I/Os from the issuing queue. Additionally,
|
|
* we do not attempt to queue gang blocks to be issued sequentially since this
|
|
* is very hard to do and would have an extremely limited performance benefit.
|
|
* Instead, we simply issue gang I/Os as soon as we find them using the legacy
|
|
* algorithm.
|
|
*
|
|
* Backwards compatibility
|
|
*
|
|
* This new algorithm is backwards compatible with the legacy on-disk data
|
|
* structures (and therefore does not require a new feature flag).
|
|
* Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
|
|
* will stop scanning metadata (in logical order) and wait for all outstanding
|
|
* sorted I/O to complete. Once this is done, we write out a checkpoint
|
|
* bookmark, indicating that we have scanned everything logically before it.
|
|
* If the pool is imported on a machine without the new sorting algorithm,
|
|
* the scan simply resumes from the last checkpoint using the legacy algorithm.
|
|
*/
|
|
|
|
typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
|
|
const zbookmark_phys_t *);
|
|
|
|
static scan_cb_t dsl_scan_scrub_cb;
|
|
|
|
static int scan_ds_queue_compare(const void *a, const void *b);
|
|
static int scan_prefetch_queue_compare(const void *a, const void *b);
|
|
static void scan_ds_queue_clear(dsl_scan_t *scn);
|
|
static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
|
|
static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
|
|
uint64_t *txg);
|
|
static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
|
|
static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
|
|
static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
|
|
static uint64_t dsl_scan_count_leaves(vdev_t *vd);
|
|
|
|
extern int zfs_vdev_async_write_active_min_dirty_percent;
|
|
|
|
/*
|
|
* By default zfs will check to ensure it is not over the hard memory
|
|
* limit before each txg. If finer-grained control of this is needed
|
|
* this value can be set to 1 to enable checking before scanning each
|
|
* block.
|
|
*/
|
|
int zfs_scan_strict_mem_lim = B_FALSE;
|
|
|
|
/*
|
|
* Maximum number of parallelly executed bytes per leaf vdev. We attempt
|
|
* to strike a balance here between keeping the vdev queues full of I/Os
|
|
* at all times and not overflowing the queues to cause long latency,
|
|
* which would cause long txg sync times. No matter what, we will not
|
|
* overload the drives with I/O, since that is protected by
|
|
* zfs_vdev_scrub_max_active.
|
|
*/
|
|
unsigned long zfs_scan_vdev_limit = 4 << 20;
|
|
|
|
int zfs_scan_issue_strategy = 0;
|
|
int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */
|
|
unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
|
|
|
|
/*
|
|
* fill_weight is non-tunable at runtime, so we copy it at module init from
|
|
* zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
|
|
* break queue sorting.
|
|
*/
|
|
int zfs_scan_fill_weight = 3;
|
|
static uint64_t fill_weight;
|
|
|
|
/* See dsl_scan_should_clear() for details on the memory limit tunables */
|
|
uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
|
|
uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
|
|
int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */
|
|
int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */
|
|
|
|
int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
|
|
int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */
|
|
int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
|
|
int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */
|
|
int zfs_scan_checkpoint_intval = 7200; /* in seconds */
|
|
int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
|
|
int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
|
|
int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
|
|
enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
|
|
/* max number of blocks to free in a single TXG */
|
|
unsigned long zfs_async_block_max_blocks = ULONG_MAX;
|
|
/* max number of dedup blocks to free in a single TXG */
|
|
unsigned long zfs_max_async_dedup_frees = 100000;
|
|
|
|
int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */
|
|
|
|
/*
|
|
* We wait a few txgs after importing a pool to begin scanning so that
|
|
* the import / mounting code isn't held up by scrub / resilver IO.
|
|
* Unfortunately, it is a bit difficult to determine exactly how long
|
|
* this will take since userspace will trigger fs mounts asynchronously
|
|
* and the kernel will create zvol minors asynchronously. As a result,
|
|
* the value provided here is a bit arbitrary, but represents a
|
|
* reasonable estimate of how many txgs it will take to finish fully
|
|
* importing a pool
|
|
*/
|
|
#define SCAN_IMPORT_WAIT_TXGS 5
|
|
|
|
#define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
|
|
((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
|
|
(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
|
|
|
|
/*
|
|
* Enable/disable the processing of the free_bpobj object.
|
|
*/
|
|
int zfs_free_bpobj_enabled = 1;
|
|
|
|
/* the order has to match pool_scan_type */
|
|
static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
|
|
NULL,
|
|
dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
|
|
dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
|
|
};
|
|
|
|
/* In core node for the scn->scn_queue. Represents a dataset to be scanned */
|
|
typedef struct {
|
|
uint64_t sds_dsobj;
|
|
uint64_t sds_txg;
|
|
avl_node_t sds_node;
|
|
} scan_ds_t;
|
|
|
|
/*
|
|
* This controls what conditions are placed on dsl_scan_sync_state():
|
|
* SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0
|
|
* SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0.
|
|
* SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise
|
|
* write out the scn_phys_cached version.
|
|
* See dsl_scan_sync_state for details.
|
|
*/
|
|
typedef enum {
|
|
SYNC_OPTIONAL,
|
|
SYNC_MANDATORY,
|
|
SYNC_CACHED
|
|
} state_sync_type_t;
|
|
|
|
/*
|
|
* This struct represents the minimum information needed to reconstruct a
|
|
* zio for sequential scanning. This is useful because many of these will
|
|
* accumulate in the sequential IO queues before being issued, so saving
|
|
* memory matters here.
|
|
*/
|
|
typedef struct scan_io {
|
|
/* fields from blkptr_t */
|
|
uint64_t sio_blk_prop;
|
|
uint64_t sio_phys_birth;
|
|
uint64_t sio_birth;
|
|
zio_cksum_t sio_cksum;
|
|
uint32_t sio_nr_dvas;
|
|
|
|
/* fields from zio_t */
|
|
uint32_t sio_flags;
|
|
zbookmark_phys_t sio_zb;
|
|
|
|
/* members for queue sorting */
|
|
union {
|
|
avl_node_t sio_addr_node; /* link into issuing queue */
|
|
list_node_t sio_list_node; /* link for issuing to disk */
|
|
} sio_nodes;
|
|
|
|
/*
|
|
* There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
|
|
* depending on how many were in the original bp. Only the
|
|
* first DVA is really used for sorting and issuing purposes.
|
|
* The other DVAs (if provided) simply exist so that the zio
|
|
* layer can find additional copies to repair from in the
|
|
* event of an error. This array must go at the end of the
|
|
* struct to allow this for the variable number of elements.
|
|
*/
|
|
dva_t sio_dva[0];
|
|
} scan_io_t;
|
|
|
|
#define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
|
|
#define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
|
|
#define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
|
|
#define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
|
|
#define SIO_GET_END_OFFSET(sio) \
|
|
(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
|
|
#define SIO_GET_MUSED(sio) \
|
|
(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
|
|
|
|
struct dsl_scan_io_queue {
|
|
dsl_scan_t *q_scn; /* associated dsl_scan_t */
|
|
vdev_t *q_vd; /* top-level vdev that this queue represents */
|
|
|
|
/* trees used for sorting I/Os and extents of I/Os */
|
|
range_tree_t *q_exts_by_addr;
|
|
zfs_btree_t q_exts_by_size;
|
|
avl_tree_t q_sios_by_addr;
|
|
uint64_t q_sio_memused;
|
|
|
|
/* members for zio rate limiting */
|
|
uint64_t q_maxinflight_bytes;
|
|
uint64_t q_inflight_bytes;
|
|
kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
|
|
|
|
/* per txg statistics */
|
|
uint64_t q_total_seg_size_this_txg;
|
|
uint64_t q_segs_this_txg;
|
|
uint64_t q_total_zio_size_this_txg;
|
|
uint64_t q_zios_this_txg;
|
|
};
|
|
|
|
/* private data for dsl_scan_prefetch_cb() */
|
|
typedef struct scan_prefetch_ctx {
|
|
zfs_refcount_t spc_refcnt; /* refcount for memory management */
|
|
dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
|
|
boolean_t spc_root; /* is this prefetch for an objset? */
|
|
uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
|
|
uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
|
|
} scan_prefetch_ctx_t;
|
|
|
|
/* private data for dsl_scan_prefetch() */
|
|
typedef struct scan_prefetch_issue_ctx {
|
|
avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
|
|
scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
|
|
blkptr_t spic_bp; /* bp to prefetch */
|
|
zbookmark_phys_t spic_zb; /* bookmark to prefetch */
|
|
} scan_prefetch_issue_ctx_t;
|
|
|
|
static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
|
|
const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
|
|
static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
|
|
scan_io_t *sio);
|
|
|
|
static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
|
|
static void scan_io_queues_destroy(dsl_scan_t *scn);
|
|
|
|
static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
|
|
|
|
/* sio->sio_nr_dvas must be set so we know which cache to free from */
|
|
static void
|
|
sio_free(scan_io_t *sio)
|
|
{
|
|
ASSERT3U(sio->sio_nr_dvas, >, 0);
|
|
ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
|
|
|
|
kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
|
|
}
|
|
|
|
/* It is up to the caller to set sio->sio_nr_dvas for freeing */
|
|
static scan_io_t *
|
|
sio_alloc(unsigned short nr_dvas)
|
|
{
|
|
ASSERT3U(nr_dvas, >, 0);
|
|
ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
|
|
|
|
return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
|
|
}
|
|
|
|
void
|
|
scan_init(void)
|
|
{
|
|
/*
|
|
* This is used in ext_size_compare() to weight segments
|
|
* based on how sparse they are. This cannot be changed
|
|
* mid-scan and the tree comparison functions don't currently
|
|
* have a mechanism for passing additional context to the
|
|
* compare functions. Thus we store this value globally and
|
|
* we only allow it to be set at module initialization time
|
|
*/
|
|
fill_weight = zfs_scan_fill_weight;
|
|
|
|
for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
|
|
char name[36];
|
|
|
|
(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
|
|
sio_cache[i] = kmem_cache_create(name,
|
|
(sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
|
|
0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
scan_fini(void)
|
|
{
|
|
for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
|
|
kmem_cache_destroy(sio_cache[i]);
|
|
}
|
|
}
|
|
|
|
static inline boolean_t
|
|
dsl_scan_is_running(const dsl_scan_t *scn)
|
|
{
|
|
return (scn->scn_phys.scn_state == DSS_SCANNING);
|
|
}
|
|
|
|
boolean_t
|
|
dsl_scan_resilvering(dsl_pool_t *dp)
|
|
{
|
|
return (dsl_scan_is_running(dp->dp_scan) &&
|
|
dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
|
|
}
|
|
|
|
static inline void
|
|
sio2bp(const scan_io_t *sio, blkptr_t *bp)
|
|
{
|
|
bzero(bp, sizeof (*bp));
|
|
bp->blk_prop = sio->sio_blk_prop;
|
|
bp->blk_phys_birth = sio->sio_phys_birth;
|
|
bp->blk_birth = sio->sio_birth;
|
|
bp->blk_fill = 1; /* we always only work with data pointers */
|
|
bp->blk_cksum = sio->sio_cksum;
|
|
|
|
ASSERT3U(sio->sio_nr_dvas, >, 0);
|
|
ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
|
|
|
|
bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t));
|
|
}
|
|
|
|
static inline void
|
|
bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
|
|
{
|
|
sio->sio_blk_prop = bp->blk_prop;
|
|
sio->sio_phys_birth = bp->blk_phys_birth;
|
|
sio->sio_birth = bp->blk_birth;
|
|
sio->sio_cksum = bp->blk_cksum;
|
|
sio->sio_nr_dvas = BP_GET_NDVAS(bp);
|
|
|
|
/*
|
|
* Copy the DVAs to the sio. We need all copies of the block so
|
|
* that the self healing code can use the alternate copies if the
|
|
* first is corrupted. We want the DVA at index dva_i to be first
|
|
* in the sio since this is the primary one that we want to issue.
|
|
*/
|
|
for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
|
|
sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
|
|
}
|
|
}
|
|
|
|
int
|
|
dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
|
|
{
|
|
int err;
|
|
dsl_scan_t *scn;
|
|
spa_t *spa = dp->dp_spa;
|
|
uint64_t f;
|
|
|
|
scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
|
|
scn->scn_dp = dp;
|
|
|
|
/*
|
|
* It's possible that we're resuming a scan after a reboot so
|
|
* make sure that the scan_async_destroying flag is initialized
|
|
* appropriately.
|
|
*/
|
|
ASSERT(!scn->scn_async_destroying);
|
|
scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
|
|
SPA_FEATURE_ASYNC_DESTROY);
|
|
|
|
/*
|
|
* Calculate the max number of in-flight bytes for pool-wide
|
|
* scanning operations (minimum 1MB). Limits for the issuing
|
|
* phase are done per top-level vdev and are handled separately.
|
|
*/
|
|
scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
|
|
dsl_scan_count_leaves(spa->spa_root_vdev), 1ULL << 20);
|
|
|
|
avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
|
|
offsetof(scan_ds_t, sds_node));
|
|
avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
|
|
sizeof (scan_prefetch_issue_ctx_t),
|
|
offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
|
|
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
"scrub_func", sizeof (uint64_t), 1, &f);
|
|
if (err == 0) {
|
|
/*
|
|
* There was an old-style scrub in progress. Restart a
|
|
* new-style scrub from the beginning.
|
|
*/
|
|
scn->scn_restart_txg = txg;
|
|
zfs_dbgmsg("old-style scrub was in progress; "
|
|
"restarting new-style scrub in txg %llu",
|
|
(longlong_t)scn->scn_restart_txg);
|
|
|
|
/*
|
|
* Load the queue obj from the old location so that it
|
|
* can be freed by dsl_scan_done().
|
|
*/
|
|
(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
"scrub_queue", sizeof (uint64_t), 1,
|
|
&scn->scn_phys.scn_queue_obj);
|
|
} else {
|
|
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
|
|
&scn->scn_phys);
|
|
/*
|
|
* Detect if the pool contains the signature of #2094. If it
|
|
* does properly update the scn->scn_phys structure and notify
|
|
* the administrator by setting an errata for the pool.
|
|
*/
|
|
if (err == EOVERFLOW) {
|
|
uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
|
|
VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
|
|
VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
|
|
(23 * sizeof (uint64_t)));
|
|
|
|
err = zap_lookup(dp->dp_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
|
|
sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
|
|
if (err == 0) {
|
|
uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
|
|
|
|
if (overflow & ~DSL_SCAN_FLAGS_MASK ||
|
|
scn->scn_async_destroying) {
|
|
spa->spa_errata =
|
|
ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
|
|
return (EOVERFLOW);
|
|
}
|
|
|
|
bcopy(zaptmp, &scn->scn_phys,
|
|
SCAN_PHYS_NUMINTS * sizeof (uint64_t));
|
|
scn->scn_phys.scn_flags = overflow;
|
|
|
|
/* Required scrub already in progress. */
|
|
if (scn->scn_phys.scn_state == DSS_FINISHED ||
|
|
scn->scn_phys.scn_state == DSS_CANCELED)
|
|
spa->spa_errata =
|
|
ZPOOL_ERRATA_ZOL_2094_SCRUB;
|
|
}
|
|
}
|
|
|
|
if (err == ENOENT)
|
|
return (0);
|
|
else if (err)
|
|
return (err);
|
|
|
|
/*
|
|
* We might be restarting after a reboot, so jump the issued
|
|
* counter to how far we've scanned. We know we're consistent
|
|
* up to here.
|
|
*/
|
|
scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
|
|
|
|
if (dsl_scan_is_running(scn) &&
|
|
spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
|
|
/*
|
|
* A new-type scrub was in progress on an old
|
|
* pool, and the pool was accessed by old
|
|
* software. Restart from the beginning, since
|
|
* the old software may have changed the pool in
|
|
* the meantime.
|
|
*/
|
|
scn->scn_restart_txg = txg;
|
|
zfs_dbgmsg("new-style scrub was modified "
|
|
"by old software; restarting in txg %llu",
|
|
(longlong_t)scn->scn_restart_txg);
|
|
} else if (dsl_scan_resilvering(dp)) {
|
|
/*
|
|
* If a resilver is in progress and there are already
|
|
* errors, restart it instead of finishing this scan and
|
|
* then restarting it. If there haven't been any errors
|
|
* then remember that the incore DTL is valid.
|
|
*/
|
|
if (scn->scn_phys.scn_errors > 0) {
|
|
scn->scn_restart_txg = txg;
|
|
zfs_dbgmsg("resilver can't excise DTL_MISSING "
|
|
"when finished; restarting in txg %llu",
|
|
(u_longlong_t)scn->scn_restart_txg);
|
|
} else {
|
|
/* it's safe to excise DTL when finished */
|
|
spa->spa_scrub_started = B_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
|
|
|
|
/* reload the queue into the in-core state */
|
|
if (scn->scn_phys.scn_queue_obj != 0) {
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
|
|
for (zap_cursor_init(&zc, dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj);
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
(void) zap_cursor_advance(&zc)) {
|
|
scan_ds_queue_insert(scn,
|
|
zfs_strtonum(za.za_name, NULL),
|
|
za.za_first_integer);
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
|
|
spa_scan_stat_init(spa);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dsl_scan_fini(dsl_pool_t *dp)
|
|
{
|
|
if (dp->dp_scan != NULL) {
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
|
|
if (scn->scn_taskq != NULL)
|
|
taskq_destroy(scn->scn_taskq);
|
|
|
|
scan_ds_queue_clear(scn);
|
|
avl_destroy(&scn->scn_queue);
|
|
scan_ds_prefetch_queue_clear(scn);
|
|
avl_destroy(&scn->scn_prefetch_queue);
|
|
|
|
kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
|
|
dp->dp_scan = NULL;
|
|
}
|
|
}
|
|
|
|
static boolean_t
|
|
dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
|
|
{
|
|
return (scn->scn_restart_txg != 0 &&
|
|
scn->scn_restart_txg <= tx->tx_txg);
|
|
}
|
|
|
|
boolean_t
|
|
dsl_scan_resilver_scheduled(dsl_pool_t *dp)
|
|
{
|
|
return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
|
|
(spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
|
|
}
|
|
|
|
boolean_t
|
|
dsl_scan_scrubbing(const dsl_pool_t *dp)
|
|
{
|
|
dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
|
|
|
|
return (scn_phys->scn_state == DSS_SCANNING &&
|
|
scn_phys->scn_func == POOL_SCAN_SCRUB);
|
|
}
|
|
|
|
boolean_t
|
|
dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
|
|
{
|
|
return (dsl_scan_scrubbing(scn->scn_dp) &&
|
|
scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
|
|
}
|
|
|
|
/*
|
|
* Writes out a persistent dsl_scan_phys_t record to the pool directory.
|
|
* Because we can be running in the block sorting algorithm, we do not always
|
|
* want to write out the record, only when it is "safe" to do so. This safety
|
|
* condition is achieved by making sure that the sorting queues are empty
|
|
* (scn_bytes_pending == 0). When this condition is not true, the sync'd state
|
|
* is inconsistent with how much actual scanning progress has been made. The
|
|
* kind of sync to be performed is specified by the sync_type argument. If the
|
|
* sync is optional, we only sync if the queues are empty. If the sync is
|
|
* mandatory, we do a hard ASSERT to make sure that the queues are empty. The
|
|
* third possible state is a "cached" sync. This is done in response to:
|
|
* 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
|
|
* destroyed, so we wouldn't be able to restart scanning from it.
|
|
* 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
|
|
* superseded by a newer snapshot.
|
|
* 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
|
|
* swapped with its clone.
|
|
* In all cases, a cached sync simply rewrites the last record we've written,
|
|
* just slightly modified. For the modifications that are performed to the
|
|
* last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
|
|
* dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
|
|
*/
|
|
static void
|
|
dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
|
|
{
|
|
int i;
|
|
spa_t *spa = scn->scn_dp->dp_spa;
|
|
|
|
ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0);
|
|
if (scn->scn_bytes_pending == 0) {
|
|
for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
|
|
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
|
|
dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
|
|
|
|
if (q == NULL)
|
|
continue;
|
|
|
|
mutex_enter(&vd->vdev_scan_io_queue_lock);
|
|
ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
|
|
ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
|
|
NULL);
|
|
ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
|
|
mutex_exit(&vd->vdev_scan_io_queue_lock);
|
|
}
|
|
|
|
if (scn->scn_phys.scn_queue_obj != 0)
|
|
scan_ds_queue_sync(scn, tx);
|
|
VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
|
|
&scn->scn_phys, tx));
|
|
bcopy(&scn->scn_phys, &scn->scn_phys_cached,
|
|
sizeof (scn->scn_phys));
|
|
|
|
if (scn->scn_checkpointing)
|
|
zfs_dbgmsg("finish scan checkpoint");
|
|
|
|
scn->scn_checkpointing = B_FALSE;
|
|
scn->scn_last_checkpoint = ddi_get_lbolt();
|
|
} else if (sync_type == SYNC_CACHED) {
|
|
VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
|
|
&scn->scn_phys_cached, tx));
|
|
}
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
|
|
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
|
|
|
|
if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd))
|
|
return (SET_ERROR(EBUSY));
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
|
|
pool_scan_func_t *funcp = arg;
|
|
dmu_object_type_t ot = 0;
|
|
dsl_pool_t *dp = scn->scn_dp;
|
|
spa_t *spa = dp->dp_spa;
|
|
|
|
ASSERT(!dsl_scan_is_running(scn));
|
|
ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
|
|
bzero(&scn->scn_phys, sizeof (scn->scn_phys));
|
|
scn->scn_phys.scn_func = *funcp;
|
|
scn->scn_phys.scn_state = DSS_SCANNING;
|
|
scn->scn_phys.scn_min_txg = 0;
|
|
scn->scn_phys.scn_max_txg = tx->tx_txg;
|
|
scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
|
|
scn->scn_phys.scn_start_time = gethrestime_sec();
|
|
scn->scn_phys.scn_errors = 0;
|
|
scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
|
|
scn->scn_issued_before_pass = 0;
|
|
scn->scn_restart_txg = 0;
|
|
scn->scn_done_txg = 0;
|
|
scn->scn_last_checkpoint = 0;
|
|
scn->scn_checkpointing = B_FALSE;
|
|
spa_scan_stat_init(spa);
|
|
|
|
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
|
|
scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
|
|
|
|
/* rewrite all disk labels */
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
|
|
if (vdev_resilver_needed(spa->spa_root_vdev,
|
|
&scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
|
|
nvlist_t *aux = fnvlist_alloc();
|
|
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
|
|
"healing");
|
|
spa_event_notify(spa, NULL, aux,
|
|
ESC_ZFS_RESILVER_START);
|
|
nvlist_free(aux);
|
|
} else {
|
|
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
|
|
}
|
|
|
|
spa->spa_scrub_started = B_TRUE;
|
|
/*
|
|
* If this is an incremental scrub, limit the DDT scrub phase
|
|
* to just the auto-ditto class (for correctness); the rest
|
|
* of the scrub should go faster using top-down pruning.
|
|
*/
|
|
if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
|
|
scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
|
|
|
|
/*
|
|
* When starting a resilver clear any existing rebuild state.
|
|
* This is required to prevent stale rebuild status from
|
|
* being reported when a rebuild is run, then a resilver and
|
|
* finally a scrub. In which case only the scrub status
|
|
* should be reported by 'zpool status'.
|
|
*/
|
|
if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
|
|
vdev_t *vd = rvd->vdev_child[i];
|
|
vdev_rebuild_clear_sync(
|
|
(void *)(uintptr_t)vd->vdev_id, tx);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* back to the generic stuff */
|
|
|
|
if (dp->dp_blkstats == NULL) {
|
|
dp->dp_blkstats =
|
|
vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
|
|
mutex_init(&dp->dp_blkstats->zab_lock, NULL,
|
|
MUTEX_DEFAULT, NULL);
|
|
}
|
|
bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type));
|
|
|
|
if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
|
|
ot = DMU_OT_ZAP_OTHER;
|
|
|
|
scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
|
|
ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
|
|
|
|
bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys));
|
|
|
|
dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
|
|
|
|
spa_history_log_internal(spa, "scan setup", tx,
|
|
"func=%u mintxg=%llu maxtxg=%llu",
|
|
*funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
|
|
(u_longlong_t)scn->scn_phys.scn_max_txg);
|
|
}
|
|
|
|
/*
|
|
* Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
|
|
* Can also be called to resume a paused scrub.
|
|
*/
|
|
int
|
|
dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
|
|
{
|
|
spa_t *spa = dp->dp_spa;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
|
|
/*
|
|
* Purge all vdev caches and probe all devices. We do this here
|
|
* rather than in sync context because this requires a writer lock
|
|
* on the spa_config lock, which we can't do from sync context. The
|
|
* spa_scrub_reopen flag indicates that vdev_open() should not
|
|
* attempt to start another scrub.
|
|
*/
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
spa->spa_scrub_reopen = B_TRUE;
|
|
vdev_reopen(spa->spa_root_vdev);
|
|
spa->spa_scrub_reopen = B_FALSE;
|
|
(void) spa_vdev_state_exit(spa, NULL, 0);
|
|
|
|
if (func == POOL_SCAN_RESILVER) {
|
|
dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
|
|
return (0);
|
|
}
|
|
|
|
if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
|
|
/* got scrub start cmd, resume paused scrub */
|
|
int err = dsl_scrub_set_pause_resume(scn->scn_dp,
|
|
POOL_SCRUB_NORMAL);
|
|
if (err == 0) {
|
|
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
|
|
return (SET_ERROR(ECANCELED));
|
|
}
|
|
|
|
return (SET_ERROR(err));
|
|
}
|
|
|
|
return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
|
|
dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
|
|
{
|
|
static const char *old_names[] = {
|
|
"scrub_bookmark",
|
|
"scrub_ddt_bookmark",
|
|
"scrub_ddt_class_max",
|
|
"scrub_queue",
|
|
"scrub_min_txg",
|
|
"scrub_max_txg",
|
|
"scrub_func",
|
|
"scrub_errors",
|
|
NULL
|
|
};
|
|
|
|
dsl_pool_t *dp = scn->scn_dp;
|
|
spa_t *spa = dp->dp_spa;
|
|
int i;
|
|
|
|
/* Remove any remnants of an old-style scrub. */
|
|
for (i = 0; old_names[i]; i++) {
|
|
(void) zap_remove(dp->dp_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
|
|
}
|
|
|
|
if (scn->scn_phys.scn_queue_obj != 0) {
|
|
VERIFY0(dmu_object_free(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, tx));
|
|
scn->scn_phys.scn_queue_obj = 0;
|
|
}
|
|
scan_ds_queue_clear(scn);
|
|
scan_ds_prefetch_queue_clear(scn);
|
|
|
|
scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
|
|
|
|
/*
|
|
* If we were "restarted" from a stopped state, don't bother
|
|
* with anything else.
|
|
*/
|
|
if (!dsl_scan_is_running(scn)) {
|
|
ASSERT(!scn->scn_is_sorted);
|
|
return;
|
|
}
|
|
|
|
if (scn->scn_is_sorted) {
|
|
scan_io_queues_destroy(scn);
|
|
scn->scn_is_sorted = B_FALSE;
|
|
|
|
if (scn->scn_taskq != NULL) {
|
|
taskq_destroy(scn->scn_taskq);
|
|
scn->scn_taskq = NULL;
|
|
}
|
|
}
|
|
|
|
scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
|
|
|
|
spa_notify_waiters(spa);
|
|
|
|
if (dsl_scan_restarting(scn, tx))
|
|
spa_history_log_internal(spa, "scan aborted, restarting", tx,
|
|
"errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
|
|
else if (!complete)
|
|
spa_history_log_internal(spa, "scan cancelled", tx,
|
|
"errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
|
|
else
|
|
spa_history_log_internal(spa, "scan done", tx,
|
|
"errors=%llu", (u_longlong_t)spa_get_errlog_size(spa));
|
|
|
|
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
|
|
spa->spa_scrub_active = B_FALSE;
|
|
|
|
/*
|
|
* If the scrub/resilver completed, update all DTLs to
|
|
* reflect this. Whether it succeeded or not, vacate
|
|
* all temporary scrub DTLs.
|
|
*
|
|
* As the scrub does not currently support traversing
|
|
* data that have been freed but are part of a checkpoint,
|
|
* we don't mark the scrub as done in the DTLs as faults
|
|
* may still exist in those vdevs.
|
|
*/
|
|
if (complete &&
|
|
!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
|
|
vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
|
|
scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
|
|
|
|
if (scn->scn_phys.scn_min_txg) {
|
|
nvlist_t *aux = fnvlist_alloc();
|
|
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
|
|
"healing");
|
|
spa_event_notify(spa, NULL, aux,
|
|
ESC_ZFS_RESILVER_FINISH);
|
|
nvlist_free(aux);
|
|
} else {
|
|
spa_event_notify(spa, NULL, NULL,
|
|
ESC_ZFS_SCRUB_FINISH);
|
|
}
|
|
} else {
|
|
vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
|
|
0, B_TRUE, B_FALSE);
|
|
}
|
|
spa_errlog_rotate(spa);
|
|
|
|
/*
|
|
* Don't clear flag until after vdev_dtl_reassess to ensure that
|
|
* DTL_MISSING will get updated when possible.
|
|
*/
|
|
spa->spa_scrub_started = B_FALSE;
|
|
|
|
/*
|
|
* We may have finished replacing a device.
|
|
* Let the async thread assess this and handle the detach.
|
|
*/
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
|
|
|
|
/*
|
|
* Clear any resilver_deferred flags in the config.
|
|
* If there are drives that need resilvering, kick
|
|
* off an asynchronous request to start resilver.
|
|
* vdev_clear_resilver_deferred() may update the config
|
|
* before the resilver can restart. In the event of
|
|
* a crash during this period, the spa loading code
|
|
* will find the drives that need to be resilvered
|
|
* and start the resilver then.
|
|
*/
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
|
|
vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
|
|
spa_history_log_internal(spa,
|
|
"starting deferred resilver", tx, "errors=%llu",
|
|
(u_longlong_t)spa_get_errlog_size(spa));
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER);
|
|
}
|
|
}
|
|
|
|
scn->scn_phys.scn_end_time = gethrestime_sec();
|
|
|
|
if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
|
|
spa->spa_errata = 0;
|
|
|
|
ASSERT(!dsl_scan_is_running(scn));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
|
|
|
|
if (!dsl_scan_is_running(scn))
|
|
return (SET_ERROR(ENOENT));
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
|
|
|
|
dsl_scan_done(scn, B_FALSE, tx);
|
|
dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
|
|
spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
|
|
}
|
|
|
|
int
|
|
dsl_scan_cancel(dsl_pool_t *dp)
|
|
{
|
|
return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
|
|
dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
|
|
}
|
|
|
|
static int
|
|
dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
pool_scrub_cmd_t *cmd = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
|
|
if (*cmd == POOL_SCRUB_PAUSE) {
|
|
/* can't pause a scrub when there is no in-progress scrub */
|
|
if (!dsl_scan_scrubbing(dp))
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
/* can't pause a paused scrub */
|
|
if (dsl_scan_is_paused_scrub(scn))
|
|
return (SET_ERROR(EBUSY));
|
|
} else if (*cmd != POOL_SCRUB_NORMAL) {
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
pool_scrub_cmd_t *cmd = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
spa_t *spa = dp->dp_spa;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
|
|
if (*cmd == POOL_SCRUB_PAUSE) {
|
|
/* can't pause a scrub when there is no in-progress scrub */
|
|
spa->spa_scan_pass_scrub_pause = gethrestime_sec();
|
|
scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
|
|
scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
|
|
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
|
|
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
|
|
spa_notify_waiters(spa);
|
|
} else {
|
|
ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
|
|
if (dsl_scan_is_paused_scrub(scn)) {
|
|
/*
|
|
* We need to keep track of how much time we spend
|
|
* paused per pass so that we can adjust the scrub rate
|
|
* shown in the output of 'zpool status'
|
|
*/
|
|
spa->spa_scan_pass_scrub_spent_paused +=
|
|
gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
|
|
spa->spa_scan_pass_scrub_pause = 0;
|
|
scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
|
|
scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
|
|
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set scrub pause/resume state if it makes sense to do so
|
|
*/
|
|
int
|
|
dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
|
|
{
|
|
return (dsl_sync_task(spa_name(dp->dp_spa),
|
|
dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
|
|
ZFS_SPACE_CHECK_RESERVED));
|
|
}
|
|
|
|
|
|
/* start a new scan, or restart an existing one. */
|
|
void
|
|
dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
|
|
{
|
|
if (txg == 0) {
|
|
dmu_tx_t *tx;
|
|
tx = dmu_tx_create_dd(dp->dp_mos_dir);
|
|
VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
|
|
|
|
txg = dmu_tx_get_txg(tx);
|
|
dp->dp_scan->scn_restart_txg = txg;
|
|
dmu_tx_commit(tx);
|
|
} else {
|
|
dp->dp_scan->scn_restart_txg = txg;
|
|
}
|
|
zfs_dbgmsg("restarting resilver txg=%llu", (longlong_t)txg);
|
|
}
|
|
|
|
void
|
|
dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
|
|
{
|
|
zio_free(dp->dp_spa, txg, bp);
|
|
}
|
|
|
|
void
|
|
dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
|
|
{
|
|
ASSERT(dsl_pool_sync_context(dp));
|
|
zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
|
|
}
|
|
|
|
static int
|
|
scan_ds_queue_compare(const void *a, const void *b)
|
|
{
|
|
const scan_ds_t *sds_a = a, *sds_b = b;
|
|
|
|
if (sds_a->sds_dsobj < sds_b->sds_dsobj)
|
|
return (-1);
|
|
if (sds_a->sds_dsobj == sds_b->sds_dsobj)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
scan_ds_queue_clear(dsl_scan_t *scn)
|
|
{
|
|
void *cookie = NULL;
|
|
scan_ds_t *sds;
|
|
while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
|
|
kmem_free(sds, sizeof (*sds));
|
|
}
|
|
}
|
|
|
|
static boolean_t
|
|
scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
|
|
{
|
|
scan_ds_t srch, *sds;
|
|
|
|
srch.sds_dsobj = dsobj;
|
|
sds = avl_find(&scn->scn_queue, &srch, NULL);
|
|
if (sds != NULL && txg != NULL)
|
|
*txg = sds->sds_txg;
|
|
return (sds != NULL);
|
|
}
|
|
|
|
static void
|
|
scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
|
|
{
|
|
scan_ds_t *sds;
|
|
avl_index_t where;
|
|
|
|
sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
|
|
sds->sds_dsobj = dsobj;
|
|
sds->sds_txg = txg;
|
|
|
|
VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
|
|
avl_insert(&scn->scn_queue, sds, where);
|
|
}
|
|
|
|
static void
|
|
scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
|
|
{
|
|
scan_ds_t srch, *sds;
|
|
|
|
srch.sds_dsobj = dsobj;
|
|
|
|
sds = avl_find(&scn->scn_queue, &srch, NULL);
|
|
VERIFY(sds != NULL);
|
|
avl_remove(&scn->scn_queue, sds);
|
|
kmem_free(sds, sizeof (*sds));
|
|
}
|
|
|
|
static void
|
|
scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = scn->scn_dp;
|
|
spa_t *spa = dp->dp_spa;
|
|
dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
|
|
DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
|
|
|
|
ASSERT0(scn->scn_bytes_pending);
|
|
ASSERT(scn->scn_phys.scn_queue_obj != 0);
|
|
|
|
VERIFY0(dmu_object_free(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, tx));
|
|
scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
|
|
DMU_OT_NONE, 0, tx);
|
|
for (scan_ds_t *sds = avl_first(&scn->scn_queue);
|
|
sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
|
|
VERIFY0(zap_add_int_key(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
|
|
sds->sds_txg, tx));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Computes the memory limit state that we're currently in. A sorted scan
|
|
* needs quite a bit of memory to hold the sorting queue, so we need to
|
|
* reasonably constrain the size so it doesn't impact overall system
|
|
* performance. We compute two limits:
|
|
* 1) Hard memory limit: if the amount of memory used by the sorting
|
|
* queues on a pool gets above this value, we stop the metadata
|
|
* scanning portion and start issuing the queued up and sorted
|
|
* I/Os to reduce memory usage.
|
|
* This limit is calculated as a fraction of physmem (by default 5%).
|
|
* We constrain the lower bound of the hard limit to an absolute
|
|
* minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
|
|
* the upper bound to 5% of the total pool size - no chance we'll
|
|
* ever need that much memory, but just to keep the value in check.
|
|
* 2) Soft memory limit: once we hit the hard memory limit, we start
|
|
* issuing I/O to reduce queue memory usage, but we don't want to
|
|
* completely empty out the queues, since we might be able to find I/Os
|
|
* that will fill in the gaps of our non-sequential IOs at some point
|
|
* in the future. So we stop the issuing of I/Os once the amount of
|
|
* memory used drops below the soft limit (at which point we stop issuing
|
|
* I/O and start scanning metadata again).
|
|
*
|
|
* This limit is calculated by subtracting a fraction of the hard
|
|
* limit from the hard limit. By default this fraction is 5%, so
|
|
* the soft limit is 95% of the hard limit. We cap the size of the
|
|
* difference between the hard and soft limits at an absolute
|
|
* maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
|
|
* sufficient to not cause too frequent switching between the
|
|
* metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
|
|
* worth of queues is about 1.2 GiB of on-pool data, so scanning
|
|
* that should take at least a decent fraction of a second).
|
|
*/
|
|
static boolean_t
|
|
dsl_scan_should_clear(dsl_scan_t *scn)
|
|
{
|
|
spa_t *spa = scn->scn_dp->dp_spa;
|
|
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
|
|
uint64_t alloc, mlim_hard, mlim_soft, mused;
|
|
|
|
alloc = metaslab_class_get_alloc(spa_normal_class(spa));
|
|
alloc += metaslab_class_get_alloc(spa_special_class(spa));
|
|
alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
|
|
|
|
mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
|
|
zfs_scan_mem_lim_min);
|
|
mlim_hard = MIN(mlim_hard, alloc / 20);
|
|
mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
|
|
zfs_scan_mem_lim_soft_max);
|
|
mused = 0;
|
|
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
|
|
vdev_t *tvd = rvd->vdev_child[i];
|
|
dsl_scan_io_queue_t *queue;
|
|
|
|
mutex_enter(&tvd->vdev_scan_io_queue_lock);
|
|
queue = tvd->vdev_scan_io_queue;
|
|
if (queue != NULL) {
|
|
/* # extents in exts_by_size = # in exts_by_addr */
|
|
mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
|
|
sizeof (range_seg_gap_t) + queue->q_sio_memused;
|
|
}
|
|
mutex_exit(&tvd->vdev_scan_io_queue_lock);
|
|
}
|
|
|
|
dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
|
|
|
|
if (mused == 0)
|
|
ASSERT0(scn->scn_bytes_pending);
|
|
|
|
/*
|
|
* If we are above our hard limit, we need to clear out memory.
|
|
* If we are below our soft limit, we need to accumulate sequential IOs.
|
|
* Otherwise, we should keep doing whatever we are currently doing.
|
|
*/
|
|
if (mused >= mlim_hard)
|
|
return (B_TRUE);
|
|
else if (mused < mlim_soft)
|
|
return (B_FALSE);
|
|
else
|
|
return (scn->scn_clearing);
|
|
}
|
|
|
|
static boolean_t
|
|
dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
|
|
{
|
|
/* we never skip user/group accounting objects */
|
|
if (zb && (int64_t)zb->zb_object < 0)
|
|
return (B_FALSE);
|
|
|
|
if (scn->scn_suspending)
|
|
return (B_TRUE); /* we're already suspending */
|
|
|
|
if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
|
|
return (B_FALSE); /* we're resuming */
|
|
|
|
/* We only know how to resume from level-0 and objset blocks. */
|
|
if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* We suspend if:
|
|
* - we have scanned for at least the minimum time (default 1 sec
|
|
* for scrub, 3 sec for resilver), and either we have sufficient
|
|
* dirty data that we are starting to write more quickly
|
|
* (default 30%), someone is explicitly waiting for this txg
|
|
* to complete, or we have used up all of the time in the txg
|
|
* timeout (default 5 sec).
|
|
* or
|
|
* - the spa is shutting down because this pool is being exported
|
|
* or the machine is rebooting.
|
|
* or
|
|
* - the scan queue has reached its memory use limit
|
|
*/
|
|
uint64_t curr_time_ns = gethrtime();
|
|
uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
|
|
uint64_t sync_time_ns = curr_time_ns -
|
|
scn->scn_dp->dp_spa->spa_sync_starttime;
|
|
int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
|
|
int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
|
|
zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
|
|
|
|
if ((NSEC2MSEC(scan_time_ns) > mintime &&
|
|
(dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
|
|
txg_sync_waiting(scn->scn_dp) ||
|
|
NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
|
|
spa_shutting_down(scn->scn_dp->dp_spa) ||
|
|
(zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
|
|
if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
|
|
dprintf("suspending at first available bookmark "
|
|
"%llx/%llx/%llx/%llx\n",
|
|
(longlong_t)zb->zb_objset,
|
|
(longlong_t)zb->zb_object,
|
|
(longlong_t)zb->zb_level,
|
|
(longlong_t)zb->zb_blkid);
|
|
SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
|
|
zb->zb_objset, 0, 0, 0);
|
|
} else if (zb != NULL) {
|
|
dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
|
|
(longlong_t)zb->zb_objset,
|
|
(longlong_t)zb->zb_object,
|
|
(longlong_t)zb->zb_level,
|
|
(longlong_t)zb->zb_blkid);
|
|
scn->scn_phys.scn_bookmark = *zb;
|
|
} else {
|
|
#ifdef ZFS_DEBUG
|
|
dsl_scan_phys_t *scnp = &scn->scn_phys;
|
|
dprintf("suspending at at DDT bookmark "
|
|
"%llx/%llx/%llx/%llx\n",
|
|
(longlong_t)scnp->scn_ddt_bookmark.ddb_class,
|
|
(longlong_t)scnp->scn_ddt_bookmark.ddb_type,
|
|
(longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
|
|
(longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
|
|
#endif
|
|
}
|
|
scn->scn_suspending = B_TRUE;
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
typedef struct zil_scan_arg {
|
|
dsl_pool_t *zsa_dp;
|
|
zil_header_t *zsa_zh;
|
|
} zil_scan_arg_t;
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
|
|
{
|
|
zil_scan_arg_t *zsa = arg;
|
|
dsl_pool_t *dp = zsa->zsa_dp;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
zil_header_t *zh = zsa->zsa_zh;
|
|
zbookmark_phys_t zb;
|
|
|
|
ASSERT(!BP_IS_REDACTED(bp));
|
|
if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
|
|
return (0);
|
|
|
|
/*
|
|
* One block ("stubby") can be allocated a long time ago; we
|
|
* want to visit that one because it has been allocated
|
|
* (on-disk) even if it hasn't been claimed (even though for
|
|
* scrub there's nothing to do to it).
|
|
*/
|
|
if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
|
|
return (0);
|
|
|
|
SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
|
|
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
|
|
|
|
VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg)
|
|
{
|
|
if (lrc->lrc_txtype == TX_WRITE) {
|
|
zil_scan_arg_t *zsa = arg;
|
|
dsl_pool_t *dp = zsa->zsa_dp;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
zil_header_t *zh = zsa->zsa_zh;
|
|
lr_write_t *lr = (lr_write_t *)lrc;
|
|
blkptr_t *bp = &lr->lr_blkptr;
|
|
zbookmark_phys_t zb;
|
|
|
|
ASSERT(!BP_IS_REDACTED(bp));
|
|
if (BP_IS_HOLE(bp) ||
|
|
bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
|
|
return (0);
|
|
|
|
/*
|
|
* birth can be < claim_txg if this record's txg is
|
|
* already txg sync'ed (but this log block contains
|
|
* other records that are not synced)
|
|
*/
|
|
if (claim_txg == 0 || bp->blk_birth < claim_txg)
|
|
return (0);
|
|
|
|
SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
|
|
lr->lr_foid, ZB_ZIL_LEVEL,
|
|
lr->lr_offset / BP_GET_LSIZE(bp));
|
|
|
|
VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
|
|
{
|
|
uint64_t claim_txg = zh->zh_claim_txg;
|
|
zil_scan_arg_t zsa = { dp, zh };
|
|
zilog_t *zilog;
|
|
|
|
ASSERT(spa_writeable(dp->dp_spa));
|
|
|
|
/*
|
|
* We only want to visit blocks that have been claimed but not yet
|
|
* replayed (or, in read-only mode, blocks that *would* be claimed).
|
|
*/
|
|
if (claim_txg == 0)
|
|
return;
|
|
|
|
zilog = zil_alloc(dp->dp_meta_objset, zh);
|
|
|
|
(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
|
|
claim_txg, B_FALSE);
|
|
|
|
zil_free(zilog);
|
|
}
|
|
|
|
/*
|
|
* We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
|
|
* here is to sort the AVL tree by the order each block will be needed.
|
|
*/
|
|
static int
|
|
scan_prefetch_queue_compare(const void *a, const void *b)
|
|
{
|
|
const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
|
|
const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
|
|
const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
|
|
|
|
return (zbookmark_compare(spc_a->spc_datablkszsec,
|
|
spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
|
|
spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
|
|
}
|
|
|
|
static void
|
|
scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag)
|
|
{
|
|
if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
|
|
zfs_refcount_destroy(&spc->spc_refcnt);
|
|
kmem_free(spc, sizeof (scan_prefetch_ctx_t));
|
|
}
|
|
}
|
|
|
|
static scan_prefetch_ctx_t *
|
|
scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag)
|
|
{
|
|
scan_prefetch_ctx_t *spc;
|
|
|
|
spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
|
|
zfs_refcount_create(&spc->spc_refcnt);
|
|
zfs_refcount_add(&spc->spc_refcnt, tag);
|
|
spc->spc_scn = scn;
|
|
if (dnp != NULL) {
|
|
spc->spc_datablkszsec = dnp->dn_datablkszsec;
|
|
spc->spc_indblkshift = dnp->dn_indblkshift;
|
|
spc->spc_root = B_FALSE;
|
|
} else {
|
|
spc->spc_datablkszsec = 0;
|
|
spc->spc_indblkshift = 0;
|
|
spc->spc_root = B_TRUE;
|
|
}
|
|
|
|
return (spc);
|
|
}
|
|
|
|
static void
|
|
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag)
|
|
{
|
|
zfs_refcount_add(&spc->spc_refcnt, tag);
|
|
}
|
|
|
|
static void
|
|
scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
|
|
{
|
|
spa_t *spa = scn->scn_dp->dp_spa;
|
|
void *cookie = NULL;
|
|
scan_prefetch_issue_ctx_t *spic = NULL;
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
|
|
&cookie)) != NULL) {
|
|
scan_prefetch_ctx_rele(spic->spic_spc, scn);
|
|
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
|
|
}
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
}
|
|
|
|
static boolean_t
|
|
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
|
|
const zbookmark_phys_t *zb)
|
|
{
|
|
zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
|
|
dnode_phys_t tmp_dnp;
|
|
dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
|
|
|
|
if (zb->zb_objset != last_zb->zb_objset)
|
|
return (B_TRUE);
|
|
if ((int64_t)zb->zb_object < 0)
|
|
return (B_FALSE);
|
|
|
|
tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
|
|
tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
|
|
|
|
if (zbookmark_subtree_completed(dnp, zb, last_zb))
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
static void
|
|
dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
|
|
{
|
|
avl_index_t idx;
|
|
dsl_scan_t *scn = spc->spc_scn;
|
|
spa_t *spa = scn->scn_dp->dp_spa;
|
|
scan_prefetch_issue_ctx_t *spic;
|
|
|
|
if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
|
|
return;
|
|
|
|
if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
|
|
(BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
|
|
BP_GET_TYPE(bp) != DMU_OT_OBJSET))
|
|
return;
|
|
|
|
if (dsl_scan_check_prefetch_resume(spc, zb))
|
|
return;
|
|
|
|
scan_prefetch_ctx_add_ref(spc, scn);
|
|
spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
|
|
spic->spic_spc = spc;
|
|
spic->spic_bp = *bp;
|
|
spic->spic_zb = *zb;
|
|
|
|
/*
|
|
* Add the IO to the queue of blocks to prefetch. This allows us to
|
|
* prioritize blocks that we will need first for the main traversal
|
|
* thread.
|
|
*/
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
|
|
/* this block is already queued for prefetch */
|
|
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
|
|
scan_prefetch_ctx_rele(spc, scn);
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
return;
|
|
}
|
|
|
|
avl_insert(&scn->scn_prefetch_queue, spic, idx);
|
|
cv_broadcast(&spa->spa_scrub_io_cv);
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
}
|
|
|
|
static void
|
|
dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
|
|
uint64_t objset, uint64_t object)
|
|
{
|
|
int i;
|
|
zbookmark_phys_t zb;
|
|
scan_prefetch_ctx_t *spc;
|
|
|
|
if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
|
|
return;
|
|
|
|
SET_BOOKMARK(&zb, objset, object, 0, 0);
|
|
|
|
spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
|
|
|
|
for (i = 0; i < dnp->dn_nblkptr; i++) {
|
|
zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
|
|
zb.zb_blkid = i;
|
|
dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
|
|
}
|
|
|
|
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
|
|
zb.zb_level = 0;
|
|
zb.zb_blkid = DMU_SPILL_BLKID;
|
|
dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
|
|
}
|
|
|
|
scan_prefetch_ctx_rele(spc, FTAG);
|
|
}
|
|
|
|
static void
|
|
dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
|
|
arc_buf_t *buf, void *private)
|
|
{
|
|
scan_prefetch_ctx_t *spc = private;
|
|
dsl_scan_t *scn = spc->spc_scn;
|
|
spa_t *spa = scn->scn_dp->dp_spa;
|
|
|
|
/* broadcast that the IO has completed for rate limiting purposes */
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
|
|
spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
|
|
cv_broadcast(&spa->spa_scrub_io_cv);
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
/* if there was an error or we are done prefetching, just cleanup */
|
|
if (buf == NULL || scn->scn_prefetch_stop)
|
|
goto out;
|
|
|
|
if (BP_GET_LEVEL(bp) > 0) {
|
|
int i;
|
|
blkptr_t *cbp;
|
|
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
|
|
zbookmark_phys_t czb;
|
|
|
|
for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
|
|
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
|
|
zb->zb_level - 1, zb->zb_blkid * epb + i);
|
|
dsl_scan_prefetch(spc, cbp, &czb);
|
|
}
|
|
} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
|
|
dnode_phys_t *cdnp;
|
|
int i;
|
|
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
|
|
|
|
for (i = 0, cdnp = buf->b_data; i < epb;
|
|
i += cdnp->dn_extra_slots + 1,
|
|
cdnp += cdnp->dn_extra_slots + 1) {
|
|
dsl_scan_prefetch_dnode(scn, cdnp,
|
|
zb->zb_objset, zb->zb_blkid * epb + i);
|
|
}
|
|
} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
|
|
objset_phys_t *osp = buf->b_data;
|
|
|
|
dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
|
|
zb->zb_objset, DMU_META_DNODE_OBJECT);
|
|
|
|
if (OBJSET_BUF_HAS_USERUSED(buf)) {
|
|
dsl_scan_prefetch_dnode(scn,
|
|
&osp->os_groupused_dnode, zb->zb_objset,
|
|
DMU_GROUPUSED_OBJECT);
|
|
dsl_scan_prefetch_dnode(scn,
|
|
&osp->os_userused_dnode, zb->zb_objset,
|
|
DMU_USERUSED_OBJECT);
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (buf != NULL)
|
|
arc_buf_destroy(buf, private);
|
|
scan_prefetch_ctx_rele(spc, scn);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dsl_scan_prefetch_thread(void *arg)
|
|
{
|
|
dsl_scan_t *scn = arg;
|
|
spa_t *spa = scn->scn_dp->dp_spa;
|
|
scan_prefetch_issue_ctx_t *spic;
|
|
|
|
/* loop until we are told to stop */
|
|
while (!scn->scn_prefetch_stop) {
|
|
arc_flags_t flags = ARC_FLAG_NOWAIT |
|
|
ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
|
|
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
|
|
/*
|
|
* Wait until we have an IO to issue and are not above our
|
|
* maximum in flight limit.
|
|
*/
|
|
while (!scn->scn_prefetch_stop &&
|
|
(avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
|
|
spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
|
|
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
|
|
}
|
|
|
|
/* recheck if we should stop since we waited for the cv */
|
|
if (scn->scn_prefetch_stop) {
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
break;
|
|
}
|
|
|
|
/* remove the prefetch IO from the tree */
|
|
spic = avl_first(&scn->scn_prefetch_queue);
|
|
spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
|
|
avl_remove(&scn->scn_prefetch_queue, spic);
|
|
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
if (BP_IS_PROTECTED(&spic->spic_bp)) {
|
|
ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
|
|
BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
|
|
ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
|
|
zio_flags |= ZIO_FLAG_RAW;
|
|
}
|
|
|
|
/* issue the prefetch asynchronously */
|
|
(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
|
|
&spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
|
|
ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
|
|
|
|
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
|
|
}
|
|
|
|
ASSERT(scn->scn_prefetch_stop);
|
|
|
|
/* free any prefetches we didn't get to complete */
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
|
|
avl_remove(&scn->scn_prefetch_queue, spic);
|
|
scan_prefetch_ctx_rele(spic->spic_spc, scn);
|
|
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
|
|
}
|
|
ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
}
|
|
|
|
static boolean_t
|
|
dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
|
|
const zbookmark_phys_t *zb)
|
|
{
|
|
/*
|
|
* We never skip over user/group accounting objects (obj<0)
|
|
*/
|
|
if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
|
|
(int64_t)zb->zb_object >= 0) {
|
|
/*
|
|
* If we already visited this bp & everything below (in
|
|
* a prior txg sync), don't bother doing it again.
|
|
*/
|
|
if (zbookmark_subtree_completed(dnp, zb,
|
|
&scn->scn_phys.scn_bookmark))
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* If we found the block we're trying to resume from, or
|
|
* we went past it to a different object, zero it out to
|
|
* indicate that it's OK to start checking for suspending
|
|
* again.
|
|
*/
|
|
if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 ||
|
|
zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) {
|
|
dprintf("resuming at %llx/%llx/%llx/%llx\n",
|
|
(longlong_t)zb->zb_objset,
|
|
(longlong_t)zb->zb_object,
|
|
(longlong_t)zb->zb_level,
|
|
(longlong_t)zb->zb_blkid);
|
|
bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb));
|
|
}
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
|
|
dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
|
|
dmu_objset_type_t ostype, dmu_tx_t *tx);
|
|
inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
|
|
dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
|
|
dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
|
|
|
|
/*
|
|
* Return nonzero on i/o error.
|
|
* Return new buf to write out in *bufp.
|
|
*/
|
|
inline __attribute__((always_inline)) static int
|
|
dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
|
|
dnode_phys_t *dnp, const blkptr_t *bp,
|
|
const zbookmark_phys_t *zb, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = scn->scn_dp;
|
|
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
|
|
int err;
|
|
|
|
ASSERT(!BP_IS_REDACTED(bp));
|
|
|
|
if (BP_GET_LEVEL(bp) > 0) {
|
|
arc_flags_t flags = ARC_FLAG_WAIT;
|
|
int i;
|
|
blkptr_t *cbp;
|
|
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
|
|
arc_buf_t *buf;
|
|
|
|
err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
|
|
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
|
|
if (err) {
|
|
scn->scn_phys.scn_errors++;
|
|
return (err);
|
|
}
|
|
for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
|
|
zbookmark_phys_t czb;
|
|
|
|
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
|
|
zb->zb_level - 1,
|
|
zb->zb_blkid * epb + i);
|
|
dsl_scan_visitbp(cbp, &czb, dnp,
|
|
ds, scn, ostype, tx);
|
|
}
|
|
arc_buf_destroy(buf, &buf);
|
|
} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
|
|
arc_flags_t flags = ARC_FLAG_WAIT;
|
|
dnode_phys_t *cdnp;
|
|
int i;
|
|
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
|
|
arc_buf_t *buf;
|
|
|
|
if (BP_IS_PROTECTED(bp)) {
|
|
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
|
|
zio_flags |= ZIO_FLAG_RAW;
|
|
}
|
|
|
|
err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
|
|
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
|
|
if (err) {
|
|
scn->scn_phys.scn_errors++;
|
|
return (err);
|
|
}
|
|
for (i = 0, cdnp = buf->b_data; i < epb;
|
|
i += cdnp->dn_extra_slots + 1,
|
|
cdnp += cdnp->dn_extra_slots + 1) {
|
|
dsl_scan_visitdnode(scn, ds, ostype,
|
|
cdnp, zb->zb_blkid * epb + i, tx);
|
|
}
|
|
|
|
arc_buf_destroy(buf, &buf);
|
|
} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
|
|
arc_flags_t flags = ARC_FLAG_WAIT;
|
|
objset_phys_t *osp;
|
|
arc_buf_t *buf;
|
|
|
|
err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf,
|
|
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
|
|
if (err) {
|
|
scn->scn_phys.scn_errors++;
|
|
return (err);
|
|
}
|
|
|
|
osp = buf->b_data;
|
|
|
|
dsl_scan_visitdnode(scn, ds, osp->os_type,
|
|
&osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
|
|
|
|
if (OBJSET_BUF_HAS_USERUSED(buf)) {
|
|
/*
|
|
* We also always visit user/group/project accounting
|
|
* objects, and never skip them, even if we are
|
|
* suspending. This is necessary so that the
|
|
* space deltas from this txg get integrated.
|
|
*/
|
|
if (OBJSET_BUF_HAS_PROJECTUSED(buf))
|
|
dsl_scan_visitdnode(scn, ds, osp->os_type,
|
|
&osp->os_projectused_dnode,
|
|
DMU_PROJECTUSED_OBJECT, tx);
|
|
dsl_scan_visitdnode(scn, ds, osp->os_type,
|
|
&osp->os_groupused_dnode,
|
|
DMU_GROUPUSED_OBJECT, tx);
|
|
dsl_scan_visitdnode(scn, ds, osp->os_type,
|
|
&osp->os_userused_dnode,
|
|
DMU_USERUSED_OBJECT, tx);
|
|
}
|
|
arc_buf_destroy(buf, &buf);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
inline __attribute__((always_inline)) static void
|
|
dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
|
|
dmu_objset_type_t ostype, dnode_phys_t *dnp,
|
|
uint64_t object, dmu_tx_t *tx)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < dnp->dn_nblkptr; j++) {
|
|
zbookmark_phys_t czb;
|
|
|
|
SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
|
|
dnp->dn_nlevels - 1, j);
|
|
dsl_scan_visitbp(&dnp->dn_blkptr[j],
|
|
&czb, dnp, ds, scn, ostype, tx);
|
|
}
|
|
|
|
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
|
|
zbookmark_phys_t czb;
|
|
SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
|
|
0, DMU_SPILL_BLKID);
|
|
dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
|
|
&czb, dnp, ds, scn, ostype, tx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The arguments are in this order because mdb can only print the
|
|
* first 5; we want them to be useful.
|
|
*/
|
|
static void
|
|
dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
|
|
dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
|
|
dmu_objset_type_t ostype, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = scn->scn_dp;
|
|
blkptr_t *bp_toread = NULL;
|
|
|
|
if (dsl_scan_check_suspend(scn, zb))
|
|
return;
|
|
|
|
if (dsl_scan_check_resume(scn, dnp, zb))
|
|
return;
|
|
|
|
scn->scn_visited_this_txg++;
|
|
|
|
/*
|
|
* This debugging is commented out to conserve stack space. This
|
|
* function is called recursively and the debugging adds several
|
|
* bytes to the stack for each call. It can be commented back in
|
|
* if required to debug an issue in dsl_scan_visitbp().
|
|
*
|
|
* dprintf_bp(bp,
|
|
* "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p",
|
|
* ds, ds ? ds->ds_object : 0,
|
|
* zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
|
|
* bp);
|
|
*/
|
|
|
|
if (BP_IS_HOLE(bp)) {
|
|
scn->scn_holes_this_txg++;
|
|
return;
|
|
}
|
|
|
|
if (BP_IS_REDACTED(bp)) {
|
|
ASSERT(dsl_dataset_feature_is_active(ds,
|
|
SPA_FEATURE_REDACTED_DATASETS));
|
|
return;
|
|
}
|
|
|
|
if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
|
|
scn->scn_lt_min_this_txg++;
|
|
return;
|
|
}
|
|
|
|
bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
|
|
*bp_toread = *bp;
|
|
|
|
if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* If dsl_scan_ddt() has already visited this block, it will have
|
|
* already done any translations or scrubbing, so don't call the
|
|
* callback again.
|
|
*/
|
|
if (ddt_class_contains(dp->dp_spa,
|
|
scn->scn_phys.scn_ddt_class_max, bp)) {
|
|
scn->scn_ddt_contained_this_txg++;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If this block is from the future (after cur_max_txg), then we
|
|
* are doing this on behalf of a deleted snapshot, and we will
|
|
* revisit the future block on the next pass of this dataset.
|
|
* Don't scan it now unless we need to because something
|
|
* under it was modified.
|
|
*/
|
|
if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
|
|
scn->scn_gt_max_this_txg++;
|
|
goto out;
|
|
}
|
|
|
|
scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
|
|
|
|
out:
|
|
kmem_free(bp_toread, sizeof (blkptr_t));
|
|
}
|
|
|
|
static void
|
|
dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
|
|
dmu_tx_t *tx)
|
|
{
|
|
zbookmark_phys_t zb;
|
|
scan_prefetch_ctx_t *spc;
|
|
|
|
SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
|
|
ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
|
|
|
|
if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
|
|
SET_BOOKMARK(&scn->scn_prefetch_bookmark,
|
|
zb.zb_objset, 0, 0, 0);
|
|
} else {
|
|
scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
|
|
}
|
|
|
|
scn->scn_objsets_visited_this_txg++;
|
|
|
|
spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
|
|
dsl_scan_prefetch(spc, bp, &zb);
|
|
scan_prefetch_ctx_rele(spc, FTAG);
|
|
|
|
dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
|
|
|
|
dprintf_ds(ds, "finished scan%s", "");
|
|
}
|
|
|
|
static void
|
|
ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
|
|
{
|
|
if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
|
|
if (ds->ds_is_snapshot) {
|
|
/*
|
|
* Note:
|
|
* - scn_cur_{min,max}_txg stays the same.
|
|
* - Setting the flag is not really necessary if
|
|
* scn_cur_max_txg == scn_max_txg, because there
|
|
* is nothing after this snapshot that we care
|
|
* about. However, we set it anyway and then
|
|
* ignore it when we retraverse it in
|
|
* dsl_scan_visitds().
|
|
*/
|
|
scn_phys->scn_bookmark.zb_objset =
|
|
dsl_dataset_phys(ds)->ds_next_snap_obj;
|
|
zfs_dbgmsg("destroying ds %llu; currently traversing; "
|
|
"reset zb_objset to %llu",
|
|
(u_longlong_t)ds->ds_object,
|
|
(u_longlong_t)dsl_dataset_phys(ds)->
|
|
ds_next_snap_obj);
|
|
scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
|
|
} else {
|
|
SET_BOOKMARK(&scn_phys->scn_bookmark,
|
|
ZB_DESTROYED_OBJSET, 0, 0, 0);
|
|
zfs_dbgmsg("destroying ds %llu; currently traversing; "
|
|
"reset bookmark to -1,0,0,0",
|
|
(u_longlong_t)ds->ds_object);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invoked when a dataset is destroyed. We need to make sure that:
|
|
*
|
|
* 1) If it is the dataset that was currently being scanned, we write
|
|
* a new dsl_scan_phys_t and marking the objset reference in it
|
|
* as destroyed.
|
|
* 2) Remove it from the work queue, if it was present.
|
|
*
|
|
* If the dataset was actually a snapshot, instead of marking the dataset
|
|
* as destroyed, we instead substitute the next snapshot in line.
|
|
*/
|
|
void
|
|
dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
uint64_t mintxg;
|
|
|
|
if (!dsl_scan_is_running(scn))
|
|
return;
|
|
|
|
ds_destroyed_scn_phys(ds, &scn->scn_phys);
|
|
ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
|
|
|
|
if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
|
|
scan_ds_queue_remove(scn, ds->ds_object);
|
|
if (ds->ds_is_snapshot)
|
|
scan_ds_queue_insert(scn,
|
|
dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
|
|
}
|
|
|
|
if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
|
|
ds->ds_object, &mintxg) == 0) {
|
|
ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
|
|
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
|
|
if (ds->ds_is_snapshot) {
|
|
/*
|
|
* We keep the same mintxg; it could be >
|
|
* ds_creation_txg if the previous snapshot was
|
|
* deleted too.
|
|
*/
|
|
VERIFY(zap_add_int_key(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj,
|
|
dsl_dataset_phys(ds)->ds_next_snap_obj,
|
|
mintxg, tx) == 0);
|
|
zfs_dbgmsg("destroying ds %llu; in queue; "
|
|
"replacing with %llu",
|
|
(u_longlong_t)ds->ds_object,
|
|
(u_longlong_t)dsl_dataset_phys(ds)->
|
|
ds_next_snap_obj);
|
|
} else {
|
|
zfs_dbgmsg("destroying ds %llu; in queue; removing",
|
|
(u_longlong_t)ds->ds_object);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* dsl_scan_sync() should be called after this, and should sync
|
|
* out our changed state, but just to be safe, do it here.
|
|
*/
|
|
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
|
|
}
|
|
|
|
static void
|
|
ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
|
|
{
|
|
if (scn_bookmark->zb_objset == ds->ds_object) {
|
|
scn_bookmark->zb_objset =
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
|
zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
|
|
"reset zb_objset to %llu",
|
|
(u_longlong_t)ds->ds_object,
|
|
(u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called when a dataset is snapshotted. If we were currently traversing
|
|
* this snapshot, we reset our bookmark to point at the newly created
|
|
* snapshot. We also modify our work queue to remove the old snapshot and
|
|
* replace with the new one.
|
|
*/
|
|
void
|
|
dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
uint64_t mintxg;
|
|
|
|
if (!dsl_scan_is_running(scn))
|
|
return;
|
|
|
|
ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
|
|
|
|
ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
|
|
ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
|
|
|
|
if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
|
|
scan_ds_queue_remove(scn, ds->ds_object);
|
|
scan_ds_queue_insert(scn,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
|
|
}
|
|
|
|
if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
|
|
ds->ds_object, &mintxg) == 0) {
|
|
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
|
|
VERIFY(zap_add_int_key(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
|
|
zfs_dbgmsg("snapshotting ds %llu; in queue; "
|
|
"replacing with %llu",
|
|
(u_longlong_t)ds->ds_object,
|
|
(u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
|
|
}
|
|
|
|
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
|
|
}
|
|
|
|
static void
|
|
ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
|
|
zbookmark_phys_t *scn_bookmark)
|
|
{
|
|
if (scn_bookmark->zb_objset == ds1->ds_object) {
|
|
scn_bookmark->zb_objset = ds2->ds_object;
|
|
zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
|
|
"reset zb_objset to %llu",
|
|
(u_longlong_t)ds1->ds_object,
|
|
(u_longlong_t)ds2->ds_object);
|
|
} else if (scn_bookmark->zb_objset == ds2->ds_object) {
|
|
scn_bookmark->zb_objset = ds1->ds_object;
|
|
zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
|
|
"reset zb_objset to %llu",
|
|
(u_longlong_t)ds2->ds_object,
|
|
(u_longlong_t)ds1->ds_object);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called when an origin dataset and its clone are swapped. If we were
|
|
* currently traversing the dataset, we need to switch to traversing the
|
|
* newly promoted clone.
|
|
*/
|
|
void
|
|
dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = ds1->ds_dir->dd_pool;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
uint64_t mintxg1, mintxg2;
|
|
boolean_t ds1_queued, ds2_queued;
|
|
|
|
if (!dsl_scan_is_running(scn))
|
|
return;
|
|
|
|
ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
|
|
ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
|
|
|
|
/*
|
|
* Handle the in-memory scan queue.
|
|
*/
|
|
ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
|
|
ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
|
|
|
|
/* Sanity checking. */
|
|
if (ds1_queued) {
|
|
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
|
|
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
|
|
}
|
|
if (ds2_queued) {
|
|
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
|
|
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
|
|
}
|
|
|
|
if (ds1_queued && ds2_queued) {
|
|
/*
|
|
* If both are queued, we don't need to do anything.
|
|
* The swapping code below would not handle this case correctly,
|
|
* since we can't insert ds2 if it is already there. That's
|
|
* because scan_ds_queue_insert() prohibits a duplicate insert
|
|
* and panics.
|
|
*/
|
|
} else if (ds1_queued) {
|
|
scan_ds_queue_remove(scn, ds1->ds_object);
|
|
scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
|
|
} else if (ds2_queued) {
|
|
scan_ds_queue_remove(scn, ds2->ds_object);
|
|
scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
|
|
}
|
|
|
|
/*
|
|
* Handle the on-disk scan queue.
|
|
* The on-disk state is an out-of-date version of the in-memory state,
|
|
* so the in-memory and on-disk values for ds1_queued and ds2_queued may
|
|
* be different. Therefore we need to apply the swap logic to the
|
|
* on-disk state independently of the in-memory state.
|
|
*/
|
|
ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
|
|
ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
|
|
|
|
/* Sanity checking. */
|
|
if (ds1_queued) {
|
|
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
|
|
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
|
|
}
|
|
if (ds2_queued) {
|
|
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
|
|
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
|
|
}
|
|
|
|
if (ds1_queued && ds2_queued) {
|
|
/*
|
|
* If both are queued, we don't need to do anything.
|
|
* Alternatively, we could check for EEXIST from
|
|
* zap_add_int_key() and back out to the original state, but
|
|
* that would be more work than checking for this case upfront.
|
|
*/
|
|
} else if (ds1_queued) {
|
|
VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
|
|
VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
|
|
zfs_dbgmsg("clone_swap ds %llu; in queue; "
|
|
"replacing with %llu",
|
|
(u_longlong_t)ds1->ds_object,
|
|
(u_longlong_t)ds2->ds_object);
|
|
} else if (ds2_queued) {
|
|
VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
|
|
VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
|
|
scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
|
|
zfs_dbgmsg("clone_swap ds %llu; in queue; "
|
|
"replacing with %llu",
|
|
(u_longlong_t)ds2->ds_object,
|
|
(u_longlong_t)ds1->ds_object);
|
|
}
|
|
|
|
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
|
|
{
|
|
uint64_t originobj = *(uint64_t *)arg;
|
|
dsl_dataset_t *ds;
|
|
int err;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
|
|
if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
|
|
return (0);
|
|
|
|
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
|
|
if (err)
|
|
return (err);
|
|
|
|
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
|
|
dsl_dataset_t *prev;
|
|
err = dsl_dataset_hold_obj(dp,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
if (err)
|
|
return (err);
|
|
ds = prev;
|
|
}
|
|
scan_ds_queue_insert(scn, ds->ds_object,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = scn->scn_dp;
|
|
dsl_dataset_t *ds;
|
|
|
|
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
|
|
|
|
if (scn->scn_phys.scn_cur_min_txg >=
|
|
scn->scn_phys.scn_max_txg) {
|
|
/*
|
|
* This can happen if this snapshot was created after the
|
|
* scan started, and we already completed a previous snapshot
|
|
* that was created after the scan started. This snapshot
|
|
* only references blocks with:
|
|
*
|
|
* birth < our ds_creation_txg
|
|
* cur_min_txg is no less than ds_creation_txg.
|
|
* We have already visited these blocks.
|
|
* or
|
|
* birth > scn_max_txg
|
|
* The scan requested not to visit these blocks.
|
|
*
|
|
* Subsequent snapshots (and clones) can reference our
|
|
* blocks, or blocks with even higher birth times.
|
|
* Therefore we do not need to visit them either,
|
|
* so we do not add them to the work queue.
|
|
*
|
|
* Note that checking for cur_min_txg >= cur_max_txg
|
|
* is not sufficient, because in that case we may need to
|
|
* visit subsequent snapshots. This happens when min_txg > 0,
|
|
* which raises cur_min_txg. In this case we will visit
|
|
* this dataset but skip all of its blocks, because the
|
|
* rootbp's birth time is < cur_min_txg. Then we will
|
|
* add the next snapshots/clones to the work queue.
|
|
*/
|
|
char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
dsl_dataset_name(ds, dsname);
|
|
zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
|
|
"cur_min_txg (%llu) >= max_txg (%llu)",
|
|
(longlong_t)dsobj, dsname,
|
|
(longlong_t)scn->scn_phys.scn_cur_min_txg,
|
|
(longlong_t)scn->scn_phys.scn_max_txg);
|
|
kmem_free(dsname, MAXNAMELEN);
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Only the ZIL in the head (non-snapshot) is valid. Even though
|
|
* snapshots can have ZIL block pointers (which may be the same
|
|
* BP as in the head), they must be ignored. In addition, $ORIGIN
|
|
* doesn't have a objset (i.e. its ds_bp is a hole) so we don't
|
|
* need to look for a ZIL in it either. So we traverse the ZIL here,
|
|
* rather than in scan_recurse(), because the regular snapshot
|
|
* block-sharing rules don't apply to it.
|
|
*/
|
|
if (!dsl_dataset_is_snapshot(ds) &&
|
|
(dp->dp_origin_snap == NULL ||
|
|
ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
|
|
objset_t *os;
|
|
if (dmu_objset_from_ds(ds, &os) != 0) {
|
|
goto out;
|
|
}
|
|
dsl_scan_zil(dp, &os->os_zil_header);
|
|
}
|
|
|
|
/*
|
|
* Iterate over the bps in this ds.
|
|
*/
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
|
dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
|
|
char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
|
|
dsl_dataset_name(ds, dsname);
|
|
zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
|
|
"suspending=%u",
|
|
(longlong_t)dsobj, dsname,
|
|
(longlong_t)scn->scn_phys.scn_cur_min_txg,
|
|
(longlong_t)scn->scn_phys.scn_cur_max_txg,
|
|
(int)scn->scn_suspending);
|
|
kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
|
|
|
|
if (scn->scn_suspending)
|
|
goto out;
|
|
|
|
/*
|
|
* We've finished this pass over this dataset.
|
|
*/
|
|
|
|
/*
|
|
* If we did not completely visit this dataset, do another pass.
|
|
*/
|
|
if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
|
|
zfs_dbgmsg("incomplete pass; visiting again");
|
|
scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
|
|
scan_ds_queue_insert(scn, ds->ds_object,
|
|
scn->scn_phys.scn_cur_max_txg);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Add descendant datasets to work queue.
|
|
*/
|
|
if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
|
|
scan_ds_queue_insert(scn,
|
|
dsl_dataset_phys(ds)->ds_next_snap_obj,
|
|
dsl_dataset_phys(ds)->ds_creation_txg);
|
|
}
|
|
if (dsl_dataset_phys(ds)->ds_num_children > 1) {
|
|
boolean_t usenext = B_FALSE;
|
|
if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
|
|
uint64_t count;
|
|
/*
|
|
* A bug in a previous version of the code could
|
|
* cause upgrade_clones_cb() to not set
|
|
* ds_next_snap_obj when it should, leading to a
|
|
* missing entry. Therefore we can only use the
|
|
* next_clones_obj when its count is correct.
|
|
*/
|
|
int err = zap_count(dp->dp_meta_objset,
|
|
dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
|
|
if (err == 0 &&
|
|
count == dsl_dataset_phys(ds)->ds_num_children - 1)
|
|
usenext = B_TRUE;
|
|
}
|
|
|
|
if (usenext) {
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
for (zap_cursor_init(&zc, dp->dp_meta_objset,
|
|
dsl_dataset_phys(ds)->ds_next_clones_obj);
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
(void) zap_cursor_advance(&zc)) {
|
|
scan_ds_queue_insert(scn,
|
|
zfs_strtonum(za.za_name, NULL),
|
|
dsl_dataset_phys(ds)->ds_creation_txg);
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
} else {
|
|
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
|
|
enqueue_clones_cb, &ds->ds_object,
|
|
DS_FIND_CHILDREN));
|
|
}
|
|
}
|
|
|
|
out:
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
|
|
{
|
|
dsl_dataset_t *ds;
|
|
int err;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
|
|
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
|
|
if (err)
|
|
return (err);
|
|
|
|
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
|
|
dsl_dataset_t *prev;
|
|
err = dsl_dataset_hold_obj(dp,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
|
|
if (err) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* If this is a clone, we don't need to worry about it for now.
|
|
*/
|
|
if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
dsl_dataset_rele(prev, FTAG);
|
|
return (0);
|
|
}
|
|
dsl_dataset_rele(ds, FTAG);
|
|
ds = prev;
|
|
}
|
|
|
|
scan_ds_queue_insert(scn, ds->ds_object,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
|
|
ddt_entry_t *dde, dmu_tx_t *tx)
|
|
{
|
|
const ddt_key_t *ddk = &dde->dde_key;
|
|
ddt_phys_t *ddp = dde->dde_phys;
|
|
blkptr_t bp;
|
|
zbookmark_phys_t zb = { 0 };
|
|
int p;
|
|
|
|
if (!dsl_scan_is_running(scn))
|
|
return;
|
|
|
|
/*
|
|
* This function is special because it is the only thing
|
|
* that can add scan_io_t's to the vdev scan queues from
|
|
* outside dsl_scan_sync(). For the most part this is ok
|
|
* as long as it is called from within syncing context.
|
|
* However, dsl_scan_sync() expects that no new sio's will
|
|
* be added between when all the work for a scan is done
|
|
* and the next txg when the scan is actually marked as
|
|
* completed. This check ensures we do not issue new sio's
|
|
* during this period.
|
|
*/
|
|
if (scn->scn_done_txg != 0)
|
|
return;
|
|
|
|
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
|
|
if (ddp->ddp_phys_birth == 0 ||
|
|
ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
|
|
continue;
|
|
ddt_bp_create(checksum, ddk, ddp, &bp);
|
|
|
|
scn->scn_visited_this_txg++;
|
|
scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scrub/dedup interaction.
|
|
*
|
|
* If there are N references to a deduped block, we don't want to scrub it
|
|
* N times -- ideally, we should scrub it exactly once.
|
|
*
|
|
* We leverage the fact that the dde's replication class (enum ddt_class)
|
|
* is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
|
|
* (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
|
|
*
|
|
* To prevent excess scrubbing, the scrub begins by walking the DDT
|
|
* to find all blocks with refcnt > 1, and scrubs each of these once.
|
|
* Since there are two replication classes which contain blocks with
|
|
* refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
|
|
* Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
|
|
*
|
|
* There would be nothing more to say if a block's refcnt couldn't change
|
|
* during a scrub, but of course it can so we must account for changes
|
|
* in a block's replication class.
|
|
*
|
|
* Here's an example of what can occur:
|
|
*
|
|
* If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
|
|
* when visited during the top-down scrub phase, it will be scrubbed twice.
|
|
* This negates our scrub optimization, but is otherwise harmless.
|
|
*
|
|
* If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
|
|
* on each visit during the top-down scrub phase, it will never be scrubbed.
|
|
* To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
|
|
* reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
|
|
* DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
|
|
* while a scrub is in progress, it scrubs the block right then.
|
|
*/
|
|
static void
|
|
dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
|
|
{
|
|
ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
|
|
ddt_entry_t dde;
|
|
int error;
|
|
uint64_t n = 0;
|
|
|
|
bzero(&dde, sizeof (ddt_entry_t));
|
|
|
|
while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
|
|
ddt_t *ddt;
|
|
|
|
if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
|
|
break;
|
|
dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
|
|
(longlong_t)ddb->ddb_class,
|
|
(longlong_t)ddb->ddb_type,
|
|
(longlong_t)ddb->ddb_checksum,
|
|
(longlong_t)ddb->ddb_cursor);
|
|
|
|
/* There should be no pending changes to the dedup table */
|
|
ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
|
|
ASSERT(avl_first(&ddt->ddt_tree) == NULL);
|
|
|
|
dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
|
|
n++;
|
|
|
|
if (dsl_scan_check_suspend(scn, NULL))
|
|
break;
|
|
}
|
|
|
|
zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; "
|
|
"suspending=%u", (longlong_t)n,
|
|
(int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
|
|
|
|
ASSERT(error == 0 || error == ENOENT);
|
|
ASSERT(error != ENOENT ||
|
|
ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
|
|
}
|
|
|
|
static uint64_t
|
|
dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
|
|
{
|
|
uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
|
|
if (ds->ds_is_snapshot)
|
|
return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
|
|
return (smt);
|
|
}
|
|
|
|
static void
|
|
dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
|
|
{
|
|
scan_ds_t *sds;
|
|
dsl_pool_t *dp = scn->scn_dp;
|
|
|
|
if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
|
|
scn->scn_phys.scn_ddt_class_max) {
|
|
scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
|
|
scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
|
|
dsl_scan_ddt(scn, tx);
|
|
if (scn->scn_suspending)
|
|
return;
|
|
}
|
|
|
|
if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
|
|
/* First do the MOS & ORIGIN */
|
|
|
|
scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
|
|
scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
|
|
dsl_scan_visit_rootbp(scn, NULL,
|
|
&dp->dp_meta_rootbp, tx);
|
|
spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
|
|
if (scn->scn_suspending)
|
|
return;
|
|
|
|
if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
|
|
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
|
|
enqueue_cb, NULL, DS_FIND_CHILDREN));
|
|
} else {
|
|
dsl_scan_visitds(scn,
|
|
dp->dp_origin_snap->ds_object, tx);
|
|
}
|
|
ASSERT(!scn->scn_suspending);
|
|
} else if (scn->scn_phys.scn_bookmark.zb_objset !=
|
|
ZB_DESTROYED_OBJSET) {
|
|
uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
|
|
/*
|
|
* If we were suspended, continue from here. Note if the
|
|
* ds we were suspended on was deleted, the zb_objset may
|
|
* be -1, so we will skip this and find a new objset
|
|
* below.
|
|
*/
|
|
dsl_scan_visitds(scn, dsobj, tx);
|
|
if (scn->scn_suspending)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In case we suspended right at the end of the ds, zero the
|
|
* bookmark so we don't think that we're still trying to resume.
|
|
*/
|
|
bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t));
|
|
|
|
/*
|
|
* Keep pulling things out of the dataset avl queue. Updates to the
|
|
* persistent zap-object-as-queue happen only at checkpoints.
|
|
*/
|
|
while ((sds = avl_first(&scn->scn_queue)) != NULL) {
|
|
dsl_dataset_t *ds;
|
|
uint64_t dsobj = sds->sds_dsobj;
|
|
uint64_t txg = sds->sds_txg;
|
|
|
|
/* dequeue and free the ds from the queue */
|
|
scan_ds_queue_remove(scn, dsobj);
|
|
sds = NULL;
|
|
|
|
/* set up min / max txg */
|
|
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
|
|
if (txg != 0) {
|
|
scn->scn_phys.scn_cur_min_txg =
|
|
MAX(scn->scn_phys.scn_min_txg, txg);
|
|
} else {
|
|
scn->scn_phys.scn_cur_min_txg =
|
|
MAX(scn->scn_phys.scn_min_txg,
|
|
dsl_dataset_phys(ds)->ds_prev_snap_txg);
|
|
}
|
|
scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
|
|
dsl_scan_visitds(scn, dsobj, tx);
|
|
if (scn->scn_suspending)
|
|
return;
|
|
}
|
|
|
|
/* No more objsets to fetch, we're done */
|
|
scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
|
|
ASSERT0(scn->scn_suspending);
|
|
}
|
|
|
|
static uint64_t
|
|
dsl_scan_count_leaves(vdev_t *vd)
|
|
{
|
|
uint64_t i, leaves = 0;
|
|
|
|
/* we only count leaves that belong to the main pool and are readable */
|
|
if (vd->vdev_islog || vd->vdev_isspare ||
|
|
vd->vdev_isl2cache || !vdev_readable(vd))
|
|
return (0);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
return (1);
|
|
|
|
for (i = 0; i < vd->vdev_children; i++) {
|
|
leaves += dsl_scan_count_leaves(vd->vdev_child[i]);
|
|
}
|
|
|
|
return (leaves);
|
|
}
|
|
|
|
static void
|
|
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
|
|
{
|
|
int i;
|
|
uint64_t cur_size = 0;
|
|
|
|
for (i = 0; i < BP_GET_NDVAS(bp); i++) {
|
|
cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
|
|
}
|
|
|
|
q->q_total_zio_size_this_txg += cur_size;
|
|
q->q_zios_this_txg++;
|
|
}
|
|
|
|
static void
|
|
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
|
|
uint64_t end)
|
|
{
|
|
q->q_total_seg_size_this_txg += end - start;
|
|
q->q_segs_this_txg++;
|
|
}
|
|
|
|
static boolean_t
|
|
scan_io_queue_check_suspend(dsl_scan_t *scn)
|
|
{
|
|
/* See comment in dsl_scan_check_suspend() */
|
|
uint64_t curr_time_ns = gethrtime();
|
|
uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
|
|
uint64_t sync_time_ns = curr_time_ns -
|
|
scn->scn_dp->dp_spa->spa_sync_starttime;
|
|
int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max;
|
|
int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
|
|
zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
|
|
|
|
return ((NSEC2MSEC(scan_time_ns) > mintime &&
|
|
(dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent ||
|
|
txg_sync_waiting(scn->scn_dp) ||
|
|
NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
|
|
spa_shutting_down(scn->scn_dp->dp_spa));
|
|
}
|
|
|
|
/*
|
|
* Given a list of scan_io_t's in io_list, this issues the I/Os out to
|
|
* disk. This consumes the io_list and frees the scan_io_t's. This is
|
|
* called when emptying queues, either when we're up against the memory
|
|
* limit or when we have finished scanning. Returns B_TRUE if we stopped
|
|
* processing the list before we finished. Any sios that were not issued
|
|
* will remain in the io_list.
|
|
*/
|
|
static boolean_t
|
|
scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
|
|
{
|
|
dsl_scan_t *scn = queue->q_scn;
|
|
scan_io_t *sio;
|
|
int64_t bytes_issued = 0;
|
|
boolean_t suspended = B_FALSE;
|
|
|
|
while ((sio = list_head(io_list)) != NULL) {
|
|
blkptr_t bp;
|
|
|
|
if (scan_io_queue_check_suspend(scn)) {
|
|
suspended = B_TRUE;
|
|
break;
|
|
}
|
|
|
|
sio2bp(sio, &bp);
|
|
bytes_issued += SIO_GET_ASIZE(sio);
|
|
scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
|
|
&sio->sio_zb, queue);
|
|
(void) list_remove_head(io_list);
|
|
scan_io_queues_update_zio_stats(queue, &bp);
|
|
sio_free(sio);
|
|
}
|
|
|
|
atomic_add_64(&scn->scn_bytes_pending, -bytes_issued);
|
|
|
|
return (suspended);
|
|
}
|
|
|
|
/*
|
|
* This function removes sios from an IO queue which reside within a given
|
|
* range_seg_t and inserts them (in offset order) into a list. Note that
|
|
* we only ever return a maximum of 32 sios at once. If there are more sios
|
|
* to process within this segment that did not make it onto the list we
|
|
* return B_TRUE and otherwise B_FALSE.
|
|
*/
|
|
static boolean_t
|
|
scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
|
|
{
|
|
scan_io_t *srch_sio, *sio, *next_sio;
|
|
avl_index_t idx;
|
|
uint_t num_sios = 0;
|
|
int64_t bytes_issued = 0;
|
|
|
|
ASSERT(rs != NULL);
|
|
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
|
|
|
|
srch_sio = sio_alloc(1);
|
|
srch_sio->sio_nr_dvas = 1;
|
|
SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
|
|
|
|
/*
|
|
* The exact start of the extent might not contain any matching zios,
|
|
* so if that's the case, examine the next one in the tree.
|
|
*/
|
|
sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
|
|
sio_free(srch_sio);
|
|
|
|
if (sio == NULL)
|
|
sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
|
|
|
|
while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
|
|
queue->q_exts_by_addr) && num_sios <= 32) {
|
|
ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
|
|
queue->q_exts_by_addr));
|
|
ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
|
|
queue->q_exts_by_addr));
|
|
|
|
next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
|
|
avl_remove(&queue->q_sios_by_addr, sio);
|
|
queue->q_sio_memused -= SIO_GET_MUSED(sio);
|
|
|
|
bytes_issued += SIO_GET_ASIZE(sio);
|
|
num_sios++;
|
|
list_insert_tail(list, sio);
|
|
sio = next_sio;
|
|
}
|
|
|
|
/*
|
|
* We limit the number of sios we process at once to 32 to avoid
|
|
* biting off more than we can chew. If we didn't take everything
|
|
* in the segment we update it to reflect the work we were able to
|
|
* complete. Otherwise, we remove it from the range tree entirely.
|
|
*/
|
|
if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
|
|
queue->q_exts_by_addr)) {
|
|
range_tree_adjust_fill(queue->q_exts_by_addr, rs,
|
|
-bytes_issued);
|
|
range_tree_resize_segment(queue->q_exts_by_addr, rs,
|
|
SIO_GET_OFFSET(sio), rs_get_end(rs,
|
|
queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
|
|
|
|
return (B_TRUE);
|
|
} else {
|
|
uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
|
|
uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
|
|
range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
|
|
return (B_FALSE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called from the queue emptying thread and selects the next
|
|
* extent from which we are to issue I/Os. The behavior of this function
|
|
* depends on the state of the scan, the current memory consumption and
|
|
* whether or not we are performing a scan shutdown.
|
|
* 1) We select extents in an elevator algorithm (LBA-order) if the scan
|
|
* needs to perform a checkpoint
|
|
* 2) We select the largest available extent if we are up against the
|
|
* memory limit.
|
|
* 3) Otherwise we don't select any extents.
|
|
*/
|
|
static range_seg_t *
|
|
scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
|
|
{
|
|
dsl_scan_t *scn = queue->q_scn;
|
|
range_tree_t *rt = queue->q_exts_by_addr;
|
|
|
|
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
|
|
ASSERT(scn->scn_is_sorted);
|
|
|
|
/* handle tunable overrides */
|
|
if (scn->scn_checkpointing || scn->scn_clearing) {
|
|
if (zfs_scan_issue_strategy == 1) {
|
|
return (range_tree_first(rt));
|
|
} else if (zfs_scan_issue_strategy == 2) {
|
|
/*
|
|
* We need to get the original entry in the by_addr
|
|
* tree so we can modify it.
|
|
*/
|
|
range_seg_t *size_rs =
|
|
zfs_btree_first(&queue->q_exts_by_size, NULL);
|
|
if (size_rs == NULL)
|
|
return (NULL);
|
|
uint64_t start = rs_get_start(size_rs, rt);
|
|
uint64_t size = rs_get_end(size_rs, rt) - start;
|
|
range_seg_t *addr_rs = range_tree_find(rt, start,
|
|
size);
|
|
ASSERT3P(addr_rs, !=, NULL);
|
|
ASSERT3U(rs_get_start(size_rs, rt), ==,
|
|
rs_get_start(addr_rs, rt));
|
|
ASSERT3U(rs_get_end(size_rs, rt), ==,
|
|
rs_get_end(addr_rs, rt));
|
|
return (addr_rs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* During normal clearing, we want to issue our largest segments
|
|
* first, keeping IO as sequential as possible, and leaving the
|
|
* smaller extents for later with the hope that they might eventually
|
|
* grow to larger sequential segments. However, when the scan is
|
|
* checkpointing, no new extents will be added to the sorting queue,
|
|
* so the way we are sorted now is as good as it will ever get.
|
|
* In this case, we instead switch to issuing extents in LBA order.
|
|
*/
|
|
if (scn->scn_checkpointing) {
|
|
return (range_tree_first(rt));
|
|
} else if (scn->scn_clearing) {
|
|
/*
|
|
* We need to get the original entry in the by_addr
|
|
* tree so we can modify it.
|
|
*/
|
|
range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size,
|
|
NULL);
|
|
if (size_rs == NULL)
|
|
return (NULL);
|
|
uint64_t start = rs_get_start(size_rs, rt);
|
|
uint64_t size = rs_get_end(size_rs, rt) - start;
|
|
range_seg_t *addr_rs = range_tree_find(rt, start, size);
|
|
ASSERT3P(addr_rs, !=, NULL);
|
|
ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs,
|
|
rt));
|
|
ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt));
|
|
return (addr_rs);
|
|
} else {
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
scan_io_queues_run_one(void *arg)
|
|
{
|
|
dsl_scan_io_queue_t *queue = arg;
|
|
kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
|
|
boolean_t suspended = B_FALSE;
|
|
range_seg_t *rs = NULL;
|
|
scan_io_t *sio = NULL;
|
|
list_t sio_list;
|
|
uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
|
|
uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd);
|
|
|
|
ASSERT(queue->q_scn->scn_is_sorted);
|
|
|
|
list_create(&sio_list, sizeof (scan_io_t),
|
|
offsetof(scan_io_t, sio_nodes.sio_list_node));
|
|
mutex_enter(q_lock);
|
|
|
|
/* calculate maximum in-flight bytes for this txg (min 1MB) */
|
|
queue->q_maxinflight_bytes =
|
|
MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
|
|
|
|
/* reset per-queue scan statistics for this txg */
|
|
queue->q_total_seg_size_this_txg = 0;
|
|
queue->q_segs_this_txg = 0;
|
|
queue->q_total_zio_size_this_txg = 0;
|
|
queue->q_zios_this_txg = 0;
|
|
|
|
/* loop until we run out of time or sios */
|
|
while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
|
|
uint64_t seg_start = 0, seg_end = 0;
|
|
boolean_t more_left = B_TRUE;
|
|
|
|
ASSERT(list_is_empty(&sio_list));
|
|
|
|
/* loop while we still have sios left to process in this rs */
|
|
while (more_left) {
|
|
scan_io_t *first_sio, *last_sio;
|
|
|
|
/*
|
|
* We have selected which extent needs to be
|
|
* processed next. Gather up the corresponding sios.
|
|
*/
|
|
more_left = scan_io_queue_gather(queue, rs, &sio_list);
|
|
ASSERT(!list_is_empty(&sio_list));
|
|
first_sio = list_head(&sio_list);
|
|
last_sio = list_tail(&sio_list);
|
|
|
|
seg_end = SIO_GET_END_OFFSET(last_sio);
|
|
if (seg_start == 0)
|
|
seg_start = SIO_GET_OFFSET(first_sio);
|
|
|
|
/*
|
|
* Issuing sios can take a long time so drop the
|
|
* queue lock. The sio queue won't be updated by
|
|
* other threads since we're in syncing context so
|
|
* we can be sure that our trees will remain exactly
|
|
* as we left them.
|
|
*/
|
|
mutex_exit(q_lock);
|
|
suspended = scan_io_queue_issue(queue, &sio_list);
|
|
mutex_enter(q_lock);
|
|
|
|
if (suspended)
|
|
break;
|
|
}
|
|
|
|
/* update statistics for debugging purposes */
|
|
scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
|
|
|
|
if (suspended)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we were suspended in the middle of processing,
|
|
* requeue any unfinished sios and exit.
|
|
*/
|
|
while ((sio = list_head(&sio_list)) != NULL) {
|
|
list_remove(&sio_list, sio);
|
|
scan_io_queue_insert_impl(queue, sio);
|
|
}
|
|
|
|
mutex_exit(q_lock);
|
|
list_destroy(&sio_list);
|
|
}
|
|
|
|
/*
|
|
* Performs an emptying run on all scan queues in the pool. This just
|
|
* punches out one thread per top-level vdev, each of which processes
|
|
* only that vdev's scan queue. We can parallelize the I/O here because
|
|
* we know that each queue's I/Os only affect its own top-level vdev.
|
|
*
|
|
* This function waits for the queue runs to complete, and must be
|
|
* called from dsl_scan_sync (or in general, syncing context).
|
|
*/
|
|
static void
|
|
scan_io_queues_run(dsl_scan_t *scn)
|
|
{
|
|
spa_t *spa = scn->scn_dp->dp_spa;
|
|
|
|
ASSERT(scn->scn_is_sorted);
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
|
|
|
|
if (scn->scn_bytes_pending == 0)
|
|
return;
|
|
|
|
if (scn->scn_taskq == NULL) {
|
|
int nthreads = spa->spa_root_vdev->vdev_children;
|
|
|
|
/*
|
|
* We need to make this taskq *always* execute as many
|
|
* threads in parallel as we have top-level vdevs and no
|
|
* less, otherwise strange serialization of the calls to
|
|
* scan_io_queues_run_one can occur during spa_sync runs
|
|
* and that significantly impacts performance.
|
|
*/
|
|
scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
|
|
minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
|
|
}
|
|
|
|
for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
|
|
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
|
|
|
|
mutex_enter(&vd->vdev_scan_io_queue_lock);
|
|
if (vd->vdev_scan_io_queue != NULL) {
|
|
VERIFY(taskq_dispatch(scn->scn_taskq,
|
|
scan_io_queues_run_one, vd->vdev_scan_io_queue,
|
|
TQ_SLEEP) != TASKQID_INVALID);
|
|
}
|
|
mutex_exit(&vd->vdev_scan_io_queue_lock);
|
|
}
|
|
|
|
/*
|
|
* Wait for the queues to finish issuing their IOs for this run
|
|
* before we return. There may still be IOs in flight at this
|
|
* point.
|
|
*/
|
|
taskq_wait(scn->scn_taskq);
|
|
}
|
|
|
|
static boolean_t
|
|
dsl_scan_async_block_should_pause(dsl_scan_t *scn)
|
|
{
|
|
uint64_t elapsed_nanosecs;
|
|
|
|
if (zfs_recover)
|
|
return (B_FALSE);
|
|
|
|
if (zfs_async_block_max_blocks != 0 &&
|
|
scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
|
|
return (B_TRUE);
|
|
}
|
|
|
|
if (zfs_max_async_dedup_frees != 0 &&
|
|
scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
|
|
return (B_TRUE);
|
|
}
|
|
|
|
elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
|
|
return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
|
|
(NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
|
|
txg_sync_waiting(scn->scn_dp)) ||
|
|
spa_shutting_down(scn->scn_dp->dp_spa));
|
|
}
|
|
|
|
static int
|
|
dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
dsl_scan_t *scn = arg;
|
|
|
|
if (!scn->scn_is_bptree ||
|
|
(BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
|
|
if (dsl_scan_async_block_should_pause(scn))
|
|
return (SET_ERROR(ERESTART));
|
|
}
|
|
|
|
zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
|
|
dmu_tx_get_txg(tx), bp, 0));
|
|
dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
|
|
-bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
|
|
-BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
|
|
scn->scn_visited_this_txg++;
|
|
if (BP_GET_DEDUP(bp))
|
|
scn->scn_dedup_frees_this_txg++;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dsl_scan_update_stats(dsl_scan_t *scn)
|
|
{
|
|
spa_t *spa = scn->scn_dp->dp_spa;
|
|
uint64_t i;
|
|
uint64_t seg_size_total = 0, zio_size_total = 0;
|
|
uint64_t seg_count_total = 0, zio_count_total = 0;
|
|
|
|
for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
|
|
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
|
|
dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
|
|
|
|
if (queue == NULL)
|
|
continue;
|
|
|
|
seg_size_total += queue->q_total_seg_size_this_txg;
|
|
zio_size_total += queue->q_total_zio_size_this_txg;
|
|
seg_count_total += queue->q_segs_this_txg;
|
|
zio_count_total += queue->q_zios_this_txg;
|
|
}
|
|
|
|
if (seg_count_total == 0 || zio_count_total == 0) {
|
|
scn->scn_avg_seg_size_this_txg = 0;
|
|
scn->scn_avg_zio_size_this_txg = 0;
|
|
scn->scn_segs_this_txg = 0;
|
|
scn->scn_zios_this_txg = 0;
|
|
return;
|
|
}
|
|
|
|
scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
|
|
scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
|
|
scn->scn_segs_this_txg = seg_count_total;
|
|
scn->scn_zios_this_txg = zio_count_total;
|
|
}
|
|
|
|
static int
|
|
bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
|
|
dmu_tx_t *tx)
|
|
{
|
|
ASSERT(!bp_freed);
|
|
return (dsl_scan_free_block_cb(arg, bp, tx));
|
|
}
|
|
|
|
static int
|
|
dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
|
|
dmu_tx_t *tx)
|
|
{
|
|
ASSERT(!bp_freed);
|
|
dsl_scan_t *scn = arg;
|
|
const dva_t *dva = &bp->blk_dva[0];
|
|
|
|
if (dsl_scan_async_block_should_pause(scn))
|
|
return (SET_ERROR(ERESTART));
|
|
|
|
spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
|
|
DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
|
|
DVA_GET_ASIZE(dva), tx);
|
|
scn->scn_visited_this_txg++;
|
|
return (0);
|
|
}
|
|
|
|
boolean_t
|
|
dsl_scan_active(dsl_scan_t *scn)
|
|
{
|
|
spa_t *spa = scn->scn_dp->dp_spa;
|
|
uint64_t used = 0, comp, uncomp;
|
|
boolean_t clones_left;
|
|
|
|
if (spa->spa_load_state != SPA_LOAD_NONE)
|
|
return (B_FALSE);
|
|
if (spa_shutting_down(spa))
|
|
return (B_FALSE);
|
|
if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
|
|
(scn->scn_async_destroying && !scn->scn_async_stalled))
|
|
return (B_TRUE);
|
|
|
|
if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
|
|
(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
|
|
&used, &comp, &uncomp);
|
|
}
|
|
clones_left = spa_livelist_delete_check(spa);
|
|
return ((used != 0) || (clones_left));
|
|
}
|
|
|
|
static boolean_t
|
|
dsl_scan_check_deferred(vdev_t *vd)
|
|
{
|
|
boolean_t need_resilver = B_FALSE;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
need_resilver |=
|
|
dsl_scan_check_deferred(vd->vdev_child[c]);
|
|
}
|
|
|
|
if (!vdev_is_concrete(vd) || vd->vdev_aux ||
|
|
!vd->vdev_ops->vdev_op_leaf)
|
|
return (need_resilver);
|
|
|
|
if (!vd->vdev_resilver_deferred)
|
|
need_resilver = B_TRUE;
|
|
|
|
return (need_resilver);
|
|
}
|
|
|
|
static boolean_t
|
|
dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
|
|
uint64_t phys_birth)
|
|
{
|
|
vdev_t *vd;
|
|
|
|
vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
|
|
|
|
if (vd->vdev_ops == &vdev_indirect_ops) {
|
|
/*
|
|
* The indirect vdev can point to multiple
|
|
* vdevs. For simplicity, always create
|
|
* the resilver zio_t. zio_vdev_io_start()
|
|
* will bypass the child resilver i/o's if
|
|
* they are on vdevs that don't have DTL's.
|
|
*/
|
|
return (B_TRUE);
|
|
}
|
|
|
|
if (DVA_GET_GANG(dva)) {
|
|
/*
|
|
* Gang members may be spread across multiple
|
|
* vdevs, so the best estimate we have is the
|
|
* scrub range, which has already been checked.
|
|
* XXX -- it would be better to change our
|
|
* allocation policy to ensure that all
|
|
* gang members reside on the same vdev.
|
|
*/
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Check if the txg falls within the range which must be
|
|
* resilvered. DVAs outside this range can always be skipped.
|
|
*/
|
|
if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Check if the top-level vdev must resilver this offset.
|
|
* When the offset does not intersect with a dirty leaf DTL
|
|
* then it may be possible to skip the resilver IO. The psize
|
|
* is provided instead of asize to simplify the check for RAIDZ.
|
|
*/
|
|
if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Check that this top-level vdev has a device under it which
|
|
* is resilvering and is not deferred.
|
|
*/
|
|
if (!dsl_scan_check_deferred(vd))
|
|
return (B_FALSE);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
static int
|
|
dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
{
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
spa_t *spa = dp->dp_spa;
|
|
int err = 0;
|
|
|
|
if (spa_suspend_async_destroy(spa))
|
|
return (0);
|
|
|
|
if (zfs_free_bpobj_enabled &&
|
|
spa_version(spa) >= SPA_VERSION_DEADLISTS) {
|
|
scn->scn_is_bptree = B_FALSE;
|
|
scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
|
|
scn->scn_zio_root = zio_root(spa, NULL,
|
|
NULL, ZIO_FLAG_MUSTSUCCEED);
|
|
err = bpobj_iterate(&dp->dp_free_bpobj,
|
|
bpobj_dsl_scan_free_block_cb, scn, tx);
|
|
VERIFY0(zio_wait(scn->scn_zio_root));
|
|
scn->scn_zio_root = NULL;
|
|
|
|
if (err != 0 && err != ERESTART)
|
|
zfs_panic_recover("error %u from bpobj_iterate()", err);
|
|
}
|
|
|
|
if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
|
|
ASSERT(scn->scn_async_destroying);
|
|
scn->scn_is_bptree = B_TRUE;
|
|
scn->scn_zio_root = zio_root(spa, NULL,
|
|
NULL, ZIO_FLAG_MUSTSUCCEED);
|
|
err = bptree_iterate(dp->dp_meta_objset,
|
|
dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
|
|
VERIFY0(zio_wait(scn->scn_zio_root));
|
|
scn->scn_zio_root = NULL;
|
|
|
|
if (err == EIO || err == ECKSUM) {
|
|
err = 0;
|
|
} else if (err != 0 && err != ERESTART) {
|
|
zfs_panic_recover("error %u from "
|
|
"traverse_dataset_destroyed()", err);
|
|
}
|
|
|
|
if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
|
|
/* finished; deactivate async destroy feature */
|
|
spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
|
|
ASSERT(!spa_feature_is_active(spa,
|
|
SPA_FEATURE_ASYNC_DESTROY));
|
|
VERIFY0(zap_remove(dp->dp_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_BPTREE_OBJ, tx));
|
|
VERIFY0(bptree_free(dp->dp_meta_objset,
|
|
dp->dp_bptree_obj, tx));
|
|
dp->dp_bptree_obj = 0;
|
|
scn->scn_async_destroying = B_FALSE;
|
|
scn->scn_async_stalled = B_FALSE;
|
|
} else {
|
|
/*
|
|
* If we didn't make progress, mark the async
|
|
* destroy as stalled, so that we will not initiate
|
|
* a spa_sync() on its behalf. Note that we only
|
|
* check this if we are not finished, because if the
|
|
* bptree had no blocks for us to visit, we can
|
|
* finish without "making progress".
|
|
*/
|
|
scn->scn_async_stalled =
|
|
(scn->scn_visited_this_txg == 0);
|
|
}
|
|
}
|
|
if (scn->scn_visited_this_txg) {
|
|
zfs_dbgmsg("freed %llu blocks in %llums from "
|
|
"free_bpobj/bptree txg %llu; err=%u",
|
|
(longlong_t)scn->scn_visited_this_txg,
|
|
(longlong_t)
|
|
NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
|
|
(longlong_t)tx->tx_txg, err);
|
|
scn->scn_visited_this_txg = 0;
|
|
scn->scn_dedup_frees_this_txg = 0;
|
|
|
|
/*
|
|
* Write out changes to the DDT that may be required as a
|
|
* result of the blocks freed. This ensures that the DDT
|
|
* is clean when a scrub/resilver runs.
|
|
*/
|
|
ddt_sync(spa, tx->tx_txg);
|
|
}
|
|
if (err != 0)
|
|
return (err);
|
|
if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
|
|
zfs_free_leak_on_eio &&
|
|
(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
|
|
dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
|
|
dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
|
|
/*
|
|
* We have finished background destroying, but there is still
|
|
* some space left in the dp_free_dir. Transfer this leaked
|
|
* space to the dp_leak_dir.
|
|
*/
|
|
if (dp->dp_leak_dir == NULL) {
|
|
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
|
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
|
|
LEAK_DIR_NAME, tx);
|
|
VERIFY0(dsl_pool_open_special_dir(dp,
|
|
LEAK_DIR_NAME, &dp->dp_leak_dir));
|
|
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
|
}
|
|
dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
|
|
dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
|
|
dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
|
|
dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
|
|
dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
|
|
-dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
|
|
-dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
|
|
-dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
|
|
}
|
|
|
|
if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
|
|
!spa_livelist_delete_check(spa)) {
|
|
/* finished; verify that space accounting went to zero */
|
|
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
|
|
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
|
|
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
|
|
}
|
|
|
|
spa_notify_waiters(spa);
|
|
|
|
EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
|
|
0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_OBSOLETE_BPOBJ));
|
|
if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
|
|
ASSERT(spa_feature_is_active(dp->dp_spa,
|
|
SPA_FEATURE_OBSOLETE_COUNTS));
|
|
|
|
scn->scn_is_bptree = B_FALSE;
|
|
scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
|
|
err = bpobj_iterate(&dp->dp_obsolete_bpobj,
|
|
dsl_scan_obsolete_block_cb, scn, tx);
|
|
if (err != 0 && err != ERESTART)
|
|
zfs_panic_recover("error %u from bpobj_iterate()", err);
|
|
|
|
if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
|
|
dsl_pool_destroy_obsolete_bpobj(dp, tx);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This is the primary entry point for scans that is called from syncing
|
|
* context. Scans must happen entirely during syncing context so that we
|
|
* can guarantee that blocks we are currently scanning will not change out
|
|
* from under us. While a scan is active, this function controls how quickly
|
|
* transaction groups proceed, instead of the normal handling provided by
|
|
* txg_sync_thread().
|
|
*/
|
|
void
|
|
dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
|
|
{
|
|
int err = 0;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
spa_t *spa = dp->dp_spa;
|
|
state_sync_type_t sync_type = SYNC_OPTIONAL;
|
|
|
|
if (spa->spa_resilver_deferred &&
|
|
!spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
|
|
spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
|
|
|
|
/*
|
|
* Check for scn_restart_txg before checking spa_load_state, so
|
|
* that we can restart an old-style scan while the pool is being
|
|
* imported (see dsl_scan_init). We also restart scans if there
|
|
* is a deferred resilver and the user has manually disabled
|
|
* deferred resilvers via the tunable.
|
|
*/
|
|
if (dsl_scan_restarting(scn, tx) ||
|
|
(spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
|
|
pool_scan_func_t func = POOL_SCAN_SCRUB;
|
|
dsl_scan_done(scn, B_FALSE, tx);
|
|
if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
|
|
func = POOL_SCAN_RESILVER;
|
|
zfs_dbgmsg("restarting scan func=%u txg=%llu",
|
|
func, (longlong_t)tx->tx_txg);
|
|
dsl_scan_setup_sync(&func, tx);
|
|
}
|
|
|
|
/*
|
|
* Only process scans in sync pass 1.
|
|
*/
|
|
if (spa_sync_pass(spa) > 1)
|
|
return;
|
|
|
|
/*
|
|
* If the spa is shutting down, then stop scanning. This will
|
|
* ensure that the scan does not dirty any new data during the
|
|
* shutdown phase.
|
|
*/
|
|
if (spa_shutting_down(spa))
|
|
return;
|
|
|
|
/*
|
|
* If the scan is inactive due to a stalled async destroy, try again.
|
|
*/
|
|
if (!scn->scn_async_stalled && !dsl_scan_active(scn))
|
|
return;
|
|
|
|
/* reset scan statistics */
|
|
scn->scn_visited_this_txg = 0;
|
|
scn->scn_dedup_frees_this_txg = 0;
|
|
scn->scn_holes_this_txg = 0;
|
|
scn->scn_lt_min_this_txg = 0;
|
|
scn->scn_gt_max_this_txg = 0;
|
|
scn->scn_ddt_contained_this_txg = 0;
|
|
scn->scn_objsets_visited_this_txg = 0;
|
|
scn->scn_avg_seg_size_this_txg = 0;
|
|
scn->scn_segs_this_txg = 0;
|
|
scn->scn_avg_zio_size_this_txg = 0;
|
|
scn->scn_zios_this_txg = 0;
|
|
scn->scn_suspending = B_FALSE;
|
|
scn->scn_sync_start_time = gethrtime();
|
|
spa->spa_scrub_active = B_TRUE;
|
|
|
|
/*
|
|
* First process the async destroys. If we suspend, don't do
|
|
* any scrubbing or resilvering. This ensures that there are no
|
|
* async destroys while we are scanning, so the scan code doesn't
|
|
* have to worry about traversing it. It is also faster to free the
|
|
* blocks than to scrub them.
|
|
*/
|
|
err = dsl_process_async_destroys(dp, tx);
|
|
if (err != 0)
|
|
return;
|
|
|
|
if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
|
|
return;
|
|
|
|
/*
|
|
* Wait a few txgs after importing to begin scanning so that
|
|
* we can get the pool imported quickly.
|
|
*/
|
|
if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
|
|
return;
|
|
|
|
/*
|
|
* zfs_scan_suspend_progress can be set to disable scan progress.
|
|
* We don't want to spin the txg_sync thread, so we add a delay
|
|
* here to simulate the time spent doing a scan. This is mostly
|
|
* useful for testing and debugging.
|
|
*/
|
|
if (zfs_scan_suspend_progress) {
|
|
uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
|
|
int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
|
|
zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
|
|
|
|
while (zfs_scan_suspend_progress &&
|
|
!txg_sync_waiting(scn->scn_dp) &&
|
|
!spa_shutting_down(scn->scn_dp->dp_spa) &&
|
|
NSEC2MSEC(scan_time_ns) < mintime) {
|
|
delay(hz);
|
|
scan_time_ns = gethrtime() - scn->scn_sync_start_time;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* It is possible to switch from unsorted to sorted at any time,
|
|
* but afterwards the scan will remain sorted unless reloaded from
|
|
* a checkpoint after a reboot.
|
|
*/
|
|
if (!zfs_scan_legacy) {
|
|
scn->scn_is_sorted = B_TRUE;
|
|
if (scn->scn_last_checkpoint == 0)
|
|
scn->scn_last_checkpoint = ddi_get_lbolt();
|
|
}
|
|
|
|
/*
|
|
* For sorted scans, determine what kind of work we will be doing
|
|
* this txg based on our memory limitations and whether or not we
|
|
* need to perform a checkpoint.
|
|
*/
|
|
if (scn->scn_is_sorted) {
|
|
/*
|
|
* If we are over our checkpoint interval, set scn_clearing
|
|
* so that we can begin checkpointing immediately. The
|
|
* checkpoint allows us to save a consistent bookmark
|
|
* representing how much data we have scrubbed so far.
|
|
* Otherwise, use the memory limit to determine if we should
|
|
* scan for metadata or start issue scrub IOs. We accumulate
|
|
* metadata until we hit our hard memory limit at which point
|
|
* we issue scrub IOs until we are at our soft memory limit.
|
|
*/
|
|
if (scn->scn_checkpointing ||
|
|
ddi_get_lbolt() - scn->scn_last_checkpoint >
|
|
SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
|
|
if (!scn->scn_checkpointing)
|
|
zfs_dbgmsg("begin scan checkpoint");
|
|
|
|
scn->scn_checkpointing = B_TRUE;
|
|
scn->scn_clearing = B_TRUE;
|
|
} else {
|
|
boolean_t should_clear = dsl_scan_should_clear(scn);
|
|
if (should_clear && !scn->scn_clearing) {
|
|
zfs_dbgmsg("begin scan clearing");
|
|
scn->scn_clearing = B_TRUE;
|
|
} else if (!should_clear && scn->scn_clearing) {
|
|
zfs_dbgmsg("finish scan clearing");
|
|
scn->scn_clearing = B_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
ASSERT0(scn->scn_checkpointing);
|
|
ASSERT0(scn->scn_clearing);
|
|
}
|
|
|
|
if (!scn->scn_clearing && scn->scn_done_txg == 0) {
|
|
/* Need to scan metadata for more blocks to scrub */
|
|
dsl_scan_phys_t *scnp = &scn->scn_phys;
|
|
taskqid_t prefetch_tqid;
|
|
uint64_t bytes_per_leaf = zfs_scan_vdev_limit;
|
|
uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev);
|
|
|
|
/*
|
|
* Recalculate the max number of in-flight bytes for pool-wide
|
|
* scanning operations (minimum 1MB). Limits for the issuing
|
|
* phase are done per top-level vdev and are handled separately.
|
|
*/
|
|
scn->scn_maxinflight_bytes =
|
|
MAX(nr_leaves * bytes_per_leaf, 1ULL << 20);
|
|
|
|
if (scnp->scn_ddt_bookmark.ddb_class <=
|
|
scnp->scn_ddt_class_max) {
|
|
ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
|
|
zfs_dbgmsg("doing scan sync txg %llu; "
|
|
"ddt bm=%llu/%llu/%llu/%llx",
|
|
(longlong_t)tx->tx_txg,
|
|
(longlong_t)scnp->scn_ddt_bookmark.ddb_class,
|
|
(longlong_t)scnp->scn_ddt_bookmark.ddb_type,
|
|
(longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
|
|
(longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
|
|
} else {
|
|
zfs_dbgmsg("doing scan sync txg %llu; "
|
|
"bm=%llu/%llu/%llu/%llu",
|
|
(longlong_t)tx->tx_txg,
|
|
(longlong_t)scnp->scn_bookmark.zb_objset,
|
|
(longlong_t)scnp->scn_bookmark.zb_object,
|
|
(longlong_t)scnp->scn_bookmark.zb_level,
|
|
(longlong_t)scnp->scn_bookmark.zb_blkid);
|
|
}
|
|
|
|
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
|
|
NULL, ZIO_FLAG_CANFAIL);
|
|
|
|
scn->scn_prefetch_stop = B_FALSE;
|
|
prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
|
|
dsl_scan_prefetch_thread, scn, TQ_SLEEP);
|
|
ASSERT(prefetch_tqid != TASKQID_INVALID);
|
|
|
|
dsl_pool_config_enter(dp, FTAG);
|
|
dsl_scan_visit(scn, tx);
|
|
dsl_pool_config_exit(dp, FTAG);
|
|
|
|
mutex_enter(&dp->dp_spa->spa_scrub_lock);
|
|
scn->scn_prefetch_stop = B_TRUE;
|
|
cv_broadcast(&spa->spa_scrub_io_cv);
|
|
mutex_exit(&dp->dp_spa->spa_scrub_lock);
|
|
|
|
taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
|
|
(void) zio_wait(scn->scn_zio_root);
|
|
scn->scn_zio_root = NULL;
|
|
|
|
zfs_dbgmsg("scan visited %llu blocks in %llums "
|
|
"(%llu os's, %llu holes, %llu < mintxg, "
|
|
"%llu in ddt, %llu > maxtxg)",
|
|
(longlong_t)scn->scn_visited_this_txg,
|
|
(longlong_t)NSEC2MSEC(gethrtime() -
|
|
scn->scn_sync_start_time),
|
|
(longlong_t)scn->scn_objsets_visited_this_txg,
|
|
(longlong_t)scn->scn_holes_this_txg,
|
|
(longlong_t)scn->scn_lt_min_this_txg,
|
|
(longlong_t)scn->scn_ddt_contained_this_txg,
|
|
(longlong_t)scn->scn_gt_max_this_txg);
|
|
|
|
if (!scn->scn_suspending) {
|
|
ASSERT0(avl_numnodes(&scn->scn_queue));
|
|
scn->scn_done_txg = tx->tx_txg + 1;
|
|
if (scn->scn_is_sorted) {
|
|
scn->scn_checkpointing = B_TRUE;
|
|
scn->scn_clearing = B_TRUE;
|
|
}
|
|
zfs_dbgmsg("scan complete txg %llu",
|
|
(longlong_t)tx->tx_txg);
|
|
}
|
|
} else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) {
|
|
ASSERT(scn->scn_clearing);
|
|
|
|
/* need to issue scrubbing IOs from per-vdev queues */
|
|
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
|
|
NULL, ZIO_FLAG_CANFAIL);
|
|
scan_io_queues_run(scn);
|
|
(void) zio_wait(scn->scn_zio_root);
|
|
scn->scn_zio_root = NULL;
|
|
|
|
/* calculate and dprintf the current memory usage */
|
|
(void) dsl_scan_should_clear(scn);
|
|
dsl_scan_update_stats(scn);
|
|
|
|
zfs_dbgmsg("scan issued %llu blocks (%llu segs) in %llums "
|
|
"(avg_block_size = %llu, avg_seg_size = %llu)",
|
|
(longlong_t)scn->scn_zios_this_txg,
|
|
(longlong_t)scn->scn_segs_this_txg,
|
|
(longlong_t)NSEC2MSEC(gethrtime() -
|
|
scn->scn_sync_start_time),
|
|
(longlong_t)scn->scn_avg_zio_size_this_txg,
|
|
(longlong_t)scn->scn_avg_seg_size_this_txg);
|
|
} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
|
|
/* Finished with everything. Mark the scrub as complete */
|
|
zfs_dbgmsg("scan issuing complete txg %llu",
|
|
(longlong_t)tx->tx_txg);
|
|
ASSERT3U(scn->scn_done_txg, !=, 0);
|
|
ASSERT0(spa->spa_scrub_inflight);
|
|
ASSERT0(scn->scn_bytes_pending);
|
|
dsl_scan_done(scn, B_TRUE, tx);
|
|
sync_type = SYNC_MANDATORY;
|
|
}
|
|
|
|
dsl_scan_sync_state(scn, tx, sync_type);
|
|
}
|
|
|
|
static void
|
|
count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Don't count embedded bp's, since we already did the work of
|
|
* scanning these when we scanned the containing block.
|
|
*/
|
|
if (BP_IS_EMBEDDED(bp))
|
|
return;
|
|
|
|
/*
|
|
* Update the spa's stats on how many bytes we have issued.
|
|
* Sequential scrubs create a zio for each DVA of the bp. Each
|
|
* of these will include all DVAs for repair purposes, but the
|
|
* zio code will only try the first one unless there is an issue.
|
|
* Therefore, we should only count the first DVA for these IOs.
|
|
*/
|
|
if (scn->scn_is_sorted) {
|
|
atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued,
|
|
DVA_GET_ASIZE(&bp->blk_dva[0]));
|
|
} else {
|
|
spa_t *spa = scn->scn_dp->dp_spa;
|
|
|
|
for (i = 0; i < BP_GET_NDVAS(bp); i++) {
|
|
atomic_add_64(&spa->spa_scan_pass_issued,
|
|
DVA_GET_ASIZE(&bp->blk_dva[i]));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we resume after a reboot, zab will be NULL; don't record
|
|
* incomplete stats in that case.
|
|
*/
|
|
if (zab == NULL)
|
|
return;
|
|
|
|
mutex_enter(&zab->zab_lock);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
|
|
int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
|
|
|
|
if (t & DMU_OT_NEWTYPE)
|
|
t = DMU_OT_OTHER;
|
|
zfs_blkstat_t *zb = &zab->zab_type[l][t];
|
|
int equal;
|
|
|
|
zb->zb_count++;
|
|
zb->zb_asize += BP_GET_ASIZE(bp);
|
|
zb->zb_lsize += BP_GET_LSIZE(bp);
|
|
zb->zb_psize += BP_GET_PSIZE(bp);
|
|
zb->zb_gangs += BP_COUNT_GANG(bp);
|
|
|
|
switch (BP_GET_NDVAS(bp)) {
|
|
case 2:
|
|
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[1]))
|
|
zb->zb_ditto_2_of_2_samevdev++;
|
|
break;
|
|
case 3:
|
|
equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[1])) +
|
|
(DVA_GET_VDEV(&bp->blk_dva[0]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[2])) +
|
|
(DVA_GET_VDEV(&bp->blk_dva[1]) ==
|
|
DVA_GET_VDEV(&bp->blk_dva[2]));
|
|
if (equal == 1)
|
|
zb->zb_ditto_2_of_3_samevdev++;
|
|
else if (equal == 3)
|
|
zb->zb_ditto_3_of_3_samevdev++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&zab->zab_lock);
|
|
}
|
|
|
|
static void
|
|
scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
|
|
{
|
|
avl_index_t idx;
|
|
int64_t asize = SIO_GET_ASIZE(sio);
|
|
dsl_scan_t *scn = queue->q_scn;
|
|
|
|
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
|
|
|
|
if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
|
|
/* block is already scheduled for reading */
|
|
atomic_add_64(&scn->scn_bytes_pending, -asize);
|
|
sio_free(sio);
|
|
return;
|
|
}
|
|
avl_insert(&queue->q_sios_by_addr, sio, idx);
|
|
queue->q_sio_memused += SIO_GET_MUSED(sio);
|
|
range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize);
|
|
}
|
|
|
|
/*
|
|
* Given all the info we got from our metadata scanning process, we
|
|
* construct a scan_io_t and insert it into the scan sorting queue. The
|
|
* I/O must already be suitable for us to process. This is controlled
|
|
* by dsl_scan_enqueue().
|
|
*/
|
|
static void
|
|
scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
|
|
int zio_flags, const zbookmark_phys_t *zb)
|
|
{
|
|
dsl_scan_t *scn = queue->q_scn;
|
|
scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
|
|
|
|
ASSERT0(BP_IS_GANG(bp));
|
|
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
|
|
|
|
bp2sio(bp, sio, dva_i);
|
|
sio->sio_flags = zio_flags;
|
|
sio->sio_zb = *zb;
|
|
|
|
/*
|
|
* Increment the bytes pending counter now so that we can't
|
|
* get an integer underflow in case the worker processes the
|
|
* zio before we get to incrementing this counter.
|
|
*/
|
|
atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio));
|
|
|
|
scan_io_queue_insert_impl(queue, sio);
|
|
}
|
|
|
|
/*
|
|
* Given a set of I/O parameters as discovered by the metadata traversal
|
|
* process, attempts to place the I/O into the sorted queues (if allowed),
|
|
* or immediately executes the I/O.
|
|
*/
|
|
static void
|
|
dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
|
|
const zbookmark_phys_t *zb)
|
|
{
|
|
spa_t *spa = dp->dp_spa;
|
|
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
|
|
/*
|
|
* Gang blocks are hard to issue sequentially, so we just issue them
|
|
* here immediately instead of queuing them.
|
|
*/
|
|
if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
|
|
scan_exec_io(dp, bp, zio_flags, zb, NULL);
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
|
|
dva_t dva;
|
|
vdev_t *vdev;
|
|
|
|
dva = bp->blk_dva[i];
|
|
vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
|
|
ASSERT(vdev != NULL);
|
|
|
|
mutex_enter(&vdev->vdev_scan_io_queue_lock);
|
|
if (vdev->vdev_scan_io_queue == NULL)
|
|
vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
|
|
ASSERT(dp->dp_scan != NULL);
|
|
scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
|
|
i, zio_flags, zb);
|
|
mutex_exit(&vdev->vdev_scan_io_queue_lock);
|
|
}
|
|
}
|
|
|
|
static int
|
|
dsl_scan_scrub_cb(dsl_pool_t *dp,
|
|
const blkptr_t *bp, const zbookmark_phys_t *zb)
|
|
{
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
spa_t *spa = dp->dp_spa;
|
|
uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
|
|
size_t psize = BP_GET_PSIZE(bp);
|
|
boolean_t needs_io = B_FALSE;
|
|
int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
|
|
|
|
|
|
if (phys_birth <= scn->scn_phys.scn_min_txg ||
|
|
phys_birth >= scn->scn_phys.scn_max_txg) {
|
|
count_block(scn, dp->dp_blkstats, bp);
|
|
return (0);
|
|
}
|
|
|
|
/* Embedded BP's have phys_birth==0, so we reject them above. */
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
|
|
ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
|
|
if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
|
|
zio_flags |= ZIO_FLAG_SCRUB;
|
|
needs_io = B_TRUE;
|
|
} else {
|
|
ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
|
|
zio_flags |= ZIO_FLAG_RESILVER;
|
|
needs_io = B_FALSE;
|
|
}
|
|
|
|
/* If it's an intent log block, failure is expected. */
|
|
if (zb->zb_level == ZB_ZIL_LEVEL)
|
|
zio_flags |= ZIO_FLAG_SPECULATIVE;
|
|
|
|
for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
|
|
const dva_t *dva = &bp->blk_dva[d];
|
|
|
|
/*
|
|
* Keep track of how much data we've examined so that
|
|
* zpool(1M) status can make useful progress reports.
|
|
*/
|
|
scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva);
|
|
spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva);
|
|
|
|
/* if it's a resilver, this may not be in the target range */
|
|
if (!needs_io)
|
|
needs_io = dsl_scan_need_resilver(spa, dva, psize,
|
|
phys_birth);
|
|
}
|
|
|
|
if (needs_io && !zfs_no_scrub_io) {
|
|
dsl_scan_enqueue(dp, bp, zio_flags, zb);
|
|
} else {
|
|
count_block(scn, dp->dp_blkstats, bp);
|
|
}
|
|
|
|
/* do not relocate this block */
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dsl_scan_scrub_done(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
blkptr_t *bp = zio->io_bp;
|
|
dsl_scan_io_queue_t *queue = zio->io_private;
|
|
|
|
abd_free(zio->io_abd);
|
|
|
|
if (queue == NULL) {
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
|
|
spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
|
|
cv_broadcast(&spa->spa_scrub_io_cv);
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
} else {
|
|
mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
|
|
ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
|
|
queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
|
|
cv_broadcast(&queue->q_zio_cv);
|
|
mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
|
|
}
|
|
|
|
if (zio->io_error && (zio->io_error != ECKSUM ||
|
|
!(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
|
|
atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given a scanning zio's information, executes the zio. The zio need
|
|
* not necessarily be only sortable, this function simply executes the
|
|
* zio, no matter what it is. The optional queue argument allows the
|
|
* caller to specify that they want per top level vdev IO rate limiting
|
|
* instead of the legacy global limiting.
|
|
*/
|
|
static void
|
|
scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
|
|
const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
|
|
{
|
|
spa_t *spa = dp->dp_spa;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
size_t size = BP_GET_PSIZE(bp);
|
|
abd_t *data = abd_alloc_for_io(size, B_FALSE);
|
|
|
|
ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
|
|
|
|
if (queue == NULL) {
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
|
|
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
|
|
spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
} else {
|
|
kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
|
|
|
|
mutex_enter(q_lock);
|
|
while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
|
|
cv_wait(&queue->q_zio_cv, q_lock);
|
|
queue->q_inflight_bytes += BP_GET_PSIZE(bp);
|
|
mutex_exit(q_lock);
|
|
}
|
|
|
|
count_block(scn, dp->dp_blkstats, bp);
|
|
zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size,
|
|
dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
|
|
}
|
|
|
|
/*
|
|
* This is the primary extent sorting algorithm. We balance two parameters:
|
|
* 1) how many bytes of I/O are in an extent
|
|
* 2) how well the extent is filled with I/O (as a fraction of its total size)
|
|
* Since we allow extents to have gaps between their constituent I/Os, it's
|
|
* possible to have a fairly large extent that contains the same amount of
|
|
* I/O bytes than a much smaller extent, which just packs the I/O more tightly.
|
|
* The algorithm sorts based on a score calculated from the extent's size,
|
|
* the relative fill volume (in %) and a "fill weight" parameter that controls
|
|
* the split between whether we prefer larger extents or more well populated
|
|
* extents:
|
|
*
|
|
* SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
|
|
*
|
|
* Example:
|
|
* 1) assume extsz = 64 MiB
|
|
* 2) assume fill = 32 MiB (extent is half full)
|
|
* 3) assume fill_weight = 3
|
|
* 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
|
|
* SCORE = 32M + (50 * 3 * 32M) / 100
|
|
* SCORE = 32M + (4800M / 100)
|
|
* SCORE = 32M + 48M
|
|
* ^ ^
|
|
* | +--- final total relative fill-based score
|
|
* +--------- final total fill-based score
|
|
* SCORE = 80M
|
|
*
|
|
* As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
|
|
* extents that are more completely filled (in a 3:2 ratio) vs just larger.
|
|
* Note that as an optimization, we replace multiplication and division by
|
|
* 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
|
|
*/
|
|
static int
|
|
ext_size_compare(const void *x, const void *y)
|
|
{
|
|
const range_seg_gap_t *rsa = x, *rsb = y;
|
|
|
|
uint64_t sa = rsa->rs_end - rsa->rs_start;
|
|
uint64_t sb = rsb->rs_end - rsb->rs_start;
|
|
uint64_t score_a, score_b;
|
|
|
|
score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) *
|
|
fill_weight * rsa->rs_fill) >> 7);
|
|
score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) *
|
|
fill_weight * rsb->rs_fill) >> 7);
|
|
|
|
if (score_a > score_b)
|
|
return (-1);
|
|
if (score_a == score_b) {
|
|
if (rsa->rs_start < rsb->rs_start)
|
|
return (-1);
|
|
if (rsa->rs_start == rsb->rs_start)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Comparator for the q_sios_by_addr tree. Sorting is simply performed
|
|
* based on LBA-order (from lowest to highest).
|
|
*/
|
|
static int
|
|
sio_addr_compare(const void *x, const void *y)
|
|
{
|
|
const scan_io_t *a = x, *b = y;
|
|
|
|
return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
|
|
}
|
|
|
|
/* IO queues are created on demand when they are needed. */
|
|
static dsl_scan_io_queue_t *
|
|
scan_io_queue_create(vdev_t *vd)
|
|
{
|
|
dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
|
|
dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
|
|
|
|
q->q_scn = scn;
|
|
q->q_vd = vd;
|
|
q->q_sio_memused = 0;
|
|
cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
|
|
q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP,
|
|
&q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap);
|
|
avl_create(&q->q_sios_by_addr, sio_addr_compare,
|
|
sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
|
|
|
|
return (q);
|
|
}
|
|
|
|
/*
|
|
* Destroys a scan queue and all segments and scan_io_t's contained in it.
|
|
* No further execution of I/O occurs, anything pending in the queue is
|
|
* simply freed without being executed.
|
|
*/
|
|
void
|
|
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
|
|
{
|
|
dsl_scan_t *scn = queue->q_scn;
|
|
scan_io_t *sio;
|
|
void *cookie = NULL;
|
|
int64_t bytes_dequeued = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
|
|
|
|
while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
|
|
NULL) {
|
|
ASSERT(range_tree_contains(queue->q_exts_by_addr,
|
|
SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
|
|
bytes_dequeued += SIO_GET_ASIZE(sio);
|
|
queue->q_sio_memused -= SIO_GET_MUSED(sio);
|
|
sio_free(sio);
|
|
}
|
|
|
|
ASSERT0(queue->q_sio_memused);
|
|
atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued);
|
|
range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
|
|
range_tree_destroy(queue->q_exts_by_addr);
|
|
avl_destroy(&queue->q_sios_by_addr);
|
|
cv_destroy(&queue->q_zio_cv);
|
|
|
|
kmem_free(queue, sizeof (*queue));
|
|
}
|
|
|
|
/*
|
|
* Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
|
|
* called on behalf of vdev_top_transfer when creating or destroying
|
|
* a mirror vdev due to zpool attach/detach.
|
|
*/
|
|
void
|
|
dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
|
|
{
|
|
mutex_enter(&svd->vdev_scan_io_queue_lock);
|
|
mutex_enter(&tvd->vdev_scan_io_queue_lock);
|
|
|
|
VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
|
|
tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
|
|
svd->vdev_scan_io_queue = NULL;
|
|
if (tvd->vdev_scan_io_queue != NULL)
|
|
tvd->vdev_scan_io_queue->q_vd = tvd;
|
|
|
|
mutex_exit(&tvd->vdev_scan_io_queue_lock);
|
|
mutex_exit(&svd->vdev_scan_io_queue_lock);
|
|
}
|
|
|
|
static void
|
|
scan_io_queues_destroy(dsl_scan_t *scn)
|
|
{
|
|
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
|
|
|
|
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
|
|
vdev_t *tvd = rvd->vdev_child[i];
|
|
|
|
mutex_enter(&tvd->vdev_scan_io_queue_lock);
|
|
if (tvd->vdev_scan_io_queue != NULL)
|
|
dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
|
|
tvd->vdev_scan_io_queue = NULL;
|
|
mutex_exit(&tvd->vdev_scan_io_queue_lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
|
|
{
|
|
dsl_pool_t *dp = spa->spa_dsl_pool;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
vdev_t *vdev;
|
|
kmutex_t *q_lock;
|
|
dsl_scan_io_queue_t *queue;
|
|
scan_io_t *srch_sio, *sio;
|
|
avl_index_t idx;
|
|
uint64_t start, size;
|
|
|
|
vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
|
|
ASSERT(vdev != NULL);
|
|
q_lock = &vdev->vdev_scan_io_queue_lock;
|
|
queue = vdev->vdev_scan_io_queue;
|
|
|
|
mutex_enter(q_lock);
|
|
if (queue == NULL) {
|
|
mutex_exit(q_lock);
|
|
return;
|
|
}
|
|
|
|
srch_sio = sio_alloc(BP_GET_NDVAS(bp));
|
|
bp2sio(bp, srch_sio, dva_i);
|
|
start = SIO_GET_OFFSET(srch_sio);
|
|
size = SIO_GET_ASIZE(srch_sio);
|
|
|
|
/*
|
|
* We can find the zio in two states:
|
|
* 1) Cold, just sitting in the queue of zio's to be issued at
|
|
* some point in the future. In this case, all we do is
|
|
* remove the zio from the q_sios_by_addr tree, decrement
|
|
* its data volume from the containing range_seg_t and
|
|
* resort the q_exts_by_size tree to reflect that the
|
|
* range_seg_t has lost some of its 'fill'. We don't shorten
|
|
* the range_seg_t - this is usually rare enough not to be
|
|
* worth the extra hassle of trying keep track of precise
|
|
* extent boundaries.
|
|
* 2) Hot, where the zio is currently in-flight in
|
|
* dsl_scan_issue_ios. In this case, we can't simply
|
|
* reach in and stop the in-flight zio's, so we instead
|
|
* block the caller. Eventually, dsl_scan_issue_ios will
|
|
* be done with issuing the zio's it gathered and will
|
|
* signal us.
|
|
*/
|
|
sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
|
|
sio_free(srch_sio);
|
|
|
|
if (sio != NULL) {
|
|
int64_t asize = SIO_GET_ASIZE(sio);
|
|
blkptr_t tmpbp;
|
|
|
|
/* Got it while it was cold in the queue */
|
|
ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
|
|
ASSERT3U(size, ==, asize);
|
|
avl_remove(&queue->q_sios_by_addr, sio);
|
|
queue->q_sio_memused -= SIO_GET_MUSED(sio);
|
|
|
|
ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
|
|
range_tree_remove_fill(queue->q_exts_by_addr, start, size);
|
|
|
|
/*
|
|
* We only update scn_bytes_pending in the cold path,
|
|
* otherwise it will already have been accounted for as
|
|
* part of the zio's execution.
|
|
*/
|
|
atomic_add_64(&scn->scn_bytes_pending, -asize);
|
|
|
|
/* count the block as though we issued it */
|
|
sio2bp(sio, &tmpbp);
|
|
count_block(scn, dp->dp_blkstats, &tmpbp);
|
|
|
|
sio_free(sio);
|
|
}
|
|
mutex_exit(q_lock);
|
|
}
|
|
|
|
/*
|
|
* Callback invoked when a zio_free() zio is executing. This needs to be
|
|
* intercepted to prevent the zio from deallocating a particular portion
|
|
* of disk space and it then getting reallocated and written to, while we
|
|
* still have it queued up for processing.
|
|
*/
|
|
void
|
|
dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
dsl_pool_t *dp = spa->spa_dsl_pool;
|
|
dsl_scan_t *scn = dp->dp_scan;
|
|
|
|
ASSERT(!BP_IS_EMBEDDED(bp));
|
|
ASSERT(scn != NULL);
|
|
if (!dsl_scan_is_running(scn))
|
|
return;
|
|
|
|
for (int i = 0; i < BP_GET_NDVAS(bp); i++)
|
|
dsl_scan_freed_dva(spa, bp, i);
|
|
}
|
|
|
|
/*
|
|
* Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
|
|
* not started, start it. Otherwise, only restart if max txg in DTL range is
|
|
* greater than the max txg in the current scan. If the DTL max is less than
|
|
* the scan max, then the vdev has not missed any new data since the resilver
|
|
* started, so a restart is not needed.
|
|
*/
|
|
void
|
|
dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
|
|
{
|
|
uint64_t min, max;
|
|
|
|
if (!vdev_resilver_needed(vd, &min, &max))
|
|
return;
|
|
|
|
if (!dsl_scan_resilvering(dp)) {
|
|
spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
|
|
return;
|
|
}
|
|
|
|
if (max <= dp->dp_scan->scn_phys.scn_max_txg)
|
|
return;
|
|
|
|
/* restart is needed, check if it can be deferred */
|
|
if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
|
|
vdev_defer_resilver(vd);
|
|
else
|
|
spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
|
|
}
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW,
|
|
"Max bytes in flight per leaf vdev for scrubs and resilvers");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW,
|
|
"Min millisecs to scrub per txg");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW,
|
|
"Min millisecs to obsolete per txg");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW,
|
|
"Min millisecs to free per txg");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW,
|
|
"Min millisecs to resilver per txg");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
|
|
"Set to prevent scans from progressing");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
|
|
"Set to disable scrub I/O");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
|
|
"Set to disable scrub prefetching");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW,
|
|
"Max number of blocks freed in one txg");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW,
|
|
"Max number of dedup blocks freed in one txg");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
|
|
"Enable processing of the free_bpobj");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW,
|
|
"Fraction of RAM for scan hard limit");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW,
|
|
"IO issuing strategy during scrubbing. "
|
|
"0 = default, 1 = LBA, 2 = size");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
|
|
"Scrub using legacy non-sequential method");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW,
|
|
"Scan progress on-disk checkpointing interval");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW,
|
|
"Max gap in bytes between sequential scrub / resilver I/Os");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW,
|
|
"Fraction of hard limit used as soft limit");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
|
|
"Tunable to attempt to reduce lock contention");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW,
|
|
"Tunable to adjust bias towards more filled segments during scans");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
|
|
"Process all resilvers immediately");
|
|
/* END CSTYLED */
|