mirror_zfs/zfs/lib/libzpool/vdev_mirror.c
2008-11-20 12:01:55 -08:00

497 lines
12 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "@(#)vdev_mirror.c 1.9 07/11/27 SMI"
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/fs/zfs.h>
/*
* Virtual device vector for mirroring.
*/
typedef struct mirror_child {
vdev_t *mc_vd;
uint64_t mc_offset;
int mc_error;
short mc_tried;
short mc_skipped;
} mirror_child_t;
typedef struct mirror_map {
int mm_children;
int mm_replacing;
int mm_preferred;
int mm_root;
mirror_child_t mm_child[1];
} mirror_map_t;
int vdev_mirror_shift = 21;
static mirror_map_t *
vdev_mirror_map_alloc(zio_t *zio)
{
mirror_map_t *mm = NULL;
mirror_child_t *mc;
vdev_t *vd = zio->io_vd;
int c, d;
if (vd == NULL) {
dva_t *dva = zio->io_bp->blk_dva;
spa_t *spa = zio->io_spa;
c = BP_GET_NDVAS(zio->io_bp);
mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
mm->mm_children = c;
mm->mm_replacing = B_FALSE;
mm->mm_preferred = spa_get_random(c);
mm->mm_root = B_TRUE;
/*
* Check the other, lower-index DVAs to see if they're on
* the same vdev as the child we picked. If they are, use
* them since they are likely to have been allocated from
* the primary metaslab in use at the time, and hence are
* more likely to have locality with single-copy data.
*/
for (c = mm->mm_preferred, d = c - 1; d >= 0; d--) {
if (DVA_GET_VDEV(&dva[d]) == DVA_GET_VDEV(&dva[c]))
mm->mm_preferred = d;
}
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
}
} else {
c = vd->vdev_children;
mm = kmem_zalloc(offsetof(mirror_map_t, mm_child[c]), KM_SLEEP);
mm->mm_children = c;
mm->mm_replacing = (vd->vdev_ops == &vdev_replacing_ops ||
vd->vdev_ops == &vdev_spare_ops);
mm->mm_preferred = mm->mm_replacing ? 0 :
(zio->io_offset >> vdev_mirror_shift) % c;
mm->mm_root = B_FALSE;
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
mc->mc_vd = vd->vdev_child[c];
mc->mc_offset = zio->io_offset;
}
}
zio->io_vsd = mm;
return (mm);
}
static void
vdev_mirror_map_free(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
kmem_free(mm, offsetof(mirror_map_t, mm_child[mm->mm_children]));
zio->io_vsd = NULL;
}
static int
vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *ashift)
{
vdev_t *cvd;
uint64_t c;
int numerrors = 0;
int ret, lasterror = 0;
if (vd->vdev_children == 0) {
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
return (EINVAL);
}
for (c = 0; c < vd->vdev_children; c++) {
cvd = vd->vdev_child[c];
if ((ret = vdev_open(cvd)) != 0) {
lasterror = ret;
numerrors++;
continue;
}
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
*ashift = MAX(*ashift, cvd->vdev_ashift);
}
if (numerrors == vd->vdev_children) {
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
return (lasterror);
}
return (0);
}
static void
vdev_mirror_close(vdev_t *vd)
{
uint64_t c;
for (c = 0; c < vd->vdev_children; c++)
vdev_close(vd->vdev_child[c]);
}
static void
vdev_mirror_child_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
}
static void
vdev_mirror_scrub_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
if (zio->io_error == 0) {
zio_t *pio = zio->io_parent;
mutex_enter(&pio->io_lock);
ASSERT3U(zio->io_size, >=, pio->io_size);
bcopy(zio->io_data, pio->io_data, pio->io_size);
mutex_exit(&pio->io_lock);
}
zio_buf_free(zio->io_data, zio->io_size);
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
}
static void
vdev_mirror_repair_done(zio_t *zio)
{
ASSERT(zio->io_private == zio->io_parent);
vdev_mirror_map_free(zio->io_private);
}
/*
* Try to find a child whose DTL doesn't contain the block we want to read.
* If we can't, try the read on any vdev we haven't already tried.
*/
static int
vdev_mirror_child_select(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
mirror_child_t *mc;
uint64_t txg = zio->io_txg;
int i, c;
ASSERT(zio->io_bp == NULL || zio->io_bp->blk_birth == txg);
/*
* Try to find a child whose DTL doesn't contain the block to read.
* If a child is known to be completely inaccessible (indicated by
* vdev_readable() returning B_FALSE), don't even try.
*/
for (i = 0, c = mm->mm_preferred; i < mm->mm_children; i++, c++) {
if (c >= mm->mm_children)
c = 0;
mc = &mm->mm_child[c];
if (mc->mc_tried || mc->mc_skipped)
continue;
if (vdev_is_dead(mc->mc_vd) && !vdev_readable(mc->mc_vd)) {
mc->mc_error = ENXIO;
mc->mc_tried = 1; /* don't even try */
mc->mc_skipped = 1;
continue;
}
if (!vdev_dtl_contains(&mc->mc_vd->vdev_dtl_map, txg, 1))
return (c);
mc->mc_error = ESTALE;
mc->mc_skipped = 1;
}
/*
* Every device is either missing or has this txg in its DTL.
* Look for any child we haven't already tried before giving up.
*/
for (c = 0; c < mm->mm_children; c++)
if (!mm->mm_child[c].mc_tried)
return (c);
/*
* Every child failed. There's no place left to look.
*/
return (-1);
}
static int
vdev_mirror_io_start(zio_t *zio)
{
mirror_map_t *mm;
mirror_child_t *mc;
int c, children;
mm = vdev_mirror_map_alloc(zio);
if (zio->io_type == ZIO_TYPE_READ) {
if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
/*
* For scrubbing reads we need to allocate a read
* buffer for each child and issue reads to all
* children. If any child succeeds, it will copy its
* data into zio->io_data in vdev_mirror_scrub_done.
*/
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
zio_buf_alloc(zio->io_size), zio->io_size,
zio->io_type, zio->io_priority,
ZIO_FLAG_CANFAIL,
vdev_mirror_scrub_done, mc));
}
return (zio_wait_for_children_done(zio));
}
/*
* For normal reads just pick one child.
*/
c = vdev_mirror_child_select(zio);
children = (c >= 0);
} else {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
/*
* If this is a resilvering I/O to a replacing vdev,
* only the last child should be written -- unless the
* first child happens to have a DTL entry here as well.
* All other writes go to all children.
*/
if ((zio->io_flags & ZIO_FLAG_RESILVER) && mm->mm_replacing &&
!vdev_dtl_contains(&mm->mm_child[0].mc_vd->vdev_dtl_map,
zio->io_txg, 1)) {
c = mm->mm_children - 1;
children = 1;
} else {
c = 0;
children = mm->mm_children;
}
}
while (children--) {
mc = &mm->mm_child[c];
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
zio->io_data, zio->io_size, zio->io_type, zio->io_priority,
ZIO_FLAG_CANFAIL, vdev_mirror_child_done, mc));
c++;
}
return (zio_wait_for_children_done(zio));
}
static int
vdev_mirror_io_done(zio_t *zio)
{
mirror_map_t *mm = zio->io_vsd;
mirror_child_t *mc;
int c;
int good_copies = 0;
int unexpected_errors = 0;
zio->io_error = 0;
zio->io_numerrors = 0;
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
if (mc->mc_tried && mc->mc_error == 0) {
good_copies++;
continue;
}
/*
* We preserve any EIOs because those may be worth retrying;
* whereas ECKSUM and ENXIO are more likely to be persistent.
*/
if (mc->mc_error) {
if (zio->io_error != EIO)
zio->io_error = mc->mc_error;
if (!mc->mc_skipped)
unexpected_errors++;
zio->io_numerrors++;
}
}
if (zio->io_type == ZIO_TYPE_WRITE) {
/*
* XXX -- for now, treat partial writes as success.
* XXX -- For a replacing vdev, we need to make sure the
* new child succeeds.
*/
/* XXPOLICY */
if (good_copies != 0)
zio->io_error = 0;
vdev_mirror_map_free(zio);
return (ZIO_PIPELINE_CONTINUE);
}
ASSERT(zio->io_type == ZIO_TYPE_READ);
/*
* If we don't have a good copy yet, keep trying other children.
*/
/* XXPOLICY */
if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
ASSERT(c >= 0 && c < mm->mm_children);
mc = &mm->mm_child[c];
dprintf("retrying i/o (err=%d) on child %s\n",
zio->io_error, vdev_description(mc->mc_vd));
zio->io_error = 0;
zio_vdev_io_redone(zio);
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
ZIO_TYPE_READ, zio->io_priority, ZIO_FLAG_CANFAIL,
vdev_mirror_child_done, mc));
return (zio_wait_for_children_done(zio));
}
/* XXPOLICY */
if (good_copies)
zio->io_error = 0;
else
ASSERT(zio->io_error != 0);
if (good_copies && (spa_mode & FWRITE) &&
(unexpected_errors ||
(zio->io_flags & ZIO_FLAG_RESILVER) ||
((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
zio_t *rio;
/*
* Use the good data we have in hand to repair damaged children.
*
* We issue all repair I/Os as children of 'rio' to arrange
* that vdev_mirror_map_free(zio) will be invoked after all
* repairs complete, but before we advance to the next stage.
*/
rio = zio_null(zio, zio->io_spa,
vdev_mirror_repair_done, zio, ZIO_FLAG_CANFAIL);
for (c = 0; c < mm->mm_children; c++) {
/*
* Don't rewrite known good children.
* Not only is it unnecessary, it could
* actually be harmful: if the system lost
* power while rewriting the only good copy,
* there would be no good copies left!
*/
mc = &mm->mm_child[c];
if (mc->mc_error == 0) {
if (mc->mc_tried)
continue;
if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
!vdev_dtl_contains(&mc->mc_vd->vdev_dtl_map,
zio->io_txg, 1))
continue;
mc->mc_error = ESTALE;
}
dprintf("resilvered %s @ 0x%llx error %d\n",
vdev_description(mc->mc_vd), mc->mc_offset,
mc->mc_error);
zio_nowait(zio_vdev_child_io(rio, zio->io_bp, mc->mc_vd,
mc->mc_offset, zio->io_data, zio->io_size,
ZIO_TYPE_WRITE, zio->io_priority,
ZIO_FLAG_IO_REPAIR | ZIO_FLAG_CANFAIL |
ZIO_FLAG_DONT_PROPAGATE, NULL, NULL));
}
zio_nowait(rio);
return (zio_wait_for_children_done(zio));
}
vdev_mirror_map_free(zio);
return (ZIO_PIPELINE_CONTINUE);
}
static void
vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
{
if (faulted == vd->vdev_children)
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLICAS);
else if (degraded + faulted != 0)
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
else
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
}
vdev_ops_t vdev_mirror_ops = {
vdev_mirror_open,
vdev_mirror_close,
NULL,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
VDEV_TYPE_MIRROR, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_replacing_ops = {
vdev_mirror_open,
vdev_mirror_close,
NULL,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
VDEV_TYPE_REPLACING, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_spare_ops = {
vdev_mirror_open,
vdev_mirror_close,
NULL,
vdev_default_asize,
vdev_mirror_io_start,
vdev_mirror_io_done,
vdev_mirror_state_change,
VDEV_TYPE_SPARE, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};