mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-03 23:09:35 +03:00
640 lines
15 KiB
C
640 lines
15 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#pragma ident "@(#)vdev_disk.c 1.15 08/04/09 SMI"
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/sunldi.h>
|
|
|
|
/*
|
|
* Virtual device vector for disks.
|
|
*/
|
|
|
|
extern ldi_ident_t zfs_li;
|
|
|
|
typedef struct vdev_disk_buf {
|
|
buf_t vdb_buf;
|
|
zio_t *vdb_io;
|
|
} vdev_disk_buf_t;
|
|
|
|
static int
|
|
vdev_disk_open_common(vdev_t *vd)
|
|
{
|
|
vdev_disk_t *dvd;
|
|
dev_t dev;
|
|
int error;
|
|
|
|
/*
|
|
* We must have a pathname, and it must be absolute.
|
|
*/
|
|
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') {
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
return (EINVAL);
|
|
}
|
|
|
|
dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
|
|
|
|
/*
|
|
* When opening a disk device, we want to preserve the user's original
|
|
* intent. We always want to open the device by the path the user gave
|
|
* us, even if it is one of multiple paths to the save device. But we
|
|
* also want to be able to survive disks being removed/recabled.
|
|
* Therefore the sequence of opening devices is:
|
|
*
|
|
* 1. Try opening the device by path. For legacy pools without the
|
|
* 'whole_disk' property, attempt to fix the path by appending 's0'.
|
|
*
|
|
* 2. If the devid of the device matches the stored value, return
|
|
* success.
|
|
*
|
|
* 3. Otherwise, the device may have moved. Try opening the device
|
|
* by the devid instead.
|
|
*
|
|
*/
|
|
if (vd->vdev_devid != NULL) {
|
|
if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid,
|
|
&dvd->vd_minor) != 0) {
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
error = EINVAL; /* presume failure */
|
|
|
|
if (vd->vdev_path != NULL) {
|
|
ddi_devid_t devid;
|
|
|
|
if (vd->vdev_wholedisk == -1ULL) {
|
|
size_t len = strlen(vd->vdev_path) + 3;
|
|
char *buf = kmem_alloc(len, KM_SLEEP);
|
|
ldi_handle_t lh;
|
|
|
|
(void) snprintf(buf, len, "%ss0", vd->vdev_path);
|
|
|
|
if (ldi_open_by_name(buf, spa_mode, kcred,
|
|
&lh, zfs_li) == 0) {
|
|
spa_strfree(vd->vdev_path);
|
|
vd->vdev_path = buf;
|
|
vd->vdev_wholedisk = 1ULL;
|
|
(void) ldi_close(lh, spa_mode, kcred);
|
|
} else {
|
|
kmem_free(buf, len);
|
|
}
|
|
}
|
|
|
|
error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred,
|
|
&dvd->vd_lh, zfs_li);
|
|
|
|
/*
|
|
* Compare the devid to the stored value.
|
|
*/
|
|
if (error == 0 && vd->vdev_devid != NULL &&
|
|
ldi_get_devid(dvd->vd_lh, &devid) == 0) {
|
|
if (ddi_devid_compare(devid, dvd->vd_devid) != 0) {
|
|
error = EINVAL;
|
|
(void) ldi_close(dvd->vd_lh, spa_mode, kcred);
|
|
dvd->vd_lh = NULL;
|
|
}
|
|
ddi_devid_free(devid);
|
|
}
|
|
|
|
/*
|
|
* If we succeeded in opening the device, but 'vdev_wholedisk'
|
|
* is not yet set, then this must be a slice.
|
|
*/
|
|
if (error == 0 && vd->vdev_wholedisk == -1ULL)
|
|
vd->vdev_wholedisk = 0;
|
|
}
|
|
|
|
/*
|
|
* If we were unable to open by path, or the devid check fails, open by
|
|
* devid instead.
|
|
*/
|
|
if (error != 0 && vd->vdev_devid != NULL)
|
|
error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor,
|
|
spa_mode, kcred, &dvd->vd_lh, zfs_li);
|
|
|
|
/*
|
|
* If all else fails, then try opening by physical path (if available)
|
|
* or the logical path (if we failed due to the devid check). While not
|
|
* as reliable as the devid, this will give us something, and the higher
|
|
* level vdev validation will prevent us from opening the wrong device.
|
|
*/
|
|
if (error) {
|
|
if (vd->vdev_physpath != NULL &&
|
|
(dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != ENODEV)
|
|
error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode,
|
|
kcred, &dvd->vd_lh, zfs_li);
|
|
|
|
/*
|
|
* Note that we don't support the legacy auto-wholedisk support
|
|
* as above. This hasn't been used in a very long time and we
|
|
* don't need to propagate its oddities to this edge condition.
|
|
*/
|
|
if (error && vd->vdev_path != NULL)
|
|
error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred,
|
|
&dvd->vd_lh, zfs_li);
|
|
}
|
|
|
|
if (error)
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift)
|
|
{
|
|
vdev_disk_t *dvd;
|
|
struct dk_minfo dkm;
|
|
int error;
|
|
dev_t dev;
|
|
int otyp;
|
|
|
|
error = vdev_disk_open_common(vd);
|
|
if (error)
|
|
return (error);
|
|
|
|
dvd = vd->vdev_tsd;
|
|
/*
|
|
* Once a device is opened, verify that the physical device path (if
|
|
* available) is up to date.
|
|
*/
|
|
if (ldi_get_dev(dvd->vd_lh, &dev) == 0 &&
|
|
ldi_get_otyp(dvd->vd_lh, &otyp) == 0) {
|
|
char *physpath, *minorname;
|
|
|
|
physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
minorname = NULL;
|
|
if (ddi_dev_pathname(dev, otyp, physpath) == 0 &&
|
|
ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 &&
|
|
(vd->vdev_physpath == NULL ||
|
|
strcmp(vd->vdev_physpath, physpath) != 0)) {
|
|
if (vd->vdev_physpath)
|
|
spa_strfree(vd->vdev_physpath);
|
|
(void) strlcat(physpath, ":", MAXPATHLEN);
|
|
(void) strlcat(physpath, minorname, MAXPATHLEN);
|
|
vd->vdev_physpath = spa_strdup(physpath);
|
|
}
|
|
if (minorname)
|
|
kmem_free(minorname, strlen(minorname) + 1);
|
|
kmem_free(physpath, MAXPATHLEN);
|
|
}
|
|
|
|
/*
|
|
* Determine the actual size of the device.
|
|
*/
|
|
if (ldi_get_size(dvd->vd_lh, psize) != 0) {
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* If we own the whole disk, try to enable disk write caching.
|
|
* We ignore errors because it's OK if we can't do it.
|
|
*/
|
|
if (vd->vdev_wholedisk == 1) {
|
|
int wce = 1;
|
|
(void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce,
|
|
FKIOCTL, kcred, NULL);
|
|
}
|
|
|
|
/*
|
|
* Determine the device's minimum transfer size.
|
|
* If the ioctl isn't supported, assume DEV_BSIZE.
|
|
*/
|
|
if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, (intptr_t)&dkm,
|
|
FKIOCTL, kcred, NULL) != 0)
|
|
dkm.dki_lbsize = DEV_BSIZE;
|
|
|
|
*ashift = highbit(MAX(dkm.dki_lbsize, SPA_MINBLOCKSIZE)) - 1;
|
|
|
|
/*
|
|
* Clear the nowritecache bit, so that on a vdev_reopen() we will
|
|
* try again.
|
|
*/
|
|
vd->vdev_nowritecache = B_FALSE;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_close(vdev_t *vd)
|
|
{
|
|
vdev_disk_t *dvd = vd->vdev_tsd;
|
|
|
|
if (dvd == NULL)
|
|
return;
|
|
|
|
if (dvd->vd_minor != NULL)
|
|
ddi_devid_str_free(dvd->vd_minor);
|
|
|
|
if (dvd->vd_devid != NULL)
|
|
ddi_devid_free(dvd->vd_devid);
|
|
|
|
if (dvd->vd_lh != NULL)
|
|
(void) ldi_close(dvd->vd_lh, spa_mode, kcred);
|
|
|
|
kmem_free(dvd, sizeof (vdev_disk_t));
|
|
vd->vdev_tsd = NULL;
|
|
}
|
|
|
|
int
|
|
vdev_disk_physio(ldi_handle_t vd_lh, caddr_t data, size_t size,
|
|
uint64_t offset, int flags)
|
|
{
|
|
buf_t *bp;
|
|
int error = 0;
|
|
|
|
if (vd_lh == NULL)
|
|
return (EINVAL);
|
|
|
|
ASSERT(flags & B_READ || flags & B_WRITE);
|
|
|
|
bp = getrbuf(KM_SLEEP);
|
|
bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST;
|
|
bp->b_bcount = size;
|
|
bp->b_un.b_addr = (void *)data;
|
|
bp->b_lblkno = lbtodb(offset);
|
|
bp->b_bufsize = size;
|
|
|
|
error = ldi_strategy(vd_lh, bp);
|
|
ASSERT(error == 0);
|
|
if ((error = biowait(bp)) == 0 && bp->b_resid != 0)
|
|
error = EIO;
|
|
freerbuf(bp);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_probe_io(vdev_t *vd, caddr_t data, size_t size, uint64_t offset,
|
|
int flags)
|
|
{
|
|
int error = 0;
|
|
vdev_disk_t *dvd = vd->vdev_tsd;
|
|
|
|
if (vd == NULL || dvd == NULL || dvd->vd_lh == NULL)
|
|
return (EINVAL);
|
|
|
|
error = vdev_disk_physio(dvd->vd_lh, data, size, offset, flags);
|
|
|
|
if (zio_injection_enabled && error == 0)
|
|
error = zio_handle_device_injection(vd, EIO);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Determine if the underlying device is accessible by reading and writing
|
|
* to a known location. We must be able to do this during syncing context
|
|
* and thus we cannot set the vdev state directly.
|
|
*/
|
|
static int
|
|
vdev_disk_probe(vdev_t *vd)
|
|
{
|
|
uint64_t offset;
|
|
vdev_t *nvd;
|
|
int l, error = 0, retries = 0;
|
|
char *vl_pad;
|
|
|
|
if (vd == NULL)
|
|
return (EINVAL);
|
|
|
|
/* Hijack the current vdev */
|
|
nvd = vd;
|
|
|
|
/*
|
|
* Pick a random label to rewrite.
|
|
*/
|
|
l = spa_get_random(VDEV_LABELS);
|
|
ASSERT(l < VDEV_LABELS);
|
|
|
|
offset = vdev_label_offset(vd->vdev_psize, l,
|
|
offsetof(vdev_label_t, vl_pad));
|
|
|
|
vl_pad = kmem_alloc(VDEV_SKIP_SIZE, KM_SLEEP);
|
|
|
|
/*
|
|
* Try to read and write to a special location on the
|
|
* label. We use the existing vdev initially and only
|
|
* try to create and reopen it if we encounter a failure.
|
|
*/
|
|
while ((error = vdev_disk_probe_io(nvd, vl_pad, VDEV_SKIP_SIZE,
|
|
offset, B_READ)) != 0 && retries == 0) {
|
|
|
|
nvd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
|
|
if (vd->vdev_path)
|
|
nvd->vdev_path = spa_strdup(vd->vdev_path);
|
|
if (vd->vdev_physpath)
|
|
nvd->vdev_physpath = spa_strdup(vd->vdev_physpath);
|
|
if (vd->vdev_devid)
|
|
nvd->vdev_devid = spa_strdup(vd->vdev_devid);
|
|
nvd->vdev_wholedisk = vd->vdev_wholedisk;
|
|
nvd->vdev_guid = vd->vdev_guid;
|
|
retries++;
|
|
|
|
error = vdev_disk_open_common(nvd);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
if (!error) {
|
|
error = vdev_disk_probe_io(nvd, vl_pad, VDEV_SKIP_SIZE,
|
|
offset, B_WRITE);
|
|
}
|
|
|
|
/* Clean up if we allocated a new vdev */
|
|
if (retries) {
|
|
vdev_disk_close(nvd);
|
|
if (nvd->vdev_path)
|
|
spa_strfree(nvd->vdev_path);
|
|
if (nvd->vdev_physpath)
|
|
spa_strfree(nvd->vdev_physpath);
|
|
if (nvd->vdev_devid)
|
|
spa_strfree(nvd->vdev_devid);
|
|
kmem_free(nvd, sizeof (vdev_t));
|
|
}
|
|
kmem_free(vl_pad, VDEV_SKIP_SIZE);
|
|
|
|
/* Reset the failing flag */
|
|
if (!error)
|
|
vd->vdev_is_failing = B_FALSE;
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_io_intr(buf_t *bp)
|
|
{
|
|
vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp;
|
|
zio_t *zio = vdb->vdb_io;
|
|
|
|
if ((zio->io_error = geterror(bp)) == 0 && bp->b_resid != 0)
|
|
zio->io_error = EIO;
|
|
|
|
kmem_free(vdb, sizeof (vdev_disk_buf_t));
|
|
|
|
zio_interrupt(zio);
|
|
}
|
|
|
|
static void
|
|
vdev_disk_ioctl_done(void *zio_arg, int error)
|
|
{
|
|
zio_t *zio = zio_arg;
|
|
|
|
zio->io_error = error;
|
|
|
|
zio_interrupt(zio);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_start(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
vdev_disk_t *dvd = vd->vdev_tsd;
|
|
vdev_disk_buf_t *vdb;
|
|
buf_t *bp;
|
|
int flags, error;
|
|
|
|
if (zio->io_type == ZIO_TYPE_IOCTL) {
|
|
zio_vdev_io_bypass(zio);
|
|
|
|
/* XXPOLICY */
|
|
if (!vdev_readable(vd)) {
|
|
zio->io_error = ENXIO;
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
switch (zio->io_cmd) {
|
|
|
|
case DKIOCFLUSHWRITECACHE:
|
|
|
|
if (zfs_nocacheflush)
|
|
break;
|
|
|
|
if (vd->vdev_nowritecache) {
|
|
zio->io_error = ENOTSUP;
|
|
break;
|
|
}
|
|
|
|
zio->io_dk_callback.dkc_callback = vdev_disk_ioctl_done;
|
|
zio->io_dk_callback.dkc_flag = FLUSH_VOLATILE;
|
|
zio->io_dk_callback.dkc_cookie = zio;
|
|
|
|
error = ldi_ioctl(dvd->vd_lh, zio->io_cmd,
|
|
(uintptr_t)&zio->io_dk_callback,
|
|
FKIOCTL, kcred, NULL);
|
|
|
|
if (error == 0) {
|
|
/*
|
|
* The ioctl will be done asychronously,
|
|
* and will call vdev_disk_ioctl_done()
|
|
* upon completion.
|
|
*/
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
if (error == ENOTSUP || error == ENOTTY) {
|
|
/*
|
|
* If we get ENOTSUP or ENOTTY, we know that
|
|
* no future attempts will ever succeed.
|
|
* In this case we set a persistent bit so
|
|
* that we don't bother with the ioctl in the
|
|
* future.
|
|
*/
|
|
vd->vdev_nowritecache = B_TRUE;
|
|
}
|
|
zio->io_error = error;
|
|
|
|
break;
|
|
|
|
default:
|
|
zio->io_error = ENOTSUP;
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
if ((zio = vdev_queue_io(zio)) == NULL)
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
if (zio->io_type == ZIO_TYPE_WRITE)
|
|
error = vdev_writeable(vd) ? vdev_error_inject(vd, zio) : ENXIO;
|
|
else
|
|
error = vdev_readable(vd) ? vdev_error_inject(vd, zio) : ENXIO;
|
|
error = (vd->vdev_remove_wanted || vd->vdev_is_failing) ? ENXIO : error;
|
|
|
|
if (error) {
|
|
zio->io_error = error;
|
|
zio_interrupt(zio);
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
flags = (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE);
|
|
flags |= B_BUSY | B_NOCACHE;
|
|
if (zio->io_flags & ZIO_FLAG_FAILFAST)
|
|
flags |= B_FAILFAST;
|
|
|
|
vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP);
|
|
|
|
vdb->vdb_io = zio;
|
|
bp = &vdb->vdb_buf;
|
|
|
|
bioinit(bp);
|
|
bp->b_flags = flags;
|
|
bp->b_bcount = zio->io_size;
|
|
bp->b_un.b_addr = zio->io_data;
|
|
bp->b_lblkno = lbtodb(zio->io_offset);
|
|
bp->b_bufsize = zio->io_size;
|
|
bp->b_iodone = (int (*)())vdev_disk_io_intr;
|
|
|
|
error = ldi_strategy(dvd->vd_lh, bp);
|
|
/* ldi_strategy() will return non-zero only on programming errors */
|
|
ASSERT(error == 0);
|
|
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
static int
|
|
vdev_disk_io_done(zio_t *zio)
|
|
{
|
|
vdev_queue_io_done(zio);
|
|
|
|
if (zio->io_type == ZIO_TYPE_WRITE)
|
|
vdev_cache_write(zio);
|
|
|
|
if (zio_injection_enabled && zio->io_error == 0)
|
|
zio->io_error = zio_handle_device_injection(zio->io_vd, EIO);
|
|
|
|
/*
|
|
* If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if
|
|
* the device has been removed. If this is the case, then we trigger an
|
|
* asynchronous removal of the device. Otherwise, probe the device and
|
|
* make sure it's still accessible.
|
|
*/
|
|
if (zio->io_error == EIO) {
|
|
vdev_t *vd = zio->io_vd;
|
|
vdev_disk_t *dvd = vd->vdev_tsd;
|
|
int state;
|
|
|
|
state = DKIO_NONE;
|
|
if (dvd && ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state,
|
|
FKIOCTL, kcred, NULL) == 0 &&
|
|
state != DKIO_INSERTED) {
|
|
vd->vdev_remove_wanted = B_TRUE;
|
|
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
|
|
} else if (vdev_probe(vd) != 0) {
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
vd->vdev_is_failing = B_TRUE;
|
|
}
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
vdev_ops_t vdev_disk_ops = {
|
|
vdev_disk_open,
|
|
vdev_disk_close,
|
|
vdev_disk_probe,
|
|
vdev_default_asize,
|
|
vdev_disk_io_start,
|
|
vdev_disk_io_done,
|
|
NULL,
|
|
VDEV_TYPE_DISK, /* name of this vdev type */
|
|
B_TRUE /* leaf vdev */
|
|
};
|
|
|
|
/*
|
|
* Given the root disk device pathname, read the label from the device,
|
|
* and construct a configuration nvlist.
|
|
*/
|
|
nvlist_t *
|
|
vdev_disk_read_rootlabel(char *devpath)
|
|
{
|
|
nvlist_t *config = NULL;
|
|
ldi_handle_t vd_lh;
|
|
vdev_label_t *label;
|
|
uint64_t s, size;
|
|
int l;
|
|
|
|
/*
|
|
* Read the device label and build the nvlist.
|
|
*/
|
|
if (ldi_open_by_name(devpath, FREAD, kcred, &vd_lh, zfs_li))
|
|
return (NULL);
|
|
|
|
if (ldi_get_size(vd_lh, &s))
|
|
return (NULL);
|
|
|
|
size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
|
|
label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
|
|
|
|
for (l = 0; l < VDEV_LABELS; l++) {
|
|
uint64_t offset, state, txg = 0;
|
|
|
|
/* read vdev label */
|
|
offset = vdev_label_offset(size, l, 0);
|
|
if (vdev_disk_physio(vd_lh, (caddr_t)label,
|
|
VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE +
|
|
VDEV_PHYS_SIZE, offset, B_READ) != 0)
|
|
continue;
|
|
|
|
if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
|
|
sizeof (label->vl_vdev_phys.vp_nvlist), &config, 0) != 0) {
|
|
config = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0 || state >= POOL_STATE_DESTROYED) {
|
|
nvlist_free(config);
|
|
config = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
|
|
&txg) != 0 || txg == 0) {
|
|
nvlist_free(config);
|
|
config = NULL;
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
kmem_free(label, sizeof (vdev_label_t));
|
|
return (config);
|
|
}
|