mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-03 23:09:35 +03:00
4502 lines
115 KiB
C
4502 lines
115 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#pragma ident "@(#)spa.c 1.51 08/04/09 SMI"
|
|
|
|
/*
|
|
* This file contains all the routines used when modifying on-disk SPA state.
|
|
* This includes opening, importing, destroying, exporting a pool, and syncing a
|
|
* pool.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fm/fs/zfs.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zio_compress.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/unique.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/callb.h>
|
|
#include <sys/systeminfo.h>
|
|
#include <sys/sunddi.h>
|
|
#include <sys/spa_boot.h>
|
|
|
|
#include "zfs_prop.h"
|
|
#include "zfs_comutil.h"
|
|
|
|
int zio_taskq_threads = 8;
|
|
|
|
static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA properties routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Add a (source=src, propname=propval) list to an nvlist.
|
|
*/
|
|
static void
|
|
spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
|
|
uint64_t intval, zprop_source_t src)
|
|
{
|
|
const char *propname = zpool_prop_to_name(prop);
|
|
nvlist_t *propval;
|
|
|
|
VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
|
|
|
|
if (strval != NULL)
|
|
VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
|
|
else
|
|
VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
|
|
|
|
VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
|
|
nvlist_free(propval);
|
|
}
|
|
|
|
/*
|
|
* Get property values from the spa configuration.
|
|
*/
|
|
static void
|
|
spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
|
|
{
|
|
uint64_t size = spa_get_space(spa);
|
|
uint64_t used = spa_get_alloc(spa);
|
|
uint64_t cap, version;
|
|
zprop_source_t src = ZPROP_SRC_NONE;
|
|
char *cachefile;
|
|
size_t len;
|
|
|
|
/*
|
|
* readonly properties
|
|
*/
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 0, src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src);
|
|
|
|
cap = (size == 0) ? 0 : (used * 100 / size);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
|
|
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
|
|
spa->spa_root_vdev->vdev_state, src);
|
|
|
|
/*
|
|
* settable properties that are not stored in the pool property object.
|
|
*/
|
|
version = spa_version(spa);
|
|
if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
|
|
src = ZPROP_SRC_DEFAULT;
|
|
else
|
|
src = ZPROP_SRC_LOCAL;
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
|
|
|
|
if (spa->spa_root != NULL)
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
|
|
0, ZPROP_SRC_LOCAL);
|
|
|
|
if (spa->spa_config_dir != NULL) {
|
|
if (strcmp(spa->spa_config_dir, "none") == 0) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
|
|
spa->spa_config_dir, 0, ZPROP_SRC_LOCAL);
|
|
} else {
|
|
len = strlen(spa->spa_config_dir) +
|
|
strlen(spa->spa_config_file) + 2;
|
|
cachefile = kmem_alloc(len, KM_SLEEP);
|
|
(void) snprintf(cachefile, len, "%s/%s",
|
|
spa->spa_config_dir, spa->spa_config_file);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
|
|
cachefile, 0, ZPROP_SRC_LOCAL);
|
|
kmem_free(cachefile, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get zpool property values.
|
|
*/
|
|
int
|
|
spa_prop_get(spa_t *spa, nvlist_t **nvp)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
int err;
|
|
|
|
VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
/*
|
|
* Get properties from the spa config.
|
|
*/
|
|
spa_prop_get_config(spa, nvp);
|
|
|
|
mutex_enter(&spa->spa_props_lock);
|
|
/* If no pool property object, no more prop to get. */
|
|
if (spa->spa_pool_props_object == 0) {
|
|
mutex_exit(&spa->spa_props_lock);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Get properties from the MOS pool property object.
|
|
*/
|
|
for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
|
|
(err = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
uint64_t intval = 0;
|
|
char *strval = NULL;
|
|
zprop_source_t src = ZPROP_SRC_DEFAULT;
|
|
zpool_prop_t prop;
|
|
|
|
if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
|
|
continue;
|
|
|
|
switch (za.za_integer_length) {
|
|
case 8:
|
|
/* integer property */
|
|
if (za.za_first_integer !=
|
|
zpool_prop_default_numeric(prop))
|
|
src = ZPROP_SRC_LOCAL;
|
|
|
|
if (prop == ZPOOL_PROP_BOOTFS) {
|
|
dsl_pool_t *dp;
|
|
dsl_dataset_t *ds = NULL;
|
|
|
|
dp = spa_get_dsl(spa);
|
|
rw_enter(&dp->dp_config_rwlock, RW_READER);
|
|
if (err = dsl_dataset_open_obj(dp,
|
|
za.za_first_integer, NULL, DS_MODE_NONE,
|
|
FTAG, &ds)) {
|
|
rw_exit(&dp->dp_config_rwlock);
|
|
break;
|
|
}
|
|
|
|
strval = kmem_alloc(
|
|
MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
|
|
KM_SLEEP);
|
|
dsl_dataset_name(ds, strval);
|
|
dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
|
|
rw_exit(&dp->dp_config_rwlock);
|
|
} else {
|
|
strval = NULL;
|
|
intval = za.za_first_integer;
|
|
}
|
|
|
|
spa_prop_add_list(*nvp, prop, strval, intval, src);
|
|
|
|
if (strval != NULL)
|
|
kmem_free(strval,
|
|
MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
|
|
|
|
break;
|
|
|
|
case 1:
|
|
/* string property */
|
|
strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
|
|
err = zap_lookup(mos, spa->spa_pool_props_object,
|
|
za.za_name, 1, za.za_num_integers, strval);
|
|
if (err) {
|
|
kmem_free(strval, za.za_num_integers);
|
|
break;
|
|
}
|
|
spa_prop_add_list(*nvp, prop, strval, 0, src);
|
|
kmem_free(strval, za.za_num_integers);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
mutex_exit(&spa->spa_props_lock);
|
|
out:
|
|
if (err && err != ENOENT) {
|
|
nvlist_free(*nvp);
|
|
*nvp = NULL;
|
|
return (err);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Validate the given pool properties nvlist and modify the list
|
|
* for the property values to be set.
|
|
*/
|
|
static int
|
|
spa_prop_validate(spa_t *spa, nvlist_t *props)
|
|
{
|
|
nvpair_t *elem;
|
|
int error = 0, reset_bootfs = 0;
|
|
uint64_t objnum;
|
|
|
|
elem = NULL;
|
|
while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
|
|
zpool_prop_t prop;
|
|
char *propname, *strval;
|
|
uint64_t intval;
|
|
vdev_t *rvdev;
|
|
char *vdev_type;
|
|
objset_t *os;
|
|
char *slash;
|
|
|
|
propname = nvpair_name(elem);
|
|
|
|
if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
|
|
return (EINVAL);
|
|
|
|
switch (prop) {
|
|
case ZPOOL_PROP_VERSION:
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (!error &&
|
|
(intval < spa_version(spa) || intval > SPA_VERSION))
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case ZPOOL_PROP_DELEGATION:
|
|
case ZPOOL_PROP_AUTOREPLACE:
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (!error && intval > 1)
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case ZPOOL_PROP_BOOTFS:
|
|
if (spa_version(spa) < SPA_VERSION_BOOTFS) {
|
|
error = ENOTSUP;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* A bootable filesystem can not be on a RAIDZ pool
|
|
* nor a striped pool with more than 1 device.
|
|
*/
|
|
rvdev = spa->spa_root_vdev;
|
|
vdev_type =
|
|
rvdev->vdev_child[0]->vdev_ops->vdev_op_type;
|
|
if (rvdev->vdev_children > 1 ||
|
|
strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
|
|
strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
|
|
error = ENOTSUP;
|
|
break;
|
|
}
|
|
|
|
reset_bootfs = 1;
|
|
|
|
error = nvpair_value_string(elem, &strval);
|
|
|
|
if (!error) {
|
|
if (strval == NULL || strval[0] == '\0') {
|
|
objnum = zpool_prop_default_numeric(
|
|
ZPOOL_PROP_BOOTFS);
|
|
break;
|
|
}
|
|
|
|
if (error = dmu_objset_open(strval, DMU_OST_ZFS,
|
|
DS_MODE_STANDARD | DS_MODE_READONLY, &os))
|
|
break;
|
|
objnum = dmu_objset_id(os);
|
|
dmu_objset_close(os);
|
|
}
|
|
break;
|
|
case ZPOOL_PROP_FAILUREMODE:
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
|
|
intval > ZIO_FAILURE_MODE_PANIC))
|
|
error = EINVAL;
|
|
|
|
/*
|
|
* This is a special case which only occurs when
|
|
* the pool has completely failed. This allows
|
|
* the user to change the in-core failmode property
|
|
* without syncing it out to disk (I/Os might
|
|
* currently be blocked). We do this by returning
|
|
* EIO to the caller (spa_prop_set) to trick it
|
|
* into thinking we encountered a property validation
|
|
* error.
|
|
*/
|
|
if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) {
|
|
spa->spa_failmode = intval;
|
|
error = EIO;
|
|
}
|
|
break;
|
|
|
|
case ZPOOL_PROP_CACHEFILE:
|
|
if ((error = nvpair_value_string(elem, &strval)) != 0)
|
|
break;
|
|
|
|
if (strval[0] == '\0')
|
|
break;
|
|
|
|
if (strcmp(strval, "none") == 0)
|
|
break;
|
|
|
|
if (strval[0] != '/') {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
slash = strrchr(strval, '/');
|
|
ASSERT(slash != NULL);
|
|
|
|
if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
|
|
strcmp(slash, "/..") == 0)
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
if (!error && reset_bootfs) {
|
|
error = nvlist_remove(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
|
|
|
|
if (!error) {
|
|
error = nvlist_add_uint64(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
|
|
}
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
spa_prop_set(spa_t *spa, nvlist_t *nvp)
|
|
{
|
|
int error;
|
|
|
|
if ((error = spa_prop_validate(spa, nvp)) != 0)
|
|
return (error);
|
|
|
|
return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
|
|
spa, nvp, 3));
|
|
}
|
|
|
|
/*
|
|
* If the bootfs property value is dsobj, clear it.
|
|
*/
|
|
void
|
|
spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
|
|
{
|
|
if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
|
|
VERIFY(zap_remove(spa->spa_meta_objset,
|
|
spa->spa_pool_props_object,
|
|
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
|
|
spa->spa_bootfs = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA state manipulation (open/create/destroy/import/export)
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static int
|
|
spa_error_entry_compare(const void *a, const void *b)
|
|
{
|
|
spa_error_entry_t *sa = (spa_error_entry_t *)a;
|
|
spa_error_entry_t *sb = (spa_error_entry_t *)b;
|
|
int ret;
|
|
|
|
ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
|
|
sizeof (zbookmark_t));
|
|
|
|
if (ret < 0)
|
|
return (-1);
|
|
else if (ret > 0)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Utility function which retrieves copies of the current logs and
|
|
* re-initializes them in the process.
|
|
*/
|
|
void
|
|
spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
|
|
|
|
bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
|
|
bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
|
|
|
|
avl_create(&spa->spa_errlist_scrub,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
avl_create(&spa->spa_errlist_last,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
}
|
|
|
|
/*
|
|
* Activate an uninitialized pool.
|
|
*/
|
|
static void
|
|
spa_activate(spa_t *spa)
|
|
{
|
|
int t;
|
|
|
|
ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
|
|
|
|
spa->spa_state = POOL_STATE_ACTIVE;
|
|
|
|
spa->spa_normal_class = metaslab_class_create();
|
|
spa->spa_log_class = metaslab_class_create();
|
|
|
|
for (t = 0; t < ZIO_TYPES; t++) {
|
|
spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
|
|
zio_taskq_threads, maxclsyspri, 50, INT_MAX,
|
|
TASKQ_PREPOPULATE);
|
|
spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
|
|
zio_taskq_threads, maxclsyspri, 50, INT_MAX,
|
|
TASKQ_PREPOPULATE);
|
|
}
|
|
|
|
list_create(&spa->spa_dirty_list, sizeof (vdev_t),
|
|
offsetof(vdev_t, vdev_dirty_node));
|
|
list_create(&spa->spa_zio_list, sizeof (zio_t),
|
|
offsetof(zio_t, zio_link_node));
|
|
|
|
txg_list_create(&spa->spa_vdev_txg_list,
|
|
offsetof(struct vdev, vdev_txg_node));
|
|
|
|
avl_create(&spa->spa_errlist_scrub,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
avl_create(&spa->spa_errlist_last,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
}
|
|
|
|
/*
|
|
* Opposite of spa_activate().
|
|
*/
|
|
static void
|
|
spa_deactivate(spa_t *spa)
|
|
{
|
|
int t;
|
|
|
|
ASSERT(spa->spa_sync_on == B_FALSE);
|
|
ASSERT(spa->spa_dsl_pool == NULL);
|
|
ASSERT(spa->spa_root_vdev == NULL);
|
|
|
|
ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
|
|
|
|
txg_list_destroy(&spa->spa_vdev_txg_list);
|
|
|
|
list_destroy(&spa->spa_dirty_list);
|
|
list_destroy(&spa->spa_zio_list);
|
|
|
|
for (t = 0; t < ZIO_TYPES; t++) {
|
|
taskq_destroy(spa->spa_zio_issue_taskq[t]);
|
|
taskq_destroy(spa->spa_zio_intr_taskq[t]);
|
|
spa->spa_zio_issue_taskq[t] = NULL;
|
|
spa->spa_zio_intr_taskq[t] = NULL;
|
|
}
|
|
|
|
metaslab_class_destroy(spa->spa_normal_class);
|
|
spa->spa_normal_class = NULL;
|
|
|
|
metaslab_class_destroy(spa->spa_log_class);
|
|
spa->spa_log_class = NULL;
|
|
|
|
/*
|
|
* If this was part of an import or the open otherwise failed, we may
|
|
* still have errors left in the queues. Empty them just in case.
|
|
*/
|
|
spa_errlog_drain(spa);
|
|
|
|
avl_destroy(&spa->spa_errlist_scrub);
|
|
avl_destroy(&spa->spa_errlist_last);
|
|
|
|
spa->spa_state = POOL_STATE_UNINITIALIZED;
|
|
}
|
|
|
|
/*
|
|
* Verify a pool configuration, and construct the vdev tree appropriately. This
|
|
* will create all the necessary vdevs in the appropriate layout, with each vdev
|
|
* in the CLOSED state. This will prep the pool before open/creation/import.
|
|
* All vdev validation is done by the vdev_alloc() routine.
|
|
*/
|
|
static int
|
|
spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
|
|
uint_t id, int atype)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t c, children;
|
|
int error;
|
|
|
|
if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
|
|
return (error);
|
|
|
|
if ((*vdp)->vdev_ops->vdev_op_leaf)
|
|
return (0);
|
|
|
|
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) != 0) {
|
|
vdev_free(*vdp);
|
|
*vdp = NULL;
|
|
return (EINVAL);
|
|
}
|
|
|
|
for (c = 0; c < children; c++) {
|
|
vdev_t *vd;
|
|
if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
|
|
atype)) != 0) {
|
|
vdev_free(*vdp);
|
|
*vdp = NULL;
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
ASSERT(*vdp != NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Opposite of spa_load().
|
|
*/
|
|
static void
|
|
spa_unload(spa_t *spa)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Stop async tasks.
|
|
*/
|
|
spa_async_suspend(spa);
|
|
|
|
/*
|
|
* Stop syncing.
|
|
*/
|
|
if (spa->spa_sync_on) {
|
|
txg_sync_stop(spa->spa_dsl_pool);
|
|
spa->spa_sync_on = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Wait for any outstanding prefetch I/O to complete.
|
|
*/
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
/*
|
|
* Drop and purge level 2 cache
|
|
*/
|
|
spa_l2cache_drop(spa);
|
|
|
|
/*
|
|
* Close the dsl pool.
|
|
*/
|
|
if (spa->spa_dsl_pool) {
|
|
dsl_pool_close(spa->spa_dsl_pool);
|
|
spa->spa_dsl_pool = NULL;
|
|
}
|
|
|
|
/*
|
|
* Close all vdevs.
|
|
*/
|
|
if (spa->spa_root_vdev)
|
|
vdev_free(spa->spa_root_vdev);
|
|
ASSERT(spa->spa_root_vdev == NULL);
|
|
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++)
|
|
vdev_free(spa->spa_spares.sav_vdevs[i]);
|
|
if (spa->spa_spares.sav_vdevs) {
|
|
kmem_free(spa->spa_spares.sav_vdevs,
|
|
spa->spa_spares.sav_count * sizeof (void *));
|
|
spa->spa_spares.sav_vdevs = NULL;
|
|
}
|
|
if (spa->spa_spares.sav_config) {
|
|
nvlist_free(spa->spa_spares.sav_config);
|
|
spa->spa_spares.sav_config = NULL;
|
|
}
|
|
|
|
for (i = 0; i < spa->spa_l2cache.sav_count; i++)
|
|
vdev_free(spa->spa_l2cache.sav_vdevs[i]);
|
|
if (spa->spa_l2cache.sav_vdevs) {
|
|
kmem_free(spa->spa_l2cache.sav_vdevs,
|
|
spa->spa_l2cache.sav_count * sizeof (void *));
|
|
spa->spa_l2cache.sav_vdevs = NULL;
|
|
}
|
|
if (spa->spa_l2cache.sav_config) {
|
|
nvlist_free(spa->spa_l2cache.sav_config);
|
|
spa->spa_l2cache.sav_config = NULL;
|
|
}
|
|
|
|
spa->spa_async_suspended = 0;
|
|
}
|
|
|
|
/*
|
|
* Load (or re-load) the current list of vdevs describing the active spares for
|
|
* this pool. When this is called, we have some form of basic information in
|
|
* 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
|
|
* then re-generate a more complete list including status information.
|
|
*/
|
|
static void
|
|
spa_load_spares(spa_t *spa)
|
|
{
|
|
nvlist_t **spares;
|
|
uint_t nspares;
|
|
int i;
|
|
vdev_t *vd, *tvd;
|
|
|
|
/*
|
|
* First, close and free any existing spare vdevs.
|
|
*/
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++) {
|
|
vd = spa->spa_spares.sav_vdevs[i];
|
|
|
|
/* Undo the call to spa_activate() below */
|
|
if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
|
|
tvd->vdev_isspare)
|
|
spa_spare_remove(tvd);
|
|
vdev_close(vd);
|
|
vdev_free(vd);
|
|
}
|
|
|
|
if (spa->spa_spares.sav_vdevs)
|
|
kmem_free(spa->spa_spares.sav_vdevs,
|
|
spa->spa_spares.sav_count * sizeof (void *));
|
|
|
|
if (spa->spa_spares.sav_config == NULL)
|
|
nspares = 0;
|
|
else
|
|
VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
|
|
|
|
spa->spa_spares.sav_count = (int)nspares;
|
|
spa->spa_spares.sav_vdevs = NULL;
|
|
|
|
if (nspares == 0)
|
|
return;
|
|
|
|
/*
|
|
* Construct the array of vdevs, opening them to get status in the
|
|
* process. For each spare, there is potentially two different vdev_t
|
|
* structures associated with it: one in the list of spares (used only
|
|
* for basic validation purposes) and one in the active vdev
|
|
* configuration (if it's spared in). During this phase we open and
|
|
* validate each vdev on the spare list. If the vdev also exists in the
|
|
* active configuration, then we also mark this vdev as an active spare.
|
|
*/
|
|
spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++) {
|
|
VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
|
|
VDEV_ALLOC_SPARE) == 0);
|
|
ASSERT(vd != NULL);
|
|
|
|
spa->spa_spares.sav_vdevs[i] = vd;
|
|
|
|
if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
|
|
if (!tvd->vdev_isspare)
|
|
spa_spare_add(tvd);
|
|
|
|
/*
|
|
* We only mark the spare active if we were successfully
|
|
* able to load the vdev. Otherwise, importing a pool
|
|
* with a bad active spare would result in strange
|
|
* behavior, because multiple pool would think the spare
|
|
* is actively in use.
|
|
*
|
|
* There is a vulnerability here to an equally bizarre
|
|
* circumstance, where a dead active spare is later
|
|
* brought back to life (onlined or otherwise). Given
|
|
* the rarity of this scenario, and the extra complexity
|
|
* it adds, we ignore the possibility.
|
|
*/
|
|
if (!vdev_is_dead(tvd))
|
|
spa_spare_activate(tvd);
|
|
}
|
|
|
|
if (vdev_open(vd) != 0)
|
|
continue;
|
|
|
|
vd->vdev_top = vd;
|
|
if (vdev_validate_aux(vd) == 0)
|
|
spa_spare_add(vd);
|
|
}
|
|
|
|
/*
|
|
* Recompute the stashed list of spares, with status information
|
|
* this time.
|
|
*/
|
|
VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
|
|
spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++)
|
|
spares[i] = vdev_config_generate(spa,
|
|
spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++)
|
|
nvlist_free(spares[i]);
|
|
kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
|
|
}
|
|
|
|
/*
|
|
* Load (or re-load) the current list of vdevs describing the active l2cache for
|
|
* this pool. When this is called, we have some form of basic information in
|
|
* 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
|
|
* then re-generate a more complete list including status information.
|
|
* Devices which are already active have their details maintained, and are
|
|
* not re-opened.
|
|
*/
|
|
static void
|
|
spa_load_l2cache(spa_t *spa)
|
|
{
|
|
nvlist_t **l2cache;
|
|
uint_t nl2cache;
|
|
int i, j, oldnvdevs;
|
|
uint64_t guid;
|
|
vdev_t *vd, **oldvdevs, **newvdevs;
|
|
spa_aux_vdev_t *sav = &spa->spa_l2cache;
|
|
|
|
if (sav->sav_config != NULL) {
|
|
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
|
|
newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
|
|
} else {
|
|
nl2cache = 0;
|
|
}
|
|
|
|
oldvdevs = sav->sav_vdevs;
|
|
oldnvdevs = sav->sav_count;
|
|
sav->sav_vdevs = NULL;
|
|
sav->sav_count = 0;
|
|
|
|
/*
|
|
* Process new nvlist of vdevs.
|
|
*/
|
|
for (i = 0; i < nl2cache; i++) {
|
|
VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
|
|
&guid) == 0);
|
|
|
|
newvdevs[i] = NULL;
|
|
for (j = 0; j < oldnvdevs; j++) {
|
|
vd = oldvdevs[j];
|
|
if (vd != NULL && guid == vd->vdev_guid) {
|
|
/*
|
|
* Retain previous vdev for add/remove ops.
|
|
*/
|
|
newvdevs[i] = vd;
|
|
oldvdevs[j] = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (newvdevs[i] == NULL) {
|
|
/*
|
|
* Create new vdev
|
|
*/
|
|
VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
|
|
VDEV_ALLOC_L2CACHE) == 0);
|
|
ASSERT(vd != NULL);
|
|
newvdevs[i] = vd;
|
|
|
|
/*
|
|
* Commit this vdev as an l2cache device,
|
|
* even if it fails to open.
|
|
*/
|
|
spa_l2cache_add(vd);
|
|
|
|
if (vdev_open(vd) != 0)
|
|
continue;
|
|
|
|
vd->vdev_top = vd;
|
|
(void) vdev_validate_aux(vd);
|
|
|
|
if (!vdev_is_dead(vd)) {
|
|
uint64_t size;
|
|
size = vdev_get_rsize(vd);
|
|
ASSERT3U(size, >, 0);
|
|
if (spa_mode & FWRITE) {
|
|
l2arc_add_vdev(spa, vd,
|
|
VDEV_LABEL_START_SIZE,
|
|
size - VDEV_LABEL_START_SIZE);
|
|
}
|
|
spa_l2cache_activate(vd);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Purge vdevs that were dropped
|
|
*/
|
|
for (i = 0; i < oldnvdevs; i++) {
|
|
uint64_t pool;
|
|
|
|
vd = oldvdevs[i];
|
|
if (vd != NULL) {
|
|
if (spa_mode & FWRITE &&
|
|
spa_l2cache_exists(vd->vdev_guid, &pool) &&
|
|
pool != 0ULL) {
|
|
l2arc_remove_vdev(vd);
|
|
}
|
|
(void) vdev_close(vd);
|
|
spa_l2cache_remove(vd);
|
|
}
|
|
}
|
|
|
|
if (oldvdevs)
|
|
kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
|
|
|
|
if (sav->sav_config == NULL)
|
|
goto out;
|
|
|
|
sav->sav_vdevs = newvdevs;
|
|
sav->sav_count = (int)nl2cache;
|
|
|
|
/*
|
|
* Recompute the stashed list of l2cache devices, with status
|
|
* information this time.
|
|
*/
|
|
VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
|
|
l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
l2cache[i] = vdev_config_generate(spa,
|
|
sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
|
|
out:
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
nvlist_free(l2cache[i]);
|
|
if (sav->sav_count)
|
|
kmem_free(l2cache, sav->sav_count * sizeof (void *));
|
|
}
|
|
|
|
static int
|
|
load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
|
|
{
|
|
dmu_buf_t *db;
|
|
char *packed = NULL;
|
|
size_t nvsize = 0;
|
|
int error;
|
|
*value = NULL;
|
|
|
|
VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
|
|
nvsize = *(uint64_t *)db->db_data;
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
packed = kmem_alloc(nvsize, KM_SLEEP);
|
|
error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
|
|
if (error == 0)
|
|
error = nvlist_unpack(packed, nvsize, value, 0);
|
|
kmem_free(packed, nvsize);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Checks to see if the given vdev could not be opened, in which case we post a
|
|
* sysevent to notify the autoreplace code that the device has been removed.
|
|
*/
|
|
static void
|
|
spa_check_removed(vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
spa_check_removed(vd->vdev_child[c]);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
|
|
zfs_post_autoreplace(vd->vdev_spa, vd);
|
|
spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load an existing storage pool, using the pool's builtin spa_config as a
|
|
* source of configuration information.
|
|
*/
|
|
static int
|
|
spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
|
|
{
|
|
int error = 0;
|
|
nvlist_t *nvroot = NULL;
|
|
vdev_t *rvd;
|
|
uberblock_t *ub = &spa->spa_uberblock;
|
|
uint64_t config_cache_txg = spa->spa_config_txg;
|
|
uint64_t pool_guid;
|
|
uint64_t version;
|
|
zio_t *zio;
|
|
uint64_t autoreplace = 0;
|
|
|
|
spa->spa_load_state = state;
|
|
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
|
|
nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Versioning wasn't explicitly added to the label until later, so if
|
|
* it's not present treat it as the initial version.
|
|
*/
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
|
|
version = SPA_VERSION_INITIAL;
|
|
|
|
(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
|
|
&spa->spa_config_txg);
|
|
|
|
if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
|
|
spa_guid_exists(pool_guid, 0)) {
|
|
error = EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
spa->spa_load_guid = pool_guid;
|
|
|
|
/*
|
|
* Parse the configuration into a vdev tree. We explicitly set the
|
|
* value that will be returned by spa_version() since parsing the
|
|
* configuration requires knowing the version number.
|
|
*/
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
spa->spa_ubsync.ub_version = version;
|
|
error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
ASSERT(spa->spa_root_vdev == rvd);
|
|
ASSERT(spa_guid(spa) == pool_guid);
|
|
|
|
/*
|
|
* Try to open all vdevs, loading each label in the process.
|
|
*/
|
|
error = vdev_open(rvd);
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Validate the labels for all leaf vdevs. We need to grab the config
|
|
* lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
|
|
* flag.
|
|
*/
|
|
spa_config_enter(spa, RW_READER, FTAG);
|
|
error = vdev_validate(rvd);
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Find the best uberblock.
|
|
*/
|
|
bzero(ub, sizeof (uberblock_t));
|
|
|
|
zio = zio_root(spa, NULL, NULL,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
|
|
vdev_uberblock_load(zio, rvd, ub);
|
|
error = zio_wait(zio);
|
|
|
|
/*
|
|
* If we weren't able to find a single valid uberblock, return failure.
|
|
*/
|
|
if (ub->ub_txg == 0) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the pool is newer than the code, we can't open it.
|
|
*/
|
|
if (ub->ub_version > SPA_VERSION) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_VERSION_NEWER);
|
|
error = ENOTSUP;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the vdev guid sum doesn't match the uberblock, we have an
|
|
* incomplete configuration.
|
|
*/
|
|
if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_BAD_GUID_SUM);
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Initialize internal SPA structures.
|
|
*/
|
|
spa->spa_state = POOL_STATE_ACTIVE;
|
|
spa->spa_ubsync = spa->spa_uberblock;
|
|
spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
|
|
error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
|
|
if (error) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
goto out;
|
|
}
|
|
spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
|
|
|
|
if (zap_lookup(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
|
|
sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (!mosconfig) {
|
|
nvlist_t *newconfig;
|
|
uint64_t hostid;
|
|
|
|
if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
|
|
&hostid) == 0) {
|
|
char *hostname;
|
|
unsigned long myhostid = 0;
|
|
|
|
VERIFY(nvlist_lookup_string(newconfig,
|
|
ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
|
|
|
|
(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
|
|
if (hostid != 0 && myhostid != 0 &&
|
|
(unsigned long)hostid != myhostid) {
|
|
cmn_err(CE_WARN, "pool '%s' could not be "
|
|
"loaded as it was last accessed by "
|
|
"another system (host: %s hostid: 0x%lx). "
|
|
"See: http://www.sun.com/msg/ZFS-8000-EY",
|
|
spa->spa_name, hostname,
|
|
(unsigned long)hostid);
|
|
error = EBADF;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
spa_config_set(spa, newconfig);
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_activate(spa);
|
|
|
|
return (spa_load(spa, newconfig, state, B_TRUE));
|
|
}
|
|
|
|
if (zap_lookup(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
|
|
sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Load the bit that tells us to use the new accounting function
|
|
* (raid-z deflation). If we have an older pool, this will not
|
|
* be present.
|
|
*/
|
|
error = zap_lookup(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
|
|
sizeof (uint64_t), 1, &spa->spa_deflate);
|
|
if (error != 0 && error != ENOENT) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Load the persistent error log. If we have an older pool, this will
|
|
* not be present.
|
|
*/
|
|
error = zap_lookup(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
|
|
sizeof (uint64_t), 1, &spa->spa_errlog_last);
|
|
if (error != 0 && error != ENOENT) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
error = zap_lookup(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
|
|
sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
|
|
if (error != 0 && error != ENOENT) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Load the history object. If we have an older pool, this
|
|
* will not be present.
|
|
*/
|
|
error = zap_lookup(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
|
|
sizeof (uint64_t), 1, &spa->spa_history);
|
|
if (error != 0 && error != ENOENT) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Load any hot spares for this pool.
|
|
*/
|
|
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
|
|
if (error != 0 && error != ENOENT) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
if (error == 0) {
|
|
ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
|
|
if (load_nvlist(spa, spa->spa_spares.sav_object,
|
|
&spa->spa_spares.sav_config) != 0) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
spa_load_spares(spa);
|
|
spa_config_exit(spa, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Load any level 2 ARC devices for this pool.
|
|
*/
|
|
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
|
|
&spa->spa_l2cache.sav_object);
|
|
if (error != 0 && error != ENOENT) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
if (error == 0) {
|
|
ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
|
|
if (load_nvlist(spa, spa->spa_l2cache.sav_object,
|
|
&spa->spa_l2cache.sav_config) != 0) {
|
|
vdev_set_state(rvd, B_TRUE,
|
|
VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
spa_load_l2cache(spa);
|
|
spa_config_exit(spa, FTAG);
|
|
}
|
|
|
|
spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
|
|
|
|
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
|
|
|
|
if (error && error != ENOENT) {
|
|
vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (error == 0) {
|
|
(void) zap_lookup(spa->spa_meta_objset,
|
|
spa->spa_pool_props_object,
|
|
zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
|
|
sizeof (uint64_t), 1, &spa->spa_bootfs);
|
|
(void) zap_lookup(spa->spa_meta_objset,
|
|
spa->spa_pool_props_object,
|
|
zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
|
|
sizeof (uint64_t), 1, &autoreplace);
|
|
(void) zap_lookup(spa->spa_meta_objset,
|
|
spa->spa_pool_props_object,
|
|
zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
|
|
sizeof (uint64_t), 1, &spa->spa_delegation);
|
|
(void) zap_lookup(spa->spa_meta_objset,
|
|
spa->spa_pool_props_object,
|
|
zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
|
|
sizeof (uint64_t), 1, &spa->spa_failmode);
|
|
}
|
|
|
|
/*
|
|
* If the 'autoreplace' property is set, then post a resource notifying
|
|
* the ZFS DE that it should not issue any faults for unopenable
|
|
* devices. We also iterate over the vdevs, and post a sysevent for any
|
|
* unopenable vdevs so that the normal autoreplace handler can take
|
|
* over.
|
|
*/
|
|
if (autoreplace && state != SPA_LOAD_TRYIMPORT)
|
|
spa_check_removed(spa->spa_root_vdev);
|
|
|
|
/*
|
|
* Load the vdev state for all toplevel vdevs.
|
|
*/
|
|
vdev_load(rvd);
|
|
|
|
/*
|
|
* Propagate the leaf DTLs we just loaded all the way up the tree.
|
|
*/
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
/*
|
|
* Check the state of the root vdev. If it can't be opened, it
|
|
* indicates one or more toplevel vdevs are faulted.
|
|
*/
|
|
if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
|
|
dmu_tx_t *tx;
|
|
int need_update = B_FALSE;
|
|
int c;
|
|
|
|
/*
|
|
* Claim log blocks that haven't been committed yet.
|
|
* This must all happen in a single txg.
|
|
*/
|
|
tx = dmu_tx_create_assigned(spa_get_dsl(spa),
|
|
spa_first_txg(spa));
|
|
(void) dmu_objset_find(spa->spa_name,
|
|
zil_claim, tx, DS_FIND_CHILDREN);
|
|
dmu_tx_commit(tx);
|
|
|
|
spa->spa_sync_on = B_TRUE;
|
|
txg_sync_start(spa->spa_dsl_pool);
|
|
|
|
/*
|
|
* Wait for all claims to sync.
|
|
*/
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
|
|
/*
|
|
* If the config cache is stale, or we have uninitialized
|
|
* metaslabs (see spa_vdev_add()), then update the config.
|
|
*/
|
|
if (config_cache_txg != spa->spa_config_txg ||
|
|
state == SPA_LOAD_IMPORT)
|
|
need_update = B_TRUE;
|
|
|
|
for (c = 0; c < rvd->vdev_children; c++)
|
|
if (rvd->vdev_child[c]->vdev_ms_array == 0)
|
|
need_update = B_TRUE;
|
|
|
|
/*
|
|
* Update the config cache asychronously in case we're the
|
|
* root pool, in which case the config cache isn't writable yet.
|
|
*/
|
|
if (need_update)
|
|
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
if (error && error != EBADF)
|
|
zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
|
|
spa->spa_load_state = SPA_LOAD_NONE;
|
|
spa->spa_ena = 0;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Pool Open/Import
|
|
*
|
|
* The import case is identical to an open except that the configuration is sent
|
|
* down from userland, instead of grabbed from the configuration cache. For the
|
|
* case of an open, the pool configuration will exist in the
|
|
* POOL_STATE_UNINITIALIZED state.
|
|
*
|
|
* The stats information (gen/count/ustats) is used to gather vdev statistics at
|
|
* the same time open the pool, without having to keep around the spa_t in some
|
|
* ambiguous state.
|
|
*/
|
|
static int
|
|
spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
|
|
{
|
|
spa_t *spa;
|
|
int error;
|
|
int loaded = B_FALSE;
|
|
int locked = B_FALSE;
|
|
|
|
*spapp = NULL;
|
|
|
|
/*
|
|
* As disgusting as this is, we need to support recursive calls to this
|
|
* function because dsl_dir_open() is called during spa_load(), and ends
|
|
* up calling spa_open() again. The real fix is to figure out how to
|
|
* avoid dsl_dir_open() calling this in the first place.
|
|
*/
|
|
if (mutex_owner(&spa_namespace_lock) != curthread) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
locked = B_TRUE;
|
|
}
|
|
|
|
if ((spa = spa_lookup(pool)) == NULL) {
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (ENOENT);
|
|
}
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
|
|
|
|
spa_activate(spa);
|
|
|
|
error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
|
|
|
|
if (error == EBADF) {
|
|
/*
|
|
* If vdev_validate() returns failure (indicated by
|
|
* EBADF), it indicates that one of the vdevs indicates
|
|
* that the pool has been exported or destroyed. If
|
|
* this is the case, the config cache is out of sync and
|
|
* we should remove the pool from the namespace.
|
|
*/
|
|
zfs_post_ok(spa, NULL);
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
spa_config_sync();
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (ENOENT);
|
|
}
|
|
|
|
if (error) {
|
|
/*
|
|
* We can't open the pool, but we still have useful
|
|
* information: the state of each vdev after the
|
|
* attempted vdev_open(). Return this to the user.
|
|
*/
|
|
if (config != NULL && spa->spa_root_vdev != NULL) {
|
|
spa_config_enter(spa, RW_READER, FTAG);
|
|
*config = spa_config_generate(spa, NULL, -1ULL,
|
|
B_TRUE);
|
|
spa_config_exit(spa, FTAG);
|
|
}
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa->spa_last_open_failed = B_TRUE;
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
*spapp = NULL;
|
|
return (error);
|
|
} else {
|
|
zfs_post_ok(spa, NULL);
|
|
spa->spa_last_open_failed = B_FALSE;
|
|
}
|
|
|
|
loaded = B_TRUE;
|
|
}
|
|
|
|
spa_open_ref(spa, tag);
|
|
|
|
/*
|
|
* If we just loaded the pool, resilver anything that's out of date.
|
|
*/
|
|
if (loaded && (spa_mode & FWRITE))
|
|
VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
|
|
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
*spapp = spa;
|
|
|
|
if (config != NULL) {
|
|
spa_config_enter(spa, RW_READER, FTAG);
|
|
*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
|
|
spa_config_exit(spa, FTAG);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
spa_open(const char *name, spa_t **spapp, void *tag)
|
|
{
|
|
return (spa_open_common(name, spapp, tag, NULL));
|
|
}
|
|
|
|
/*
|
|
* Lookup the given spa_t, incrementing the inject count in the process,
|
|
* preventing it from being exported or destroyed.
|
|
*/
|
|
spa_t *
|
|
spa_inject_addref(char *name)
|
|
{
|
|
spa_t *spa;
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
if ((spa = spa_lookup(name)) == NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (NULL);
|
|
}
|
|
spa->spa_inject_ref++;
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (spa);
|
|
}
|
|
|
|
void
|
|
spa_inject_delref(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa->spa_inject_ref--;
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
/*
|
|
* Add spares device information to the nvlist.
|
|
*/
|
|
static void
|
|
spa_add_spares(spa_t *spa, nvlist_t *config)
|
|
{
|
|
nvlist_t **spares;
|
|
uint_t i, nspares;
|
|
nvlist_t *nvroot;
|
|
uint64_t guid;
|
|
vdev_stat_t *vs;
|
|
uint_t vsc;
|
|
uint64_t pool;
|
|
|
|
if (spa->spa_spares.sav_count == 0)
|
|
return;
|
|
|
|
VERIFY(nvlist_lookup_nvlist(config,
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
|
|
if (nspares != 0) {
|
|
VERIFY(nvlist_add_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
|
|
|
|
/*
|
|
* Go through and find any spares which have since been
|
|
* repurposed as an active spare. If this is the case, update
|
|
* their status appropriately.
|
|
*/
|
|
for (i = 0; i < nspares; i++) {
|
|
VERIFY(nvlist_lookup_uint64(spares[i],
|
|
ZPOOL_CONFIG_GUID, &guid) == 0);
|
|
if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
|
|
VERIFY(nvlist_lookup_uint64_array(
|
|
spares[i], ZPOOL_CONFIG_STATS,
|
|
(uint64_t **)&vs, &vsc) == 0);
|
|
vs->vs_state = VDEV_STATE_CANT_OPEN;
|
|
vs->vs_aux = VDEV_AUX_SPARED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add l2cache device information to the nvlist, including vdev stats.
|
|
*/
|
|
static void
|
|
spa_add_l2cache(spa_t *spa, nvlist_t *config)
|
|
{
|
|
nvlist_t **l2cache;
|
|
uint_t i, j, nl2cache;
|
|
nvlist_t *nvroot;
|
|
uint64_t guid;
|
|
vdev_t *vd;
|
|
vdev_stat_t *vs;
|
|
uint_t vsc;
|
|
|
|
if (spa->spa_l2cache.sav_count == 0)
|
|
return;
|
|
|
|
spa_config_enter(spa, RW_READER, FTAG);
|
|
|
|
VERIFY(nvlist_lookup_nvlist(config,
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
|
|
if (nl2cache != 0) {
|
|
VERIFY(nvlist_add_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
|
|
|
|
/*
|
|
* Update level 2 cache device stats.
|
|
*/
|
|
|
|
for (i = 0; i < nl2cache; i++) {
|
|
VERIFY(nvlist_lookup_uint64(l2cache[i],
|
|
ZPOOL_CONFIG_GUID, &guid) == 0);
|
|
|
|
vd = NULL;
|
|
for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
|
|
if (guid ==
|
|
spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
|
|
vd = spa->spa_l2cache.sav_vdevs[j];
|
|
break;
|
|
}
|
|
}
|
|
ASSERT(vd != NULL);
|
|
|
|
VERIFY(nvlist_lookup_uint64_array(l2cache[i],
|
|
ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
|
|
vdev_get_stats(vd, vs);
|
|
}
|
|
}
|
|
|
|
spa_config_exit(spa, FTAG);
|
|
}
|
|
|
|
int
|
|
spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
|
|
{
|
|
int error;
|
|
spa_t *spa;
|
|
|
|
*config = NULL;
|
|
error = spa_open_common(name, &spa, FTAG, config);
|
|
|
|
if (spa && *config != NULL) {
|
|
VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
|
|
spa_get_errlog_size(spa)) == 0);
|
|
|
|
spa_add_spares(spa, *config);
|
|
spa_add_l2cache(spa, *config);
|
|
}
|
|
|
|
/*
|
|
* We want to get the alternate root even for faulted pools, so we cheat
|
|
* and call spa_lookup() directly.
|
|
*/
|
|
if (altroot) {
|
|
if (spa == NULL) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa = spa_lookup(name);
|
|
if (spa)
|
|
spa_altroot(spa, altroot, buflen);
|
|
else
|
|
altroot[0] = '\0';
|
|
spa = NULL;
|
|
mutex_exit(&spa_namespace_lock);
|
|
} else {
|
|
spa_altroot(spa, altroot, buflen);
|
|
}
|
|
}
|
|
|
|
if (spa != NULL)
|
|
spa_close(spa, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Validate that the auxiliary device array is well formed. We must have an
|
|
* array of nvlists, each which describes a valid leaf vdev. If this is an
|
|
* import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
|
|
* specified, as long as they are well-formed.
|
|
*/
|
|
static int
|
|
spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
|
|
spa_aux_vdev_t *sav, const char *config, uint64_t version,
|
|
vdev_labeltype_t label)
|
|
{
|
|
nvlist_t **dev;
|
|
uint_t i, ndev;
|
|
vdev_t *vd;
|
|
int error;
|
|
|
|
/*
|
|
* It's acceptable to have no devs specified.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
|
|
return (0);
|
|
|
|
if (ndev == 0)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Make sure the pool is formatted with a version that supports this
|
|
* device type.
|
|
*/
|
|
if (spa_version(spa) < version)
|
|
return (ENOTSUP);
|
|
|
|
/*
|
|
* Set the pending device list so we correctly handle device in-use
|
|
* checking.
|
|
*/
|
|
sav->sav_pending = dev;
|
|
sav->sav_npending = ndev;
|
|
|
|
for (i = 0; i < ndev; i++) {
|
|
if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
|
|
mode)) != 0)
|
|
goto out;
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
vdev_free(vd);
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The L2ARC currently only supports disk devices.
|
|
*/
|
|
if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
|
|
strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
|
|
error = ENOTBLK;
|
|
goto out;
|
|
}
|
|
|
|
vd->vdev_top = vd;
|
|
|
|
if ((error = vdev_open(vd)) == 0 &&
|
|
(error = vdev_label_init(vd, crtxg, label)) == 0) {
|
|
VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
|
|
vd->vdev_guid) == 0);
|
|
}
|
|
|
|
vdev_free(vd);
|
|
|
|
if (error &&
|
|
(mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
|
|
goto out;
|
|
else
|
|
error = 0;
|
|
}
|
|
|
|
out:
|
|
sav->sav_pending = NULL;
|
|
sav->sav_npending = 0;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
|
|
{
|
|
int error;
|
|
|
|
if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
|
|
&spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
|
|
VDEV_LABEL_SPARE)) != 0) {
|
|
return (error);
|
|
}
|
|
|
|
return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
|
|
&spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
|
|
VDEV_LABEL_L2CACHE));
|
|
}
|
|
|
|
static void
|
|
spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
|
|
const char *config)
|
|
{
|
|
int i;
|
|
|
|
if (sav->sav_config != NULL) {
|
|
nvlist_t **olddevs;
|
|
uint_t oldndevs;
|
|
nvlist_t **newdevs;
|
|
|
|
/*
|
|
* Generate new dev list by concatentating with the
|
|
* current dev list.
|
|
*/
|
|
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
|
|
&olddevs, &oldndevs) == 0);
|
|
|
|
newdevs = kmem_alloc(sizeof (void *) *
|
|
(ndevs + oldndevs), KM_SLEEP);
|
|
for (i = 0; i < oldndevs; i++)
|
|
VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
|
|
KM_SLEEP) == 0);
|
|
for (i = 0; i < ndevs; i++)
|
|
VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
|
|
KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_remove(sav->sav_config, config,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config,
|
|
config, newdevs, ndevs + oldndevs) == 0);
|
|
for (i = 0; i < oldndevs + ndevs; i++)
|
|
nvlist_free(newdevs[i]);
|
|
kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
|
|
} else {
|
|
/*
|
|
* Generate a new dev list.
|
|
*/
|
|
VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
|
|
KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
|
|
devs, ndevs) == 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop and drop level 2 ARC devices
|
|
*/
|
|
void
|
|
spa_l2cache_drop(spa_t *spa)
|
|
{
|
|
vdev_t *vd;
|
|
int i;
|
|
spa_aux_vdev_t *sav = &spa->spa_l2cache;
|
|
|
|
for (i = 0; i < sav->sav_count; i++) {
|
|
uint64_t pool;
|
|
|
|
vd = sav->sav_vdevs[i];
|
|
ASSERT(vd != NULL);
|
|
|
|
if (spa_mode & FWRITE &&
|
|
spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL) {
|
|
l2arc_remove_vdev(vd);
|
|
}
|
|
if (vd->vdev_isl2cache)
|
|
spa_l2cache_remove(vd);
|
|
vdev_clear_stats(vd);
|
|
(void) vdev_close(vd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pool Creation
|
|
*/
|
|
int
|
|
spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
|
|
const char *history_str)
|
|
{
|
|
spa_t *spa;
|
|
char *altroot = NULL;
|
|
vdev_t *rvd;
|
|
dsl_pool_t *dp;
|
|
dmu_tx_t *tx;
|
|
int c, error = 0;
|
|
uint64_t txg = TXG_INITIAL;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t nspares, nl2cache;
|
|
uint64_t version;
|
|
|
|
/*
|
|
* If this pool already exists, return failure.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
if (spa_lookup(pool) != NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (EEXIST);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new spa_t structure.
|
|
*/
|
|
(void) nvlist_lookup_string(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
|
|
spa = spa_add(pool, altroot);
|
|
spa_activate(spa);
|
|
|
|
spa->spa_uberblock.ub_txg = txg - 1;
|
|
|
|
if (props && (error = spa_prop_validate(spa, props))) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
return (error);
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
|
|
&version) != 0)
|
|
version = SPA_VERSION;
|
|
ASSERT(version <= SPA_VERSION);
|
|
spa->spa_uberblock.ub_version = version;
|
|
spa->spa_ubsync = spa->spa_uberblock;
|
|
|
|
/*
|
|
* Create the root vdev.
|
|
*/
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
|
|
error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
|
|
|
|
ASSERT(error != 0 || rvd != NULL);
|
|
ASSERT(error != 0 || spa->spa_root_vdev == rvd);
|
|
|
|
if (error == 0 && !zfs_allocatable_devs(nvroot))
|
|
error = EINVAL;
|
|
|
|
if (error == 0 &&
|
|
(error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
|
|
(error = spa_validate_aux(spa, nvroot, txg,
|
|
VDEV_ALLOC_ADD)) == 0) {
|
|
for (c = 0; c < rvd->vdev_children; c++)
|
|
vdev_init(rvd->vdev_child[c], txg);
|
|
vdev_config_dirty(rvd);
|
|
}
|
|
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
if (error != 0) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get the list of spares, if specified.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
|
&spares, &nspares) == 0) {
|
|
VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
|
|
KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
spa_load_spares(spa);
|
|
spa_config_exit(spa, FTAG);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Get the list of level 2 cache devices, if specified.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
|
|
&l2cache, &nl2cache) == 0) {
|
|
VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
spa_load_l2cache(spa);
|
|
spa_config_exit(spa, FTAG);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
|
|
spa->spa_meta_objset = dp->dp_meta_objset;
|
|
|
|
tx = dmu_tx_create_assigned(dp, txg);
|
|
|
|
/*
|
|
* Create the pool config object.
|
|
*/
|
|
spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
|
|
DMU_OT_PACKED_NVLIST, 1 << 14,
|
|
DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
|
|
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
|
|
sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add pool config");
|
|
}
|
|
|
|
/* Newly created pools with the right version are always deflated. */
|
|
if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
|
|
spa->spa_deflate = TRUE;
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
|
|
sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add deflate");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the deferred-free bplist object. Turn off compression
|
|
* because sync-to-convergence takes longer if the blocksize
|
|
* keeps changing.
|
|
*/
|
|
spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
|
|
1 << 14, tx);
|
|
dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
|
|
ZIO_COMPRESS_OFF, tx);
|
|
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
|
|
sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add bplist");
|
|
}
|
|
|
|
/*
|
|
* Create the pool's history object.
|
|
*/
|
|
if (version >= SPA_VERSION_ZPOOL_HISTORY)
|
|
spa_history_create_obj(spa, tx);
|
|
|
|
/*
|
|
* Set pool properties.
|
|
*/
|
|
spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
|
|
spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
|
|
spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
|
|
if (props)
|
|
spa_sync_props(spa, props, CRED(), tx);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
spa->spa_sync_on = B_TRUE;
|
|
txg_sync_start(spa->spa_dsl_pool);
|
|
|
|
/*
|
|
* We explicitly wait for the first transaction to complete so that our
|
|
* bean counters are appropriately updated.
|
|
*/
|
|
txg_wait_synced(spa->spa_dsl_pool, txg);
|
|
|
|
spa_config_sync();
|
|
|
|
if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
|
|
(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Import the given pool into the system. We set up the necessary spa_t and
|
|
* then call spa_load() to do the dirty work.
|
|
*/
|
|
static int
|
|
spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
|
|
boolean_t isroot)
|
|
{
|
|
spa_t *spa;
|
|
char *altroot = NULL;
|
|
int error;
|
|
nvlist_t *nvroot;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t nspares, nl2cache;
|
|
int mosconfig = isroot? B_FALSE : B_TRUE;
|
|
|
|
/*
|
|
* If a pool with this name exists, return failure.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
if (spa_lookup(pool) != NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (EEXIST);
|
|
}
|
|
|
|
/*
|
|
* Create and initialize the spa structure.
|
|
*/
|
|
(void) nvlist_lookup_string(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
|
|
spa = spa_add(pool, altroot);
|
|
spa_activate(spa);
|
|
|
|
/*
|
|
* Pass off the heavy lifting to spa_load().
|
|
* Pass TRUE for mosconfig because the user-supplied config
|
|
* is actually the one to trust when doing an import.
|
|
*/
|
|
error = spa_load(spa, config, SPA_LOAD_IMPORT, mosconfig);
|
|
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
/*
|
|
* Toss any existing sparelist, as it doesn't have any validity anymore,
|
|
* and conflicts with spa_has_spare().
|
|
*/
|
|
if (!isroot && spa->spa_spares.sav_config) {
|
|
nvlist_free(spa->spa_spares.sav_config);
|
|
spa->spa_spares.sav_config = NULL;
|
|
spa_load_spares(spa);
|
|
}
|
|
if (!isroot && spa->spa_l2cache.sav_config) {
|
|
nvlist_free(spa->spa_l2cache.sav_config);
|
|
spa->spa_l2cache.sav_config = NULL;
|
|
spa_load_l2cache(spa);
|
|
}
|
|
|
|
VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&nvroot) == 0);
|
|
if (error == 0)
|
|
error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
|
|
if (error == 0)
|
|
error = spa_validate_aux(spa, nvroot, -1ULL,
|
|
VDEV_ALLOC_L2CACHE);
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Override any spares and level 2 cache devices as specified by
|
|
* the user, as these may have correct device names/devids, etc.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
|
&spares, &nspares) == 0) {
|
|
if (spa->spa_spares.sav_config)
|
|
VERIFY(nvlist_remove(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
else
|
|
VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
spa_load_spares(spa);
|
|
spa_config_exit(spa, FTAG);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
|
|
&l2cache, &nl2cache) == 0) {
|
|
if (spa->spa_l2cache.sav_config)
|
|
VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
else
|
|
VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
spa_load_l2cache(spa);
|
|
spa_config_exit(spa, FTAG);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Update the config cache to include the newly-imported pool.
|
|
*/
|
|
if (spa_mode & FWRITE)
|
|
spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
|
|
|
|
/*
|
|
* Resilver anything that's out of date.
|
|
*/
|
|
if (!isroot && (spa_mode & FWRITE))
|
|
VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
/*
|
|
* Build a "root" vdev for a top level vdev read in from a rootpool
|
|
* device label.
|
|
*/
|
|
static void
|
|
spa_build_rootpool_config(nvlist_t *config)
|
|
{
|
|
nvlist_t *nvtop, *nvroot;
|
|
uint64_t pgid;
|
|
|
|
/*
|
|
* Add this top-level vdev to the child array.
|
|
*/
|
|
VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
|
|
== 0);
|
|
VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
|
|
== 0);
|
|
|
|
/*
|
|
* Put this pool's top-level vdevs into a root vdev.
|
|
*/
|
|
VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
|
|
== 0);
|
|
VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
|
|
VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
|
|
&nvtop, 1) == 0);
|
|
|
|
/*
|
|
* Replace the existing vdev_tree with the new root vdev in
|
|
* this pool's configuration (remove the old, add the new).
|
|
*/
|
|
VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
|
|
nvlist_free(nvroot);
|
|
}
|
|
|
|
/*
|
|
* Get the root pool information from the root disk, then import the root pool
|
|
* during the system boot up time.
|
|
*/
|
|
extern nvlist_t *vdev_disk_read_rootlabel(char *);
|
|
|
|
void
|
|
spa_check_rootconf(char *devpath, char **bestdev, nvlist_t **bestconf,
|
|
uint64_t *besttxg)
|
|
{
|
|
nvlist_t *config;
|
|
uint64_t txg;
|
|
|
|
if ((config = vdev_disk_read_rootlabel(devpath)) == NULL)
|
|
return;
|
|
|
|
VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
|
|
|
|
if (txg > *besttxg) {
|
|
*besttxg = txg;
|
|
if (*bestconf != NULL)
|
|
nvlist_free(*bestconf);
|
|
*bestconf = config;
|
|
*bestdev = devpath;
|
|
}
|
|
}
|
|
|
|
boolean_t
|
|
spa_rootdev_validate(nvlist_t *nv)
|
|
{
|
|
uint64_t ival;
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
|
|
nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
|
|
nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, &ival) == 0 ||
|
|
nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
|
|
return (B_FALSE);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Import a root pool.
|
|
*
|
|
* For x86. devpath_list will consist the physpath name of the vdev in a single
|
|
* disk root pool or a list of physnames for the vdevs in a mirrored rootpool.
|
|
* e.g.
|
|
* "/pci@1f,0/ide@d/disk@0,0:a /pci@1f,o/ide@d/disk@2,0:a"
|
|
*
|
|
* For Sparc, devpath_list consists the physpath name of the booting device
|
|
* no matter the rootpool is a single device pool or a mirrored pool.
|
|
* e.g.
|
|
* "/pci@1f,0/ide@d/disk@0,0:a"
|
|
*/
|
|
int
|
|
spa_import_rootpool(char *devpath_list)
|
|
{
|
|
nvlist_t *conf = NULL;
|
|
char *dev = NULL;
|
|
char *pname;
|
|
int error;
|
|
|
|
/*
|
|
* Get the vdev pathname and configuation from the most
|
|
* recently updated vdev (highest txg).
|
|
*/
|
|
if (error = spa_get_rootconf(devpath_list, &dev, &conf))
|
|
goto msg_out;
|
|
|
|
/*
|
|
* Add type "root" vdev to the config.
|
|
*/
|
|
spa_build_rootpool_config(conf);
|
|
|
|
VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
|
|
|
|
error = spa_import_common(pname, conf, NULL, TRUE);
|
|
if (error == EEXIST)
|
|
error = 0;
|
|
|
|
nvlist_free(conf);
|
|
return (error);
|
|
|
|
msg_out:
|
|
cmn_err(CE_NOTE, "\n\n"
|
|
" *************************************************** \n"
|
|
" * This device is not bootable! * \n"
|
|
" * It is either offlined or detached or faulted. * \n"
|
|
" * Please try to boot from a different device. * \n"
|
|
" *************************************************** \n\n");
|
|
|
|
return (error);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Import a non-root pool into the system.
|
|
*/
|
|
int
|
|
spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
|
|
{
|
|
return (spa_import_common(pool, config, props, FALSE));
|
|
}
|
|
|
|
/*
|
|
* This (illegal) pool name is used when temporarily importing a spa_t in order
|
|
* to get the vdev stats associated with the imported devices.
|
|
*/
|
|
#define TRYIMPORT_NAME "$import"
|
|
|
|
nvlist_t *
|
|
spa_tryimport(nvlist_t *tryconfig)
|
|
{
|
|
nvlist_t *config = NULL;
|
|
char *poolname;
|
|
spa_t *spa;
|
|
uint64_t state;
|
|
|
|
if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
|
|
return (NULL);
|
|
|
|
if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
|
|
return (NULL);
|
|
|
|
/*
|
|
* Create and initialize the spa structure.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa = spa_add(TRYIMPORT_NAME, NULL);
|
|
spa_activate(spa);
|
|
|
|
/*
|
|
* Pass off the heavy lifting to spa_load().
|
|
* Pass TRUE for mosconfig because the user-supplied config
|
|
* is actually the one to trust when doing an import.
|
|
*/
|
|
(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
|
|
|
|
/*
|
|
* If 'tryconfig' was at least parsable, return the current config.
|
|
*/
|
|
if (spa->spa_root_vdev != NULL) {
|
|
spa_config_enter(spa, RW_READER, FTAG);
|
|
config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
|
|
spa_config_exit(spa, FTAG);
|
|
VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
|
|
poolname) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
|
state) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
|
|
spa->spa_uberblock.ub_timestamp) == 0);
|
|
|
|
/*
|
|
* If the bootfs property exists on this pool then we
|
|
* copy it out so that external consumers can tell which
|
|
* pools are bootable.
|
|
*/
|
|
if (spa->spa_bootfs) {
|
|
char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
|
|
/*
|
|
* We have to play games with the name since the
|
|
* pool was opened as TRYIMPORT_NAME.
|
|
*/
|
|
if (dsl_dsobj_to_dsname(spa->spa_name,
|
|
spa->spa_bootfs, tmpname) == 0) {
|
|
char *cp;
|
|
char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
|
|
cp = strchr(tmpname, '/');
|
|
if (cp == NULL) {
|
|
(void) strlcpy(dsname, tmpname,
|
|
MAXPATHLEN);
|
|
} else {
|
|
(void) snprintf(dsname, MAXPATHLEN,
|
|
"%s/%s", poolname, ++cp);
|
|
}
|
|
VERIFY(nvlist_add_string(config,
|
|
ZPOOL_CONFIG_BOOTFS, dsname) == 0);
|
|
kmem_free(dsname, MAXPATHLEN);
|
|
}
|
|
kmem_free(tmpname, MAXPATHLEN);
|
|
}
|
|
|
|
/*
|
|
* Add the list of hot spares and level 2 cache devices.
|
|
*/
|
|
spa_add_spares(spa, config);
|
|
spa_add_l2cache(spa, config);
|
|
}
|
|
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (config);
|
|
}
|
|
|
|
/*
|
|
* Pool export/destroy
|
|
*
|
|
* The act of destroying or exporting a pool is very simple. We make sure there
|
|
* is no more pending I/O and any references to the pool are gone. Then, we
|
|
* update the pool state and sync all the labels to disk, removing the
|
|
* configuration from the cache afterwards.
|
|
*/
|
|
static int
|
|
spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
|
|
{
|
|
spa_t *spa;
|
|
|
|
if (oldconfig)
|
|
*oldconfig = NULL;
|
|
|
|
if (!(spa_mode & FWRITE))
|
|
return (EROFS);
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
if ((spa = spa_lookup(pool)) == NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (ENOENT);
|
|
}
|
|
|
|
/*
|
|
* Put a hold on the pool, drop the namespace lock, stop async tasks,
|
|
* reacquire the namespace lock, and see if we can export.
|
|
*/
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
spa_async_suspend(spa);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
|
|
/*
|
|
* The pool will be in core if it's openable,
|
|
* in which case we can modify its state.
|
|
*/
|
|
if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
|
|
/*
|
|
* Objsets may be open only because they're dirty, so we
|
|
* have to force it to sync before checking spa_refcnt.
|
|
*/
|
|
spa_scrub_suspend(spa);
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
|
|
/*
|
|
* A pool cannot be exported or destroyed if there are active
|
|
* references. If we are resetting a pool, allow references by
|
|
* fault injection handlers.
|
|
*/
|
|
if (!spa_refcount_zero(spa) ||
|
|
(spa->spa_inject_ref != 0 &&
|
|
new_state != POOL_STATE_UNINITIALIZED)) {
|
|
spa_scrub_resume(spa);
|
|
spa_async_resume(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (EBUSY);
|
|
}
|
|
|
|
spa_scrub_resume(spa);
|
|
VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
|
|
|
|
/*
|
|
* We want this to be reflected on every label,
|
|
* so mark them all dirty. spa_unload() will do the
|
|
* final sync that pushes these changes out.
|
|
*/
|
|
if (new_state != POOL_STATE_UNINITIALIZED) {
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
spa->spa_state = new_state;
|
|
spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
spa_config_exit(spa, FTAG);
|
|
}
|
|
}
|
|
|
|
spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
|
|
|
|
if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
}
|
|
|
|
if (oldconfig && spa->spa_config)
|
|
VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
|
|
|
|
if (new_state != POOL_STATE_UNINITIALIZED) {
|
|
spa_config_check(spa->spa_config_dir,
|
|
spa->spa_config_file);
|
|
spa_remove(spa);
|
|
spa_config_sync();
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Destroy a storage pool.
|
|
*/
|
|
int
|
|
spa_destroy(char *pool)
|
|
{
|
|
return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
|
|
}
|
|
|
|
/*
|
|
* Export a storage pool.
|
|
*/
|
|
int
|
|
spa_export(char *pool, nvlist_t **oldconfig)
|
|
{
|
|
return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
|
|
}
|
|
|
|
/*
|
|
* Similar to spa_export(), this unloads the spa_t without actually removing it
|
|
* from the namespace in any way.
|
|
*/
|
|
int
|
|
spa_reset(char *pool)
|
|
{
|
|
return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
|
|
}
|
|
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Device manipulation
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Add a device to a storage pool.
|
|
*/
|
|
int
|
|
spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
|
|
{
|
|
uint64_t txg;
|
|
int c, error;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *vd, *tvd;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t nspares, nl2cache;
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
|
|
VDEV_ALLOC_ADD)) != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, error));
|
|
|
|
spa->spa_pending_vdev = vd;
|
|
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
|
|
&nspares) != 0)
|
|
nspares = 0;
|
|
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
|
|
&nl2cache) != 0)
|
|
nl2cache = 0;
|
|
|
|
if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) {
|
|
spa->spa_pending_vdev = NULL;
|
|
return (spa_vdev_exit(spa, vd, txg, EINVAL));
|
|
}
|
|
|
|
if (vd->vdev_children != 0) {
|
|
if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
|
|
spa->spa_pending_vdev = NULL;
|
|
return (spa_vdev_exit(spa, vd, txg, error));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We must validate the spares and l2cache devices after checking the
|
|
* children. Otherwise, vdev_inuse() will blindly overwrite the spare.
|
|
*/
|
|
if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) {
|
|
spa->spa_pending_vdev = NULL;
|
|
return (spa_vdev_exit(spa, vd, txg, error));
|
|
}
|
|
|
|
spa->spa_pending_vdev = NULL;
|
|
|
|
/*
|
|
* Transfer each new top-level vdev from vd to rvd.
|
|
*/
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
tvd = vd->vdev_child[c];
|
|
vdev_remove_child(vd, tvd);
|
|
tvd->vdev_id = rvd->vdev_children;
|
|
vdev_add_child(rvd, tvd);
|
|
vdev_config_dirty(tvd);
|
|
}
|
|
|
|
if (nspares != 0) {
|
|
spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
|
|
ZPOOL_CONFIG_SPARES);
|
|
spa_load_spares(spa);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
|
|
if (nl2cache != 0) {
|
|
spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
|
|
ZPOOL_CONFIG_L2CACHE);
|
|
spa_load_l2cache(spa);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* We have to be careful when adding new vdevs to an existing pool.
|
|
* If other threads start allocating from these vdevs before we
|
|
* sync the config cache, and we lose power, then upon reboot we may
|
|
* fail to open the pool because there are DVAs that the config cache
|
|
* can't translate. Therefore, we first add the vdevs without
|
|
* initializing metaslabs; sync the config cache (via spa_vdev_exit());
|
|
* and then let spa_config_update() initialize the new metaslabs.
|
|
*
|
|
* spa_load() checks for added-but-not-initialized vdevs, so that
|
|
* if we lose power at any point in this sequence, the remaining
|
|
* steps will be completed the next time we load the pool.
|
|
*/
|
|
(void) spa_vdev_exit(spa, vd, txg, 0);
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Attach a device to a mirror. The arguments are the path to any device
|
|
* in the mirror, and the nvroot for the new device. If the path specifies
|
|
* a device that is not mirrored, we automatically insert the mirror vdev.
|
|
*
|
|
* If 'replacing' is specified, the new device is intended to replace the
|
|
* existing device; in this case the two devices are made into their own
|
|
* mirror using the 'replacing' vdev, which is functionally identical to
|
|
* the mirror vdev (it actually reuses all the same ops) but has a few
|
|
* extra rules: you can't attach to it after it's been created, and upon
|
|
* completion of resilvering, the first disk (the one being replaced)
|
|
* is automatically detached.
|
|
*/
|
|
int
|
|
spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
|
|
{
|
|
uint64_t txg, open_txg;
|
|
int error;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
|
|
vdev_ops_t *pvops;
|
|
int is_log;
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
oldvd = vdev_lookup_by_guid(rvd, guid);
|
|
|
|
if (oldvd == NULL)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
|
|
|
|
if (!oldvd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
pvd = oldvd->vdev_parent;
|
|
|
|
if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
|
|
VDEV_ALLOC_ADD)) != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
|
|
|
|
if (newrootvd->vdev_children != 1)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
|
|
|
|
newvd = newrootvd->vdev_child[0];
|
|
|
|
if (!newvd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
|
|
|
|
if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, error));
|
|
|
|
/*
|
|
* Spares can't replace logs
|
|
*/
|
|
is_log = oldvd->vdev_islog;
|
|
if (is_log && newvd->vdev_isspare)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
|
|
if (!replacing) {
|
|
/*
|
|
* For attach, the only allowable parent is a mirror or the root
|
|
* vdev.
|
|
*/
|
|
if (pvd->vdev_ops != &vdev_mirror_ops &&
|
|
pvd->vdev_ops != &vdev_root_ops)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
|
|
pvops = &vdev_mirror_ops;
|
|
} else {
|
|
/*
|
|
* Active hot spares can only be replaced by inactive hot
|
|
* spares.
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_spare_ops &&
|
|
pvd->vdev_child[1] == oldvd &&
|
|
!spa_has_spare(spa, newvd->vdev_guid))
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
|
|
/*
|
|
* If the source is a hot spare, and the parent isn't already a
|
|
* spare, then we want to create a new hot spare. Otherwise, we
|
|
* want to create a replacing vdev. The user is not allowed to
|
|
* attach to a spared vdev child unless the 'isspare' state is
|
|
* the same (spare replaces spare, non-spare replaces
|
|
* non-spare).
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_replacing_ops)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
else if (pvd->vdev_ops == &vdev_spare_ops &&
|
|
newvd->vdev_isspare != oldvd->vdev_isspare)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
else if (pvd->vdev_ops != &vdev_spare_ops &&
|
|
newvd->vdev_isspare)
|
|
pvops = &vdev_spare_ops;
|
|
else
|
|
pvops = &vdev_replacing_ops;
|
|
}
|
|
|
|
/*
|
|
* Compare the new device size with the replaceable/attachable
|
|
* device size.
|
|
*/
|
|
if (newvd->vdev_psize < vdev_get_rsize(oldvd))
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
|
|
|
|
/*
|
|
* The new device cannot have a higher alignment requirement
|
|
* than the top-level vdev.
|
|
*/
|
|
if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
|
|
|
|
/*
|
|
* If this is an in-place replacement, update oldvd's path and devid
|
|
* to make it distinguishable from newvd, and unopenable from now on.
|
|
*/
|
|
if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
|
|
spa_strfree(oldvd->vdev_path);
|
|
oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
|
|
KM_SLEEP);
|
|
(void) sprintf(oldvd->vdev_path, "%s/%s",
|
|
newvd->vdev_path, "old");
|
|
if (oldvd->vdev_devid != NULL) {
|
|
spa_strfree(oldvd->vdev_devid);
|
|
oldvd->vdev_devid = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the parent is not a mirror, or if we're replacing, insert the new
|
|
* mirror/replacing/spare vdev above oldvd.
|
|
*/
|
|
if (pvd->vdev_ops != pvops)
|
|
pvd = vdev_add_parent(oldvd, pvops);
|
|
|
|
ASSERT(pvd->vdev_top->vdev_parent == rvd);
|
|
ASSERT(pvd->vdev_ops == pvops);
|
|
ASSERT(oldvd->vdev_parent == pvd);
|
|
|
|
/*
|
|
* Extract the new device from its root and add it to pvd.
|
|
*/
|
|
vdev_remove_child(newrootvd, newvd);
|
|
newvd->vdev_id = pvd->vdev_children;
|
|
vdev_add_child(pvd, newvd);
|
|
|
|
/*
|
|
* If newvd is smaller than oldvd, but larger than its rsize,
|
|
* the addition of newvd may have decreased our parent's asize.
|
|
*/
|
|
pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
|
|
|
|
tvd = newvd->vdev_top;
|
|
ASSERT(pvd->vdev_top == tvd);
|
|
ASSERT(tvd->vdev_parent == rvd);
|
|
|
|
vdev_config_dirty(tvd);
|
|
|
|
/*
|
|
* Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate
|
|
* upward when spa_vdev_exit() calls vdev_dtl_reassess().
|
|
*/
|
|
open_txg = txg + TXG_CONCURRENT_STATES - 1;
|
|
|
|
mutex_enter(&newvd->vdev_dtl_lock);
|
|
space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
|
|
open_txg - TXG_INITIAL + 1);
|
|
mutex_exit(&newvd->vdev_dtl_lock);
|
|
|
|
if (newvd->vdev_isspare)
|
|
spa_spare_activate(newvd);
|
|
|
|
/*
|
|
* Mark newvd's DTL dirty in this txg.
|
|
*/
|
|
vdev_dirty(tvd, VDD_DTL, newvd, txg);
|
|
|
|
(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
|
|
|
|
/*
|
|
* Kick off a resilver to update newvd. We need to grab the namespace
|
|
* lock because spa_scrub() needs to post a sysevent with the pool name.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Detach a device from a mirror or replacing vdev.
|
|
* If 'replace_done' is specified, only detach if the parent
|
|
* is a replacing vdev.
|
|
*/
|
|
int
|
|
spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
|
|
{
|
|
uint64_t txg;
|
|
int c, t, error;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *vd, *pvd, *cvd, *tvd;
|
|
boolean_t unspare = B_FALSE;
|
|
uint64_t unspare_guid;
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
vd = vdev_lookup_by_guid(rvd, guid);
|
|
|
|
if (vd == NULL)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
pvd = vd->vdev_parent;
|
|
|
|
/*
|
|
* If replace_done is specified, only remove this device if it's
|
|
* the first child of a replacing vdev. For the 'spare' vdev, either
|
|
* disk can be removed.
|
|
*/
|
|
if (replace_done) {
|
|
if (pvd->vdev_ops == &vdev_replacing_ops) {
|
|
if (vd->vdev_id != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
} else if (pvd->vdev_ops != &vdev_spare_ops) {
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
}
|
|
}
|
|
|
|
ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
|
|
spa_version(spa) >= SPA_VERSION_SPARES);
|
|
|
|
/*
|
|
* Only mirror, replacing, and spare vdevs support detach.
|
|
*/
|
|
if (pvd->vdev_ops != &vdev_replacing_ops &&
|
|
pvd->vdev_ops != &vdev_mirror_ops &&
|
|
pvd->vdev_ops != &vdev_spare_ops)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
/*
|
|
* If there's only one replica, you can't detach it.
|
|
*/
|
|
if (pvd->vdev_children <= 1)
|
|
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
|
|
|
|
/*
|
|
* If all siblings have non-empty DTLs, this device may have the only
|
|
* valid copy of the data, which means we cannot safely detach it.
|
|
*
|
|
* XXX -- as in the vdev_offline() case, we really want a more
|
|
* precise DTL check.
|
|
*/
|
|
for (c = 0; c < pvd->vdev_children; c++) {
|
|
uint64_t dirty;
|
|
|
|
cvd = pvd->vdev_child[c];
|
|
if (cvd == vd)
|
|
continue;
|
|
if (vdev_is_dead(cvd))
|
|
continue;
|
|
mutex_enter(&cvd->vdev_dtl_lock);
|
|
dirty = cvd->vdev_dtl_map.sm_space |
|
|
cvd->vdev_dtl_scrub.sm_space;
|
|
mutex_exit(&cvd->vdev_dtl_lock);
|
|
if (!dirty)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we are a replacing or spare vdev, then we can always detach the
|
|
* latter child, as that is how one cancels the operation.
|
|
*/
|
|
if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
|
|
c == pvd->vdev_children)
|
|
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
|
|
|
|
/*
|
|
* If we are detaching the original disk from a spare, then it implies
|
|
* that the spare should become a real disk, and be removed from the
|
|
* active spare list for the pool.
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_spare_ops &&
|
|
vd->vdev_id == 0)
|
|
unspare = B_TRUE;
|
|
|
|
/*
|
|
* Erase the disk labels so the disk can be used for other things.
|
|
* This must be done after all other error cases are handled,
|
|
* but before we disembowel vd (so we can still do I/O to it).
|
|
* But if we can't do it, don't treat the error as fatal --
|
|
* it may be that the unwritability of the disk is the reason
|
|
* it's being detached!
|
|
*/
|
|
error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
|
|
|
|
/*
|
|
* Remove vd from its parent and compact the parent's children.
|
|
*/
|
|
vdev_remove_child(pvd, vd);
|
|
vdev_compact_children(pvd);
|
|
|
|
/*
|
|
* Remember one of the remaining children so we can get tvd below.
|
|
*/
|
|
cvd = pvd->vdev_child[0];
|
|
|
|
/*
|
|
* If we need to remove the remaining child from the list of hot spares,
|
|
* do it now, marking the vdev as no longer a spare in the process. We
|
|
* must do this before vdev_remove_parent(), because that can change the
|
|
* GUID if it creates a new toplevel GUID.
|
|
*/
|
|
if (unspare) {
|
|
ASSERT(cvd->vdev_isspare);
|
|
spa_spare_remove(cvd);
|
|
unspare_guid = cvd->vdev_guid;
|
|
}
|
|
|
|
/*
|
|
* If the parent mirror/replacing vdev only has one child,
|
|
* the parent is no longer needed. Remove it from the tree.
|
|
*/
|
|
if (pvd->vdev_children == 1)
|
|
vdev_remove_parent(cvd);
|
|
|
|
/*
|
|
* We don't set tvd until now because the parent we just removed
|
|
* may have been the previous top-level vdev.
|
|
*/
|
|
tvd = cvd->vdev_top;
|
|
ASSERT(tvd->vdev_parent == rvd);
|
|
|
|
/*
|
|
* Reevaluate the parent vdev state.
|
|
*/
|
|
vdev_propagate_state(cvd);
|
|
|
|
/*
|
|
* If the device we just detached was smaller than the others, it may be
|
|
* possible to add metaslabs (i.e. grow the pool). vdev_metaslab_init()
|
|
* can't fail because the existing metaslabs are already in core, so
|
|
* there's nothing to read from disk.
|
|
*/
|
|
VERIFY(vdev_metaslab_init(tvd, txg) == 0);
|
|
|
|
vdev_config_dirty(tvd);
|
|
|
|
/*
|
|
* Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
|
|
* vd->vdev_detached is set and free vd's DTL object in syncing context.
|
|
* But first make sure we're not on any *other* txg's DTL list, to
|
|
* prevent vd from being accessed after it's freed.
|
|
*/
|
|
for (t = 0; t < TXG_SIZE; t++)
|
|
(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
|
|
vd->vdev_detached = B_TRUE;
|
|
vdev_dirty(tvd, VDD_DTL, vd, txg);
|
|
|
|
spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
|
|
|
|
error = spa_vdev_exit(spa, vd, txg, 0);
|
|
|
|
/*
|
|
* If this was the removal of the original device in a hot spare vdev,
|
|
* then we want to go through and remove the device from the hot spare
|
|
* list of every other pool.
|
|
*/
|
|
if (unspare) {
|
|
spa = NULL;
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL) {
|
|
if (spa->spa_state != POOL_STATE_ACTIVE)
|
|
continue;
|
|
|
|
(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Remove a spares vdev from the nvlist config.
|
|
*/
|
|
static int
|
|
spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare,
|
|
nvlist_t **spares, int nspares, vdev_t *vd)
|
|
{
|
|
nvlist_t *nv, **newspares;
|
|
int i, j;
|
|
|
|
nv = NULL;
|
|
for (i = 0; i < nspares; i++) {
|
|
uint64_t theguid;
|
|
|
|
VERIFY(nvlist_lookup_uint64(spares[i],
|
|
ZPOOL_CONFIG_GUID, &theguid) == 0);
|
|
if (theguid == guid) {
|
|
nv = spares[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only remove the hot spare if it's not currently in use in this pool.
|
|
*/
|
|
if (nv == NULL && vd == NULL)
|
|
return (ENOENT);
|
|
|
|
if (nv == NULL && vd != NULL)
|
|
return (ENOTSUP);
|
|
|
|
if (!unspare && nv != NULL && vd != NULL)
|
|
return (EBUSY);
|
|
|
|
if (nspares == 1) {
|
|
newspares = NULL;
|
|
} else {
|
|
newspares = kmem_alloc((nspares - 1) * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0, j = 0; i < nspares; i++) {
|
|
if (spares[i] != nv)
|
|
VERIFY(nvlist_dup(spares[i],
|
|
&newspares[j++], KM_SLEEP) == 0);
|
|
}
|
|
}
|
|
|
|
VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0);
|
|
for (i = 0; i < nspares - 1; i++)
|
|
nvlist_free(newspares[i]);
|
|
kmem_free(newspares, (nspares - 1) * sizeof (void *));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove an l2cache vdev from the nvlist config.
|
|
*/
|
|
static int
|
|
spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache,
|
|
int nl2cache, vdev_t *vd)
|
|
{
|
|
nvlist_t *nv, **newl2cache;
|
|
int i, j;
|
|
|
|
nv = NULL;
|
|
for (i = 0; i < nl2cache; i++) {
|
|
uint64_t theguid;
|
|
|
|
VERIFY(nvlist_lookup_uint64(l2cache[i],
|
|
ZPOOL_CONFIG_GUID, &theguid) == 0);
|
|
if (theguid == guid) {
|
|
nv = l2cache[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (vd == NULL) {
|
|
for (i = 0; i < nl2cache; i++) {
|
|
if (sav->sav_vdevs[i]->vdev_guid == guid) {
|
|
vd = sav->sav_vdevs[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nv == NULL && vd == NULL)
|
|
return (ENOENT);
|
|
|
|
if (nv == NULL && vd != NULL)
|
|
return (ENOTSUP);
|
|
|
|
if (nl2cache == 1) {
|
|
newl2cache = NULL;
|
|
} else {
|
|
newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0, j = 0; i < nl2cache; i++) {
|
|
if (l2cache[i] != nv)
|
|
VERIFY(nvlist_dup(l2cache[i],
|
|
&newl2cache[j++], KM_SLEEP) == 0);
|
|
}
|
|
}
|
|
|
|
VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0);
|
|
for (i = 0; i < nl2cache - 1; i++)
|
|
nvlist_free(newl2cache[i]);
|
|
kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove a device from the pool. Currently, this supports removing only hot
|
|
* spares and level 2 ARC devices.
|
|
*/
|
|
int
|
|
spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
|
|
{
|
|
vdev_t *vd;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t nspares, nl2cache;
|
|
int error = 0;
|
|
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
|
|
vd = spa_lookup_by_guid(spa, guid);
|
|
|
|
if (spa->spa_spares.sav_vdevs != NULL &&
|
|
spa_spare_exists(guid, NULL) &&
|
|
nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) {
|
|
if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare,
|
|
spares, nspares, vd)) != 0)
|
|
goto out;
|
|
spa_load_spares(spa);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
goto out;
|
|
}
|
|
|
|
if (spa->spa_l2cache.sav_vdevs != NULL &&
|
|
spa_l2cache_exists(guid, NULL) &&
|
|
nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) {
|
|
if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid,
|
|
l2cache, nl2cache, vd)) != 0)
|
|
goto out;
|
|
spa_load_l2cache(spa);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
out:
|
|
spa_config_exit(spa, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Find any device that's done replacing, or a vdev marked 'unspare' that's
|
|
* current spared, so we can detach it.
|
|
*/
|
|
static vdev_t *
|
|
spa_vdev_resilver_done_hunt(vdev_t *vd)
|
|
{
|
|
vdev_t *newvd, *oldvd;
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
|
|
if (oldvd != NULL)
|
|
return (oldvd);
|
|
}
|
|
|
|
/*
|
|
* Check for a completed replacement.
|
|
*/
|
|
if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
|
|
oldvd = vd->vdev_child[0];
|
|
newvd = vd->vdev_child[1];
|
|
|
|
mutex_enter(&newvd->vdev_dtl_lock);
|
|
if (newvd->vdev_dtl_map.sm_space == 0 &&
|
|
newvd->vdev_dtl_scrub.sm_space == 0) {
|
|
mutex_exit(&newvd->vdev_dtl_lock);
|
|
return (oldvd);
|
|
}
|
|
mutex_exit(&newvd->vdev_dtl_lock);
|
|
}
|
|
|
|
/*
|
|
* Check for a completed resilver with the 'unspare' flag set.
|
|
*/
|
|
if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
|
|
newvd = vd->vdev_child[0];
|
|
oldvd = vd->vdev_child[1];
|
|
|
|
mutex_enter(&newvd->vdev_dtl_lock);
|
|
if (newvd->vdev_unspare &&
|
|
newvd->vdev_dtl_map.sm_space == 0 &&
|
|
newvd->vdev_dtl_scrub.sm_space == 0) {
|
|
newvd->vdev_unspare = 0;
|
|
mutex_exit(&newvd->vdev_dtl_lock);
|
|
return (oldvd);
|
|
}
|
|
mutex_exit(&newvd->vdev_dtl_lock);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
spa_vdev_resilver_done(spa_t *spa)
|
|
{
|
|
vdev_t *vd;
|
|
vdev_t *pvd;
|
|
uint64_t guid;
|
|
uint64_t pguid = 0;
|
|
|
|
spa_config_enter(spa, RW_READER, FTAG);
|
|
|
|
while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
|
|
guid = vd->vdev_guid;
|
|
/*
|
|
* If we have just finished replacing a hot spared device, then
|
|
* we need to detach the parent's first child (the original hot
|
|
* spare) as well.
|
|
*/
|
|
pvd = vd->vdev_parent;
|
|
if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
|
|
pvd->vdev_id == 0) {
|
|
ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
|
|
ASSERT(pvd->vdev_parent->vdev_children == 2);
|
|
pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
|
|
}
|
|
spa_config_exit(spa, FTAG);
|
|
if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
|
|
return;
|
|
if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
|
|
return;
|
|
spa_config_enter(spa, RW_READER, FTAG);
|
|
}
|
|
|
|
spa_config_exit(spa, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Update the stored path for this vdev. Dirty the vdev configuration, relying
|
|
* on spa_vdev_enter/exit() to synchronize the labels and cache.
|
|
*/
|
|
int
|
|
spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
|
|
{
|
|
vdev_t *rvd, *vd;
|
|
uint64_t txg;
|
|
|
|
rvd = spa->spa_root_vdev;
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
|
|
/*
|
|
* Determine if this is a reference to a hot spare or l2cache
|
|
* device. If it is, update the path as stored in their
|
|
* device list.
|
|
*/
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t i, nspares, nl2cache;
|
|
|
|
if (spa->spa_spares.sav_config != NULL) {
|
|
VERIFY(nvlist_lookup_nvlist_array(
|
|
spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
|
|
&spares, &nspares) == 0);
|
|
for (i = 0; i < nspares; i++) {
|
|
uint64_t theguid;
|
|
VERIFY(nvlist_lookup_uint64(spares[i],
|
|
ZPOOL_CONFIG_GUID, &theguid) == 0);
|
|
if (theguid == guid) {
|
|
VERIFY(nvlist_add_string(spares[i],
|
|
ZPOOL_CONFIG_PATH, newpath) == 0);
|
|
spa_load_spares(spa);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
return (spa_vdev_exit(spa, NULL, txg,
|
|
0));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (spa->spa_l2cache.sav_config != NULL) {
|
|
VERIFY(nvlist_lookup_nvlist_array(
|
|
spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE,
|
|
&l2cache, &nl2cache) == 0);
|
|
for (i = 0; i < nl2cache; i++) {
|
|
uint64_t theguid;
|
|
VERIFY(nvlist_lookup_uint64(l2cache[i],
|
|
ZPOOL_CONFIG_GUID, &theguid) == 0);
|
|
if (theguid == guid) {
|
|
VERIFY(nvlist_add_string(l2cache[i],
|
|
ZPOOL_CONFIG_PATH, newpath) == 0);
|
|
spa_load_l2cache(spa);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
return (spa_vdev_exit(spa, NULL, txg,
|
|
0));
|
|
}
|
|
}
|
|
}
|
|
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOENT));
|
|
}
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
spa_strfree(vd->vdev_path);
|
|
vd->vdev_path = spa_strdup(newpath);
|
|
|
|
vdev_config_dirty(vd->vdev_top);
|
|
|
|
return (spa_vdev_exit(spa, NULL, txg, 0));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA Scrubbing
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static void
|
|
spa_scrub_io_done(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
arc_data_buf_free(zio->io_data, zio->io_size);
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
|
|
vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
|
|
spa->spa_scrub_errors++;
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
vd->vdev_stat.vs_scrub_errors++;
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
}
|
|
|
|
if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
|
|
cv_broadcast(&spa->spa_scrub_io_cv);
|
|
|
|
ASSERT(spa->spa_scrub_inflight >= 0);
|
|
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
}
|
|
|
|
static void
|
|
spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
|
|
zbookmark_t *zb)
|
|
{
|
|
size_t size = BP_GET_LSIZE(bp);
|
|
void *data;
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
/*
|
|
* Do not give too much work to vdev(s).
|
|
*/
|
|
while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
|
|
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
|
|
}
|
|
spa->spa_scrub_inflight++;
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
data = arc_data_buf_alloc(size);
|
|
|
|
if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
|
|
flags |= ZIO_FLAG_SPECULATIVE; /* intent log block */
|
|
|
|
flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
|
|
|
|
zio_nowait(zio_read(NULL, spa, bp, data, size,
|
|
spa_scrub_io_done, NULL, priority, flags, zb));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
|
|
{
|
|
blkptr_t *bp = &bc->bc_blkptr;
|
|
vdev_t *vd = spa->spa_root_vdev;
|
|
dva_t *dva = bp->blk_dva;
|
|
int needs_resilver = B_FALSE;
|
|
int d;
|
|
|
|
if (bc->bc_errno) {
|
|
/*
|
|
* We can't scrub this block, but we can continue to scrub
|
|
* the rest of the pool. Note the error and move along.
|
|
*/
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
spa->spa_scrub_errors++;
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
vd->vdev_stat.vs_scrub_errors++;
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
|
|
return (ERESTART);
|
|
}
|
|
|
|
ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
|
|
|
|
for (d = 0; d < BP_GET_NDVAS(bp); d++) {
|
|
vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
|
|
|
|
ASSERT(vd != NULL);
|
|
|
|
/*
|
|
* Keep track of how much data we've examined so that
|
|
* zpool(1M) status can make useful progress reports.
|
|
*/
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
|
|
if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
|
|
if (DVA_GET_GANG(&dva[d])) {
|
|
/*
|
|
* Gang members may be spread across multiple
|
|
* vdevs, so the best we can do is look at the
|
|
* pool-wide DTL.
|
|
* XXX -- it would be better to change our
|
|
* allocation policy to ensure that this can't
|
|
* happen.
|
|
*/
|
|
vd = spa->spa_root_vdev;
|
|
}
|
|
if (vdev_dtl_contains(&vd->vdev_dtl_map,
|
|
bp->blk_birth, 1))
|
|
needs_resilver = B_TRUE;
|
|
}
|
|
}
|
|
|
|
if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
|
|
spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
|
|
ZIO_FLAG_SCRUB, &bc->bc_bookmark);
|
|
else if (needs_resilver)
|
|
spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
|
|
ZIO_FLAG_RESILVER, &bc->bc_bookmark);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
spa_scrub_thread(spa_t *spa)
|
|
{
|
|
callb_cpr_t cprinfo;
|
|
traverse_handle_t *th = spa->spa_scrub_th;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
pool_scrub_type_t scrub_type = spa->spa_scrub_type;
|
|
int error = 0;
|
|
boolean_t complete;
|
|
|
|
CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
|
|
|
|
/*
|
|
* If we're restarting due to a snapshot create/delete,
|
|
* wait for that to complete.
|
|
*/
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
|
|
dprintf("start %s mintxg=%llu maxtxg=%llu\n",
|
|
scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
|
|
spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
|
|
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
vdev_reopen(rvd); /* purge all vdev caches */
|
|
vdev_config_dirty(rvd); /* rewrite all disk labels */
|
|
vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
spa->spa_scrub_errors = 0;
|
|
spa->spa_scrub_active = 1;
|
|
ASSERT(spa->spa_scrub_inflight == 0);
|
|
|
|
while (!spa->spa_scrub_stop) {
|
|
CALLB_CPR_SAFE_BEGIN(&cprinfo);
|
|
while (spa->spa_scrub_suspended) {
|
|
spa->spa_scrub_active = 0;
|
|
cv_broadcast(&spa->spa_scrub_cv);
|
|
cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
|
|
spa->spa_scrub_active = 1;
|
|
}
|
|
CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
|
|
|
|
if (spa->spa_scrub_restart_txg != 0)
|
|
break;
|
|
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
error = traverse_more(th);
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
if (error != EAGAIN)
|
|
break;
|
|
}
|
|
|
|
while (spa->spa_scrub_inflight)
|
|
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
|
|
|
|
spa->spa_scrub_active = 0;
|
|
cv_broadcast(&spa->spa_scrub_cv);
|
|
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
|
|
/*
|
|
* Note: we check spa_scrub_restart_txg under both spa_scrub_lock
|
|
* AND the spa config lock to synchronize with any config changes
|
|
* that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
|
|
*/
|
|
if (spa->spa_scrub_restart_txg != 0)
|
|
error = ERESTART;
|
|
|
|
if (spa->spa_scrub_stop)
|
|
error = EINTR;
|
|
|
|
/*
|
|
* Even if there were uncorrectable errors, we consider the scrub
|
|
* completed. The downside is that if there is a transient error during
|
|
* a resilver, we won't resilver the data properly to the target. But
|
|
* if the damage is permanent (more likely) we will resilver forever,
|
|
* which isn't really acceptable. Since there is enough information for
|
|
* the user to know what has failed and why, this seems like a more
|
|
* tractable approach.
|
|
*/
|
|
complete = (error == 0);
|
|
|
|
dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
|
|
scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
|
|
spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
|
|
error, spa->spa_scrub_errors, spa->spa_scrub_stop);
|
|
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
/*
|
|
* If the scrub/resilver completed, update all DTLs to reflect this.
|
|
* Whether it succeeded or not, vacate all temporary scrub DTLs.
|
|
*/
|
|
vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
|
|
complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
|
|
vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
|
|
spa_errlog_rotate(spa);
|
|
|
|
if (scrub_type == POOL_SCRUB_RESILVER && complete)
|
|
spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH);
|
|
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
|
|
/*
|
|
* We may have finished replacing a device.
|
|
* Let the async thread assess this and handle the detach.
|
|
*/
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
|
|
|
|
/*
|
|
* If we were told to restart, our final act is to start a new scrub.
|
|
*/
|
|
if (error == ERESTART)
|
|
spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
|
|
SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
|
|
|
|
spa->spa_scrub_type = POOL_SCRUB_NONE;
|
|
spa->spa_scrub_active = 0;
|
|
spa->spa_scrub_thread = NULL;
|
|
cv_broadcast(&spa->spa_scrub_cv);
|
|
CALLB_CPR_EXIT(&cprinfo); /* drops &spa->spa_scrub_lock */
|
|
thread_exit();
|
|
}
|
|
|
|
void
|
|
spa_scrub_suspend(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
spa->spa_scrub_suspended++;
|
|
while (spa->spa_scrub_active) {
|
|
cv_broadcast(&spa->spa_scrub_cv);
|
|
cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
|
|
}
|
|
while (spa->spa_scrub_inflight)
|
|
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
}
|
|
|
|
void
|
|
spa_scrub_resume(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
ASSERT(spa->spa_scrub_suspended != 0);
|
|
if (--spa->spa_scrub_suspended == 0)
|
|
cv_broadcast(&spa->spa_scrub_cv);
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
}
|
|
|
|
void
|
|
spa_scrub_restart(spa_t *spa, uint64_t txg)
|
|
{
|
|
/*
|
|
* Something happened (e.g. snapshot create/delete) that means
|
|
* we must restart any in-progress scrubs. The itinerary will
|
|
* fix this properly.
|
|
*/
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
spa->spa_scrub_restart_txg = txg;
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
}
|
|
|
|
int
|
|
spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
|
|
{
|
|
space_seg_t *ss;
|
|
uint64_t mintxg, maxtxg;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(!spa_config_held(spa, RW_WRITER));
|
|
|
|
if ((uint_t)type >= POOL_SCRUB_TYPES)
|
|
return (ENOTSUP);
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
|
|
/*
|
|
* If there's a scrub or resilver already in progress, stop it.
|
|
*/
|
|
while (spa->spa_scrub_thread != NULL) {
|
|
/*
|
|
* Don't stop a resilver unless forced.
|
|
*/
|
|
if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
return (EBUSY);
|
|
}
|
|
spa->spa_scrub_stop = 1;
|
|
cv_broadcast(&spa->spa_scrub_cv);
|
|
cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
|
|
}
|
|
|
|
/*
|
|
* Terminate the previous traverse.
|
|
*/
|
|
if (spa->spa_scrub_th != NULL) {
|
|
traverse_fini(spa->spa_scrub_th);
|
|
spa->spa_scrub_th = NULL;
|
|
}
|
|
|
|
if (rvd == NULL) {
|
|
ASSERT(spa->spa_scrub_stop == 0);
|
|
ASSERT(spa->spa_scrub_type == type);
|
|
ASSERT(spa->spa_scrub_restart_txg == 0);
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
return (0);
|
|
}
|
|
|
|
mintxg = TXG_INITIAL - 1;
|
|
maxtxg = spa_last_synced_txg(spa) + 1;
|
|
|
|
mutex_enter(&rvd->vdev_dtl_lock);
|
|
|
|
if (rvd->vdev_dtl_map.sm_space == 0) {
|
|
/*
|
|
* The pool-wide DTL is empty.
|
|
* If this is a resilver, there's nothing to do except
|
|
* check whether any in-progress replacements have completed.
|
|
*/
|
|
if (type == POOL_SCRUB_RESILVER) {
|
|
type = POOL_SCRUB_NONE;
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
|
|
}
|
|
} else {
|
|
/*
|
|
* The pool-wide DTL is non-empty.
|
|
* If this is a normal scrub, upgrade to a resilver instead.
|
|
*/
|
|
if (type == POOL_SCRUB_EVERYTHING)
|
|
type = POOL_SCRUB_RESILVER;
|
|
}
|
|
|
|
if (type == POOL_SCRUB_RESILVER) {
|
|
/*
|
|
* Determine the resilvering boundaries.
|
|
*
|
|
* Note: (mintxg, maxtxg) is an open interval,
|
|
* i.e. mintxg and maxtxg themselves are not included.
|
|
*
|
|
* Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
|
|
* so we don't claim to resilver a txg that's still changing.
|
|
*/
|
|
ss = avl_first(&rvd->vdev_dtl_map.sm_root);
|
|
mintxg = ss->ss_start - 1;
|
|
ss = avl_last(&rvd->vdev_dtl_map.sm_root);
|
|
maxtxg = MIN(ss->ss_end, maxtxg);
|
|
|
|
spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START);
|
|
}
|
|
|
|
mutex_exit(&rvd->vdev_dtl_lock);
|
|
|
|
spa->spa_scrub_stop = 0;
|
|
spa->spa_scrub_type = type;
|
|
spa->spa_scrub_restart_txg = 0;
|
|
|
|
if (type != POOL_SCRUB_NONE) {
|
|
spa->spa_scrub_mintxg = mintxg;
|
|
spa->spa_scrub_maxtxg = maxtxg;
|
|
spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
|
|
ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
|
|
ZIO_FLAG_CANFAIL);
|
|
traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
|
|
spa->spa_scrub_thread = thread_create(NULL, 0,
|
|
spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
|
|
}
|
|
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA async task processing
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static void
|
|
spa_async_remove(spa_t *spa, vdev_t *vd)
|
|
{
|
|
vdev_t *tvd;
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
tvd = vd->vdev_child[c];
|
|
if (tvd->vdev_remove_wanted) {
|
|
tvd->vdev_remove_wanted = 0;
|
|
vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
|
|
VDEV_AUX_NONE);
|
|
vdev_clear(spa, tvd, B_TRUE);
|
|
vdev_config_dirty(tvd->vdev_top);
|
|
}
|
|
spa_async_remove(spa, tvd);
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_async_thread(spa_t *spa)
|
|
{
|
|
int tasks;
|
|
uint64_t txg;
|
|
|
|
ASSERT(spa->spa_sync_on);
|
|
|
|
mutex_enter(&spa->spa_async_lock);
|
|
tasks = spa->spa_async_tasks;
|
|
spa->spa_async_tasks = 0;
|
|
mutex_exit(&spa->spa_async_lock);
|
|
|
|
/*
|
|
* See if the config needs to be updated.
|
|
*/
|
|
if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
/*
|
|
* See if any devices need to be marked REMOVED.
|
|
*
|
|
* XXX - We avoid doing this when we are in
|
|
* I/O failure state since spa_vdev_enter() grabs
|
|
* the namespace lock and would not be able to obtain
|
|
* the writer config lock.
|
|
*/
|
|
if (tasks & SPA_ASYNC_REMOVE &&
|
|
spa_state(spa) != POOL_STATE_IO_FAILURE) {
|
|
txg = spa_vdev_enter(spa);
|
|
spa_async_remove(spa, spa->spa_root_vdev);
|
|
(void) spa_vdev_exit(spa, NULL, txg, 0);
|
|
}
|
|
|
|
/*
|
|
* If any devices are done replacing, detach them.
|
|
*/
|
|
if (tasks & SPA_ASYNC_RESILVER_DONE)
|
|
spa_vdev_resilver_done(spa);
|
|
|
|
/*
|
|
* Kick off a scrub. When starting a RESILVER scrub (or an EVERYTHING
|
|
* scrub which can become a resilver), we need to hold
|
|
* spa_namespace_lock() because the sysevent we post via
|
|
* spa_event_notify() needs to get the name of the pool.
|
|
*/
|
|
if (tasks & SPA_ASYNC_SCRUB) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
/*
|
|
* Kick off a resilver.
|
|
*/
|
|
if (tasks & SPA_ASYNC_RESILVER) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
/*
|
|
* Let the world know that we're done.
|
|
*/
|
|
mutex_enter(&spa->spa_async_lock);
|
|
spa->spa_async_thread = NULL;
|
|
cv_broadcast(&spa->spa_async_cv);
|
|
mutex_exit(&spa->spa_async_lock);
|
|
thread_exit();
|
|
}
|
|
|
|
void
|
|
spa_async_suspend(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_async_lock);
|
|
spa->spa_async_suspended++;
|
|
while (spa->spa_async_thread != NULL)
|
|
cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
void
|
|
spa_async_resume(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_async_lock);
|
|
ASSERT(spa->spa_async_suspended != 0);
|
|
spa->spa_async_suspended--;
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
static void
|
|
spa_async_dispatch(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_async_lock);
|
|
if (spa->spa_async_tasks && !spa->spa_async_suspended &&
|
|
spa->spa_async_thread == NULL &&
|
|
rootdir != NULL && !vn_is_readonly(rootdir))
|
|
spa->spa_async_thread = thread_create(NULL, 0,
|
|
spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
void
|
|
spa_async_request(spa_t *spa, int task)
|
|
{
|
|
mutex_enter(&spa->spa_async_lock);
|
|
spa->spa_async_tasks |= task;
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA syncing routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static void
|
|
spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
|
|
{
|
|
bplist_t *bpl = &spa->spa_sync_bplist;
|
|
dmu_tx_t *tx;
|
|
blkptr_t blk;
|
|
uint64_t itor = 0;
|
|
zio_t *zio;
|
|
int error;
|
|
uint8_t c = 1;
|
|
|
|
zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
|
|
|
|
while (bplist_iterate(bpl, &itor, &blk) == 0)
|
|
zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
|
|
|
|
error = zio_wait(zio);
|
|
ASSERT3U(error, ==, 0);
|
|
|
|
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
|
|
bplist_vacate(bpl, tx);
|
|
|
|
/*
|
|
* Pre-dirty the first block so we sync to convergence faster.
|
|
* (Usually only the first block is needed.)
|
|
*/
|
|
dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
static void
|
|
spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
|
|
{
|
|
char *packed = NULL;
|
|
size_t nvsize = 0;
|
|
dmu_buf_t *db;
|
|
|
|
VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
|
|
|
|
packed = kmem_alloc(nvsize, KM_SLEEP);
|
|
|
|
VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
|
|
KM_SLEEP) == 0);
|
|
|
|
dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
|
|
|
|
kmem_free(packed, nvsize);
|
|
|
|
VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
|
|
dmu_buf_will_dirty(db, tx);
|
|
*(uint64_t *)db->db_data = nvsize;
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
|
|
static void
|
|
spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
|
|
const char *config, const char *entry)
|
|
{
|
|
nvlist_t *nvroot;
|
|
nvlist_t **list;
|
|
int i;
|
|
|
|
if (!sav->sav_sync)
|
|
return;
|
|
|
|
/*
|
|
* Update the MOS nvlist describing the list of available devices.
|
|
* spa_validate_aux() will have already made sure this nvlist is
|
|
* valid and the vdevs are labeled appropriately.
|
|
*/
|
|
if (sav->sav_object == 0) {
|
|
sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
|
|
DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
|
|
sizeof (uint64_t), tx);
|
|
VERIFY(zap_update(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
|
|
&sav->sav_object, tx) == 0);
|
|
}
|
|
|
|
VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
if (sav->sav_count == 0) {
|
|
VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
|
|
} else {
|
|
list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
|
|
B_FALSE, B_FALSE, B_TRUE);
|
|
VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
|
|
sav->sav_count) == 0);
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
nvlist_free(list[i]);
|
|
kmem_free(list, sav->sav_count * sizeof (void *));
|
|
}
|
|
|
|
spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
|
|
nvlist_free(nvroot);
|
|
|
|
sav->sav_sync = B_FALSE;
|
|
}
|
|
|
|
static void
|
|
spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
|
|
{
|
|
nvlist_t *config;
|
|
|
|
if (list_is_empty(&spa->spa_dirty_list))
|
|
return;
|
|
|
|
config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
|
|
|
|
if (spa->spa_config_syncing)
|
|
nvlist_free(spa->spa_config_syncing);
|
|
spa->spa_config_syncing = config;
|
|
|
|
spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
|
|
}
|
|
|
|
/*
|
|
* Set zpool properties.
|
|
*/
|
|
static void
|
|
spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = arg1;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
nvlist_t *nvp = arg2;
|
|
nvpair_t *elem;
|
|
uint64_t intval;
|
|
char *strval, *slash;
|
|
zpool_prop_t prop;
|
|
const char *propname;
|
|
zprop_type_t proptype;
|
|
|
|
elem = NULL;
|
|
while ((elem = nvlist_next_nvpair(nvp, elem))) {
|
|
switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
|
|
case ZPOOL_PROP_VERSION:
|
|
/*
|
|
* Only set version for non-zpool-creation cases
|
|
* (set/import). spa_create() needs special care
|
|
* for version setting.
|
|
*/
|
|
if (tx->tx_txg != TXG_INITIAL) {
|
|
VERIFY(nvpair_value_uint64(elem,
|
|
&intval) == 0);
|
|
ASSERT(intval <= SPA_VERSION);
|
|
ASSERT(intval >= spa_version(spa));
|
|
spa->spa_uberblock.ub_version = intval;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
}
|
|
break;
|
|
|
|
case ZPOOL_PROP_ALTROOT:
|
|
/*
|
|
* 'altroot' is a non-persistent property. It should
|
|
* have been set temporarily at creation or import time.
|
|
*/
|
|
ASSERT(spa->spa_root != NULL);
|
|
break;
|
|
|
|
case ZPOOL_PROP_CACHEFILE:
|
|
/*
|
|
* 'cachefile' is a non-persistent property, but note
|
|
* an async request that the config cache needs to be
|
|
* udpated.
|
|
*/
|
|
VERIFY(nvpair_value_string(elem, &strval) == 0);
|
|
if (spa->spa_config_dir)
|
|
spa_strfree(spa->spa_config_dir);
|
|
if (spa->spa_config_file)
|
|
spa_strfree(spa->spa_config_file);
|
|
|
|
if (strval[0] == '\0') {
|
|
spa->spa_config_dir = NULL;
|
|
spa->spa_config_file = NULL;
|
|
} else if (strcmp(strval, "none") == 0) {
|
|
spa->spa_config_dir = spa_strdup(strval);
|
|
spa->spa_config_file = NULL;
|
|
} else {
|
|
/*
|
|
* If the cachefile is in the root directory,
|
|
* we will end up with an empty string for
|
|
* spa_config_dir. This value is only ever
|
|
* used when concatenated with '/', so an empty
|
|
* string still behaves correctly and keeps the
|
|
* rest of the code simple.
|
|
*/
|
|
slash = strrchr(strval, '/');
|
|
ASSERT(slash != NULL);
|
|
*slash = '\0';
|
|
if (strcmp(strval, spa_config_dir) == 0 &&
|
|
strcmp(slash + 1, ZPOOL_CACHE_FILE) == 0) {
|
|
spa->spa_config_dir = NULL;
|
|
spa->spa_config_file = NULL;
|
|
} else {
|
|
spa->spa_config_dir =
|
|
spa_strdup(strval);
|
|
spa->spa_config_file =
|
|
spa_strdup(slash + 1);
|
|
}
|
|
}
|
|
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
|
|
break;
|
|
default:
|
|
/*
|
|
* Set pool property values in the poolprops mos object.
|
|
*/
|
|
mutex_enter(&spa->spa_props_lock);
|
|
if (spa->spa_pool_props_object == 0) {
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
|
|
VERIFY((spa->spa_pool_props_object =
|
|
zap_create(mos, DMU_OT_POOL_PROPS,
|
|
DMU_OT_NONE, 0, tx)) > 0);
|
|
|
|
VERIFY(zap_update(mos,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
|
|
8, 1, &spa->spa_pool_props_object, tx)
|
|
== 0);
|
|
}
|
|
mutex_exit(&spa->spa_props_lock);
|
|
|
|
/* normalize the property name */
|
|
propname = zpool_prop_to_name(prop);
|
|
proptype = zpool_prop_get_type(prop);
|
|
|
|
if (nvpair_type(elem) == DATA_TYPE_STRING) {
|
|
ASSERT(proptype == PROP_TYPE_STRING);
|
|
VERIFY(nvpair_value_string(elem, &strval) == 0);
|
|
VERIFY(zap_update(mos,
|
|
spa->spa_pool_props_object, propname,
|
|
1, strlen(strval) + 1, strval, tx) == 0);
|
|
|
|
} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
|
|
VERIFY(nvpair_value_uint64(elem, &intval) == 0);
|
|
|
|
if (proptype == PROP_TYPE_INDEX) {
|
|
const char *unused;
|
|
VERIFY(zpool_prop_index_to_string(
|
|
prop, intval, &unused) == 0);
|
|
}
|
|
VERIFY(zap_update(mos,
|
|
spa->spa_pool_props_object, propname,
|
|
8, 1, &intval, tx) == 0);
|
|
} else {
|
|
ASSERT(0); /* not allowed */
|
|
}
|
|
|
|
switch (prop) {
|
|
case ZPOOL_PROP_DELEGATION:
|
|
spa->spa_delegation = intval;
|
|
break;
|
|
case ZPOOL_PROP_BOOTFS:
|
|
spa->spa_bootfs = intval;
|
|
break;
|
|
case ZPOOL_PROP_FAILUREMODE:
|
|
spa->spa_failmode = intval;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* log internal history if this is not a zpool create */
|
|
if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
|
|
tx->tx_txg != TXG_INITIAL) {
|
|
spa_history_internal_log(LOG_POOL_PROPSET,
|
|
spa, tx, cr, "%s %lld %s",
|
|
nvpair_name(elem), intval, spa->spa_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sync the specified transaction group. New blocks may be dirtied as
|
|
* part of the process, so we iterate until it converges.
|
|
*/
|
|
void
|
|
spa_sync(spa_t *spa, uint64_t txg)
|
|
{
|
|
dsl_pool_t *dp = spa->spa_dsl_pool;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
bplist_t *bpl = &spa->spa_sync_bplist;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *vd;
|
|
vdev_t *svd[SPA_DVAS_PER_BP];
|
|
int svdcount = 0;
|
|
dmu_tx_t *tx;
|
|
int dirty_vdevs;
|
|
|
|
/*
|
|
* Lock out configuration changes.
|
|
*/
|
|
spa_config_enter(spa, RW_READER, FTAG);
|
|
|
|
spa->spa_syncing_txg = txg;
|
|
spa->spa_sync_pass = 0;
|
|
|
|
VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
|
|
|
|
tx = dmu_tx_create_assigned(dp, txg);
|
|
|
|
/*
|
|
* If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
|
|
* set spa_deflate if we have no raid-z vdevs.
|
|
*/
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
|
|
int i;
|
|
|
|
for (i = 0; i < rvd->vdev_children; i++) {
|
|
vd = rvd->vdev_child[i];
|
|
if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
|
|
break;
|
|
}
|
|
if (i == rvd->vdev_children) {
|
|
spa->spa_deflate = TRUE;
|
|
VERIFY(0 == zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
|
|
sizeof (uint64_t), 1, &spa->spa_deflate, tx));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If anything has changed in this txg, push the deferred frees
|
|
* from the previous txg. If not, leave them alone so that we
|
|
* don't generate work on an otherwise idle system.
|
|
*/
|
|
if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
|
|
!txg_list_empty(&dp->dp_dirty_dirs, txg) ||
|
|
!txg_list_empty(&dp->dp_sync_tasks, txg))
|
|
spa_sync_deferred_frees(spa, txg);
|
|
|
|
/*
|
|
* Iterate to convergence.
|
|
*/
|
|
do {
|
|
spa->spa_sync_pass++;
|
|
|
|
spa_sync_config_object(spa, tx);
|
|
spa_sync_aux_dev(spa, &spa->spa_spares, tx,
|
|
ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
|
|
spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
|
|
ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
|
|
spa_errlog_sync(spa, txg);
|
|
dsl_pool_sync(dp, txg);
|
|
|
|
dirty_vdevs = 0;
|
|
while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
|
|
vdev_sync(vd, txg);
|
|
dirty_vdevs++;
|
|
}
|
|
|
|
bplist_sync(bpl, tx);
|
|
} while (dirty_vdevs);
|
|
|
|
bplist_close(bpl);
|
|
|
|
dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
|
|
|
|
/*
|
|
* Rewrite the vdev configuration (which includes the uberblock)
|
|
* to commit the transaction group.
|
|
*
|
|
* If there are no dirty vdevs, we sync the uberblock to a few
|
|
* random top-level vdevs that are known to be visible in the
|
|
* config cache (see spa_vdev_add() for details). If there *are*
|
|
* dirty vdevs -- or if the sync to our random subset fails --
|
|
* then sync the uberblock to all vdevs.
|
|
*/
|
|
if (list_is_empty(&spa->spa_dirty_list)) {
|
|
int children = rvd->vdev_children;
|
|
int c0 = spa_get_random(children);
|
|
int c;
|
|
|
|
for (c = 0; c < children; c++) {
|
|
vd = rvd->vdev_child[(c0 + c) % children];
|
|
if (vd->vdev_ms_array == 0 || vd->vdev_islog)
|
|
continue;
|
|
svd[svdcount++] = vd;
|
|
if (svdcount == SPA_DVAS_PER_BP)
|
|
break;
|
|
}
|
|
}
|
|
if (svdcount == 0 || vdev_config_sync(svd, svdcount, txg) != 0)
|
|
VERIFY3U(vdev_config_sync(rvd->vdev_child,
|
|
rvd->vdev_children, txg), ==, 0);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
/*
|
|
* Clear the dirty config list.
|
|
*/
|
|
while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
|
|
vdev_config_clean(vd);
|
|
|
|
/*
|
|
* Now that the new config has synced transactionally,
|
|
* let it become visible to the config cache.
|
|
*/
|
|
if (spa->spa_config_syncing != NULL) {
|
|
spa_config_set(spa, spa->spa_config_syncing);
|
|
spa->spa_config_txg = txg;
|
|
spa->spa_config_syncing = NULL;
|
|
}
|
|
|
|
/*
|
|
* Make a stable copy of the fully synced uberblock.
|
|
* We use this as the root for pool traversals.
|
|
*/
|
|
spa->spa_traverse_wanted = 1; /* tells traverse_more() to stop */
|
|
|
|
spa_scrub_suspend(spa); /* stop scrubbing and finish I/Os */
|
|
|
|
rw_enter(&spa->spa_traverse_lock, RW_WRITER);
|
|
spa->spa_traverse_wanted = 0;
|
|
spa->spa_ubsync = spa->spa_uberblock;
|
|
rw_exit(&spa->spa_traverse_lock);
|
|
|
|
spa_scrub_resume(spa); /* resume scrub with new ubsync */
|
|
|
|
/*
|
|
* Clean up the ZIL records for the synced txg.
|
|
*/
|
|
dsl_pool_zil_clean(dp);
|
|
|
|
/*
|
|
* Update usable space statistics.
|
|
*/
|
|
while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
|
|
vdev_sync_done(vd, txg);
|
|
|
|
/*
|
|
* It had better be the case that we didn't dirty anything
|
|
* since vdev_config_sync().
|
|
*/
|
|
ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
|
|
ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
|
|
ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
|
|
ASSERT(bpl->bpl_queue == NULL);
|
|
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
/*
|
|
* If any async tasks have been requested, kick them off.
|
|
*/
|
|
spa_async_dispatch(spa);
|
|
}
|
|
|
|
/*
|
|
* Sync all pools. We don't want to hold the namespace lock across these
|
|
* operations, so we take a reference on the spa_t and drop the lock during the
|
|
* sync.
|
|
*/
|
|
void
|
|
spa_sync_allpools(void)
|
|
{
|
|
spa_t *spa = NULL;
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL) {
|
|
if (spa_state(spa) != POOL_STATE_ACTIVE)
|
|
continue;
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Miscellaneous routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Remove all pools in the system.
|
|
*/
|
|
void
|
|
spa_evict_all(void)
|
|
{
|
|
spa_t *spa;
|
|
|
|
/*
|
|
* Remove all cached state. All pools should be closed now,
|
|
* so every spa in the AVL tree should be unreferenced.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(NULL)) != NULL) {
|
|
/*
|
|
* Stop async tasks. The async thread may need to detach
|
|
* a device that's been replaced, which requires grabbing
|
|
* spa_namespace_lock, so we must drop it here.
|
|
*/
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
spa_async_suspend(spa);
|
|
mutex_enter(&spa_namespace_lock);
|
|
VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
|
|
spa_close(spa, FTAG);
|
|
|
|
if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
}
|
|
spa_remove(spa);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
vdev_t *
|
|
spa_lookup_by_guid(spa_t *spa, uint64_t guid)
|
|
{
|
|
return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
|
|
}
|
|
|
|
void
|
|
spa_upgrade(spa_t *spa, uint64_t version)
|
|
{
|
|
spa_config_enter(spa, RW_WRITER, FTAG);
|
|
|
|
/*
|
|
* This should only be called for a non-faulted pool, and since a
|
|
* future version would result in an unopenable pool, this shouldn't be
|
|
* possible.
|
|
*/
|
|
ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
|
|
ASSERT(version >= spa->spa_uberblock.ub_version);
|
|
|
|
spa->spa_uberblock.ub_version = version;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
|
|
spa_config_exit(spa, FTAG);
|
|
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
}
|
|
|
|
boolean_t
|
|
spa_has_spare(spa_t *spa, uint64_t guid)
|
|
{
|
|
int i;
|
|
uint64_t spareguid;
|
|
spa_aux_vdev_t *sav = &spa->spa_spares;
|
|
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
if (sav->sav_vdevs[i]->vdev_guid == guid)
|
|
return (B_TRUE);
|
|
|
|
for (i = 0; i < sav->sav_npending; i++) {
|
|
if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
|
|
&spareguid) == 0 && spareguid == guid)
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Post a sysevent corresponding to the given event. The 'name' must be one of
|
|
* the event definitions in sys/sysevent/eventdefs.h. The payload will be
|
|
* filled in from the spa and (optionally) the vdev. This doesn't do anything
|
|
* in the userland libzpool, as we don't want consumers to misinterpret ztest
|
|
* or zdb as real changes.
|
|
*/
|
|
void
|
|
spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
|
|
{
|
|
#ifdef _KERNEL
|
|
sysevent_t *ev;
|
|
sysevent_attr_list_t *attr = NULL;
|
|
sysevent_value_t value;
|
|
sysevent_id_t eid;
|
|
|
|
ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
|
|
SE_SLEEP);
|
|
|
|
value.value_type = SE_DATA_TYPE_STRING;
|
|
value.value.sv_string = spa_name(spa);
|
|
if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
|
|
goto done;
|
|
|
|
value.value_type = SE_DATA_TYPE_UINT64;
|
|
value.value.sv_uint64 = spa_guid(spa);
|
|
if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
|
|
goto done;
|
|
|
|
if (vd) {
|
|
value.value_type = SE_DATA_TYPE_UINT64;
|
|
value.value.sv_uint64 = vd->vdev_guid;
|
|
if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
|
|
SE_SLEEP) != 0)
|
|
goto done;
|
|
|
|
if (vd->vdev_path) {
|
|
value.value_type = SE_DATA_TYPE_STRING;
|
|
value.value.sv_string = vd->vdev_path;
|
|
if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
|
|
&value, SE_SLEEP) != 0)
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (sysevent_attach_attributes(ev, attr) != 0)
|
|
goto done;
|
|
attr = NULL;
|
|
|
|
(void) log_sysevent(ev, SE_SLEEP, &eid);
|
|
|
|
done:
|
|
if (attr)
|
|
sysevent_free_attr(attr);
|
|
sysevent_free(ev);
|
|
#endif
|
|
}
|