mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-08 09:10:26 +03:00
1808 lines
48 KiB
C
1808 lines
48 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License, Version 1.0 only
|
|
* (the "License"). You may not use this file except in compliance
|
|
* with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/* #pragma ident "@(#)vmem.c 1.10 05/06/08 SMI" */
|
|
|
|
/*
|
|
* For a more complete description of the main ideas, see:
|
|
*
|
|
* Jeff Bonwick and Jonathan Adams,
|
|
*
|
|
* Magazines and vmem: Extending the Slab Allocator to Many CPUs and
|
|
* Arbitrary Resources.
|
|
*
|
|
* Proceedings of the 2001 Usenix Conference.
|
|
* Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
|
|
*
|
|
* For the "Big Theory Statement", see usr/src/common/os/vmem.c
|
|
*
|
|
* 1. Overview of changes
|
|
* ------------------------------
|
|
* There have been a few changes to vmem in order to support umem. The
|
|
* main areas are:
|
|
*
|
|
* * VM_SLEEP unsupported
|
|
*
|
|
* * Reaping changes
|
|
*
|
|
* * initialization changes
|
|
*
|
|
* * _vmem_extend_alloc
|
|
*
|
|
*
|
|
* 2. VM_SLEEP Removed
|
|
* -------------------
|
|
* Since VM_SLEEP allocations can hold locks (in vmem_populate()) for
|
|
* possibly infinite amounts of time, they are not supported in this
|
|
* version of vmem. Sleep-like behavior can be achieved through
|
|
* UMEM_NOFAIL umem allocations.
|
|
*
|
|
*
|
|
* 3. Reaping changes
|
|
* ------------------
|
|
* Unlike kmem_reap(), which just asynchronously schedules work, umem_reap()
|
|
* can do allocations and frees synchronously. This is a problem if it
|
|
* occurs during a vmem_populate() allocation.
|
|
*
|
|
* Instead, we delay reaps while populates are active.
|
|
*
|
|
*
|
|
* 4. Initialization changes
|
|
* -------------------------
|
|
* In the kernel, vmem_init() allows you to create a single, top-level arena,
|
|
* which has vmem_internal_arena as a child. For umem, we want to be able
|
|
* to extend arenas dynamically. It is much easier to support this if we
|
|
* allow a two-level "heap" arena:
|
|
*
|
|
* +----------+
|
|
* | "fake" |
|
|
* +----------+
|
|
* |
|
|
* +----------+
|
|
* | "heap" |
|
|
* +----------+
|
|
* | \ \
|
|
* | +-+-- ... <other children>
|
|
* |
|
|
* +---------------+
|
|
* | vmem_internal |
|
|
* +---------------+
|
|
* | | | |
|
|
* <children>
|
|
*
|
|
* The new vmem_init() allows you to specify a "parent" of the heap, along
|
|
* with allocation functions.
|
|
*
|
|
*
|
|
* 5. _vmem_extend_alloc
|
|
* ---------------------
|
|
* The other part of extending is _vmem_extend_alloc. This function allows
|
|
* you to extend (expand current spans, if possible) an arena and allocate
|
|
* a chunk of the newly extened span atomically. This is needed to support
|
|
* extending the heap while vmem_populate()ing it.
|
|
*
|
|
* In order to increase the usefulness of extending, non-imported spans are
|
|
* sorted in address order.
|
|
*/
|
|
|
|
#include "config.h"
|
|
/* #include "mtlib.h" */
|
|
#include <sys/vmem_impl_user.h>
|
|
#if HAVE_ALLOCA_H
|
|
#include <alloca.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_SYSMACROS_H
|
|
#include <sys/sysmacros.h>
|
|
#endif
|
|
#include <stdio.h>
|
|
#if HAVE_STRINGS_H
|
|
#include <strings.h>
|
|
#endif
|
|
#if HAVE_ATOMIC_H
|
|
#include <atomic.h>
|
|
#endif
|
|
|
|
#include "vmem_base.h"
|
|
#include "umem_base.h"
|
|
|
|
#define VMEM_INITIAL 6 /* early vmem arenas */
|
|
#define VMEM_SEG_INITIAL 100 /* early segments */
|
|
|
|
/*
|
|
* Adding a new span to an arena requires two segment structures: one to
|
|
* represent the span, and one to represent the free segment it contains.
|
|
*/
|
|
#define VMEM_SEGS_PER_SPAN_CREATE 2
|
|
|
|
/*
|
|
* Allocating a piece of an existing segment requires 0-2 segment structures
|
|
* depending on how much of the segment we're allocating.
|
|
*
|
|
* To allocate the entire segment, no new segment structures are needed; we
|
|
* simply move the existing segment structure from the freelist to the
|
|
* allocation hash table.
|
|
*
|
|
* To allocate a piece from the left or right end of the segment, we must
|
|
* split the segment into two pieces (allocated part and remainder), so we
|
|
* need one new segment structure to represent the remainder.
|
|
*
|
|
* To allocate from the middle of a segment, we need two new segment strucures
|
|
* to represent the remainders on either side of the allocated part.
|
|
*/
|
|
#define VMEM_SEGS_PER_EXACT_ALLOC 0
|
|
#define VMEM_SEGS_PER_LEFT_ALLOC 1
|
|
#define VMEM_SEGS_PER_RIGHT_ALLOC 1
|
|
#define VMEM_SEGS_PER_MIDDLE_ALLOC 2
|
|
|
|
/*
|
|
* vmem_populate() preallocates segment structures for vmem to do its work.
|
|
* It must preallocate enough for the worst case, which is when we must import
|
|
* a new span and then allocate from the middle of it.
|
|
*/
|
|
#define VMEM_SEGS_PER_ALLOC_MAX \
|
|
(VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
|
|
|
|
/*
|
|
* The segment structures themselves are allocated from vmem_seg_arena, so
|
|
* we have a recursion problem when vmem_seg_arena needs to populate itself.
|
|
* We address this by working out the maximum number of segment structures
|
|
* this act will require, and multiplying by the maximum number of threads
|
|
* that we'll allow to do it simultaneously.
|
|
*
|
|
* The worst-case segment consumption to populate vmem_seg_arena is as
|
|
* follows (depicted as a stack trace to indicate why events are occurring):
|
|
*
|
|
* vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc)
|
|
* vmem_alloc(vmem_internal_arena) -> 2 segs (span create + exact alloc)
|
|
* heap_alloc(heap_arena)
|
|
* vmem_alloc(heap_arena) -> 4 seg (span create + alloc)
|
|
* parent_alloc(parent_arena)
|
|
* _vmem_extend_alloc(parent_arena) -> 3 seg (span create + left alloc)
|
|
*
|
|
* Note: The reservation for heap_arena must be 4, since vmem_xalloc()
|
|
* is overly pessimistic on allocations where parent_arena has a stricter
|
|
* alignment than heap_arena.
|
|
*
|
|
* The worst-case consumption for any arena is 4 segment structures.
|
|
* For now, we only support VM_NOSLEEP allocations, so as long as we
|
|
* serialize all vmem_populates, a 4-seg reserve is sufficient.
|
|
*/
|
|
#define VMEM_POPULATE_SEGS_PER_ARENA 4
|
|
#define VMEM_POPULATE_LOCKS 1
|
|
|
|
#define VMEM_POPULATE_RESERVE \
|
|
(VMEM_POPULATE_SEGS_PER_ARENA * VMEM_POPULATE_LOCKS)
|
|
|
|
/*
|
|
* vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
|
|
* so that it can satisfy the worst-case allocation *and* participate in
|
|
* worst-case allocation from vmem_seg_arena.
|
|
*/
|
|
#define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
|
|
|
|
/* Don't assume new statics are zeroed - see vmem_startup() */
|
|
static vmem_t vmem0[VMEM_INITIAL];
|
|
static vmem_t *vmem_populator[VMEM_INITIAL];
|
|
static uint32_t vmem_id;
|
|
static uint32_t vmem_populators;
|
|
static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
|
|
static vmem_seg_t *vmem_segfree;
|
|
static mutex_t vmem_list_lock = DEFAULTMUTEX;
|
|
static mutex_t vmem_segfree_lock = DEFAULTMUTEX;
|
|
static vmem_populate_lock_t vmem_nosleep_lock = {
|
|
DEFAULTMUTEX,
|
|
0
|
|
};
|
|
#define IN_POPULATE() (vmem_nosleep_lock.vmpl_thr == thr_self())
|
|
static vmem_t *vmem_list;
|
|
static vmem_t *vmem_internal_arena;
|
|
static vmem_t *vmem_seg_arena;
|
|
static vmem_t *vmem_hash_arena;
|
|
static vmem_t *vmem_vmem_arena;
|
|
|
|
vmem_t *vmem_heap;
|
|
vmem_alloc_t *vmem_heap_alloc;
|
|
vmem_free_t *vmem_heap_free;
|
|
|
|
uint32_t vmem_mtbf; /* mean time between failures [default: off] */
|
|
size_t vmem_seg_size = sizeof (vmem_seg_t);
|
|
|
|
/*
|
|
* we use the _ version, since we don't want to be cancelled.
|
|
* Actually, this is automatically taken care of by including "mtlib.h".
|
|
*/
|
|
extern int _cond_wait(cond_t *cv, mutex_t *mutex);
|
|
|
|
/*
|
|
* Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
|
|
*/
|
|
#define VMEM_INSERT(vprev, vsp, type) \
|
|
{ \
|
|
vmem_seg_t *vnext = (vprev)->vs_##type##next; \
|
|
(vsp)->vs_##type##next = (vnext); \
|
|
(vsp)->vs_##type##prev = (vprev); \
|
|
(vprev)->vs_##type##next = (vsp); \
|
|
(vnext)->vs_##type##prev = (vsp); \
|
|
}
|
|
|
|
#define VMEM_DELETE(vsp, type) \
|
|
{ \
|
|
vmem_seg_t *vprev = (vsp)->vs_##type##prev; \
|
|
vmem_seg_t *vnext = (vsp)->vs_##type##next; \
|
|
(vprev)->vs_##type##next = (vnext); \
|
|
(vnext)->vs_##type##prev = (vprev); \
|
|
}
|
|
|
|
/*
|
|
* Get a vmem_seg_t from the global segfree list.
|
|
*/
|
|
static vmem_seg_t *
|
|
vmem_getseg_global(void)
|
|
{
|
|
vmem_seg_t *vsp;
|
|
|
|
(void) mutex_lock(&vmem_segfree_lock);
|
|
if ((vsp = vmem_segfree) != NULL)
|
|
vmem_segfree = vsp->vs_knext;
|
|
(void) mutex_unlock(&vmem_segfree_lock);
|
|
|
|
return (vsp);
|
|
}
|
|
|
|
/*
|
|
* Put a vmem_seg_t on the global segfree list.
|
|
*/
|
|
static void
|
|
vmem_putseg_global(vmem_seg_t *vsp)
|
|
{
|
|
(void) mutex_lock(&vmem_segfree_lock);
|
|
vsp->vs_knext = vmem_segfree;
|
|
vmem_segfree = vsp;
|
|
(void) mutex_unlock(&vmem_segfree_lock);
|
|
}
|
|
|
|
/*
|
|
* Get a vmem_seg_t from vmp's segfree list.
|
|
*/
|
|
static vmem_seg_t *
|
|
vmem_getseg(vmem_t *vmp)
|
|
{
|
|
vmem_seg_t *vsp;
|
|
|
|
ASSERT(vmp->vm_nsegfree > 0);
|
|
|
|
vsp = vmp->vm_segfree;
|
|
vmp->vm_segfree = vsp->vs_knext;
|
|
vmp->vm_nsegfree--;
|
|
|
|
return (vsp);
|
|
}
|
|
|
|
/*
|
|
* Put a vmem_seg_t on vmp's segfree list.
|
|
*/
|
|
static void
|
|
vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
|
|
{
|
|
vsp->vs_knext = vmp->vm_segfree;
|
|
vmp->vm_segfree = vsp;
|
|
vmp->vm_nsegfree++;
|
|
}
|
|
|
|
/*
|
|
* Add vsp to the appropriate freelist.
|
|
*/
|
|
static void
|
|
vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
|
|
{
|
|
vmem_seg_t *vprev;
|
|
|
|
ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
|
|
|
|
vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
|
|
vsp->vs_type = VMEM_FREE;
|
|
vmp->vm_freemap |= VS_SIZE(vprev);
|
|
VMEM_INSERT(vprev, vsp, k);
|
|
|
|
(void) cond_broadcast(&vmp->vm_cv);
|
|
}
|
|
|
|
/*
|
|
* Take vsp from the freelist.
|
|
*/
|
|
static void
|
|
vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
|
|
{
|
|
ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
|
|
ASSERT(vsp->vs_type == VMEM_FREE);
|
|
|
|
if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
|
|
/*
|
|
* The segments on both sides of 'vsp' are freelist heads,
|
|
* so taking vsp leaves the freelist at vsp->vs_kprev empty.
|
|
*/
|
|
ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
|
|
vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
|
|
}
|
|
VMEM_DELETE(vsp, k);
|
|
}
|
|
|
|
/*
|
|
* Add vsp to the allocated-segment hash table and update kstats.
|
|
*/
|
|
static void
|
|
vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
|
|
{
|
|
vmem_seg_t **bucket;
|
|
|
|
vsp->vs_type = VMEM_ALLOC;
|
|
bucket = VMEM_HASH(vmp, vsp->vs_start);
|
|
vsp->vs_knext = *bucket;
|
|
*bucket = vsp;
|
|
|
|
if (vmem_seg_size == sizeof (vmem_seg_t)) {
|
|
vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
|
|
VMEM_STACK_DEPTH, 0);
|
|
vsp->vs_thread = thr_self();
|
|
vsp->vs_timestamp = gethrtime();
|
|
} else {
|
|
vsp->vs_depth = 0;
|
|
}
|
|
|
|
vmp->vm_kstat.vk_alloc++;
|
|
vmp->vm_kstat.vk_mem_inuse += VS_SIZE(vsp);
|
|
}
|
|
|
|
/*
|
|
* Remove vsp from the allocated-segment hash table and update kstats.
|
|
*/
|
|
static vmem_seg_t *
|
|
vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
|
|
{
|
|
vmem_seg_t *vsp, **prev_vspp;
|
|
|
|
prev_vspp = VMEM_HASH(vmp, addr);
|
|
while ((vsp = *prev_vspp) != NULL) {
|
|
if (vsp->vs_start == addr) {
|
|
*prev_vspp = vsp->vs_knext;
|
|
break;
|
|
}
|
|
vmp->vm_kstat.vk_lookup++;
|
|
prev_vspp = &vsp->vs_knext;
|
|
}
|
|
|
|
if (vsp == NULL) {
|
|
umem_panic("vmem_hash_delete(%p, %lx, %lu): bad free",
|
|
vmp, addr, size);
|
|
}
|
|
if (VS_SIZE(vsp) != size) {
|
|
umem_panic("vmem_hash_delete(%p, %lx, %lu): wrong size "
|
|
"(expect %lu)", vmp, addr, size, VS_SIZE(vsp));
|
|
}
|
|
|
|
vmp->vm_kstat.vk_free++;
|
|
vmp->vm_kstat.vk_mem_inuse -= size;
|
|
|
|
return (vsp);
|
|
}
|
|
|
|
/*
|
|
* Create a segment spanning the range [start, end) and add it to the arena.
|
|
*/
|
|
static vmem_seg_t *
|
|
vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
|
|
{
|
|
vmem_seg_t *newseg = vmem_getseg(vmp);
|
|
|
|
newseg->vs_start = start;
|
|
newseg->vs_end = end;
|
|
newseg->vs_type = 0;
|
|
newseg->vs_import = 0;
|
|
|
|
VMEM_INSERT(vprev, newseg, a);
|
|
|
|
return (newseg);
|
|
}
|
|
|
|
/*
|
|
* Remove segment vsp from the arena.
|
|
*/
|
|
static void
|
|
vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
|
|
{
|
|
ASSERT(vsp->vs_type != VMEM_ROTOR);
|
|
VMEM_DELETE(vsp, a);
|
|
|
|
vmem_putseg(vmp, vsp);
|
|
}
|
|
|
|
/*
|
|
* Add the span [vaddr, vaddr + size) to vmp and update kstats.
|
|
*/
|
|
static vmem_seg_t *
|
|
vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
|
|
{
|
|
vmem_seg_t *knext;
|
|
vmem_seg_t *newseg, *span;
|
|
uintptr_t start = (uintptr_t)vaddr;
|
|
uintptr_t end = start + size;
|
|
|
|
knext = &vmp->vm_seg0;
|
|
if (!import && vmp->vm_source_alloc == NULL) {
|
|
vmem_seg_t *kend, *kprev;
|
|
/*
|
|
* non-imported spans are sorted in address order. This
|
|
* makes vmem_extend_unlocked() much more effective.
|
|
*
|
|
* We search in reverse order, since new spans are
|
|
* generally at higher addresses.
|
|
*/
|
|
kend = &vmp->vm_seg0;
|
|
for (kprev = kend->vs_kprev; kprev != kend;
|
|
kprev = kprev->vs_kprev) {
|
|
if (!kprev->vs_import && (kprev->vs_end - 1) < start)
|
|
break;
|
|
}
|
|
knext = kprev->vs_knext;
|
|
}
|
|
|
|
ASSERT(MUTEX_HELD(&vmp->vm_lock));
|
|
|
|
if ((start | end) & (vmp->vm_quantum - 1)) {
|
|
umem_panic("vmem_span_create(%p, %p, %lu): misaligned",
|
|
vmp, vaddr, size);
|
|
}
|
|
|
|
span = vmem_seg_create(vmp, knext->vs_aprev, start, end);
|
|
span->vs_type = VMEM_SPAN;
|
|
VMEM_INSERT(knext->vs_kprev, span, k);
|
|
|
|
newseg = vmem_seg_create(vmp, span, start, end);
|
|
vmem_freelist_insert(vmp, newseg);
|
|
|
|
newseg->vs_import = import;
|
|
if (import)
|
|
vmp->vm_kstat.vk_mem_import += size;
|
|
vmp->vm_kstat.vk_mem_total += size;
|
|
|
|
return (newseg);
|
|
}
|
|
|
|
/*
|
|
* Remove span vsp from vmp and update kstats.
|
|
*/
|
|
static void
|
|
vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
|
|
{
|
|
vmem_seg_t *span = vsp->vs_aprev;
|
|
size_t size = VS_SIZE(vsp);
|
|
|
|
ASSERT(MUTEX_HELD(&vmp->vm_lock));
|
|
ASSERT(span->vs_type == VMEM_SPAN);
|
|
|
|
if (vsp->vs_import)
|
|
vmp->vm_kstat.vk_mem_import -= size;
|
|
vmp->vm_kstat.vk_mem_total -= size;
|
|
|
|
VMEM_DELETE(span, k);
|
|
|
|
vmem_seg_destroy(vmp, vsp);
|
|
vmem_seg_destroy(vmp, span);
|
|
}
|
|
|
|
/*
|
|
* Allocate the subrange [addr, addr + size) from segment vsp.
|
|
* If there are leftovers on either side, place them on the freelist.
|
|
* Returns a pointer to the segment representing [addr, addr + size).
|
|
*/
|
|
static vmem_seg_t *
|
|
vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
|
|
{
|
|
uintptr_t vs_start = vsp->vs_start;
|
|
uintptr_t vs_end = vsp->vs_end;
|
|
size_t vs_size = vs_end - vs_start;
|
|
size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
|
|
uintptr_t addr_end = addr + realsize;
|
|
|
|
ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
|
|
ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
|
|
ASSERT(vsp->vs_type == VMEM_FREE);
|
|
ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
|
|
ASSERT(addr - 1 <= addr_end - 1);
|
|
|
|
/*
|
|
* If we're allocating from the start of the segment, and the
|
|
* remainder will be on the same freelist, we can save quite
|
|
* a bit of work.
|
|
*/
|
|
if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
|
|
ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
|
|
vsp->vs_start = addr_end;
|
|
vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
|
|
vmem_hash_insert(vmp, vsp);
|
|
return (vsp);
|
|
}
|
|
|
|
vmem_freelist_delete(vmp, vsp);
|
|
|
|
if (vs_end != addr_end)
|
|
vmem_freelist_insert(vmp,
|
|
vmem_seg_create(vmp, vsp, addr_end, vs_end));
|
|
|
|
if (vs_start != addr)
|
|
vmem_freelist_insert(vmp,
|
|
vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
|
|
|
|
vsp->vs_start = addr;
|
|
vsp->vs_end = addr + size;
|
|
|
|
vmem_hash_insert(vmp, vsp);
|
|
return (vsp);
|
|
}
|
|
|
|
/*
|
|
* We cannot reap if we are in the middle of a vmem_populate().
|
|
*/
|
|
void
|
|
vmem_reap(void)
|
|
{
|
|
if (!IN_POPULATE())
|
|
umem_reap();
|
|
}
|
|
|
|
/*
|
|
* Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
|
|
*/
|
|
static int
|
|
vmem_populate(vmem_t *vmp, int vmflag)
|
|
{
|
|
char *p;
|
|
vmem_seg_t *vsp;
|
|
ssize_t nseg;
|
|
size_t size;
|
|
vmem_populate_lock_t *lp;
|
|
int i;
|
|
|
|
while (vmp->vm_nsegfree < VMEM_MINFREE &&
|
|
(vsp = vmem_getseg_global()) != NULL)
|
|
vmem_putseg(vmp, vsp);
|
|
|
|
if (vmp->vm_nsegfree >= VMEM_MINFREE)
|
|
return (1);
|
|
|
|
/*
|
|
* If we're already populating, tap the reserve.
|
|
*/
|
|
if (vmem_nosleep_lock.vmpl_thr == thr_self()) {
|
|
ASSERT(vmp->vm_cflags & VMC_POPULATOR);
|
|
return (1);
|
|
}
|
|
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
|
|
ASSERT(vmflag & VM_NOSLEEP); /* we do not allow sleep allocations */
|
|
lp = &vmem_nosleep_lock;
|
|
|
|
/*
|
|
* Cannot be just a mutex_lock(), since that has no effect if
|
|
* libthread is not linked.
|
|
*/
|
|
(void) mutex_lock(&lp->vmpl_mutex);
|
|
ASSERT(lp->vmpl_thr == 0);
|
|
lp->vmpl_thr = thr_self();
|
|
|
|
nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
|
|
size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
|
|
nseg = size / vmem_seg_size;
|
|
|
|
/*
|
|
* The following vmem_alloc() may need to populate vmem_seg_arena
|
|
* and all the things it imports from. When doing so, it will tap
|
|
* each arena's reserve to prevent recursion (see the block comment
|
|
* above the definition of VMEM_POPULATE_RESERVE).
|
|
*
|
|
* During this allocation, vmem_reap() is a no-op. If the allocation
|
|
* fails, we call vmem_reap() after dropping the population lock.
|
|
*/
|
|
p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_UMFLAGS);
|
|
if (p == NULL) {
|
|
lp->vmpl_thr = 0;
|
|
(void) mutex_unlock(&lp->vmpl_mutex);
|
|
vmem_reap();
|
|
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
vmp->vm_kstat.vk_populate_fail++;
|
|
return (0);
|
|
}
|
|
/*
|
|
* Restock the arenas that may have been depleted during population.
|
|
*/
|
|
for (i = 0; i < vmem_populators; i++) {
|
|
(void) mutex_lock(&vmem_populator[i]->vm_lock);
|
|
while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
|
|
vmem_putseg(vmem_populator[i],
|
|
(vmem_seg_t *)(p + --nseg * vmem_seg_size));
|
|
(void) mutex_unlock(&vmem_populator[i]->vm_lock);
|
|
}
|
|
|
|
lp->vmpl_thr = 0;
|
|
(void) mutex_unlock(&lp->vmpl_mutex);
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
|
|
/*
|
|
* Now take our own segments.
|
|
*/
|
|
ASSERT(nseg >= VMEM_MINFREE);
|
|
while (vmp->vm_nsegfree < VMEM_MINFREE)
|
|
vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
|
|
|
|
/*
|
|
* Give the remainder to charity.
|
|
*/
|
|
while (nseg > 0)
|
|
vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Advance a walker from its previous position to 'afterme'.
|
|
* Note: may drop and reacquire vmp->vm_lock.
|
|
*/
|
|
static void
|
|
vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
|
|
{
|
|
vmem_seg_t *vprev = walker->vs_aprev;
|
|
vmem_seg_t *vnext = walker->vs_anext;
|
|
vmem_seg_t *vsp = NULL;
|
|
|
|
VMEM_DELETE(walker, a);
|
|
|
|
if (afterme != NULL)
|
|
VMEM_INSERT(afterme, walker, a);
|
|
|
|
/*
|
|
* The walker segment's presence may have prevented its neighbors
|
|
* from coalescing. If so, coalesce them now.
|
|
*/
|
|
if (vprev->vs_type == VMEM_FREE) {
|
|
if (vnext->vs_type == VMEM_FREE) {
|
|
ASSERT(vprev->vs_end == vnext->vs_start);
|
|
vmem_freelist_delete(vmp, vnext);
|
|
vmem_freelist_delete(vmp, vprev);
|
|
vprev->vs_end = vnext->vs_end;
|
|
vmem_freelist_insert(vmp, vprev);
|
|
vmem_seg_destroy(vmp, vnext);
|
|
}
|
|
vsp = vprev;
|
|
} else if (vnext->vs_type == VMEM_FREE) {
|
|
vsp = vnext;
|
|
}
|
|
|
|
/*
|
|
* vsp could represent a complete imported span,
|
|
* in which case we must return it to the source.
|
|
*/
|
|
if (vsp != NULL && vsp->vs_import && vmp->vm_source_free != NULL &&
|
|
vsp->vs_aprev->vs_type == VMEM_SPAN &&
|
|
vsp->vs_anext->vs_type == VMEM_SPAN) {
|
|
void *vaddr = (void *)vsp->vs_start;
|
|
size_t size = VS_SIZE(vsp);
|
|
ASSERT(size == VS_SIZE(vsp->vs_aprev));
|
|
vmem_freelist_delete(vmp, vsp);
|
|
vmem_span_destroy(vmp, vsp);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
vmp->vm_source_free(vmp->vm_source, vaddr, size);
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* VM_NEXTFIT allocations deliberately cycle through all virtual addresses
|
|
* in an arena, so that we avoid reusing addresses for as long as possible.
|
|
* This helps to catch used-after-freed bugs. It's also the perfect policy
|
|
* for allocating things like process IDs, where we want to cycle through
|
|
* all values in order.
|
|
*/
|
|
static void *
|
|
vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
|
|
{
|
|
vmem_seg_t *vsp, *rotor;
|
|
uintptr_t addr;
|
|
size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
|
|
size_t vs_size;
|
|
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
|
|
if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* The common case is that the segment right after the rotor is free,
|
|
* and large enough that extracting 'size' bytes won't change which
|
|
* freelist it's on. In this case we can avoid a *lot* of work.
|
|
* Instead of the normal vmem_seg_alloc(), we just advance the start
|
|
* address of the victim segment. Instead of moving the rotor, we
|
|
* create the new segment structure *behind the rotor*, which has
|
|
* the same effect. And finally, we know we don't have to coalesce
|
|
* the rotor's neighbors because the new segment lies between them.
|
|
*/
|
|
rotor = &vmp->vm_rotor;
|
|
vsp = rotor->vs_anext;
|
|
if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
|
|
P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
|
|
ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
|
|
addr = vsp->vs_start;
|
|
vsp->vs_start = addr + realsize;
|
|
vmem_hash_insert(vmp,
|
|
vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
return ((void *)addr);
|
|
}
|
|
|
|
/*
|
|
* Starting at the rotor, look for a segment large enough to
|
|
* satisfy the allocation.
|
|
*/
|
|
for (;;) {
|
|
vmp->vm_kstat.vk_search++;
|
|
if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
|
|
break;
|
|
vsp = vsp->vs_anext;
|
|
if (vsp == rotor) {
|
|
/*
|
|
* We've come full circle. One possibility is that the
|
|
* there's actually enough space, but the rotor itself
|
|
* is preventing the allocation from succeeding because
|
|
* it's sitting between two free segments. Therefore,
|
|
* we advance the rotor and see if that liberates a
|
|
* suitable segment.
|
|
*/
|
|
vmem_advance(vmp, rotor, rotor->vs_anext);
|
|
vsp = rotor->vs_aprev;
|
|
if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
|
|
break;
|
|
/*
|
|
* If there's a lower arena we can import from, or it's
|
|
* a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
|
|
* Otherwise, wait until another thread frees something.
|
|
*/
|
|
if (vmp->vm_source_alloc != NULL ||
|
|
(vmflag & VM_NOSLEEP)) {
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
return (vmem_xalloc(vmp, size, vmp->vm_quantum,
|
|
0, 0, NULL, NULL, vmflag & VM_UMFLAGS));
|
|
}
|
|
vmp->vm_kstat.vk_wait++;
|
|
(void) _cond_wait(&vmp->vm_cv, &vmp->vm_lock);
|
|
vsp = rotor->vs_anext;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We found a segment. Extract enough space to satisfy the allocation.
|
|
*/
|
|
addr = vsp->vs_start;
|
|
vsp = vmem_seg_alloc(vmp, vsp, addr, size);
|
|
ASSERT(vsp->vs_type == VMEM_ALLOC &&
|
|
vsp->vs_start == addr && vsp->vs_end == addr + size);
|
|
|
|
/*
|
|
* Advance the rotor to right after the newly-allocated segment.
|
|
* That's where the next VM_NEXTFIT allocation will begin searching.
|
|
*/
|
|
vmem_advance(vmp, rotor, vsp);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
return ((void *)addr);
|
|
}
|
|
|
|
/*
|
|
* Allocate size bytes at offset phase from an align boundary such that the
|
|
* resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
|
|
* that does not straddle a nocross-aligned boundary.
|
|
*/
|
|
void *
|
|
vmem_xalloc(vmem_t *vmp, size_t size, size_t align, size_t phase,
|
|
size_t nocross, void *minaddr, void *maxaddr, int vmflag)
|
|
{
|
|
vmem_seg_t *vsp;
|
|
vmem_seg_t *vbest = NULL;
|
|
uintptr_t addr, taddr, start, end;
|
|
void *vaddr;
|
|
int hb, flist, resv;
|
|
uint32_t mtbf;
|
|
|
|
if (phase > 0 && phase >= align)
|
|
umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
|
|
"invalid phase",
|
|
(void *)vmp, size, align, phase, nocross,
|
|
minaddr, maxaddr, vmflag);
|
|
|
|
if (align == 0)
|
|
align = vmp->vm_quantum;
|
|
|
|
if ((align | phase | nocross) & (vmp->vm_quantum - 1)) {
|
|
umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
|
|
"parameters not vm_quantum aligned",
|
|
(void *)vmp, size, align, phase, nocross,
|
|
minaddr, maxaddr, vmflag);
|
|
}
|
|
|
|
if (nocross != 0 &&
|
|
(align > nocross || P2ROUNDUP(phase + size, align) > nocross)) {
|
|
umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
|
|
"overconstrained allocation",
|
|
(void *)vmp, size, align, phase, nocross,
|
|
minaddr, maxaddr, vmflag);
|
|
}
|
|
|
|
if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
|
|
(vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
|
|
return (NULL);
|
|
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
for (;;) {
|
|
if (vmp->vm_nsegfree < VMEM_MINFREE &&
|
|
!vmem_populate(vmp, vmflag))
|
|
break;
|
|
|
|
/*
|
|
* highbit() returns the highest bit + 1, which is exactly
|
|
* what we want: we want to search the first freelist whose
|
|
* members are *definitely* large enough to satisfy our
|
|
* allocation. However, there are certain cases in which we
|
|
* want to look at the next-smallest freelist (which *might*
|
|
* be able to satisfy the allocation):
|
|
*
|
|
* (1) The size is exactly a power of 2, in which case
|
|
* the smaller freelist is always big enough;
|
|
*
|
|
* (2) All other freelists are empty;
|
|
*
|
|
* (3) We're in the highest possible freelist, which is
|
|
* always empty (e.g. the 4GB freelist on 32-bit systems);
|
|
*
|
|
* (4) We're doing a best-fit or first-fit allocation.
|
|
*/
|
|
if ((size & (size - 1)) == 0) {
|
|
flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
|
|
} else {
|
|
hb = highbit(size);
|
|
if ((vmp->vm_freemap >> hb) == 0 ||
|
|
hb == VMEM_FREELISTS ||
|
|
(vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
|
|
hb--;
|
|
flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
|
|
}
|
|
|
|
for (vbest = NULL, vsp = (flist == 0) ? NULL :
|
|
vmp->vm_freelist[flist - 1].vs_knext;
|
|
vsp != NULL; vsp = vsp->vs_knext) {
|
|
vmp->vm_kstat.vk_search++;
|
|
if (vsp->vs_start == 0) {
|
|
/*
|
|
* We're moving up to a larger freelist,
|
|
* so if we've already found a candidate,
|
|
* the fit can't possibly get any better.
|
|
*/
|
|
if (vbest != NULL)
|
|
break;
|
|
/*
|
|
* Find the next non-empty freelist.
|
|
*/
|
|
flist = lowbit(P2ALIGN(vmp->vm_freemap,
|
|
VS_SIZE(vsp)));
|
|
if (flist-- == 0)
|
|
break;
|
|
vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
|
|
ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
|
|
continue;
|
|
}
|
|
if (vsp->vs_end - 1 < (uintptr_t)minaddr)
|
|
continue;
|
|
if (vsp->vs_start > (uintptr_t)maxaddr - 1)
|
|
continue;
|
|
start = MAX(vsp->vs_start, (uintptr_t)minaddr);
|
|
end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
|
|
taddr = P2PHASEUP(start, align, phase);
|
|
if (P2CROSS(taddr, taddr + size - 1, nocross))
|
|
taddr +=
|
|
P2ROUNDUP(P2NPHASE(taddr, nocross), align);
|
|
if ((taddr - start) + size > end - start ||
|
|
(vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
|
|
continue;
|
|
vbest = vsp;
|
|
addr = taddr;
|
|
if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
|
|
break;
|
|
}
|
|
if (vbest != NULL)
|
|
break;
|
|
if (size == 0)
|
|
umem_panic("vmem_xalloc(): size == 0");
|
|
if (vmp->vm_source_alloc != NULL && nocross == 0 &&
|
|
minaddr == NULL && maxaddr == NULL) {
|
|
size_t asize = P2ROUNDUP(size + phase,
|
|
MAX(align, vmp->vm_source->vm_quantum));
|
|
if (asize < size) { /* overflow */
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
if (vmflag & VM_NOSLEEP)
|
|
return (NULL);
|
|
|
|
umem_panic("vmem_xalloc(): "
|
|
"overflow on VM_SLEEP allocation");
|
|
}
|
|
/*
|
|
* Determine how many segment structures we'll consume.
|
|
* The calculation must be presise because if we're
|
|
* here on behalf of vmem_populate(), we are taking
|
|
* segments from a very limited reserve.
|
|
*/
|
|
resv = (size == asize) ?
|
|
VMEM_SEGS_PER_SPAN_CREATE +
|
|
VMEM_SEGS_PER_EXACT_ALLOC :
|
|
VMEM_SEGS_PER_ALLOC_MAX;
|
|
ASSERT(vmp->vm_nsegfree >= resv);
|
|
vmp->vm_nsegfree -= resv; /* reserve our segs */
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
vaddr = vmp->vm_source_alloc(vmp->vm_source, asize,
|
|
vmflag & VM_UMFLAGS);
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
vmp->vm_nsegfree += resv; /* claim reservation */
|
|
if (vaddr != NULL) {
|
|
vbest = vmem_span_create(vmp, vaddr, asize, 1);
|
|
addr = P2PHASEUP(vbest->vs_start, align, phase);
|
|
break;
|
|
}
|
|
}
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
vmem_reap();
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
if (vmflag & VM_NOSLEEP)
|
|
break;
|
|
vmp->vm_kstat.vk_wait++;
|
|
(void) _cond_wait(&vmp->vm_cv, &vmp->vm_lock);
|
|
}
|
|
if (vbest != NULL) {
|
|
ASSERT(vbest->vs_type == VMEM_FREE);
|
|
ASSERT(vbest->vs_knext != vbest);
|
|
(void) vmem_seg_alloc(vmp, vbest, addr, size);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
ASSERT(P2PHASE(addr, align) == phase);
|
|
ASSERT(!P2CROSS(addr, addr + size - 1, nocross));
|
|
ASSERT(addr >= (uintptr_t)minaddr);
|
|
ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
|
|
return ((void *)addr);
|
|
}
|
|
vmp->vm_kstat.vk_fail++;
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
if (vmflag & VM_PANIC)
|
|
umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
|
|
"cannot satisfy mandatory allocation",
|
|
(void *)vmp, size, align, phase, nocross,
|
|
minaddr, maxaddr, vmflag);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Free the segment [vaddr, vaddr + size), where vaddr was a constrained
|
|
* allocation. vmem_xalloc() and vmem_xfree() must always be paired because
|
|
* both routines bypass the quantum caches.
|
|
*/
|
|
void
|
|
vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
|
|
{
|
|
vmem_seg_t *vsp, *vnext, *vprev;
|
|
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
|
|
vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
|
|
vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
|
|
|
|
/*
|
|
* Attempt to coalesce with the next segment.
|
|
*/
|
|
vnext = vsp->vs_anext;
|
|
if (vnext->vs_type == VMEM_FREE) {
|
|
ASSERT(vsp->vs_end == vnext->vs_start);
|
|
vmem_freelist_delete(vmp, vnext);
|
|
vsp->vs_end = vnext->vs_end;
|
|
vmem_seg_destroy(vmp, vnext);
|
|
}
|
|
|
|
/*
|
|
* Attempt to coalesce with the previous segment.
|
|
*/
|
|
vprev = vsp->vs_aprev;
|
|
if (vprev->vs_type == VMEM_FREE) {
|
|
ASSERT(vprev->vs_end == vsp->vs_start);
|
|
vmem_freelist_delete(vmp, vprev);
|
|
vprev->vs_end = vsp->vs_end;
|
|
vmem_seg_destroy(vmp, vsp);
|
|
vsp = vprev;
|
|
}
|
|
|
|
/*
|
|
* If the entire span is free, return it to the source.
|
|
*/
|
|
if (vsp->vs_import && vmp->vm_source_free != NULL &&
|
|
vsp->vs_aprev->vs_type == VMEM_SPAN &&
|
|
vsp->vs_anext->vs_type == VMEM_SPAN) {
|
|
vaddr = (void *)vsp->vs_start;
|
|
size = VS_SIZE(vsp);
|
|
ASSERT(size == VS_SIZE(vsp->vs_aprev));
|
|
vmem_span_destroy(vmp, vsp);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
vmp->vm_source_free(vmp->vm_source, vaddr, size);
|
|
} else {
|
|
vmem_freelist_insert(vmp, vsp);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate size bytes from arena vmp. Returns the allocated address
|
|
* on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP,
|
|
* and may also specify best-fit, first-fit, or next-fit allocation policy
|
|
* instead of the default instant-fit policy. VM_SLEEP allocations are
|
|
* guaranteed to succeed.
|
|
*/
|
|
void *
|
|
vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
|
|
{
|
|
vmem_seg_t *vsp;
|
|
uintptr_t addr;
|
|
int hb;
|
|
int flist = 0;
|
|
uint32_t mtbf;
|
|
|
|
if (size - 1 < vmp->vm_qcache_max) {
|
|
ASSERT(vmflag & VM_NOSLEEP);
|
|
return (_umem_cache_alloc(vmp->vm_qcache[(size - 1) >>
|
|
vmp->vm_qshift], UMEM_DEFAULT));
|
|
}
|
|
|
|
if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
|
|
(vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
|
|
return (NULL);
|
|
|
|
if (vmflag & VM_NEXTFIT)
|
|
return (vmem_nextfit_alloc(vmp, size, vmflag));
|
|
|
|
if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
|
|
return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
|
|
NULL, NULL, vmflag));
|
|
|
|
/*
|
|
* Unconstrained instant-fit allocation from the segment list.
|
|
*/
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
|
|
if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
|
|
if ((size & (size - 1)) == 0)
|
|
flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
|
|
else if ((hb = highbit(size)) < VMEM_FREELISTS)
|
|
flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
|
|
}
|
|
|
|
if (flist-- == 0) {
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
return (vmem_xalloc(vmp, size, vmp->vm_quantum,
|
|
0, 0, NULL, NULL, vmflag));
|
|
}
|
|
|
|
ASSERT(size <= (1UL << flist));
|
|
vsp = vmp->vm_freelist[flist].vs_knext;
|
|
addr = vsp->vs_start;
|
|
(void) vmem_seg_alloc(vmp, vsp, addr, size);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
return ((void *)addr);
|
|
}
|
|
|
|
/*
|
|
* Free the segment [vaddr, vaddr + size).
|
|
*/
|
|
void
|
|
vmem_free(vmem_t *vmp, void *vaddr, size_t size)
|
|
{
|
|
if (size - 1 < vmp->vm_qcache_max)
|
|
_umem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
|
|
vaddr);
|
|
else
|
|
vmem_xfree(vmp, vaddr, size);
|
|
}
|
|
|
|
/*
|
|
* Determine whether arena vmp contains the segment [vaddr, vaddr + size).
|
|
*/
|
|
int
|
|
vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
|
|
{
|
|
uintptr_t start = (uintptr_t)vaddr;
|
|
uintptr_t end = start + size;
|
|
vmem_seg_t *vsp;
|
|
vmem_seg_t *seg0 = &vmp->vm_seg0;
|
|
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
vmp->vm_kstat.vk_contains++;
|
|
for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
|
|
vmp->vm_kstat.vk_contains_search++;
|
|
ASSERT(vsp->vs_type == VMEM_SPAN);
|
|
if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
|
|
break;
|
|
}
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
return (vsp != seg0);
|
|
}
|
|
|
|
/*
|
|
* Add the span [vaddr, vaddr + size) to arena vmp.
|
|
*/
|
|
void *
|
|
vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
|
|
{
|
|
if (vaddr == NULL || size == 0) {
|
|
umem_panic("vmem_add(%p, %p, %lu): bad arguments",
|
|
vmp, vaddr, size);
|
|
}
|
|
|
|
ASSERT(!vmem_contains(vmp, vaddr, size));
|
|
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
if (vmem_populate(vmp, vmflag))
|
|
(void) vmem_span_create(vmp, vaddr, size, 0);
|
|
else
|
|
vaddr = NULL;
|
|
(void) cond_broadcast(&vmp->vm_cv);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
return (vaddr);
|
|
}
|
|
|
|
/*
|
|
* Adds the address range [addr, endaddr) to arena vmp, by either:
|
|
* 1. joining two existing spans, [x, addr), and [endaddr, y) (which
|
|
* are in that order) into a single [x, y) span,
|
|
* 2. expanding an existing [x, addr) span to [x, endaddr),
|
|
* 3. expanding an existing [endaddr, x) span to [addr, x), or
|
|
* 4. creating a new [addr, endaddr) span.
|
|
*
|
|
* Called with vmp->vm_lock held, and a successful vmem_populate() completed.
|
|
* Cannot fail. Returns the new segment.
|
|
*
|
|
* NOTE: this algorithm is linear-time in the number of spans, but is
|
|
* constant-time when you are extending the last (highest-addressed)
|
|
* span.
|
|
*/
|
|
static vmem_seg_t *
|
|
vmem_extend_unlocked(vmem_t *vmp, uintptr_t addr, uintptr_t endaddr)
|
|
{
|
|
vmem_seg_t *span;
|
|
vmem_seg_t *vsp;
|
|
|
|
vmem_seg_t *end = &vmp->vm_seg0;
|
|
|
|
ASSERT(MUTEX_HELD(&vmp->vm_lock));
|
|
|
|
/*
|
|
* the second "if" clause below relies on the direction of this search
|
|
*/
|
|
for (span = end->vs_kprev; span != end; span = span->vs_kprev) {
|
|
if (span->vs_end == addr || span->vs_start == endaddr)
|
|
break;
|
|
}
|
|
|
|
if (span == end)
|
|
return (vmem_span_create(vmp, (void *)addr, endaddr - addr, 0));
|
|
if (span->vs_kprev->vs_end == addr && span->vs_start == endaddr) {
|
|
vmem_seg_t *prevspan = span->vs_kprev;
|
|
vmem_seg_t *nextseg = span->vs_anext;
|
|
vmem_seg_t *prevseg = span->vs_aprev;
|
|
|
|
/*
|
|
* prevspan becomes the span marker for the full range
|
|
*/
|
|
prevspan->vs_end = span->vs_end;
|
|
|
|
/*
|
|
* Notionally, span becomes a free segment representing
|
|
* [addr, endaddr).
|
|
*
|
|
* However, if either of its neighbors are free, we coalesce
|
|
* by destroying span and changing the free segment.
|
|
*/
|
|
if (prevseg->vs_type == VMEM_FREE &&
|
|
nextseg->vs_type == VMEM_FREE) {
|
|
/*
|
|
* coalesce both ways
|
|
*/
|
|
ASSERT(prevseg->vs_end == addr &&
|
|
nextseg->vs_start == endaddr);
|
|
|
|
vmem_freelist_delete(vmp, prevseg);
|
|
prevseg->vs_end = nextseg->vs_end;
|
|
|
|
vmem_freelist_delete(vmp, nextseg);
|
|
VMEM_DELETE(span, k);
|
|
vmem_seg_destroy(vmp, nextseg);
|
|
vmem_seg_destroy(vmp, span);
|
|
|
|
vsp = prevseg;
|
|
} else if (prevseg->vs_type == VMEM_FREE) {
|
|
/*
|
|
* coalesce left
|
|
*/
|
|
ASSERT(prevseg->vs_end == addr);
|
|
|
|
VMEM_DELETE(span, k);
|
|
vmem_seg_destroy(vmp, span);
|
|
|
|
vmem_freelist_delete(vmp, prevseg);
|
|
prevseg->vs_end = endaddr;
|
|
|
|
vsp = prevseg;
|
|
} else if (nextseg->vs_type == VMEM_FREE) {
|
|
/*
|
|
* coalesce right
|
|
*/
|
|
ASSERT(nextseg->vs_start == endaddr);
|
|
|
|
VMEM_DELETE(span, k);
|
|
vmem_seg_destroy(vmp, span);
|
|
|
|
vmem_freelist_delete(vmp, nextseg);
|
|
nextseg->vs_start = addr;
|
|
|
|
vsp = nextseg;
|
|
} else {
|
|
/*
|
|
* cannnot coalesce
|
|
*/
|
|
VMEM_DELETE(span, k);
|
|
span->vs_start = addr;
|
|
span->vs_end = endaddr;
|
|
|
|
vsp = span;
|
|
}
|
|
} else if (span->vs_end == addr) {
|
|
vmem_seg_t *oldseg = span->vs_knext->vs_aprev;
|
|
span->vs_end = endaddr;
|
|
|
|
ASSERT(oldseg->vs_type != VMEM_SPAN);
|
|
if (oldseg->vs_type == VMEM_FREE) {
|
|
ASSERT(oldseg->vs_end == addr);
|
|
vmem_freelist_delete(vmp, oldseg);
|
|
oldseg->vs_end = endaddr;
|
|
vsp = oldseg;
|
|
} else
|
|
vsp = vmem_seg_create(vmp, oldseg, addr, endaddr);
|
|
} else {
|
|
vmem_seg_t *oldseg = span->vs_anext;
|
|
ASSERT(span->vs_start == endaddr);
|
|
span->vs_start = addr;
|
|
|
|
ASSERT(oldseg->vs_type != VMEM_SPAN);
|
|
if (oldseg->vs_type == VMEM_FREE) {
|
|
ASSERT(oldseg->vs_start == endaddr);
|
|
vmem_freelist_delete(vmp, oldseg);
|
|
oldseg->vs_start = addr;
|
|
vsp = oldseg;
|
|
} else
|
|
vsp = vmem_seg_create(vmp, span, addr, endaddr);
|
|
}
|
|
vmem_freelist_insert(vmp, vsp);
|
|
vmp->vm_kstat.vk_mem_total += (endaddr - addr);
|
|
return (vsp);
|
|
}
|
|
|
|
/*
|
|
* Does some error checking, calls vmem_extend_unlocked to add
|
|
* [vaddr, vaddr+size) to vmp, then allocates alloc bytes from the
|
|
* newly merged segment.
|
|
*/
|
|
void *
|
|
_vmem_extend_alloc(vmem_t *vmp, void *vaddr, size_t size, size_t alloc,
|
|
int vmflag)
|
|
{
|
|
uintptr_t addr = (uintptr_t)vaddr;
|
|
uintptr_t endaddr = addr + size;
|
|
vmem_seg_t *vsp;
|
|
|
|
ASSERT(vaddr != NULL && size != 0 && endaddr > addr);
|
|
ASSERT(alloc <= size && alloc != 0);
|
|
ASSERT(((addr | size | alloc) & (vmp->vm_quantum - 1)) == 0);
|
|
|
|
ASSERT(!vmem_contains(vmp, vaddr, size));
|
|
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
if (!vmem_populate(vmp, vmflag)) {
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
return (NULL);
|
|
}
|
|
/*
|
|
* if there is a source, we can't mess with the spans
|
|
*/
|
|
if (vmp->vm_source_alloc != NULL)
|
|
vsp = vmem_span_create(vmp, vaddr, size, 0);
|
|
else
|
|
vsp = vmem_extend_unlocked(vmp, addr, endaddr);
|
|
|
|
ASSERT(VS_SIZE(vsp) >= alloc);
|
|
|
|
addr = vsp->vs_start;
|
|
(void) vmem_seg_alloc(vmp, vsp, addr, alloc);
|
|
vaddr = (void *)addr;
|
|
|
|
(void) cond_broadcast(&vmp->vm_cv);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
|
|
return (vaddr);
|
|
}
|
|
|
|
/*
|
|
* Walk the vmp arena, applying func to each segment matching typemask.
|
|
* If VMEM_REENTRANT is specified, the arena lock is dropped across each
|
|
* call to func(); otherwise, it is held for the duration of vmem_walk()
|
|
* to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks
|
|
* are *not* necessarily consistent, so they may only be used when a hint
|
|
* is adequate.
|
|
*/
|
|
void
|
|
vmem_walk(vmem_t *vmp, int typemask,
|
|
void (*func)(void *, void *, size_t), void *arg)
|
|
{
|
|
vmem_seg_t *vsp;
|
|
vmem_seg_t *seg0 = &vmp->vm_seg0;
|
|
vmem_seg_t walker;
|
|
|
|
if (typemask & VMEM_WALKER)
|
|
return;
|
|
|
|
bzero(&walker, sizeof (walker));
|
|
walker.vs_type = VMEM_WALKER;
|
|
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
VMEM_INSERT(seg0, &walker, a);
|
|
for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
|
|
if (vsp->vs_type & typemask) {
|
|
void *start = (void *)vsp->vs_start;
|
|
size_t size = VS_SIZE(vsp);
|
|
if (typemask & VMEM_REENTRANT) {
|
|
vmem_advance(vmp, &walker, vsp);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
func(arg, start, size);
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
vsp = &walker;
|
|
} else {
|
|
func(arg, start, size);
|
|
}
|
|
}
|
|
}
|
|
vmem_advance(vmp, &walker, NULL);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
}
|
|
|
|
/*
|
|
* Return the total amount of memory whose type matches typemask. Thus:
|
|
*
|
|
* typemask VMEM_ALLOC yields total memory allocated (in use).
|
|
* typemask VMEM_FREE yields total memory free (available).
|
|
* typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
|
|
*/
|
|
size_t
|
|
vmem_size(vmem_t *vmp, int typemask)
|
|
{
|
|
uint64_t size = 0;
|
|
|
|
if (typemask & VMEM_ALLOC)
|
|
size += vmp->vm_kstat.vk_mem_inuse;
|
|
if (typemask & VMEM_FREE)
|
|
size += vmp->vm_kstat.vk_mem_total -
|
|
vmp->vm_kstat.vk_mem_inuse;
|
|
return ((size_t)size);
|
|
}
|
|
|
|
/*
|
|
* Create an arena called name whose initial span is [base, base + size).
|
|
* The arena's natural unit of currency is quantum, so vmem_alloc()
|
|
* guarantees quantum-aligned results. The arena may import new spans
|
|
* by invoking afunc() on source, and may return those spans by invoking
|
|
* ffunc() on source. To make small allocations fast and scalable,
|
|
* the arena offers high-performance caching for each integer multiple
|
|
* of quantum up to qcache_max.
|
|
*/
|
|
vmem_t *
|
|
vmem_create(const char *name, void *base, size_t size, size_t quantum,
|
|
vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
|
|
size_t qcache_max, int vmflag)
|
|
{
|
|
int i;
|
|
size_t nqcache;
|
|
vmem_t *vmp, *cur, **vmpp;
|
|
vmem_seg_t *vsp;
|
|
vmem_freelist_t *vfp;
|
|
uint32_t id = atomic_add_32_nv(&vmem_id, 1);
|
|
|
|
if (vmem_vmem_arena != NULL) {
|
|
vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
|
|
vmflag & VM_UMFLAGS);
|
|
} else {
|
|
ASSERT(id <= VMEM_INITIAL);
|
|
vmp = &vmem0[id - 1];
|
|
}
|
|
|
|
if (vmp == NULL)
|
|
return (NULL);
|
|
bzero(vmp, sizeof (vmem_t));
|
|
|
|
(void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
|
|
(void) mutex_init(&vmp->vm_lock, USYNC_THREAD, NULL);
|
|
(void) cond_init(&vmp->vm_cv, USYNC_THREAD, NULL);
|
|
vmp->vm_cflags = vmflag;
|
|
vmflag &= VM_UMFLAGS;
|
|
|
|
vmp->vm_quantum = quantum;
|
|
vmp->vm_qshift = highbit(quantum) - 1;
|
|
nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
|
|
|
|
for (i = 0; i <= VMEM_FREELISTS; i++) {
|
|
vfp = &vmp->vm_freelist[i];
|
|
vfp->vs_end = 1UL << i;
|
|
vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
|
|
vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
|
|
}
|
|
|
|
vmp->vm_freelist[0].vs_kprev = NULL;
|
|
vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
|
|
vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
|
|
vmp->vm_hash_table = vmp->vm_hash0;
|
|
vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
|
|
vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
|
|
|
|
vsp = &vmp->vm_seg0;
|
|
vsp->vs_anext = vsp;
|
|
vsp->vs_aprev = vsp;
|
|
vsp->vs_knext = vsp;
|
|
vsp->vs_kprev = vsp;
|
|
vsp->vs_type = VMEM_SPAN;
|
|
|
|
vsp = &vmp->vm_rotor;
|
|
vsp->vs_type = VMEM_ROTOR;
|
|
VMEM_INSERT(&vmp->vm_seg0, vsp, a);
|
|
|
|
vmp->vm_id = id;
|
|
if (source != NULL)
|
|
vmp->vm_kstat.vk_source_id = source->vm_id;
|
|
vmp->vm_source = source;
|
|
vmp->vm_source_alloc = afunc;
|
|
vmp->vm_source_free = ffunc;
|
|
|
|
if (nqcache != 0) {
|
|
vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
|
|
for (i = 0; i < nqcache; i++) {
|
|
char buf[VMEM_NAMELEN + 21];
|
|
(void) snprintf(buf, sizeof (buf), "%s_%lu",
|
|
vmp->vm_name, (long)((i + 1) * quantum));
|
|
vmp->vm_qcache[i] = umem_cache_create(buf,
|
|
(i + 1) * quantum, quantum, NULL, NULL, NULL,
|
|
NULL, vmp, UMC_QCACHE | UMC_NOTOUCH);
|
|
if (vmp->vm_qcache[i] == NULL) {
|
|
vmp->vm_qcache_max = i * quantum;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
(void) mutex_lock(&vmem_list_lock);
|
|
vmpp = &vmem_list;
|
|
while ((cur = *vmpp) != NULL)
|
|
vmpp = &cur->vm_next;
|
|
*vmpp = vmp;
|
|
(void) mutex_unlock(&vmem_list_lock);
|
|
|
|
if (vmp->vm_cflags & VMC_POPULATOR) {
|
|
uint_t pop_id = atomic_add_32_nv(&vmem_populators, 1);
|
|
ASSERT(pop_id <= VMEM_INITIAL);
|
|
vmem_populator[pop_id - 1] = vmp;
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
(void) vmem_populate(vmp, vmflag | VM_PANIC);
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
}
|
|
|
|
if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
|
|
vmem_destroy(vmp);
|
|
return (NULL);
|
|
}
|
|
|
|
return (vmp);
|
|
}
|
|
|
|
/*
|
|
* Destroy arena vmp.
|
|
*/
|
|
void
|
|
vmem_destroy(vmem_t *vmp)
|
|
{
|
|
vmem_t *cur, **vmpp;
|
|
vmem_seg_t *seg0 = &vmp->vm_seg0;
|
|
vmem_seg_t *vsp;
|
|
size_t leaked;
|
|
int i;
|
|
|
|
(void) mutex_lock(&vmem_list_lock);
|
|
vmpp = &vmem_list;
|
|
while ((cur = *vmpp) != vmp)
|
|
vmpp = &cur->vm_next;
|
|
*vmpp = vmp->vm_next;
|
|
(void) mutex_unlock(&vmem_list_lock);
|
|
|
|
for (i = 0; i < VMEM_NQCACHE_MAX; i++)
|
|
if (vmp->vm_qcache[i])
|
|
umem_cache_destroy(vmp->vm_qcache[i]);
|
|
|
|
leaked = vmem_size(vmp, VMEM_ALLOC);
|
|
if (leaked != 0)
|
|
umem_printf("vmem_destroy('%s'): leaked %lu bytes",
|
|
vmp->vm_name, leaked);
|
|
|
|
if (vmp->vm_hash_table != vmp->vm_hash0)
|
|
vmem_free(vmem_hash_arena, vmp->vm_hash_table,
|
|
(vmp->vm_hash_mask + 1) * sizeof (void *));
|
|
|
|
/*
|
|
* Give back the segment structures for anything that's left in the
|
|
* arena, e.g. the primary spans and their free segments.
|
|
*/
|
|
VMEM_DELETE(&vmp->vm_rotor, a);
|
|
for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext)
|
|
vmem_putseg_global(vsp);
|
|
|
|
while (vmp->vm_nsegfree > 0)
|
|
vmem_putseg_global(vmem_getseg(vmp));
|
|
|
|
(void) mutex_destroy(&vmp->vm_lock);
|
|
(void) cond_destroy(&vmp->vm_cv);
|
|
vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
|
|
}
|
|
|
|
/*
|
|
* Resize vmp's hash table to keep the average lookup depth near 1.0.
|
|
*/
|
|
static void
|
|
vmem_hash_rescale(vmem_t *vmp)
|
|
{
|
|
vmem_seg_t **old_table, **new_table, *vsp;
|
|
size_t old_size, new_size, h, nseg;
|
|
|
|
nseg = (size_t)(vmp->vm_kstat.vk_alloc - vmp->vm_kstat.vk_free);
|
|
|
|
new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
|
|
old_size = vmp->vm_hash_mask + 1;
|
|
|
|
if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
|
|
return;
|
|
|
|
new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
|
|
VM_NOSLEEP);
|
|
if (new_table == NULL)
|
|
return;
|
|
bzero(new_table, new_size * sizeof (void *));
|
|
|
|
(void) mutex_lock(&vmp->vm_lock);
|
|
|
|
old_size = vmp->vm_hash_mask + 1;
|
|
old_table = vmp->vm_hash_table;
|
|
|
|
vmp->vm_hash_mask = new_size - 1;
|
|
vmp->vm_hash_table = new_table;
|
|
vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
|
|
|
|
for (h = 0; h < old_size; h++) {
|
|
vsp = old_table[h];
|
|
while (vsp != NULL) {
|
|
uintptr_t addr = vsp->vs_start;
|
|
vmem_seg_t *next_vsp = vsp->vs_knext;
|
|
vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
|
|
vsp->vs_knext = *hash_bucket;
|
|
*hash_bucket = vsp;
|
|
vsp = next_vsp;
|
|
}
|
|
}
|
|
|
|
(void) mutex_unlock(&vmp->vm_lock);
|
|
|
|
if (old_table != vmp->vm_hash0)
|
|
vmem_free(vmem_hash_arena, old_table,
|
|
old_size * sizeof (void *));
|
|
}
|
|
|
|
/*
|
|
* Perform periodic maintenance on all vmem arenas.
|
|
*/
|
|
/*ARGSUSED*/
|
|
void
|
|
vmem_update(void *dummy)
|
|
{
|
|
vmem_t *vmp;
|
|
|
|
(void) mutex_lock(&vmem_list_lock);
|
|
for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
|
|
/*
|
|
* If threads are waiting for resources, wake them up
|
|
* periodically so they can issue another vmem_reap()
|
|
* to reclaim resources cached by the slab allocator.
|
|
*/
|
|
(void) cond_broadcast(&vmp->vm_cv);
|
|
|
|
/*
|
|
* Rescale the hash table to keep the hash chains short.
|
|
*/
|
|
vmem_hash_rescale(vmp);
|
|
}
|
|
(void) mutex_unlock(&vmem_list_lock);
|
|
}
|
|
|
|
/*
|
|
* If vmem_init is called again, we need to be able to reset the world.
|
|
* That includes resetting the statics back to their original values.
|
|
*/
|
|
void
|
|
vmem_startup(void)
|
|
{
|
|
#ifdef UMEM_STANDALONE
|
|
vmem_id = 0;
|
|
vmem_populators = 0;
|
|
vmem_segfree = NULL;
|
|
vmem_list = NULL;
|
|
vmem_internal_arena = NULL;
|
|
vmem_seg_arena = NULL;
|
|
vmem_hash_arena = NULL;
|
|
vmem_vmem_arena = NULL;
|
|
vmem_heap = NULL;
|
|
vmem_heap_alloc = NULL;
|
|
vmem_heap_free = NULL;
|
|
|
|
bzero(vmem0, sizeof (vmem0));
|
|
bzero(vmem_populator, sizeof (vmem_populator));
|
|
bzero(vmem_seg0, sizeof (vmem_seg0));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Prepare vmem for use.
|
|
*/
|
|
vmem_t *
|
|
vmem_init(const char *parent_name, size_t parent_quantum,
|
|
vmem_alloc_t *parent_alloc, vmem_free_t *parent_free,
|
|
const char *heap_name, void *heap_start, size_t heap_size,
|
|
size_t heap_quantum, vmem_alloc_t *heap_alloc, vmem_free_t *heap_free)
|
|
{
|
|
uint32_t id;
|
|
int nseg = VMEM_SEG_INITIAL;
|
|
vmem_t *parent, *heap;
|
|
|
|
ASSERT(vmem_internal_arena == NULL);
|
|
|
|
while (--nseg >= 0)
|
|
vmem_putseg_global(&vmem_seg0[nseg]);
|
|
|
|
if (parent_name != NULL) {
|
|
parent = vmem_create(parent_name,
|
|
heap_start, heap_size, parent_quantum,
|
|
NULL, NULL, NULL, 0,
|
|
VM_SLEEP | VMC_POPULATOR);
|
|
heap_start = NULL;
|
|
heap_size = 0;
|
|
} else {
|
|
ASSERT(parent_alloc == NULL && parent_free == NULL);
|
|
parent = NULL;
|
|
}
|
|
|
|
heap = vmem_create(heap_name,
|
|
heap_start, heap_size, heap_quantum,
|
|
parent_alloc, parent_free, parent, 0,
|
|
VM_SLEEP | VMC_POPULATOR);
|
|
|
|
vmem_heap = heap;
|
|
vmem_heap_alloc = heap_alloc;
|
|
vmem_heap_free = heap_free;
|
|
|
|
vmem_internal_arena = vmem_create("vmem_internal",
|
|
NULL, 0, heap_quantum,
|
|
heap_alloc, heap_free, heap, 0,
|
|
VM_SLEEP | VMC_POPULATOR);
|
|
|
|
vmem_seg_arena = vmem_create("vmem_seg",
|
|
NULL, 0, heap_quantum,
|
|
vmem_alloc, vmem_free, vmem_internal_arena, 0,
|
|
VM_SLEEP | VMC_POPULATOR);
|
|
|
|
vmem_hash_arena = vmem_create("vmem_hash",
|
|
NULL, 0, 8,
|
|
vmem_alloc, vmem_free, vmem_internal_arena, 0,
|
|
VM_SLEEP);
|
|
|
|
vmem_vmem_arena = vmem_create("vmem_vmem",
|
|
vmem0, sizeof (vmem0), 1,
|
|
vmem_alloc, vmem_free, vmem_internal_arena, 0,
|
|
VM_SLEEP);
|
|
|
|
for (id = 0; id < vmem_id; id++)
|
|
(void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
|
|
1, 0, 0, &vmem0[id], &vmem0[id + 1],
|
|
VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
|
|
|
|
return (heap);
|
|
}
|
|
|
|
void
|
|
vmem_no_debug(void)
|
|
{
|
|
/*
|
|
* This size must be a multiple of the minimum required alignment,
|
|
* since vmem_populate allocates them compactly.
|
|
*/
|
|
vmem_seg_size = P2ROUNDUP(offsetof(vmem_seg_t, vs_thread),
|
|
sizeof (hrtime_t));
|
|
}
|
|
|
|
/*
|
|
* Lockup and release, for fork1(2) handling.
|
|
*/
|
|
void
|
|
vmem_lockup(void)
|
|
{
|
|
vmem_t *cur;
|
|
|
|
(void) mutex_lock(&vmem_list_lock);
|
|
(void) mutex_lock(&vmem_nosleep_lock.vmpl_mutex);
|
|
|
|
/*
|
|
* Lock up and broadcast all arenas.
|
|
*/
|
|
for (cur = vmem_list; cur != NULL; cur = cur->vm_next) {
|
|
(void) mutex_lock(&cur->vm_lock);
|
|
(void) cond_broadcast(&cur->vm_cv);
|
|
}
|
|
|
|
(void) mutex_lock(&vmem_segfree_lock);
|
|
}
|
|
|
|
void
|
|
vmem_release(void)
|
|
{
|
|
vmem_t *cur;
|
|
|
|
(void) mutex_unlock(&vmem_nosleep_lock.vmpl_mutex);
|
|
|
|
for (cur = vmem_list; cur != NULL; cur = cur->vm_next)
|
|
(void) mutex_unlock(&cur->vm_lock);
|
|
|
|
(void) mutex_unlock(&vmem_segfree_lock);
|
|
(void) mutex_unlock(&vmem_list_lock);
|
|
}
|