mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-27 11:29:36 +03:00
641bebe35f
This regression test could crash in splat_kmem_cache_test_reclaim() due to a race between the slab relclaim and the normal exiting of the thread. Specifically, the kct structure could be free'd by the thread performing the allocations while the reclaim function was also working on that's threads kct structure. The simplest fix is to extend the kcp->kcp_lock over the reclaim to prevent the kct from being freed. A better fix would be to ref count these structures, but since is just a regression this locking change is enough. Surprisingly this was only observed commonly under RHEL5.4 but all platform could have hit this.
1194 lines
32 KiB
C
1194 lines
32 KiB
C
/*
|
|
* This file is part of the SPL: Solaris Porting Layer.
|
|
*
|
|
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory
|
|
* Written by:
|
|
* Brian Behlendorf <behlendorf1@llnl.gov>,
|
|
* Herb Wartens <wartens2@llnl.gov>,
|
|
* Jim Garlick <garlick@llnl.gov>
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "splat-internal.h"
|
|
|
|
#define SPLAT_KMEM_NAME "kmem"
|
|
#define SPLAT_KMEM_DESC "Kernel Malloc/Slab Tests"
|
|
|
|
#define SPLAT_KMEM_TEST1_ID 0x0101
|
|
#define SPLAT_KMEM_TEST1_NAME "kmem_alloc"
|
|
#define SPLAT_KMEM_TEST1_DESC "Memory allocation test (kmem_alloc)"
|
|
|
|
#define SPLAT_KMEM_TEST2_ID 0x0102
|
|
#define SPLAT_KMEM_TEST2_NAME "kmem_zalloc"
|
|
#define SPLAT_KMEM_TEST2_DESC "Memory allocation test (kmem_zalloc)"
|
|
|
|
#define SPLAT_KMEM_TEST3_ID 0x0103
|
|
#define SPLAT_KMEM_TEST3_NAME "vmem_alloc"
|
|
#define SPLAT_KMEM_TEST3_DESC "Memory allocation test (vmem_alloc)"
|
|
|
|
#define SPLAT_KMEM_TEST4_ID 0x0104
|
|
#define SPLAT_KMEM_TEST4_NAME "vmem_zalloc"
|
|
#define SPLAT_KMEM_TEST4_DESC "Memory allocation test (vmem_zalloc)"
|
|
|
|
#define SPLAT_KMEM_TEST5_ID 0x0105
|
|
#define SPLAT_KMEM_TEST5_NAME "slab_small"
|
|
#define SPLAT_KMEM_TEST5_DESC "Slab ctor/dtor test (small)"
|
|
|
|
#define SPLAT_KMEM_TEST6_ID 0x0106
|
|
#define SPLAT_KMEM_TEST6_NAME "slab_large"
|
|
#define SPLAT_KMEM_TEST6_DESC "Slab ctor/dtor test (large)"
|
|
|
|
#define SPLAT_KMEM_TEST7_ID 0x0107
|
|
#define SPLAT_KMEM_TEST7_NAME "slab_align"
|
|
#define SPLAT_KMEM_TEST7_DESC "Slab alignment test"
|
|
|
|
#define SPLAT_KMEM_TEST8_ID 0x0108
|
|
#define SPLAT_KMEM_TEST8_NAME "slab_reap"
|
|
#define SPLAT_KMEM_TEST8_DESC "Slab reaping test"
|
|
|
|
#define SPLAT_KMEM_TEST9_ID 0x0109
|
|
#define SPLAT_KMEM_TEST9_NAME "slab_age"
|
|
#define SPLAT_KMEM_TEST9_DESC "Slab aging test"
|
|
|
|
#define SPLAT_KMEM_TEST10_ID 0x010a
|
|
#define SPLAT_KMEM_TEST10_NAME "slab_lock"
|
|
#define SPLAT_KMEM_TEST10_DESC "Slab locking test"
|
|
|
|
#ifdef _LP64
|
|
#define SPLAT_KMEM_TEST11_ID 0x010b
|
|
#define SPLAT_KMEM_TEST11_NAME "slab_overcommit"
|
|
#define SPLAT_KMEM_TEST11_DESC "Slab memory overcommit test"
|
|
#endif /* _LP64 */
|
|
|
|
#define SPLAT_KMEM_TEST12_ID 0x010c
|
|
#define SPLAT_KMEM_TEST12_NAME "vmem_size"
|
|
#define SPLAT_KMEM_TEST12_DESC "Memory zone test"
|
|
|
|
#define SPLAT_KMEM_ALLOC_COUNT 10
|
|
#define SPLAT_VMEM_ALLOC_COUNT 10
|
|
|
|
|
|
static int
|
|
splat_kmem_test1(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_KMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, count, rc = 0;
|
|
|
|
/* We are intentionally going to push kmem_alloc to its max
|
|
* allocation size, so suppress the console warnings for now */
|
|
kmem_set_warning(0);
|
|
|
|
while ((!rc) && (size <= (PAGE_SIZE * 32))) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = kmem_alloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
kmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_KMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_KMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
kmem_set_warning(1);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test2(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_KMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, j, count, rc = 0;
|
|
|
|
/* We are intentionally going to push kmem_alloc to its max
|
|
* allocation size, so suppress the console warnings for now */
|
|
kmem_set_warning(0);
|
|
|
|
while ((!rc) && (size <= (PAGE_SIZE * 32))) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = kmem_zalloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
/* Ensure buffer has been zero filled */
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
if (((char *)ptr[i])[j] != '\0') {
|
|
splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
|
|
"%d-byte allocation was "
|
|
"not zeroed\n", size);
|
|
rc = -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
kmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_KMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_KMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
kmem_set_warning(1);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test3(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_VMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, count, rc = 0;
|
|
|
|
while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = vmem_alloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
vmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_VMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_VMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test4(struct file *file, void *arg)
|
|
{
|
|
void *ptr[SPLAT_VMEM_ALLOC_COUNT];
|
|
int size = PAGE_SIZE;
|
|
int i, j, count, rc = 0;
|
|
|
|
while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
|
|
count = 0;
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
|
|
ptr[i] = vmem_zalloc(size, KM_SLEEP);
|
|
if (ptr[i])
|
|
count++;
|
|
}
|
|
|
|
/* Ensure buffer has been zero filled */
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
|
|
for (j = 0; j < size; j++) {
|
|
if (((char *)ptr[i])[j] != '\0') {
|
|
splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
|
|
"%d-byte allocation was "
|
|
"not zeroed\n", size);
|
|
rc = -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
|
|
if (ptr[i])
|
|
vmem_free(ptr[i], size);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
|
|
"%d byte allocations, %d/%d successful\n",
|
|
size, count, SPLAT_VMEM_ALLOC_COUNT);
|
|
if (count != SPLAT_VMEM_ALLOC_COUNT)
|
|
rc = -ENOMEM;
|
|
|
|
size *= 2;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#define SPLAT_KMEM_TEST_MAGIC 0x004488CCUL
|
|
#define SPLAT_KMEM_CACHE_NAME "kmem_test"
|
|
#define SPLAT_KMEM_OBJ_COUNT 1024
|
|
#define SPLAT_KMEM_OBJ_RECLAIM 20 /* percent */
|
|
#define SPLAT_KMEM_THREADS 32
|
|
|
|
#define KCP_FLAG_READY 0x01
|
|
|
|
typedef struct kmem_cache_data {
|
|
unsigned long kcd_magic;
|
|
int kcd_flag;
|
|
char kcd_buf[0];
|
|
} kmem_cache_data_t;
|
|
|
|
typedef struct kmem_cache_thread {
|
|
kmem_cache_t *kct_cache;
|
|
spinlock_t kct_lock;
|
|
int kct_id;
|
|
int kct_kcd_count;
|
|
kmem_cache_data_t *kct_kcd[0];
|
|
} kmem_cache_thread_t;
|
|
|
|
typedef struct kmem_cache_priv {
|
|
unsigned long kcp_magic;
|
|
struct file *kcp_file;
|
|
kmem_cache_t *kcp_cache;
|
|
spinlock_t kcp_lock;
|
|
wait_queue_head_t kcp_ctl_waitq;
|
|
wait_queue_head_t kcp_thr_waitq;
|
|
int kcp_flags;
|
|
int kcp_kct_count;
|
|
kmem_cache_thread_t *kcp_kct[SPLAT_KMEM_THREADS];
|
|
int kcp_size;
|
|
int kcp_align;
|
|
int kcp_count;
|
|
int kcp_alloc;
|
|
int kcp_rc;
|
|
int kcp_kcd_count;
|
|
kmem_cache_data_t *kcp_kcd[0];
|
|
} kmem_cache_priv_t;
|
|
|
|
static kmem_cache_priv_t *
|
|
splat_kmem_cache_test_kcp_alloc(struct file *file, char *name,
|
|
int size, int align, int alloc, int count)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
|
|
kcp = vmem_zalloc(sizeof(kmem_cache_priv_t) +
|
|
count * sizeof(kmem_cache_data_t *), KM_SLEEP);
|
|
if (!kcp)
|
|
return NULL;
|
|
|
|
kcp->kcp_magic = SPLAT_KMEM_TEST_MAGIC;
|
|
kcp->kcp_file = file;
|
|
kcp->kcp_cache = NULL;
|
|
spin_lock_init(&kcp->kcp_lock);
|
|
init_waitqueue_head(&kcp->kcp_ctl_waitq);
|
|
init_waitqueue_head(&kcp->kcp_thr_waitq);
|
|
kcp->kcp_flags = 0;
|
|
kcp->kcp_kct_count = -1;
|
|
kcp->kcp_size = size;
|
|
kcp->kcp_align = align;
|
|
kcp->kcp_count = 0;
|
|
kcp->kcp_alloc = alloc;
|
|
kcp->kcp_rc = 0;
|
|
kcp->kcp_kcd_count = count;
|
|
|
|
return kcp;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_kcp_free(kmem_cache_priv_t *kcp)
|
|
{
|
|
vmem_free(kcp, sizeof(kmem_cache_priv_t) +
|
|
kcp->kcp_kcd_count * sizeof(kmem_cache_data_t *));
|
|
}
|
|
|
|
static kmem_cache_thread_t *
|
|
splat_kmem_cache_test_kct_alloc(int id, int count)
|
|
{
|
|
kmem_cache_thread_t *kct;
|
|
|
|
ASSERTF(id < SPLAT_KMEM_THREADS, "id=%d\n", id);
|
|
kct = vmem_zalloc(sizeof(kmem_cache_thread_t) +
|
|
count * sizeof(kmem_cache_data_t *), KM_SLEEP);
|
|
if (!kct)
|
|
return NULL;
|
|
|
|
spin_lock_init(&kct->kct_lock);
|
|
kct->kct_cache = NULL;
|
|
kct->kct_id = id;
|
|
kct->kct_kcd_count = count;
|
|
|
|
return kct;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_kct_free(kmem_cache_thread_t *kct)
|
|
{
|
|
vmem_free(kct, sizeof(kmem_cache_thread_t) +
|
|
kct->kct_kcd_count * sizeof(kmem_cache_data_t *));
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
|
|
kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
|
|
|
|
if (kcd && kcp) {
|
|
kcd->kcd_magic = kcp->kcp_magic;
|
|
kcd->kcd_flag = 1;
|
|
memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd));
|
|
kcp->kcp_count++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_destructor(void *ptr, void *priv)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
|
|
kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
|
|
|
|
if (kcd && kcp) {
|
|
kcd->kcd_magic = 0;
|
|
kcd->kcd_flag = 0;
|
|
memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd));
|
|
kcp->kcp_count--;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Generic reclaim function which assumes that all objects may
|
|
* be reclaimed at any time. We free a small percentage of the
|
|
* objects linked off the kcp or kct[] every time we are called.
|
|
*/
|
|
static void
|
|
splat_kmem_cache_test_reclaim(void *priv)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
|
|
kmem_cache_thread_t *kct;
|
|
int i, j, count;
|
|
|
|
ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
|
|
count = kcp->kcp_kcd_count * SPLAT_KMEM_OBJ_RECLAIM / 100;
|
|
|
|
/* Objects directly attached to the kcp */
|
|
spin_lock(&kcp->kcp_lock);
|
|
for (i = 0; i < kcp->kcp_kcd_count; i++) {
|
|
if (kcp->kcp_kcd[i]) {
|
|
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]);
|
|
kcp->kcp_kcd[i] = NULL;
|
|
|
|
if ((--count) == 0)
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
/* No threads containing objects to consider */
|
|
if (kcp->kcp_kct_count == -1)
|
|
return;
|
|
|
|
/* Objects attached to a kct thread */
|
|
for (i = 0; i < kcp->kcp_kct_count; i++) {
|
|
spin_lock(&kcp->kcp_lock);
|
|
kct = kcp->kcp_kct[i];
|
|
if (!kct) {
|
|
spin_unlock(&kcp->kcp_lock);
|
|
continue;
|
|
}
|
|
|
|
spin_lock(&kct->kct_lock);
|
|
count = kct->kct_kcd_count * SPLAT_KMEM_OBJ_RECLAIM / 100;
|
|
|
|
for (j = 0; j < kct->kct_kcd_count; j++) {
|
|
if (kct->kct_kcd[j]) {
|
|
kmem_cache_free(kcp->kcp_cache,kct->kct_kcd[j]);
|
|
kct->kct_kcd[j] = NULL;
|
|
|
|
if ((--count) == 0)
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&kct->kct_lock);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test_threads(kmem_cache_priv_t *kcp, int threads)
|
|
{
|
|
int rc;
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
rc = (kcp->kcp_kct_count == threads);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test_flags(kmem_cache_priv_t *kcp, int flags)
|
|
{
|
|
int rc;
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
rc = (kcp->kcp_flags & flags);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
splat_kmem_cache_test_thread(void *arg)
|
|
{
|
|
kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg;
|
|
kmem_cache_thread_t *kct;
|
|
int rc = 0, id, i;
|
|
void *obj;
|
|
|
|
ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
|
|
|
|
/* Assign thread ids */
|
|
spin_lock(&kcp->kcp_lock);
|
|
if (kcp->kcp_kct_count == -1)
|
|
kcp->kcp_kct_count = 0;
|
|
|
|
id = kcp->kcp_kct_count;
|
|
kcp->kcp_kct_count++;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
kct = splat_kmem_cache_test_kct_alloc(id, kcp->kcp_alloc);
|
|
if (!kct) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_kct[id] = kct;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
/* Wait for all threads to have started and report they are ready */
|
|
if (kcp->kcp_kct_count == SPLAT_KMEM_THREADS)
|
|
wake_up(&kcp->kcp_ctl_waitq);
|
|
|
|
wait_event(kcp->kcp_thr_waitq,
|
|
splat_kmem_cache_test_flags(kcp, KCP_FLAG_READY));
|
|
|
|
/*
|
|
* Updates to kct->kct_kcd[] are performed under a spin_lock so
|
|
* they may safely run concurrent with the reclaim function. If
|
|
* we are not in a low memory situation we have one lock per-
|
|
* thread so they are not expected to be contended.
|
|
*/
|
|
for (i = 0; i < kct->kct_kcd_count; i++) {
|
|
obj = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
|
|
spin_lock(&kct->kct_lock);
|
|
kct->kct_kcd[i] = obj;
|
|
spin_unlock(&kct->kct_lock);
|
|
}
|
|
|
|
for (i = 0; i < kct->kct_kcd_count; i++) {
|
|
spin_lock(&kct->kct_lock);
|
|
if (kct->kct_kcd[i]) {
|
|
kmem_cache_free(kcp->kcp_cache, kct->kct_kcd[i]);
|
|
kct->kct_kcd[i] = NULL;
|
|
}
|
|
spin_unlock(&kct->kct_lock);
|
|
}
|
|
out:
|
|
spin_lock(&kcp->kcp_lock);
|
|
if (kct) {
|
|
splat_kmem_cache_test_kct_free(kct);
|
|
kcp->kcp_kct[id] = kct = NULL;
|
|
}
|
|
|
|
if (!kcp->kcp_rc)
|
|
kcp->kcp_rc = rc;
|
|
|
|
if ((--kcp->kcp_kct_count) == 0)
|
|
wake_up(&kcp->kcp_ctl_waitq);
|
|
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
thread_exit();
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_test(struct file *file, void *arg, char *name,
|
|
int size, int align, int flags)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kmem_cache_data_t *kcd;
|
|
int rc = 0, max;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, align, 0, 1);
|
|
if (!kcp) {
|
|
splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
kcp->kcp_kcd[0] = NULL;
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(SPLAT_KMEM_CACHE_NAME,
|
|
kcp->kcp_size, kcp->kcp_align,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
NULL, kcp, NULL, flags);
|
|
if (!kcp->kcp_cache) {
|
|
splat_vprint(file, name,
|
|
"Unable to create '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
|
|
if (!kcd) {
|
|
splat_vprint(file, name,
|
|
"Unable to allocate from '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_kcd[0] = kcd;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
if (!kcp->kcp_kcd[0]->kcd_flag) {
|
|
splat_vprint(file, name,
|
|
"Failed to run contructor for '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
if (kcp->kcp_kcd[0]->kcd_magic != kcp->kcp_magic) {
|
|
splat_vprint(file, name,
|
|
"Failed to pass private data to constructor "
|
|
"for '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
max = kcp->kcp_count;
|
|
spin_lock(&kcp->kcp_lock);
|
|
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[0]);
|
|
kcp->kcp_kcd[0] = NULL;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
/* Destroy the entire cache which will force destructors to
|
|
* run and we can verify one was called for every object */
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
if (kcp->kcp_count) {
|
|
splat_vprint(file, name,
|
|
"Failed to run destructor on all slab objects "
|
|
"for '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
splat_vprint(file, name,
|
|
"Successfully ran ctors/dtors for %d elements in '%s'\n",
|
|
max, SPLAT_KMEM_CACHE_NAME);
|
|
|
|
return rc;
|
|
|
|
out_free:
|
|
if (kcp->kcp_kcd[0]) {
|
|
spin_lock(&kcp->kcp_lock);
|
|
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[0]);
|
|
kcp->kcp_kcd[0] = NULL;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
}
|
|
|
|
if (kcp->kcp_cache)
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_cache_thread_test(struct file *file, void *arg, char *name,
|
|
int size, int alloc, int max_time)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kthread_t *thr;
|
|
struct timespec start, stop, delta;
|
|
char cache_name[32];
|
|
int i, rc = 0;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, 0, alloc, 0);
|
|
if (!kcp) {
|
|
splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
(void)snprintf(cache_name, 32, "%s-%d-%d",
|
|
SPLAT_KMEM_CACHE_NAME, size, alloc);
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(cache_name, kcp->kcp_size, 0,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
splat_kmem_cache_test_reclaim,
|
|
kcp, NULL, 0);
|
|
if (!kcp->kcp_cache) {
|
|
splat_vprint(file, name, "Unable to create '%s'\n", cache_name);
|
|
rc = -ENOMEM;
|
|
goto out_kcp;
|
|
}
|
|
|
|
start = current_kernel_time();
|
|
|
|
for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
|
|
thr = thread_create(NULL, 0,
|
|
splat_kmem_cache_test_thread,
|
|
kcp, 0, &p0, TS_RUN, minclsyspri);
|
|
if (thr == NULL) {
|
|
rc = -ESRCH;
|
|
goto out_cache;
|
|
}
|
|
}
|
|
|
|
/* Sleep until all threads have started, then set the ready
|
|
* flag and wake them all up for maximum concurrency. */
|
|
wait_event(kcp->kcp_ctl_waitq,
|
|
splat_kmem_cache_test_threads(kcp, SPLAT_KMEM_THREADS));
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_flags |= KCP_FLAG_READY;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
wake_up_all(&kcp->kcp_thr_waitq);
|
|
|
|
/* Sleep until all thread have finished */
|
|
wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, 0));
|
|
|
|
stop = current_kernel_time();
|
|
delta = timespec_sub(stop, start);
|
|
|
|
splat_vprint(file, name,
|
|
"%-22s %2ld.%09ld\t"
|
|
"%lu/%lu/%lu\t%lu/%lu/%lu\n",
|
|
kcp->kcp_cache->skc_name,
|
|
delta.tv_sec, delta.tv_nsec,
|
|
(unsigned long)kcp->kcp_cache->skc_slab_total,
|
|
(unsigned long)kcp->kcp_cache->skc_slab_max,
|
|
(unsigned long)(kcp->kcp_alloc *
|
|
SPLAT_KMEM_THREADS /
|
|
SPL_KMEM_CACHE_OBJ_PER_SLAB),
|
|
(unsigned long)kcp->kcp_cache->skc_obj_total,
|
|
(unsigned long)kcp->kcp_cache->skc_obj_max,
|
|
(unsigned long)(kcp->kcp_alloc *
|
|
SPLAT_KMEM_THREADS));
|
|
|
|
if (delta.tv_sec >= max_time)
|
|
rc = -ETIME;
|
|
|
|
if (!rc && kcp->kcp_rc)
|
|
rc = kcp->kcp_rc;
|
|
|
|
out_cache:
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
out_kcp:
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
return rc;
|
|
}
|
|
|
|
/* Validate small object cache behavior for dynamic/kmem/vmem caches */
|
|
static int
|
|
splat_kmem_test5(struct file *file, void *arg)
|
|
{
|
|
char *name = SPLAT_KMEM_TEST5_NAME;
|
|
int rc;
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, 128, 0, 0);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_KMEM);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return splat_kmem_cache_test(file, arg, name, 128, 0, KMC_VMEM);
|
|
}
|
|
|
|
/* Validate large object cache behavior for dynamic/kmem/vmem caches */
|
|
static int
|
|
splat_kmem_test6(struct file *file, void *arg)
|
|
{
|
|
char *name = SPLAT_KMEM_TEST6_NAME;
|
|
int rc;
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, 128*1024, 0, 0);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = splat_kmem_cache_test(file, arg, name, 128*1024, 0, KMC_KMEM);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return splat_kmem_cache_test(file, arg, name, 128*1028, 0, KMC_VMEM);
|
|
}
|
|
|
|
/* Validate object alignment cache behavior for caches */
|
|
static int
|
|
splat_kmem_test7(struct file *file, void *arg)
|
|
{
|
|
char *name = SPLAT_KMEM_TEST7_NAME;
|
|
int i, rc;
|
|
|
|
for (i = SPL_KMEM_CACHE_ALIGN; i <= PAGE_SIZE; i *= 2) {
|
|
rc = splat_kmem_cache_test(file, arg, name, 157, i, 0);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test8(struct file *file, void *arg)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kmem_cache_data_t *kcd;
|
|
int i, j, rc = 0;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST8_NAME,
|
|
256, 0, 0, SPLAT_KMEM_OBJ_COUNT);
|
|
if (!kcp) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Unable to create '%s'\n", "kcp");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
splat_kmem_cache_test_reclaim,
|
|
kcp, NULL, 0);
|
|
if (!kcp->kcp_cache) {
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++) {
|
|
kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_kcd[i] = kcd;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
if (!kcd) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Unable to allocate from '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
}
|
|
}
|
|
|
|
/* Request the slab cache free any objects it can. For a few reasons
|
|
* this may not immediately result in more free memory even if objects
|
|
* are freed. First off, due to fragmentation we may not be able to
|
|
* reclaim any slabs. Secondly, even if we do we fully clear some
|
|
* slabs we will not want to immedately reclaim all of them because
|
|
* we may contend with cache allocs and thrash. What we want to see
|
|
* is the slab size decrease more gradually as it becomes clear they
|
|
* will not be needed. This should be acheivable in less than minute
|
|
* if it takes longer than this something has gone wrong.
|
|
*/
|
|
for (i = 0; i < 60; i++) {
|
|
kmem_cache_reap_now(kcp->kcp_cache);
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"%s cache objects %d, slabs %u/%u objs %u/%u mags ",
|
|
SPLAT_KMEM_CACHE_NAME, kcp->kcp_count,
|
|
(unsigned)kcp->kcp_cache->skc_slab_alloc,
|
|
(unsigned)kcp->kcp_cache->skc_slab_total,
|
|
(unsigned)kcp->kcp_cache->skc_obj_alloc,
|
|
(unsigned)kcp->kcp_cache->skc_obj_total);
|
|
|
|
for_each_online_cpu(j)
|
|
splat_print(file, "%u/%u ",
|
|
kcp->kcp_cache->skc_mag[j]->skm_avail,
|
|
kcp->kcp_cache->skc_mag[j]->skm_size);
|
|
|
|
splat_print(file, "%s\n", "");
|
|
|
|
if (kcp->kcp_cache->skc_obj_total == 0)
|
|
break;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(HZ);
|
|
}
|
|
|
|
if (kcp->kcp_cache->skc_obj_total == 0) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Successfully created %d objects "
|
|
"in cache %s and reclaimed them\n",
|
|
SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
|
|
} else {
|
|
splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
|
|
"Failed to reclaim %u/%d objects from cache %s\n",
|
|
(unsigned)kcp->kcp_cache->skc_obj_total,
|
|
SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
}
|
|
|
|
/* Cleanup our mess (for failure case of time expiring) */
|
|
spin_lock(&kcp->kcp_lock);
|
|
for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++)
|
|
if (kcp->kcp_kcd[i])
|
|
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
splat_kmem_test9(struct file *file, void *arg)
|
|
{
|
|
kmem_cache_priv_t *kcp;
|
|
kmem_cache_data_t *kcd;
|
|
int i, j, rc = 0, count = SPLAT_KMEM_OBJ_COUNT * 128;
|
|
|
|
kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST9_NAME,
|
|
256, 0, 0, count);
|
|
if (!kcp) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Unable to create '%s'\n", "kcp");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
kcp->kcp_cache =
|
|
kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
|
|
splat_kmem_cache_test_constructor,
|
|
splat_kmem_cache_test_destructor,
|
|
NULL, kcp, NULL, 0);
|
|
if (!kcp->kcp_cache) {
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
|
|
spin_lock(&kcp->kcp_lock);
|
|
kcp->kcp_kcd[i] = kcd;
|
|
spin_unlock(&kcp->kcp_lock);
|
|
if (!kcd) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Unable to allocate from '%s'\n",
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
}
|
|
}
|
|
|
|
spin_lock(&kcp->kcp_lock);
|
|
for (i = 0; i < count; i++)
|
|
if (kcp->kcp_kcd[i])
|
|
kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]);
|
|
spin_unlock(&kcp->kcp_lock);
|
|
|
|
/* We have allocated a large number of objects thus creating a
|
|
* large number of slabs and then free'd them all. However since
|
|
* there should be little memory pressure at the moment those
|
|
* slabs have not been freed. What we want to see is the slab
|
|
* size decrease gradually as it becomes clear they will not be
|
|
* be needed. This should be acheivable in less than minute
|
|
* if it takes longer than this something has gone wrong.
|
|
*/
|
|
for (i = 0; i < 60; i++) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"%s cache objects %d, slabs %u/%u objs %u/%u mags ",
|
|
SPLAT_KMEM_CACHE_NAME, kcp->kcp_count,
|
|
(unsigned)kcp->kcp_cache->skc_slab_alloc,
|
|
(unsigned)kcp->kcp_cache->skc_slab_total,
|
|
(unsigned)kcp->kcp_cache->skc_obj_alloc,
|
|
(unsigned)kcp->kcp_cache->skc_obj_total);
|
|
|
|
for_each_online_cpu(j)
|
|
splat_print(file, "%u/%u ",
|
|
kcp->kcp_cache->skc_mag[j]->skm_avail,
|
|
kcp->kcp_cache->skc_mag[j]->skm_size);
|
|
|
|
splat_print(file, "%s\n", "");
|
|
|
|
if (kcp->kcp_cache->skc_obj_total == 0)
|
|
break;
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(HZ);
|
|
}
|
|
|
|
if (kcp->kcp_cache->skc_obj_total == 0) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Successfully created %d objects "
|
|
"in cache %s and reclaimed them\n",
|
|
count, SPLAT_KMEM_CACHE_NAME);
|
|
} else {
|
|
splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
|
|
"Failed to reclaim %u/%d objects from cache %s\n",
|
|
(unsigned)kcp->kcp_cache->skc_obj_total, count,
|
|
SPLAT_KMEM_CACHE_NAME);
|
|
rc = -ENOMEM;
|
|
}
|
|
|
|
kmem_cache_destroy(kcp->kcp_cache);
|
|
splat_kmem_cache_test_kcp_free(kcp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* This test creates N threads with a shared kmem cache. They then all
|
|
* concurrently allocate and free from the cache to stress the locking and
|
|
* concurrent cache performance. If any one test takes longer than 5
|
|
* seconds to complete it is treated as a failure and may indicate a
|
|
* performance regression. On my test system no one test takes more
|
|
* than 1 second to complete so a 5x slowdown likely a problem.
|
|
*/
|
|
static int
|
|
splat_kmem_test10(struct file *file, void *arg)
|
|
{
|
|
uint64_t size, alloc, rc = 0;
|
|
|
|
for (size = 16; size <= 1024*1024; size *= 2) {
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "name",
|
|
"time (sec)\tslabs \tobjs \thash\n");
|
|
splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "",
|
|
" \ttot/max/calc\ttot/max/calc\n");
|
|
|
|
for (alloc = 1; alloc <= 1024; alloc *= 2) {
|
|
|
|
/* Skip tests which exceed available memory. We
|
|
* leverage availrmem here for some extra testing */
|
|
if (size * alloc * SPLAT_KMEM_THREADS > availrmem / 2)
|
|
continue;
|
|
|
|
rc = splat_kmem_cache_thread_test(file, arg,
|
|
SPLAT_KMEM_TEST10_NAME, size, alloc, 5);
|
|
if (rc)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
#ifdef _LP64
|
|
/*
|
|
* This test creates N threads with a shared kmem cache which overcommits
|
|
* memory by 4x. This makes it impossible for the slab to satify the
|
|
* thread requirements without having its reclaim hook run which will
|
|
* free objects back for use. This behavior is triggered by the linum VM
|
|
* detecting a low memory condition on the node and invoking the shrinkers.
|
|
* This should allow all the threads to complete while avoiding deadlock
|
|
* and for the most part out of memory events. This is very tough on the
|
|
* system so it is possible the test app may get oom'ed. This particular
|
|
* test has proven troublesome on 32-bit archs with limited virtual
|
|
* address space so it only run on 64-bit systems.
|
|
*/
|
|
static int
|
|
splat_kmem_test11(struct file *file, void *arg)
|
|
{
|
|
uint64_t size, alloc, rc;
|
|
|
|
size = 256*1024;
|
|
alloc = ((4 * physmem * PAGE_SIZE) / size) / SPLAT_KMEM_THREADS;
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "name",
|
|
"time (sec)\tslabs \tobjs \thash\n");
|
|
splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "",
|
|
" \ttot/max/calc\ttot/max/calc\n");
|
|
|
|
rc = splat_kmem_cache_thread_test(file, arg,
|
|
SPLAT_KMEM_TEST11_NAME, size, alloc, 60);
|
|
|
|
return rc;
|
|
}
|
|
#endif /* _LP64 */
|
|
|
|
/*
|
|
* Check vmem_size() behavior by acquiring the alloc/free/total vmem
|
|
* space, then allocate a known buffer size from vmem space. We can
|
|
* then check that vmem_size() values were updated properly with in
|
|
* a fairly small tolerence. The tolerance is important because we
|
|
* are not the only vmem consumer on the system. Other unrelated
|
|
* allocations might occur during the small test window. The vmem
|
|
* allocation itself may also add in a little extra private space to
|
|
* the buffer. Finally, verify total space always remains unchanged.
|
|
*/
|
|
static int
|
|
splat_kmem_test12(struct file *file, void *arg)
|
|
{
|
|
size_t alloc1, free1, total1;
|
|
size_t alloc2, free2, total2;
|
|
int size = 8*1024*1024;
|
|
void *ptr;
|
|
|
|
alloc1 = vmem_size(NULL, VMEM_ALLOC);
|
|
free1 = vmem_size(NULL, VMEM_FREE);
|
|
total1 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
|
|
splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
|
|
"free=%lu total=%lu\n", (unsigned long)alloc1,
|
|
(unsigned long)free1, (unsigned long)total1);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Alloc %d bytes\n", size);
|
|
ptr = vmem_alloc(size, KM_SLEEP);
|
|
if (!ptr) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
|
|
"Failed to alloc %d bytes\n", size);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
alloc2 = vmem_size(NULL, VMEM_ALLOC);
|
|
free2 = vmem_size(NULL, VMEM_FREE);
|
|
total2 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
|
|
splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
|
|
"free=%lu total=%lu\n", (unsigned long)alloc2,
|
|
(unsigned long)free2, (unsigned long)total2);
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Free %d bytes\n", size);
|
|
vmem_free(ptr, size);
|
|
if (alloc2 < (alloc1 + size - (size / 100)) ||
|
|
alloc2 > (alloc1 + size + (size / 100))) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
|
|
"VMEM_ALLOC size: %lu != %lu+%d (+/- 1%%)\n",
|
|
(unsigned long)alloc2,(unsigned long)alloc1,size);
|
|
return -ERANGE;
|
|
}
|
|
|
|
if (free2 < (free1 - size - (size / 100)) ||
|
|
free2 > (free1 - size + (size / 100))) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
|
|
"VMEM_FREE size: %lu != %lu-%d (+/- 1%%)\n",
|
|
(unsigned long)free2, (unsigned long)free1, size);
|
|
return -ERANGE;
|
|
}
|
|
|
|
if (total1 != total2) {
|
|
splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
|
|
"VMEM_ALLOC | VMEM_FREE not constant: "
|
|
"%lu != %lu\n", (unsigned long)total2,
|
|
(unsigned long)total1);
|
|
return -ERANGE;
|
|
}
|
|
|
|
splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
|
|
"VMEM_ALLOC within tolerance: ~%ld%% (%ld/%d)\n",
|
|
(long)abs(alloc1 + (long)size - alloc2) * 100 / (long)size,
|
|
(long)abs(alloc1 + (long)size - alloc2), size);
|
|
splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
|
|
"VMEM_FREE within tolerance: ~%ld%% (%ld/%d)\n",
|
|
(long)abs((free1 - (long)size) - free2) * 100 / (long)size,
|
|
(long)abs((free1 - (long)size) - free2), size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
splat_subsystem_t *
|
|
splat_kmem_init(void)
|
|
{
|
|
splat_subsystem_t *sub;
|
|
|
|
sub = kmalloc(sizeof(*sub), GFP_KERNEL);
|
|
if (sub == NULL)
|
|
return NULL;
|
|
|
|
memset(sub, 0, sizeof(*sub));
|
|
strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
|
|
strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
|
|
INIT_LIST_HEAD(&sub->subsystem_list);
|
|
INIT_LIST_HEAD(&sub->test_list);
|
|
spin_lock_init(&sub->test_lock);
|
|
sub->desc.id = SPLAT_SUBSYSTEM_KMEM;
|
|
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
|
|
SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
|
|
SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
|
|
SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
|
|
SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
|
|
SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC,
|
|
SPLAT_KMEM_TEST6_ID, splat_kmem_test6);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC,
|
|
SPLAT_KMEM_TEST7_ID, splat_kmem_test7);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC,
|
|
SPLAT_KMEM_TEST8_ID, splat_kmem_test8);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC,
|
|
SPLAT_KMEM_TEST9_ID, splat_kmem_test9);
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST10_NAME, SPLAT_KMEM_TEST10_DESC,
|
|
SPLAT_KMEM_TEST10_ID, splat_kmem_test10);
|
|
#ifdef _LP64
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST11_NAME, SPLAT_KMEM_TEST11_DESC,
|
|
SPLAT_KMEM_TEST11_ID, splat_kmem_test11);
|
|
#endif /* _LP64 */
|
|
SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST12_NAME, SPLAT_KMEM_TEST12_DESC,
|
|
SPLAT_KMEM_TEST12_ID, splat_kmem_test12);
|
|
|
|
return sub;
|
|
}
|
|
|
|
void
|
|
splat_kmem_fini(splat_subsystem_t *sub)
|
|
{
|
|
ASSERT(sub);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST12_ID);
|
|
#ifdef _LP64
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST11_ID);
|
|
#endif /* _LP64 */
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST10_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
|
|
SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);
|
|
|
|
kfree(sub);
|
|
}
|
|
|
|
int
|
|
splat_kmem_id(void) {
|
|
return SPLAT_SUBSYSTEM_KMEM;
|
|
}
|