mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-10 02:00:34 +03:00
85ec5cbae2
The ARC caches data in scatter ABD's, which are collections of pages, which are typically 4K. Therefore, the space used to cache each block is rounded up to a multiple of 4K. The ABD subsystem tracks this wasted memory in the `scatter_chunk_waste` kstat. However, the ARC's `size` is not aware of the memory used by this round-up, it only accounts for the size that it requested from the ABD subsystem. Therefore, the ARC is effectively using more memory than it is aware of, due to the `scatter_chunk_waste`. This impacts observability, e.g. `arcstat` will show that the ARC is using less memory than it effectively is. It also impacts how the ARC responds to memory pressure. As the amount of `scatter_chunk_waste` changes, it appears to the ARC as memory pressure, so it needs to resize `arc_c`. If the sector size (`1<<ashift`) is the same as the page size (or larger), there won't be any waste. If the (compressed) block size is relatively large compared to the page size, the amount of `scatter_chunk_waste` will be small, so the problematic effects are minimal. However, if using 512B sectors (`ashift=9`), and the (compressed) block size is small (e.g. `compression=on` with the default `volblocksize=8k` or a decreased `recordsize`), the amount of `scatter_chunk_waste` can be very large. On a production system, with `arc_size` at a constant 50% of memory, `scatter_chunk_waste` has been been observed to be 10-30% of memory. This commit adds `scatter_chunk_waste` to `arc_size`, and adds a new `waste` field to `arcstat`. As a result, the ARC's memory usage is more observable, and `arc_c` does not need to be adjusted as frequently. Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: George Wilson <gwilson@delphix.com> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #10701
499 lines
14 KiB
C
499 lines
14 KiB
C
/*
|
|
* This file and its contents are supplied under the terms of the
|
|
* Common Development and Distribution License ("CDDL"), version 1.0.
|
|
* You may only use this file in accordance with the terms of version
|
|
* 1.0 of the CDDL.
|
|
*
|
|
* A full copy of the text of the CDDL should have accompanied this
|
|
* source. A copy of the CDDL is also available via the Internet at
|
|
* http://www.illumos.org/license/CDDL.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
|
|
* Copyright (c) 2016 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* See abd.c for a general overview of the arc buffered data (ABD).
|
|
*
|
|
* Using a large proportion of scattered ABDs decreases ARC fragmentation since
|
|
* when we are at the limit of allocatable space, using equal-size chunks will
|
|
* allow us to quickly reclaim enough space for a new large allocation (assuming
|
|
* it is also scattered).
|
|
*
|
|
* ABDs are allocated scattered by default unless the caller uses
|
|
* abd_alloc_linear() or zfs_abd_scatter_enabled is disabled.
|
|
*/
|
|
|
|
#include <sys/abd_impl.h>
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/zfs_znode.h>
|
|
|
|
typedef struct abd_stats {
|
|
kstat_named_t abdstat_struct_size;
|
|
kstat_named_t abdstat_scatter_cnt;
|
|
kstat_named_t abdstat_scatter_data_size;
|
|
kstat_named_t abdstat_scatter_chunk_waste;
|
|
kstat_named_t abdstat_linear_cnt;
|
|
kstat_named_t abdstat_linear_data_size;
|
|
} abd_stats_t;
|
|
|
|
static abd_stats_t abd_stats = {
|
|
/* Amount of memory occupied by all of the abd_t struct allocations */
|
|
{ "struct_size", KSTAT_DATA_UINT64 },
|
|
/*
|
|
* The number of scatter ABDs which are currently allocated, excluding
|
|
* ABDs which don't own their data (for instance the ones which were
|
|
* allocated through abd_get_offset()).
|
|
*/
|
|
{ "scatter_cnt", KSTAT_DATA_UINT64 },
|
|
/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
|
|
{ "scatter_data_size", KSTAT_DATA_UINT64 },
|
|
/*
|
|
* The amount of space wasted at the end of the last chunk across all
|
|
* scatter ABDs tracked by scatter_cnt.
|
|
*/
|
|
{ "scatter_chunk_waste", KSTAT_DATA_UINT64 },
|
|
/*
|
|
* The number of linear ABDs which are currently allocated, excluding
|
|
* ABDs which don't own their data (for instance the ones which were
|
|
* allocated through abd_get_offset() and abd_get_from_buf()). If an
|
|
* ABD takes ownership of its buf then it will become tracked.
|
|
*/
|
|
{ "linear_cnt", KSTAT_DATA_UINT64 },
|
|
/* Amount of data stored in all linear ABDs tracked by linear_cnt */
|
|
{ "linear_data_size", KSTAT_DATA_UINT64 },
|
|
};
|
|
|
|
/*
|
|
* The size of the chunks ABD allocates. Because the sizes allocated from the
|
|
* kmem_cache can't change, this tunable can only be modified at boot. Changing
|
|
* it at runtime would cause ABD iteration to work incorrectly for ABDs which
|
|
* were allocated with the old size, so a safeguard has been put in place which
|
|
* will cause the machine to panic if you change it and try to access the data
|
|
* within a scattered ABD.
|
|
*/
|
|
size_t zfs_abd_chunk_size = 4096;
|
|
|
|
#if defined(_KERNEL)
|
|
SYSCTL_DECL(_vfs_zfs);
|
|
|
|
SYSCTL_INT(_vfs_zfs, OID_AUTO, abd_scatter_enabled, CTLFLAG_RWTUN,
|
|
&zfs_abd_scatter_enabled, 0, "Enable scattered ARC data buffers");
|
|
SYSCTL_ULONG(_vfs_zfs, OID_AUTO, abd_chunk_size, CTLFLAG_RDTUN,
|
|
&zfs_abd_chunk_size, 0, "The size of the chunks ABD allocates");
|
|
#endif
|
|
|
|
kmem_cache_t *abd_chunk_cache;
|
|
static kstat_t *abd_ksp;
|
|
|
|
/*
|
|
* We use a scattered SPA_MAXBLOCKSIZE sized ABD whose chunks are
|
|
* just a single zero'd sized zfs_abd_chunk_size buffer. This
|
|
* allows us to conserve memory by only using a single zero buffer
|
|
* for the scatter chunks.
|
|
*/
|
|
abd_t *abd_zero_scatter = NULL;
|
|
static char *abd_zero_buf = NULL;
|
|
|
|
static void
|
|
abd_free_chunk(void *c)
|
|
{
|
|
kmem_cache_free(abd_chunk_cache, c);
|
|
}
|
|
|
|
static size_t
|
|
abd_chunkcnt_for_bytes(size_t size)
|
|
{
|
|
return (P2ROUNDUP(size, zfs_abd_chunk_size) / zfs_abd_chunk_size);
|
|
}
|
|
|
|
static inline size_t
|
|
abd_scatter_chunkcnt(abd_t *abd)
|
|
{
|
|
ASSERT(!abd_is_linear(abd));
|
|
return (abd_chunkcnt_for_bytes(
|
|
ABD_SCATTER(abd).abd_offset + abd->abd_size));
|
|
}
|
|
|
|
boolean_t
|
|
abd_size_alloc_linear(size_t size)
|
|
{
|
|
return (size <= zfs_abd_chunk_size ? B_TRUE : B_FALSE);
|
|
}
|
|
|
|
void
|
|
abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
|
|
{
|
|
size_t n = abd_scatter_chunkcnt(abd);
|
|
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
|
|
int waste = n * zfs_abd_chunk_size - abd->abd_size;
|
|
if (op == ABDSTAT_INCR) {
|
|
ABDSTAT_BUMP(abdstat_scatter_cnt);
|
|
ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
|
|
ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
|
|
arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
|
|
} else {
|
|
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
|
|
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
|
|
ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
|
|
arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
|
|
}
|
|
}
|
|
|
|
void
|
|
abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
|
|
{
|
|
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
|
|
if (op == ABDSTAT_INCR) {
|
|
ABDSTAT_BUMP(abdstat_linear_cnt);
|
|
ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
|
|
} else {
|
|
ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
|
|
ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
|
|
}
|
|
}
|
|
|
|
void
|
|
abd_verify_scatter(abd_t *abd)
|
|
{
|
|
/*
|
|
* There is no scatter linear pages in FreeBSD so there is an
|
|
* if an error if the ABD has been marked as a linear page.
|
|
*/
|
|
VERIFY(!abd_is_linear_page(abd));
|
|
ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
|
|
zfs_abd_chunk_size);
|
|
size_t n = abd_scatter_chunkcnt(abd);
|
|
for (int i = 0; i < n; i++) {
|
|
ASSERT3P(
|
|
ABD_SCATTER(abd).abd_chunks[i], !=, NULL);
|
|
}
|
|
}
|
|
|
|
void
|
|
abd_alloc_chunks(abd_t *abd, size_t size)
|
|
{
|
|
size_t n = abd_chunkcnt_for_bytes(size);
|
|
for (int i = 0; i < n; i++) {
|
|
void *c = kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE);
|
|
ASSERT3P(c, !=, NULL);
|
|
ABD_SCATTER(abd).abd_chunks[i] = c;
|
|
}
|
|
ABD_SCATTER(abd).abd_chunk_size = zfs_abd_chunk_size;
|
|
}
|
|
|
|
void
|
|
abd_free_chunks(abd_t *abd)
|
|
{
|
|
size_t n = abd_scatter_chunkcnt(abd);
|
|
for (int i = 0; i < n; i++) {
|
|
abd_free_chunk(ABD_SCATTER(abd).abd_chunks[i]);
|
|
}
|
|
}
|
|
|
|
abd_t *
|
|
abd_alloc_struct(size_t size)
|
|
{
|
|
size_t chunkcnt = abd_chunkcnt_for_bytes(size);
|
|
/*
|
|
* In the event we are allocating a gang ABD, the size passed in
|
|
* will be 0. We must make sure to set abd_size to the size of an
|
|
* ABD struct as opposed to an ABD scatter with 0 chunks. The gang
|
|
* ABD struct allocation accounts for an additional 24 bytes over
|
|
* a scatter ABD with 0 chunks.
|
|
*/
|
|
size_t abd_size = MAX(sizeof (abd_t),
|
|
offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]));
|
|
abd_t *abd = kmem_alloc(abd_size, KM_PUSHPAGE);
|
|
ASSERT3P(abd, !=, NULL);
|
|
list_link_init(&abd->abd_gang_link);
|
|
mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
ABDSTAT_INCR(abdstat_struct_size, abd_size);
|
|
|
|
return (abd);
|
|
}
|
|
|
|
void
|
|
abd_free_struct(abd_t *abd)
|
|
{
|
|
size_t chunkcnt = abd_is_linear(abd) || abd_is_gang(abd) ? 0 :
|
|
abd_scatter_chunkcnt(abd);
|
|
int size = MAX(sizeof (abd_t),
|
|
offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]));
|
|
mutex_destroy(&abd->abd_mtx);
|
|
ASSERT(!list_link_active(&abd->abd_gang_link));
|
|
kmem_free(abd, size);
|
|
ABDSTAT_INCR(abdstat_struct_size, -size);
|
|
}
|
|
|
|
/*
|
|
* Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where
|
|
* each chunk in the scatterlist will be set to abd_zero_buf.
|
|
*/
|
|
static void
|
|
abd_alloc_zero_scatter(void)
|
|
{
|
|
size_t n = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
|
|
abd_zero_buf = kmem_zalloc(zfs_abd_chunk_size, KM_SLEEP);
|
|
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
|
|
|
|
abd_zero_scatter->abd_flags = ABD_FLAG_OWNER | ABD_FLAG_ZEROS;
|
|
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
|
|
abd_zero_scatter->abd_parent = NULL;
|
|
zfs_refcount_create(&abd_zero_scatter->abd_children);
|
|
|
|
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
|
|
ABD_SCATTER(abd_zero_scatter).abd_chunk_size =
|
|
zfs_abd_chunk_size;
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
ABD_SCATTER(abd_zero_scatter).abd_chunks[i] =
|
|
abd_zero_buf;
|
|
}
|
|
|
|
ABDSTAT_BUMP(abdstat_scatter_cnt);
|
|
ABDSTAT_INCR(abdstat_scatter_data_size, zfs_abd_chunk_size);
|
|
}
|
|
|
|
static void
|
|
abd_free_zero_scatter(void)
|
|
{
|
|
zfs_refcount_destroy(&abd_zero_scatter->abd_children);
|
|
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
|
|
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)zfs_abd_chunk_size);
|
|
|
|
abd_free_struct(abd_zero_scatter);
|
|
abd_zero_scatter = NULL;
|
|
kmem_free(abd_zero_buf, zfs_abd_chunk_size);
|
|
}
|
|
|
|
void
|
|
abd_init(void)
|
|
{
|
|
abd_chunk_cache = kmem_cache_create("abd_chunk", zfs_abd_chunk_size, 0,
|
|
NULL, NULL, NULL, NULL, 0, KMC_NODEBUG);
|
|
|
|
abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
|
|
sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
|
|
if (abd_ksp != NULL) {
|
|
abd_ksp->ks_data = &abd_stats;
|
|
kstat_install(abd_ksp);
|
|
}
|
|
|
|
abd_alloc_zero_scatter();
|
|
}
|
|
|
|
void
|
|
abd_fini(void)
|
|
{
|
|
abd_free_zero_scatter();
|
|
|
|
if (abd_ksp != NULL) {
|
|
kstat_delete(abd_ksp);
|
|
abd_ksp = NULL;
|
|
}
|
|
|
|
kmem_cache_destroy(abd_chunk_cache);
|
|
abd_chunk_cache = NULL;
|
|
}
|
|
|
|
void
|
|
abd_free_linear_page(abd_t *abd)
|
|
{
|
|
/*
|
|
* FreeBSD does not have have scatter linear pages
|
|
* so there is an error.
|
|
*/
|
|
VERIFY(0);
|
|
}
|
|
|
|
/*
|
|
* If we're going to use this ABD for doing I/O using the block layer, the
|
|
* consumer of the ABD data doesn't care if it's scattered or not, and we don't
|
|
* plan to store this ABD in memory for a long period of time, we should
|
|
* allocate the ABD type that requires the least data copying to do the I/O.
|
|
*
|
|
* Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os
|
|
* using a scatter/gather list we should switch to that and replace this call
|
|
* with vanilla abd_alloc().
|
|
*/
|
|
abd_t *
|
|
abd_alloc_for_io(size_t size, boolean_t is_metadata)
|
|
{
|
|
return (abd_alloc_linear(size, is_metadata));
|
|
}
|
|
|
|
/*
|
|
* This is just a helper function to abd_get_offset_scatter() to alloc a
|
|
* scatter ABD using the calculated chunkcnt based on the offset within the
|
|
* parent ABD.
|
|
*/
|
|
static abd_t *
|
|
abd_alloc_scatter_offset_chunkcnt(size_t chunkcnt)
|
|
{
|
|
size_t abd_size = offsetof(abd_t,
|
|
abd_u.abd_scatter.abd_chunks[chunkcnt]);
|
|
abd_t *abd = kmem_alloc(abd_size, KM_PUSHPAGE);
|
|
ASSERT3P(abd, !=, NULL);
|
|
list_link_init(&abd->abd_gang_link);
|
|
mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
ABDSTAT_INCR(abdstat_struct_size, abd_size);
|
|
|
|
return (abd);
|
|
}
|
|
|
|
abd_t *
|
|
abd_get_offset_scatter(abd_t *sabd, size_t off)
|
|
{
|
|
abd_t *abd = NULL;
|
|
|
|
abd_verify(sabd);
|
|
ASSERT3U(off, <=, sabd->abd_size);
|
|
|
|
size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
|
|
size_t chunkcnt = abd_scatter_chunkcnt(sabd) -
|
|
(new_offset / zfs_abd_chunk_size);
|
|
|
|
abd = abd_alloc_scatter_offset_chunkcnt(chunkcnt);
|
|
|
|
/*
|
|
* Even if this buf is filesystem metadata, we only track that
|
|
* if we own the underlying data buffer, which is not true in
|
|
* this case. Therefore, we don't ever use ABD_FLAG_META here.
|
|
*/
|
|
abd->abd_flags = 0;
|
|
|
|
ABD_SCATTER(abd).abd_offset = new_offset % zfs_abd_chunk_size;
|
|
ABD_SCATTER(abd).abd_chunk_size = zfs_abd_chunk_size;
|
|
|
|
/* Copy the scatterlist starting at the correct offset */
|
|
(void) memcpy(&ABD_SCATTER(abd).abd_chunks,
|
|
&ABD_SCATTER(sabd).abd_chunks[new_offset /
|
|
zfs_abd_chunk_size],
|
|
chunkcnt * sizeof (void *));
|
|
|
|
return (abd);
|
|
}
|
|
|
|
static inline size_t
|
|
abd_iter_scatter_chunk_offset(struct abd_iter *aiter)
|
|
{
|
|
ASSERT(!abd_is_linear(aiter->iter_abd));
|
|
return ((ABD_SCATTER(aiter->iter_abd).abd_offset +
|
|
aiter->iter_pos) % zfs_abd_chunk_size);
|
|
}
|
|
|
|
static inline size_t
|
|
abd_iter_scatter_chunk_index(struct abd_iter *aiter)
|
|
{
|
|
ASSERT(!abd_is_linear(aiter->iter_abd));
|
|
return ((ABD_SCATTER(aiter->iter_abd).abd_offset +
|
|
aiter->iter_pos) / zfs_abd_chunk_size);
|
|
}
|
|
|
|
/*
|
|
* Initialize the abd_iter.
|
|
*/
|
|
void
|
|
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
|
|
{
|
|
ASSERT(!abd_is_gang(abd));
|
|
abd_verify(abd);
|
|
aiter->iter_abd = abd;
|
|
aiter->iter_pos = 0;
|
|
aiter->iter_mapaddr = NULL;
|
|
aiter->iter_mapsize = 0;
|
|
}
|
|
|
|
/*
|
|
* This is just a helper function to see if we have exhausted the
|
|
* abd_iter and reached the end.
|
|
*/
|
|
boolean_t
|
|
abd_iter_at_end(struct abd_iter *aiter)
|
|
{
|
|
return (aiter->iter_pos == aiter->iter_abd->abd_size);
|
|
}
|
|
|
|
/*
|
|
* Advance the iterator by a certain amount. Cannot be called when a chunk is
|
|
* in use. This can be safely called when the aiter has already exhausted, in
|
|
* which case this does nothing.
|
|
*/
|
|
void
|
|
abd_iter_advance(struct abd_iter *aiter, size_t amount)
|
|
{
|
|
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
|
|
ASSERT0(aiter->iter_mapsize);
|
|
|
|
/* There's nothing left to advance to, so do nothing */
|
|
if (abd_iter_at_end(aiter))
|
|
return;
|
|
|
|
aiter->iter_pos += amount;
|
|
}
|
|
|
|
/*
|
|
* Map the current chunk into aiter. This can be safely called when the aiter
|
|
* has already exhausted, in which case this does nothing.
|
|
*/
|
|
void
|
|
abd_iter_map(struct abd_iter *aiter)
|
|
{
|
|
void *paddr;
|
|
size_t offset = 0;
|
|
|
|
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
|
|
ASSERT0(aiter->iter_mapsize);
|
|
|
|
/* Panic if someone has changed zfs_abd_chunk_size */
|
|
IMPLY(!abd_is_linear(aiter->iter_abd), zfs_abd_chunk_size ==
|
|
ABD_SCATTER(aiter->iter_abd).abd_chunk_size);
|
|
|
|
/* There's nothing left to iterate over, so do nothing */
|
|
if (abd_iter_at_end(aiter))
|
|
return;
|
|
|
|
if (abd_is_linear(aiter->iter_abd)) {
|
|
offset = aiter->iter_pos;
|
|
aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
|
|
paddr = ABD_LINEAR_BUF(aiter->iter_abd);
|
|
} else {
|
|
size_t index = abd_iter_scatter_chunk_index(aiter);
|
|
offset = abd_iter_scatter_chunk_offset(aiter);
|
|
aiter->iter_mapsize = MIN(zfs_abd_chunk_size - offset,
|
|
aiter->iter_abd->abd_size - aiter->iter_pos);
|
|
paddr = ABD_SCATTER(aiter->iter_abd).abd_chunks[index];
|
|
}
|
|
aiter->iter_mapaddr = (char *)paddr + offset;
|
|
}
|
|
|
|
/*
|
|
* Unmap the current chunk from aiter. This can be safely called when the aiter
|
|
* has already exhausted, in which case this does nothing.
|
|
*/
|
|
void
|
|
abd_iter_unmap(struct abd_iter *aiter)
|
|
{
|
|
/* There's nothing left to unmap, so do nothing */
|
|
if (abd_iter_at_end(aiter))
|
|
return;
|
|
|
|
ASSERT3P(aiter->iter_mapaddr, !=, NULL);
|
|
ASSERT3U(aiter->iter_mapsize, >, 0);
|
|
|
|
aiter->iter_mapaddr = NULL;
|
|
aiter->iter_mapsize = 0;
|
|
}
|
|
|
|
void
|
|
abd_cache_reap_now(void)
|
|
{
|
|
kmem_cache_reap_soon(abd_chunk_cache);
|
|
}
|