mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-12 19:20:28 +03:00
516a08ebb4
When iterating over a ZAP object, we're almost always certain to iterate over the entire object. If there are multiple leaf blocks, we can realize a performance win by issuing reads for all the leaf blocks in parallel when the iteration begins. For example, if we have 10,000 snapshots, "zfs destroy -nv pool/fs@1%9999" can take 30 minutes when the cache is cold. This change provides a >3x performance improvement, by issuing the reads for all ~64 blocks of each ZAP object in parallel. Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> External-issue: DLPX-58347 Closes #8862
1390 lines
35 KiB
C
1390 lines
35 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* This file contains the top half of the zfs directory structure
|
|
* implementation. The bottom half is in zap_leaf.c.
|
|
*
|
|
* The zdir is an extendable hash data structure. There is a table of
|
|
* pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
|
|
* each a constant size and hold a variable number of directory entries.
|
|
* The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
|
|
*
|
|
* The pointer table holds a power of 2 number of pointers.
|
|
* (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to
|
|
* by the pointer at index i in the table holds entries whose hash value
|
|
* has a zd_prefix_len - bit prefix
|
|
*/
|
|
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/zap_impl.h>
|
|
#include <sys/zap_leaf.h>
|
|
|
|
/*
|
|
* If zap_iterate_prefetch is set, we will prefetch the entire ZAP object
|
|
* (all leaf blocks) when we start iterating over it.
|
|
*
|
|
* For zap_cursor_init(), the callers all intend to iterate through all the
|
|
* entries. There are a few cases where an error (typically i/o error) could
|
|
* cause it to bail out early.
|
|
*
|
|
* For zap_cursor_init_serialized(), there are callers that do the iteration
|
|
* outside of ZFS. Typically they would iterate over everything, but we
|
|
* don't have control of that. E.g. zfs_ioc_snapshot_list_next(),
|
|
* zcp_snapshots_iter(), and other iterators over things in the MOS - these
|
|
* are called by /sbin/zfs and channel programs. The other example is
|
|
* zfs_readdir() which iterates over directory entries for the getdents()
|
|
* syscall. /sbin/ls iterates to the end (unless it receives a signal), but
|
|
* userland doesn't have to.
|
|
*
|
|
* Given that the ZAP entries aren't returned in a specific order, the only
|
|
* legitimate use cases for partial iteration would be:
|
|
*
|
|
* 1. Pagination: e.g. you only want to display 100 entries at a time, so you
|
|
* get the first 100 and then wait for the user to hit "next page", which
|
|
* they may never do).
|
|
*
|
|
* 2. You want to know if there are more than X entries, without relying on
|
|
* the zfs-specific implementation of the directory's st_size (which is
|
|
* the number of entries).
|
|
*/
|
|
int zap_iterate_prefetch = B_TRUE;
|
|
|
|
int fzap_default_block_shift = 14; /* 16k blocksize */
|
|
|
|
extern inline zap_phys_t *zap_f_phys(zap_t *zap);
|
|
|
|
static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
|
|
|
|
void
|
|
fzap_byteswap(void *vbuf, size_t size)
|
|
{
|
|
uint64_t block_type = *(uint64_t *)vbuf;
|
|
|
|
if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
|
|
zap_leaf_byteswap(vbuf, size);
|
|
else {
|
|
/* it's a ptrtbl block */
|
|
byteswap_uint64_array(vbuf, size);
|
|
}
|
|
}
|
|
|
|
void
|
|
fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
zap->zap_ismicro = FALSE;
|
|
|
|
zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync;
|
|
zap->zap_dbu.dbu_evict_func_async = NULL;
|
|
|
|
mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0);
|
|
zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1;
|
|
|
|
zap_phys_t *zp = zap_f_phys(zap);
|
|
/*
|
|
* explicitly zero it since it might be coming from an
|
|
* initialized microzap
|
|
*/
|
|
bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size);
|
|
zp->zap_block_type = ZBT_HEADER;
|
|
zp->zap_magic = ZAP_MAGIC;
|
|
|
|
zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
|
|
|
|
zp->zap_freeblk = 2; /* block 1 will be the first leaf */
|
|
zp->zap_num_leafs = 1;
|
|
zp->zap_num_entries = 0;
|
|
zp->zap_salt = zap->zap_salt;
|
|
zp->zap_normflags = zap->zap_normflags;
|
|
zp->zap_flags = flags;
|
|
|
|
/* block 1 will be the first leaf */
|
|
for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
|
|
ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
|
|
|
|
/*
|
|
* set up block 1 - the first leaf
|
|
*/
|
|
dmu_buf_t *db;
|
|
VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
|
|
1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
|
|
l->l_dbuf = db;
|
|
|
|
zap_leaf_init(l, zp->zap_normflags != 0);
|
|
|
|
kmem_free(l, sizeof (zap_leaf_t));
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
|
|
static int
|
|
zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
|
|
{
|
|
if (RW_WRITE_HELD(&zap->zap_rwlock))
|
|
return (1);
|
|
if (rw_tryupgrade(&zap->zap_rwlock)) {
|
|
dmu_buf_will_dirty(zap->zap_dbuf, tx);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Generic routines for dealing with the pointer & cookie tables.
|
|
*/
|
|
|
|
static int
|
|
zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
|
|
void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
|
|
dmu_tx_t *tx)
|
|
{
|
|
uint64_t newblk;
|
|
int bs = FZAP_BLOCK_SHIFT(zap);
|
|
int hepb = 1<<(bs-4);
|
|
/* hepb = half the number of entries in a block */
|
|
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
ASSERT(tbl->zt_blk != 0);
|
|
ASSERT(tbl->zt_numblks > 0);
|
|
|
|
if (tbl->zt_nextblk != 0) {
|
|
newblk = tbl->zt_nextblk;
|
|
} else {
|
|
newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
|
|
tbl->zt_nextblk = newblk;
|
|
ASSERT0(tbl->zt_blks_copied);
|
|
dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
|
|
tbl->zt_blk << bs, tbl->zt_numblks << bs,
|
|
ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
|
|
/*
|
|
* Copy the ptrtbl from the old to new location.
|
|
*/
|
|
|
|
uint64_t b = tbl->zt_blks_copied;
|
|
dmu_buf_t *db_old;
|
|
int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
|
|
(tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
/* first half of entries in old[b] go to new[2*b+0] */
|
|
dmu_buf_t *db_new;
|
|
VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
|
|
(newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
|
|
dmu_buf_will_dirty(db_new, tx);
|
|
transfer_func(db_old->db_data, db_new->db_data, hepb);
|
|
dmu_buf_rele(db_new, FTAG);
|
|
|
|
/* second half of entries in old[b] go to new[2*b+1] */
|
|
VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
|
|
(newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
|
|
dmu_buf_will_dirty(db_new, tx);
|
|
transfer_func((uint64_t *)db_old->db_data + hepb,
|
|
db_new->db_data, hepb);
|
|
dmu_buf_rele(db_new, FTAG);
|
|
|
|
dmu_buf_rele(db_old, FTAG);
|
|
|
|
tbl->zt_blks_copied++;
|
|
|
|
dprintf("copied block %llu of %llu\n",
|
|
tbl->zt_blks_copied, tbl->zt_numblks);
|
|
|
|
if (tbl->zt_blks_copied == tbl->zt_numblks) {
|
|
(void) dmu_free_range(zap->zap_objset, zap->zap_object,
|
|
tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
|
|
|
|
tbl->zt_blk = newblk;
|
|
tbl->zt_numblks *= 2;
|
|
tbl->zt_shift++;
|
|
tbl->zt_nextblk = 0;
|
|
tbl->zt_blks_copied = 0;
|
|
|
|
dprintf("finished; numblocks now %llu (%uk entries)\n",
|
|
tbl->zt_numblks, 1<<(tbl->zt_shift-10));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
|
|
dmu_tx_t *tx)
|
|
{
|
|
int bs = FZAP_BLOCK_SHIFT(zap);
|
|
|
|
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
|
|
ASSERT(tbl->zt_blk != 0);
|
|
|
|
dprintf("storing %llx at index %llx\n", val, idx);
|
|
|
|
uint64_t blk = idx >> (bs-3);
|
|
uint64_t off = idx & ((1<<(bs-3))-1);
|
|
|
|
dmu_buf_t *db;
|
|
int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
|
|
(tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
|
|
if (err != 0)
|
|
return (err);
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
if (tbl->zt_nextblk != 0) {
|
|
uint64_t idx2 = idx * 2;
|
|
uint64_t blk2 = idx2 >> (bs-3);
|
|
uint64_t off2 = idx2 & ((1<<(bs-3))-1);
|
|
dmu_buf_t *db2;
|
|
|
|
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
|
|
(tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
|
|
DMU_READ_NO_PREFETCH);
|
|
if (err != 0) {
|
|
dmu_buf_rele(db, FTAG);
|
|
return (err);
|
|
}
|
|
dmu_buf_will_dirty(db2, tx);
|
|
((uint64_t *)db2->db_data)[off2] = val;
|
|
((uint64_t *)db2->db_data)[off2+1] = val;
|
|
dmu_buf_rele(db2, FTAG);
|
|
}
|
|
|
|
((uint64_t *)db->db_data)[off] = val;
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
|
|
{
|
|
int bs = FZAP_BLOCK_SHIFT(zap);
|
|
|
|
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
|
|
|
|
uint64_t blk = idx >> (bs-3);
|
|
uint64_t off = idx & ((1<<(bs-3))-1);
|
|
|
|
/*
|
|
* Note: this is equivalent to dmu_buf_hold(), but we use
|
|
* _dnode_enter / _by_dnode because it's faster because we don't
|
|
* have to hold the dnode.
|
|
*/
|
|
dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf);
|
|
dmu_buf_t *db;
|
|
int err = dmu_buf_hold_by_dnode(dn,
|
|
(tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
|
|
dmu_buf_dnode_exit(zap->zap_dbuf);
|
|
if (err != 0)
|
|
return (err);
|
|
*valp = ((uint64_t *)db->db_data)[off];
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
if (tbl->zt_nextblk != 0) {
|
|
/*
|
|
* read the nextblk for the sake of i/o error checking,
|
|
* so that zap_table_load() will catch errors for
|
|
* zap_table_store.
|
|
*/
|
|
blk = (idx*2) >> (bs-3);
|
|
|
|
dn = dmu_buf_dnode_enter(zap->zap_dbuf);
|
|
err = dmu_buf_hold_by_dnode(dn,
|
|
(tbl->zt_nextblk + blk) << bs, FTAG, &db,
|
|
DMU_READ_NO_PREFETCH);
|
|
dmu_buf_dnode_exit(zap->zap_dbuf);
|
|
if (err == 0)
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Routines for growing the ptrtbl.
|
|
*/
|
|
|
|
static void
|
|
zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
|
|
{
|
|
for (int i = 0; i < n; i++) {
|
|
uint64_t lb = src[i];
|
|
dst[2 * i + 0] = lb;
|
|
dst[2 * i + 1] = lb;
|
|
}
|
|
}
|
|
|
|
static int
|
|
zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
|
|
{
|
|
/*
|
|
* The pointer table should never use more hash bits than we
|
|
* have (otherwise we'd be using useless zero bits to index it).
|
|
* If we are within 2 bits of running out, stop growing, since
|
|
* this is already an aberrant condition.
|
|
*/
|
|
if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
|
|
return (SET_ERROR(ENOSPC));
|
|
|
|
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
|
|
/*
|
|
* We are outgrowing the "embedded" ptrtbl (the one
|
|
* stored in the header block). Give it its own entire
|
|
* block, which will double the size of the ptrtbl.
|
|
*/
|
|
ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
|
|
ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
|
|
ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk);
|
|
|
|
uint64_t newblk = zap_allocate_blocks(zap, 1);
|
|
dmu_buf_t *db_new;
|
|
int err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
|
|
newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
|
|
DMU_READ_NO_PREFETCH);
|
|
if (err != 0)
|
|
return (err);
|
|
dmu_buf_will_dirty(db_new, tx);
|
|
zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
|
|
db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
|
|
dmu_buf_rele(db_new, FTAG);
|
|
|
|
zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk;
|
|
zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1;
|
|
zap_f_phys(zap)->zap_ptrtbl.zt_shift++;
|
|
|
|
ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
|
|
zap_f_phys(zap)->zap_ptrtbl.zt_numblks <<
|
|
(FZAP_BLOCK_SHIFT(zap)-3));
|
|
|
|
return (0);
|
|
} else {
|
|
return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl,
|
|
zap_ptrtbl_transfer, tx));
|
|
}
|
|
}
|
|
|
|
static void
|
|
zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_will_dirty(zap->zap_dbuf, tx);
|
|
mutex_enter(&zap->zap_f.zap_num_entries_mtx);
|
|
ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta);
|
|
zap_f_phys(zap)->zap_num_entries += delta;
|
|
mutex_exit(&zap->zap_f.zap_num_entries_mtx);
|
|
}
|
|
|
|
static uint64_t
|
|
zap_allocate_blocks(zap_t *zap, int nblocks)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
uint64_t newblk = zap_f_phys(zap)->zap_freeblk;
|
|
zap_f_phys(zap)->zap_freeblk += nblocks;
|
|
return (newblk);
|
|
}
|
|
|
|
static void
|
|
zap_leaf_evict_sync(void *dbu)
|
|
{
|
|
zap_leaf_t *l = dbu;
|
|
|
|
rw_destroy(&l->l_rwlock);
|
|
kmem_free(l, sizeof (zap_leaf_t));
|
|
}
|
|
|
|
static zap_leaf_t *
|
|
zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
|
|
{
|
|
zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
|
|
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL);
|
|
rw_enter(&l->l_rwlock, RW_WRITER);
|
|
l->l_blkid = zap_allocate_blocks(zap, 1);
|
|
l->l_dbuf = NULL;
|
|
|
|
VERIFY0(dmu_buf_hold(zap->zap_objset, zap->zap_object,
|
|
l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf,
|
|
DMU_READ_NO_PREFETCH));
|
|
dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
|
|
VERIFY3P(NULL, ==, dmu_buf_set_user(l->l_dbuf, &l->l_dbu));
|
|
dmu_buf_will_dirty(l->l_dbuf, tx);
|
|
|
|
zap_leaf_init(l, zap->zap_normflags != 0);
|
|
|
|
zap_f_phys(zap)->zap_num_leafs++;
|
|
|
|
return (l);
|
|
}
|
|
|
|
int
|
|
fzap_count(zap_t *zap, uint64_t *count)
|
|
{
|
|
ASSERT(!zap->zap_ismicro);
|
|
mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
|
|
*count = zap_f_phys(zap)->zap_num_entries;
|
|
mutex_exit(&zap->zap_f.zap_num_entries_mtx);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Routines for obtaining zap_leaf_t's
|
|
*/
|
|
|
|
void
|
|
zap_put_leaf(zap_leaf_t *l)
|
|
{
|
|
rw_exit(&l->l_rwlock);
|
|
dmu_buf_rele(l->l_dbuf, NULL);
|
|
}
|
|
|
|
static zap_leaf_t *
|
|
zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
|
|
{
|
|
ASSERT(blkid != 0);
|
|
|
|
zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
|
|
rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
|
|
rw_enter(&l->l_rwlock, RW_WRITER);
|
|
l->l_blkid = blkid;
|
|
l->l_bs = highbit64(db->db_size) - 1;
|
|
l->l_dbuf = db;
|
|
|
|
dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
|
|
zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu);
|
|
|
|
rw_exit(&l->l_rwlock);
|
|
if (winner != NULL) {
|
|
/* someone else set it first */
|
|
zap_leaf_evict_sync(&l->l_dbu);
|
|
l = winner;
|
|
}
|
|
|
|
/*
|
|
* lhr_pad was previously used for the next leaf in the leaf
|
|
* chain. There should be no chained leafs (as we have removed
|
|
* support for them).
|
|
*/
|
|
ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1);
|
|
|
|
/*
|
|
* There should be more hash entries than there can be
|
|
* chunks to put in the hash table
|
|
*/
|
|
ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
|
|
|
|
/* The chunks should begin at the end of the hash table */
|
|
ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
|
|
&zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
|
|
|
|
/* The chunks should end at the end of the block */
|
|
ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
|
|
(uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size);
|
|
|
|
return (l);
|
|
}
|
|
|
|
static int
|
|
zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
|
|
zap_leaf_t **lp)
|
|
{
|
|
dmu_buf_t *db;
|
|
|
|
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
|
|
|
|
/*
|
|
* If system crashed just after dmu_free_long_range in zfs_rmnode, we
|
|
* would be left with an empty xattr dir in delete queue. blkid=0
|
|
* would be passed in when doing zfs_purgedir. If that's the case we
|
|
* should just return immediately. The underlying objects should
|
|
* already be freed, so this should be perfectly fine.
|
|
*/
|
|
if (blkid == 0)
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
int bs = FZAP_BLOCK_SHIFT(zap);
|
|
dnode_t *dn = dmu_buf_dnode_enter(zap->zap_dbuf);
|
|
int err = dmu_buf_hold_by_dnode(dn,
|
|
blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
|
|
dmu_buf_dnode_exit(zap->zap_dbuf);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
ASSERT3U(db->db_object, ==, zap->zap_object);
|
|
ASSERT3U(db->db_offset, ==, blkid << bs);
|
|
ASSERT3U(db->db_size, ==, 1 << bs);
|
|
ASSERT(blkid != 0);
|
|
|
|
zap_leaf_t *l = dmu_buf_get_user(db);
|
|
|
|
if (l == NULL)
|
|
l = zap_open_leaf(blkid, db);
|
|
|
|
rw_enter(&l->l_rwlock, lt);
|
|
/*
|
|
* Must lock before dirtying, otherwise zap_leaf_phys(l) could change,
|
|
* causing ASSERT below to fail.
|
|
*/
|
|
if (lt == RW_WRITER)
|
|
dmu_buf_will_dirty(db, tx);
|
|
ASSERT3U(l->l_blkid, ==, blkid);
|
|
ASSERT3P(l->l_dbuf, ==, db);
|
|
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF);
|
|
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
|
|
|
|
*lp = l;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
|
|
{
|
|
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
|
|
|
|
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
|
|
ASSERT3U(idx, <,
|
|
(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
|
|
*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
|
|
return (0);
|
|
} else {
|
|
return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl,
|
|
idx, valp));
|
|
}
|
|
}
|
|
|
|
static int
|
|
zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
|
|
{
|
|
ASSERT(tx != NULL);
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) {
|
|
ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
|
|
return (0);
|
|
} else {
|
|
return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl,
|
|
idx, blk, tx));
|
|
}
|
|
}
|
|
|
|
static int
|
|
zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
|
|
{
|
|
uint64_t blk;
|
|
|
|
ASSERT(zap->zap_dbuf == NULL ||
|
|
zap_f_phys(zap) == zap->zap_dbuf->db_data);
|
|
|
|
/* Reality check for corrupt zap objects (leaf or header). */
|
|
if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF &&
|
|
zap_f_phys(zap)->zap_block_type != ZBT_HEADER) ||
|
|
zap_f_phys(zap)->zap_magic != ZAP_MAGIC) {
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
|
|
int err = zap_idx_to_blk(zap, idx, &blk);
|
|
if (err != 0)
|
|
return (err);
|
|
err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
|
|
|
|
ASSERT(err ||
|
|
ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) ==
|
|
zap_leaf_phys(*lp)->l_hdr.lh_prefix);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l,
|
|
void *tag, dmu_tx_t *tx, zap_leaf_t **lp)
|
|
{
|
|
zap_t *zap = zn->zn_zap;
|
|
uint64_t hash = zn->zn_hash;
|
|
int err;
|
|
int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
|
|
|
|
ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
|
|
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
|
|
|
|
ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
|
|
zap_leaf_phys(l)->l_hdr.lh_prefix);
|
|
|
|
if (zap_tryupgradedir(zap, tx) == 0 ||
|
|
old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
|
|
/* We failed to upgrade, or need to grow the pointer table */
|
|
objset_t *os = zap->zap_objset;
|
|
uint64_t object = zap->zap_object;
|
|
|
|
zap_put_leaf(l);
|
|
zap_unlockdir(zap, tag);
|
|
err = zap_lockdir(os, object, tx, RW_WRITER,
|
|
FALSE, FALSE, tag, &zn->zn_zap);
|
|
zap = zn->zn_zap;
|
|
if (err != 0)
|
|
return (err);
|
|
ASSERT(!zap->zap_ismicro);
|
|
|
|
while (old_prefix_len ==
|
|
zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
|
|
err = zap_grow_ptrtbl(zap, tx);
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
|
|
err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) {
|
|
/* it split while our locks were down */
|
|
*lp = l;
|
|
return (0);
|
|
}
|
|
}
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
|
|
ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
|
|
zap_leaf_phys(l)->l_hdr.lh_prefix);
|
|
|
|
int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
|
|
(old_prefix_len + 1);
|
|
uint64_t sibling =
|
|
(ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
|
|
|
|
/* check for i/o errors before doing zap_leaf_split */
|
|
for (int i = 0; i < (1ULL << prefix_diff); i++) {
|
|
uint64_t blk;
|
|
err = zap_idx_to_blk(zap, sibling + i, &blk);
|
|
if (err != 0)
|
|
return (err);
|
|
ASSERT3U(blk, ==, l->l_blkid);
|
|
}
|
|
|
|
zap_leaf_t *nl = zap_create_leaf(zap, tx);
|
|
zap_leaf_split(l, nl, zap->zap_normflags != 0);
|
|
|
|
/* set sibling pointers */
|
|
for (int i = 0; i < (1ULL << prefix_diff); i++) {
|
|
err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx);
|
|
ASSERT0(err); /* we checked for i/o errors above */
|
|
}
|
|
|
|
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0);
|
|
|
|
if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) {
|
|
/* we want the sibling */
|
|
zap_put_leaf(l);
|
|
*lp = nl;
|
|
} else {
|
|
zap_put_leaf(nl);
|
|
*lp = l;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l,
|
|
void *tag, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap = zn->zn_zap;
|
|
int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
|
|
int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift &&
|
|
zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
|
|
|
|
zap_put_leaf(l);
|
|
|
|
if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) {
|
|
/*
|
|
* We are in the middle of growing the pointer table, or
|
|
* this leaf will soon make us grow it.
|
|
*/
|
|
if (zap_tryupgradedir(zap, tx) == 0) {
|
|
objset_t *os = zap->zap_objset;
|
|
uint64_t zapobj = zap->zap_object;
|
|
|
|
zap_unlockdir(zap, tag);
|
|
int err = zap_lockdir(os, zapobj, tx,
|
|
RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap);
|
|
zap = zn->zn_zap;
|
|
if (err != 0)
|
|
return;
|
|
}
|
|
|
|
/* could have finished growing while our locks were down */
|
|
if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift)
|
|
(void) zap_grow_ptrtbl(zap, tx);
|
|
}
|
|
}
|
|
|
|
static int
|
|
fzap_checkname(zap_name_t *zn)
|
|
{
|
|
if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN)
|
|
return (SET_ERROR(ENAMETOOLONG));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
fzap_checksize(uint64_t integer_size, uint64_t num_integers)
|
|
{
|
|
/* Only integer sizes supported by C */
|
|
switch (integer_size) {
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
break;
|
|
default:
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (integer_size * num_integers > ZAP_MAXVALUELEN)
|
|
return (SET_ERROR(E2BIG));
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
|
|
{
|
|
int err = fzap_checkname(zn);
|
|
if (err != 0)
|
|
return (err);
|
|
return (fzap_checksize(integer_size, num_integers));
|
|
}
|
|
|
|
/*
|
|
* Routines for manipulating attributes.
|
|
*/
|
|
int
|
|
fzap_lookup(zap_name_t *zn,
|
|
uint64_t integer_size, uint64_t num_integers, void *buf,
|
|
char *realname, int rn_len, boolean_t *ncp)
|
|
{
|
|
zap_leaf_t *l;
|
|
zap_entry_handle_t zeh;
|
|
|
|
int err = fzap_checkname(zn);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
|
|
if (err != 0)
|
|
return (err);
|
|
err = zap_leaf_lookup(l, zn, &zeh);
|
|
if (err == 0) {
|
|
if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
|
|
zap_put_leaf(l);
|
|
return (err);
|
|
}
|
|
|
|
err = zap_entry_read(&zeh, integer_size, num_integers, buf);
|
|
(void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
|
|
if (ncp) {
|
|
*ncp = zap_entry_normalization_conflict(&zeh,
|
|
zn, NULL, zn->zn_zap);
|
|
}
|
|
}
|
|
|
|
zap_put_leaf(l);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fzap_add_cd(zap_name_t *zn,
|
|
uint64_t integer_size, uint64_t num_integers,
|
|
const void *val, uint32_t cd, void *tag, dmu_tx_t *tx)
|
|
{
|
|
zap_leaf_t *l;
|
|
int err;
|
|
zap_entry_handle_t zeh;
|
|
zap_t *zap = zn->zn_zap;
|
|
|
|
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
|
|
ASSERT(!zap->zap_ismicro);
|
|
ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
|
|
|
|
err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
|
|
if (err != 0)
|
|
return (err);
|
|
retry:
|
|
err = zap_leaf_lookup(l, zn, &zeh);
|
|
if (err == 0) {
|
|
err = SET_ERROR(EEXIST);
|
|
goto out;
|
|
}
|
|
if (err != ENOENT)
|
|
goto out;
|
|
|
|
err = zap_entry_create(l, zn, cd,
|
|
integer_size, num_integers, val, &zeh);
|
|
|
|
if (err == 0) {
|
|
zap_increment_num_entries(zap, 1, tx);
|
|
} else if (err == EAGAIN) {
|
|
err = zap_expand_leaf(zn, l, tag, tx, &l);
|
|
zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
|
|
if (err == 0) {
|
|
goto retry;
|
|
} else if (err == ENOSPC) {
|
|
/*
|
|
* If we failed to expand the leaf, then bailout
|
|
* as there is no point trying
|
|
* zap_put_leaf_maybe_grow_ptrtbl().
|
|
*/
|
|
return (err);
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (zap != NULL)
|
|
zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fzap_add(zap_name_t *zn,
|
|
uint64_t integer_size, uint64_t num_integers,
|
|
const void *val, void *tag, dmu_tx_t *tx)
|
|
{
|
|
int err = fzap_check(zn, integer_size, num_integers);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
return (fzap_add_cd(zn, integer_size, num_integers,
|
|
val, ZAP_NEED_CD, tag, tx));
|
|
}
|
|
|
|
int
|
|
fzap_update(zap_name_t *zn,
|
|
int integer_size, uint64_t num_integers, const void *val,
|
|
void *tag, dmu_tx_t *tx)
|
|
{
|
|
zap_leaf_t *l;
|
|
int err;
|
|
boolean_t create;
|
|
zap_entry_handle_t zeh;
|
|
zap_t *zap = zn->zn_zap;
|
|
|
|
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
|
|
err = fzap_check(zn, integer_size, num_integers);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
|
|
if (err != 0)
|
|
return (err);
|
|
retry:
|
|
err = zap_leaf_lookup(l, zn, &zeh);
|
|
create = (err == ENOENT);
|
|
ASSERT(err == 0 || err == ENOENT);
|
|
|
|
if (create) {
|
|
err = zap_entry_create(l, zn, ZAP_NEED_CD,
|
|
integer_size, num_integers, val, &zeh);
|
|
if (err == 0)
|
|
zap_increment_num_entries(zap, 1, tx);
|
|
} else {
|
|
err = zap_entry_update(&zeh, integer_size, num_integers, val);
|
|
}
|
|
|
|
if (err == EAGAIN) {
|
|
err = zap_expand_leaf(zn, l, tag, tx, &l);
|
|
zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
|
|
if (err == 0)
|
|
goto retry;
|
|
}
|
|
|
|
if (zap != NULL)
|
|
zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fzap_length(zap_name_t *zn,
|
|
uint64_t *integer_size, uint64_t *num_integers)
|
|
{
|
|
zap_leaf_t *l;
|
|
int err;
|
|
zap_entry_handle_t zeh;
|
|
|
|
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
|
|
if (err != 0)
|
|
return (err);
|
|
err = zap_leaf_lookup(l, zn, &zeh);
|
|
if (err != 0)
|
|
goto out;
|
|
|
|
if (integer_size != 0)
|
|
*integer_size = zeh.zeh_integer_size;
|
|
if (num_integers != 0)
|
|
*num_integers = zeh.zeh_num_integers;
|
|
out:
|
|
zap_put_leaf(l);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
|
|
{
|
|
zap_leaf_t *l;
|
|
int err;
|
|
zap_entry_handle_t zeh;
|
|
|
|
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
|
|
if (err != 0)
|
|
return (err);
|
|
err = zap_leaf_lookup(l, zn, &zeh);
|
|
if (err == 0) {
|
|
zap_entry_remove(&zeh);
|
|
zap_increment_num_entries(zn->zn_zap, -1, tx);
|
|
}
|
|
zap_put_leaf(l);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
fzap_prefetch(zap_name_t *zn)
|
|
{
|
|
uint64_t blk;
|
|
zap_t *zap = zn->zn_zap;
|
|
|
|
uint64_t idx = ZAP_HASH_IDX(zn->zn_hash,
|
|
zap_f_phys(zap)->zap_ptrtbl.zt_shift);
|
|
if (zap_idx_to_blk(zap, idx, &blk) != 0)
|
|
return;
|
|
int bs = FZAP_BLOCK_SHIFT(zap);
|
|
dmu_prefetch(zap->zap_objset, zap->zap_object, 0, blk << bs, 1 << bs,
|
|
ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
|
|
/*
|
|
* Helper functions for consumers.
|
|
*/
|
|
|
|
uint64_t
|
|
zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
|
|
const char *name, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx));
|
|
}
|
|
|
|
uint64_t
|
|
zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
|
|
const char *name, int dnodesize, dmu_tx_t *tx)
|
|
{
|
|
uint64_t new_obj;
|
|
|
|
new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx);
|
|
VERIFY(new_obj != 0);
|
|
VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
|
|
tx));
|
|
|
|
return (new_obj);
|
|
}
|
|
|
|
int
|
|
zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
|
|
char *name)
|
|
{
|
|
zap_cursor_t zc;
|
|
int err;
|
|
|
|
if (mask == 0)
|
|
mask = -1ULL;
|
|
|
|
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
|
|
for (zap_cursor_init(&zc, os, zapobj);
|
|
(err = zap_cursor_retrieve(&zc, za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
if ((za->za_first_integer & mask) == (value & mask)) {
|
|
(void) strcpy(name, za->za_name);
|
|
break;
|
|
}
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
kmem_free(za, sizeof (*za));
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
|
|
{
|
|
zap_cursor_t zc;
|
|
int err = 0;
|
|
|
|
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
|
|
for (zap_cursor_init(&zc, os, fromobj);
|
|
zap_cursor_retrieve(&zc, za) == 0;
|
|
(void) zap_cursor_advance(&zc)) {
|
|
if (za->za_integer_length != 8 || za->za_num_integers != 1) {
|
|
err = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
err = zap_add(os, intoobj, za->za_name,
|
|
8, 1, &za->za_first_integer, tx);
|
|
if (err != 0)
|
|
break;
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
kmem_free(za, sizeof (*za));
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
|
|
uint64_t value, dmu_tx_t *tx)
|
|
{
|
|
zap_cursor_t zc;
|
|
int err = 0;
|
|
|
|
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
|
|
for (zap_cursor_init(&zc, os, fromobj);
|
|
zap_cursor_retrieve(&zc, za) == 0;
|
|
(void) zap_cursor_advance(&zc)) {
|
|
if (za->za_integer_length != 8 || za->za_num_integers != 1) {
|
|
err = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
err = zap_add(os, intoobj, za->za_name,
|
|
8, 1, &value, tx);
|
|
if (err != 0)
|
|
break;
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
kmem_free(za, sizeof (*za));
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
|
|
dmu_tx_t *tx)
|
|
{
|
|
zap_cursor_t zc;
|
|
int err = 0;
|
|
|
|
zap_attribute_t *za = kmem_alloc(sizeof (*za), KM_SLEEP);
|
|
for (zap_cursor_init(&zc, os, fromobj);
|
|
zap_cursor_retrieve(&zc, za) == 0;
|
|
(void) zap_cursor_advance(&zc)) {
|
|
uint64_t delta = 0;
|
|
|
|
if (za->za_integer_length != 8 || za->za_num_integers != 1) {
|
|
err = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta);
|
|
if (err != 0 && err != ENOENT)
|
|
break;
|
|
delta += za->za_first_integer;
|
|
err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx);
|
|
if (err != 0)
|
|
break;
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
kmem_free(za, sizeof (*za));
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
|
|
{
|
|
char name[20];
|
|
|
|
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
|
|
return (zap_add(os, obj, name, 8, 1, &value, tx));
|
|
}
|
|
|
|
int
|
|
zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
|
|
{
|
|
char name[20];
|
|
|
|
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
|
|
return (zap_remove(os, obj, name, tx));
|
|
}
|
|
|
|
int
|
|
zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
|
|
{
|
|
char name[20];
|
|
|
|
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
|
|
return (zap_lookup(os, obj, name, 8, 1, &value));
|
|
}
|
|
|
|
int
|
|
zap_add_int_key(objset_t *os, uint64_t obj,
|
|
uint64_t key, uint64_t value, dmu_tx_t *tx)
|
|
{
|
|
char name[20];
|
|
|
|
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
|
|
return (zap_add(os, obj, name, 8, 1, &value, tx));
|
|
}
|
|
|
|
int
|
|
zap_update_int_key(objset_t *os, uint64_t obj,
|
|
uint64_t key, uint64_t value, dmu_tx_t *tx)
|
|
{
|
|
char name[20];
|
|
|
|
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
|
|
return (zap_update(os, obj, name, 8, 1, &value, tx));
|
|
}
|
|
|
|
int
|
|
zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
|
|
{
|
|
char name[20];
|
|
|
|
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
|
|
return (zap_lookup(os, obj, name, 8, 1, valuep));
|
|
}
|
|
|
|
int
|
|
zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
|
|
dmu_tx_t *tx)
|
|
{
|
|
uint64_t value = 0;
|
|
|
|
if (delta == 0)
|
|
return (0);
|
|
|
|
int err = zap_lookup(os, obj, name, 8, 1, &value);
|
|
if (err != 0 && err != ENOENT)
|
|
return (err);
|
|
value += delta;
|
|
if (value == 0)
|
|
err = zap_remove(os, obj, name, tx);
|
|
else
|
|
err = zap_update(os, obj, name, 8, 1, &value, tx);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
|
|
dmu_tx_t *tx)
|
|
{
|
|
char name[20];
|
|
|
|
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
|
|
return (zap_increment(os, obj, name, delta, tx));
|
|
}
|
|
|
|
/*
|
|
* Routines for iterating over the attributes.
|
|
*/
|
|
|
|
int
|
|
fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
|
|
{
|
|
int err = ENOENT;
|
|
zap_entry_handle_t zeh;
|
|
zap_leaf_t *l;
|
|
|
|
/* retrieve the next entry at or after zc_hash/zc_cd */
|
|
/* if no entry, return ENOENT */
|
|
|
|
/*
|
|
* If we are reading from the beginning, we're almost certain to
|
|
* iterate over the entire ZAP object. If there are multiple leaf
|
|
* blocks (freeblk > 2), prefetch the whole object (up to
|
|
* dmu_prefetch_max bytes), so that we read the leaf blocks
|
|
* concurrently. (Unless noprefetch was requested via
|
|
* zap_cursor_init_noprefetch()).
|
|
*/
|
|
if (zc->zc_hash == 0 && zap_iterate_prefetch &&
|
|
zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) {
|
|
dmu_prefetch(zc->zc_objset, zc->zc_zapobj, 0, 0,
|
|
zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap),
|
|
ZIO_PRIORITY_ASYNC_READ);
|
|
}
|
|
|
|
if (zc->zc_leaf &&
|
|
(ZAP_HASH_IDX(zc->zc_hash,
|
|
zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) !=
|
|
zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) {
|
|
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
|
|
zap_put_leaf(zc->zc_leaf);
|
|
zc->zc_leaf = NULL;
|
|
}
|
|
|
|
again:
|
|
if (zc->zc_leaf == NULL) {
|
|
err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
|
|
&zc->zc_leaf);
|
|
if (err != 0)
|
|
return (err);
|
|
} else {
|
|
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
|
|
}
|
|
l = zc->zc_leaf;
|
|
|
|
err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
|
|
|
|
if (err == ENOENT) {
|
|
if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) {
|
|
zc->zc_hash = -1ULL;
|
|
zc->zc_cd = 0;
|
|
} else {
|
|
uint64_t nocare = (1ULL <<
|
|
(64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1;
|
|
|
|
zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
|
|
zc->zc_cd = 0;
|
|
|
|
if (zc->zc_hash == 0) {
|
|
zc->zc_hash = -1ULL;
|
|
} else {
|
|
zap_put_leaf(zc->zc_leaf);
|
|
zc->zc_leaf = NULL;
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (err == 0) {
|
|
zc->zc_hash = zeh.zeh_hash;
|
|
zc->zc_cd = zeh.zeh_cd;
|
|
za->za_integer_length = zeh.zeh_integer_size;
|
|
za->za_num_integers = zeh.zeh_num_integers;
|
|
if (zeh.zeh_num_integers == 0) {
|
|
za->za_first_integer = 0;
|
|
} else {
|
|
err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
|
|
ASSERT(err == 0 || err == EOVERFLOW);
|
|
}
|
|
err = zap_entry_read_name(zap, &zeh,
|
|
sizeof (za->za_name), za->za_name);
|
|
ASSERT(err == 0);
|
|
|
|
za->za_normalization_conflict =
|
|
zap_entry_normalization_conflict(&zeh,
|
|
NULL, za->za_name, zap);
|
|
}
|
|
rw_exit(&zc->zc_leaf->l_rwlock);
|
|
return (err);
|
|
}
|
|
|
|
static void
|
|
zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
|
|
{
|
|
uint64_t lastblk = 0;
|
|
|
|
/*
|
|
* NB: if a leaf has more pointers than an entire ptrtbl block
|
|
* can hold, then it'll be accounted for more than once, since
|
|
* we won't have lastblk.
|
|
*/
|
|
for (int i = 0; i < len; i++) {
|
|
zap_leaf_t *l;
|
|
|
|
if (tbl[i] == lastblk)
|
|
continue;
|
|
lastblk = tbl[i];
|
|
|
|
int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
|
|
if (err == 0) {
|
|
zap_leaf_stats(zap, l, zs);
|
|
zap_put_leaf(l);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
fzap_get_stats(zap_t *zap, zap_stats_t *zs)
|
|
{
|
|
int bs = FZAP_BLOCK_SHIFT(zap);
|
|
zs->zs_blocksize = 1ULL << bs;
|
|
|
|
/*
|
|
* Set zap_phys_t fields
|
|
*/
|
|
zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs;
|
|
zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries;
|
|
zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk;
|
|
zs->zs_block_type = zap_f_phys(zap)->zap_block_type;
|
|
zs->zs_magic = zap_f_phys(zap)->zap_magic;
|
|
zs->zs_salt = zap_f_phys(zap)->zap_salt;
|
|
|
|
/*
|
|
* Set zap_ptrtbl fields
|
|
*/
|
|
zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift;
|
|
zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk;
|
|
zs->zs_ptrtbl_blks_copied =
|
|
zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied;
|
|
zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk;
|
|
zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
|
|
zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
|
|
|
|
if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
|
|
/* the ptrtbl is entirely in the header block. */
|
|
zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
|
|
1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
|
|
} else {
|
|
dmu_prefetch(zap->zap_objset, zap->zap_object, 0,
|
|
zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs,
|
|
zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs,
|
|
ZIO_PRIORITY_SYNC_READ);
|
|
|
|
for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
|
|
b++) {
|
|
dmu_buf_t *db;
|
|
int err;
|
|
|
|
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
|
|
(zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs,
|
|
FTAG, &db, DMU_READ_NO_PREFETCH);
|
|
if (err == 0) {
|
|
zap_stats_ptrtbl(zap, db->db_data,
|
|
1<<(bs-3), zs);
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
/* BEGIN CSTYLED */
|
|
module_param(zap_iterate_prefetch, int, 0644);
|
|
MODULE_PARM_DESC(zap_iterate_prefetch,
|
|
"When iterating ZAP object, prefetch it");
|
|
|
|
/* END CSTYLED */
|
|
#endif
|