mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-10 10:10:26 +03:00
5e89181544
ZFS loves using %llu for uint64_t, but that requires a cast to not be noisy - which is even done in many, though not all, places. Also a couple places used %u for uint64_t, which were promoted to %llu. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Rich Ercolani <rincebrain@gmail.com> Closes #12233
1419 lines
41 KiB
C
1419 lines
41 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2012, 2017 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_impl.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/zap_impl.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/sa_impl.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/trace_zfs.h>
|
|
|
|
typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
|
|
uint64_t arg1, uint64_t arg2);
|
|
|
|
dmu_tx_stats_t dmu_tx_stats = {
|
|
{ "dmu_tx_assigned", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_delay", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_error", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_suspended", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_group", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_dirty_frees_delay", KSTAT_DATA_UINT64 },
|
|
{ "dmu_tx_quota", KSTAT_DATA_UINT64 },
|
|
};
|
|
|
|
static kstat_t *dmu_tx_ksp;
|
|
|
|
dmu_tx_t *
|
|
dmu_tx_create_dd(dsl_dir_t *dd)
|
|
{
|
|
dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
|
|
tx->tx_dir = dd;
|
|
if (dd != NULL)
|
|
tx->tx_pool = dd->dd_pool;
|
|
list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
|
|
offsetof(dmu_tx_hold_t, txh_node));
|
|
list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
|
|
offsetof(dmu_tx_callback_t, dcb_node));
|
|
tx->tx_start = gethrtime();
|
|
return (tx);
|
|
}
|
|
|
|
dmu_tx_t *
|
|
dmu_tx_create(objset_t *os)
|
|
{
|
|
dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
|
|
tx->tx_objset = os;
|
|
return (tx);
|
|
}
|
|
|
|
dmu_tx_t *
|
|
dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
|
|
{
|
|
dmu_tx_t *tx = dmu_tx_create_dd(NULL);
|
|
|
|
TXG_VERIFY(dp->dp_spa, txg);
|
|
tx->tx_pool = dp;
|
|
tx->tx_txg = txg;
|
|
tx->tx_anyobj = TRUE;
|
|
|
|
return (tx);
|
|
}
|
|
|
|
int
|
|
dmu_tx_is_syncing(dmu_tx_t *tx)
|
|
{
|
|
return (tx->tx_anyobj);
|
|
}
|
|
|
|
int
|
|
dmu_tx_private_ok(dmu_tx_t *tx)
|
|
{
|
|
return (tx->tx_anyobj);
|
|
}
|
|
|
|
static dmu_tx_hold_t *
|
|
dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
|
|
uint64_t arg1, uint64_t arg2)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
if (dn != NULL) {
|
|
(void) zfs_refcount_add(&dn->dn_holds, tx);
|
|
if (tx->tx_txg != 0) {
|
|
mutex_enter(&dn->dn_mtx);
|
|
/*
|
|
* dn->dn_assigned_txg == tx->tx_txg doesn't pose a
|
|
* problem, but there's no way for it to happen (for
|
|
* now, at least).
|
|
*/
|
|
ASSERT(dn->dn_assigned_txg == 0);
|
|
dn->dn_assigned_txg = tx->tx_txg;
|
|
(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
}
|
|
|
|
txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
|
|
txh->txh_tx = tx;
|
|
txh->txh_dnode = dn;
|
|
zfs_refcount_create(&txh->txh_space_towrite);
|
|
zfs_refcount_create(&txh->txh_memory_tohold);
|
|
txh->txh_type = type;
|
|
txh->txh_arg1 = arg1;
|
|
txh->txh_arg2 = arg2;
|
|
list_insert_tail(&tx->tx_holds, txh);
|
|
|
|
return (txh);
|
|
}
|
|
|
|
static dmu_tx_hold_t *
|
|
dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
|
|
enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
|
|
{
|
|
dnode_t *dn = NULL;
|
|
dmu_tx_hold_t *txh;
|
|
int err;
|
|
|
|
if (object != DMU_NEW_OBJECT) {
|
|
err = dnode_hold(os, object, FTAG, &dn);
|
|
if (err != 0) {
|
|
tx->tx_err = err;
|
|
return (NULL);
|
|
}
|
|
}
|
|
txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
|
|
if (dn != NULL)
|
|
dnode_rele(dn, FTAG);
|
|
return (txh);
|
|
}
|
|
|
|
void
|
|
dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
|
|
{
|
|
/*
|
|
* If we're syncing, they can manipulate any object anyhow, and
|
|
* the hold on the dnode_t can cause problems.
|
|
*/
|
|
if (!dmu_tx_is_syncing(tx))
|
|
(void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* This function reads specified data from disk. The specified data will
|
|
* be needed to perform the transaction -- i.e, it will be read after
|
|
* we do dmu_tx_assign(). There are two reasons that we read the data now
|
|
* (before dmu_tx_assign()):
|
|
*
|
|
* 1. Reading it now has potentially better performance. The transaction
|
|
* has not yet been assigned, so the TXG is not held open, and also the
|
|
* caller typically has less locks held when calling dmu_tx_hold_*() than
|
|
* after the transaction has been assigned. This reduces the lock (and txg)
|
|
* hold times, thus reducing lock contention.
|
|
*
|
|
* 2. It is easier for callers (primarily the ZPL) to handle i/o errors
|
|
* that are detected before they start making changes to the DMU state
|
|
* (i.e. now). Once the transaction has been assigned, and some DMU
|
|
* state has been changed, it can be difficult to recover from an i/o
|
|
* error (e.g. to undo the changes already made in memory at the DMU
|
|
* layer). Typically code to do so does not exist in the caller -- it
|
|
* assumes that the data has already been cached and thus i/o errors are
|
|
* not possible.
|
|
*
|
|
* It has been observed that the i/o initiated here can be a performance
|
|
* problem, and it appears to be optional, because we don't look at the
|
|
* data which is read. However, removing this read would only serve to
|
|
* move the work elsewhere (after the dmu_tx_assign()), where it may
|
|
* have a greater impact on performance (in addition to the impact on
|
|
* fault tolerance noted above).
|
|
*/
|
|
static int
|
|
dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
|
|
{
|
|
int err;
|
|
dmu_buf_impl_t *db;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
db = dbuf_hold_level(dn, level, blkid, FTAG);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
if (db == NULL)
|
|
return (SET_ERROR(EIO));
|
|
err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
|
|
dbuf_rele(db, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
|
|
{
|
|
dnode_t *dn = txh->txh_dnode;
|
|
int err = 0;
|
|
|
|
if (len == 0)
|
|
return;
|
|
|
|
(void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
|
|
|
|
if (dn == NULL)
|
|
return;
|
|
|
|
/*
|
|
* For i/o error checking, read the blocks that will be needed
|
|
* to perform the write: the first and last level-0 blocks (if
|
|
* they are not aligned, i.e. if they are partial-block writes),
|
|
* and all the level-1 blocks.
|
|
*/
|
|
if (dn->dn_maxblkid == 0) {
|
|
if (off < dn->dn_datablksz &&
|
|
(off > 0 || len < dn->dn_datablksz)) {
|
|
err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
|
|
if (err != 0) {
|
|
txh->txh_tx->tx_err = err;
|
|
}
|
|
}
|
|
} else {
|
|
zio_t *zio = zio_root(dn->dn_objset->os_spa,
|
|
NULL, NULL, ZIO_FLAG_CANFAIL);
|
|
|
|
/* first level-0 block */
|
|
uint64_t start = off >> dn->dn_datablkshift;
|
|
if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
|
|
err = dmu_tx_check_ioerr(zio, dn, 0, start);
|
|
if (err != 0) {
|
|
txh->txh_tx->tx_err = err;
|
|
}
|
|
}
|
|
|
|
/* last level-0 block */
|
|
uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
|
|
if (end != start && end <= dn->dn_maxblkid &&
|
|
P2PHASE(off + len, dn->dn_datablksz)) {
|
|
err = dmu_tx_check_ioerr(zio, dn, 0, end);
|
|
if (err != 0) {
|
|
txh->txh_tx->tx_err = err;
|
|
}
|
|
}
|
|
|
|
/* level-1 blocks */
|
|
if (dn->dn_nlevels > 1) {
|
|
int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
for (uint64_t i = (start >> shft) + 1;
|
|
i < end >> shft; i++) {
|
|
err = dmu_tx_check_ioerr(zio, dn, 1, i);
|
|
if (err != 0) {
|
|
txh->txh_tx->tx_err = err;
|
|
}
|
|
}
|
|
}
|
|
|
|
err = zio_wait(zio);
|
|
if (err != 0) {
|
|
txh->txh_tx->tx_err = err;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
dmu_tx_count_dnode(dmu_tx_hold_t *txh)
|
|
{
|
|
(void) zfs_refcount_add_many(&txh->txh_space_towrite,
|
|
DNODE_MIN_SIZE, FTAG);
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
ASSERT0(tx->tx_txg);
|
|
ASSERT3U(len, <=, DMU_MAX_ACCESS);
|
|
ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
|
|
|
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
|
|
object, THT_WRITE, off, len);
|
|
if (txh != NULL) {
|
|
dmu_tx_count_write(txh, off, len);
|
|
dmu_tx_count_dnode(txh);
|
|
}
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
ASSERT0(tx->tx_txg);
|
|
ASSERT3U(len, <=, DMU_MAX_ACCESS);
|
|
ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
|
|
|
|
txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
|
|
if (txh != NULL) {
|
|
dmu_tx_count_write(txh, off, len);
|
|
dmu_tx_count_dnode(txh);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function marks the transaction as being a "net free". The end
|
|
* result is that refquotas will be disabled for this transaction, and
|
|
* this transaction will be able to use half of the pool space overhead
|
|
* (see dsl_pool_adjustedsize()). Therefore this function should only
|
|
* be called for transactions that we expect will not cause a net increase
|
|
* in the amount of space used (but it's OK if that is occasionally not true).
|
|
*/
|
|
void
|
|
dmu_tx_mark_netfree(dmu_tx_t *tx)
|
|
{
|
|
tx->tx_netfree = B_TRUE;
|
|
}
|
|
|
|
static void
|
|
dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
|
|
{
|
|
dmu_tx_t *tx = txh->txh_tx;
|
|
dnode_t *dn = txh->txh_dnode;
|
|
int err;
|
|
|
|
ASSERT(tx->tx_txg == 0);
|
|
|
|
dmu_tx_count_dnode(txh);
|
|
|
|
if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
|
|
return;
|
|
if (len == DMU_OBJECT_END)
|
|
len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
|
|
|
|
dmu_tx_count_dnode(txh);
|
|
|
|
/*
|
|
* For i/o error checking, we read the first and last level-0
|
|
* blocks if they are not aligned, and all the level-1 blocks.
|
|
*
|
|
* Note: dbuf_free_range() assumes that we have not instantiated
|
|
* any level-0 dbufs that will be completely freed. Therefore we must
|
|
* exercise care to not read or count the first and last blocks
|
|
* if they are blocksize-aligned.
|
|
*/
|
|
if (dn->dn_datablkshift == 0) {
|
|
if (off != 0 || len < dn->dn_datablksz)
|
|
dmu_tx_count_write(txh, 0, dn->dn_datablksz);
|
|
} else {
|
|
/* first block will be modified if it is not aligned */
|
|
if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
|
|
dmu_tx_count_write(txh, off, 1);
|
|
/* last block will be modified if it is not aligned */
|
|
if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
|
|
dmu_tx_count_write(txh, off + len, 1);
|
|
}
|
|
|
|
/*
|
|
* Check level-1 blocks.
|
|
*/
|
|
if (dn->dn_nlevels > 1) {
|
|
int shift = dn->dn_datablkshift + dn->dn_indblkshift -
|
|
SPA_BLKPTRSHIFT;
|
|
uint64_t start = off >> shift;
|
|
uint64_t end = (off + len) >> shift;
|
|
|
|
ASSERT(dn->dn_indblkshift != 0);
|
|
|
|
/*
|
|
* dnode_reallocate() can result in an object with indirect
|
|
* blocks having an odd data block size. In this case,
|
|
* just check the single block.
|
|
*/
|
|
if (dn->dn_datablkshift == 0)
|
|
start = end = 0;
|
|
|
|
zio_t *zio = zio_root(tx->tx_pool->dp_spa,
|
|
NULL, NULL, ZIO_FLAG_CANFAIL);
|
|
for (uint64_t i = start; i <= end; i++) {
|
|
uint64_t ibyte = i << shift;
|
|
err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
|
|
i = ibyte >> shift;
|
|
if (err == ESRCH || i > end)
|
|
break;
|
|
if (err != 0) {
|
|
tx->tx_err = err;
|
|
(void) zio_wait(zio);
|
|
return;
|
|
}
|
|
|
|
(void) zfs_refcount_add_many(&txh->txh_memory_tohold,
|
|
1 << dn->dn_indblkshift, FTAG);
|
|
|
|
err = dmu_tx_check_ioerr(zio, dn, 1, i);
|
|
if (err != 0) {
|
|
tx->tx_err = err;
|
|
(void) zio_wait(zio);
|
|
return;
|
|
}
|
|
}
|
|
err = zio_wait(zio);
|
|
if (err != 0) {
|
|
tx->tx_err = err;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
|
|
object, THT_FREE, off, len);
|
|
if (txh != NULL)
|
|
(void) dmu_tx_hold_free_impl(txh, off, len);
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
|
|
if (txh != NULL)
|
|
(void) dmu_tx_hold_free_impl(txh, off, len);
|
|
}
|
|
|
|
static void
|
|
dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
|
|
{
|
|
dmu_tx_t *tx = txh->txh_tx;
|
|
dnode_t *dn = txh->txh_dnode;
|
|
int err;
|
|
|
|
ASSERT(tx->tx_txg == 0);
|
|
|
|
dmu_tx_count_dnode(txh);
|
|
|
|
/*
|
|
* Modifying a almost-full microzap is around the worst case (128KB)
|
|
*
|
|
* If it is a fat zap, the worst case would be 7*16KB=112KB:
|
|
* - 3 blocks overwritten: target leaf, ptrtbl block, header block
|
|
* - 4 new blocks written if adding:
|
|
* - 2 blocks for possibly split leaves,
|
|
* - 2 grown ptrtbl blocks
|
|
*/
|
|
(void) zfs_refcount_add_many(&txh->txh_space_towrite,
|
|
MZAP_MAX_BLKSZ, FTAG);
|
|
|
|
if (dn == NULL)
|
|
return;
|
|
|
|
ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
|
|
|
|
if (dn->dn_maxblkid == 0 || name == NULL) {
|
|
/*
|
|
* This is a microzap (only one block), or we don't know
|
|
* the name. Check the first block for i/o errors.
|
|
*/
|
|
err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
|
|
if (err != 0) {
|
|
tx->tx_err = err;
|
|
}
|
|
} else {
|
|
/*
|
|
* Access the name so that we'll check for i/o errors to
|
|
* the leaf blocks, etc. We ignore ENOENT, as this name
|
|
* may not yet exist.
|
|
*/
|
|
err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
|
|
if (err == EIO || err == ECKSUM || err == ENXIO) {
|
|
tx->tx_err = err;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
ASSERT0(tx->tx_txg);
|
|
|
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
|
|
object, THT_ZAP, add, (uintptr_t)name);
|
|
if (txh != NULL)
|
|
dmu_tx_hold_zap_impl(txh, name);
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
ASSERT0(tx->tx_txg);
|
|
ASSERT(dn != NULL);
|
|
|
|
txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
|
|
if (txh != NULL)
|
|
dmu_tx_hold_zap_impl(txh, name);
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
ASSERT(tx->tx_txg == 0);
|
|
|
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
|
|
object, THT_BONUS, 0, 0);
|
|
if (txh)
|
|
dmu_tx_count_dnode(txh);
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
ASSERT0(tx->tx_txg);
|
|
|
|
txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
|
|
if (txh)
|
|
dmu_tx_count_dnode(txh);
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
ASSERT(tx->tx_txg == 0);
|
|
|
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
|
|
DMU_NEW_OBJECT, THT_SPACE, space, 0);
|
|
if (txh) {
|
|
(void) zfs_refcount_add_many(
|
|
&txh->txh_space_towrite, space, FTAG);
|
|
}
|
|
}
|
|
|
|
#ifdef ZFS_DEBUG
|
|
void
|
|
dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
|
|
{
|
|
boolean_t match_object = B_FALSE;
|
|
boolean_t match_offset = B_FALSE;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dnode_t *dn = DB_DNODE(db);
|
|
ASSERT(tx->tx_txg != 0);
|
|
ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
|
|
ASSERT3U(dn->dn_object, ==, db->db.db_object);
|
|
|
|
if (tx->tx_anyobj) {
|
|
DB_DNODE_EXIT(db);
|
|
return;
|
|
}
|
|
|
|
/* XXX No checking on the meta dnode for now */
|
|
if (db->db.db_object == DMU_META_DNODE_OBJECT) {
|
|
DB_DNODE_EXIT(db);
|
|
return;
|
|
}
|
|
|
|
for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
|
|
txh = list_next(&tx->tx_holds, txh)) {
|
|
ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
|
|
if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
|
|
match_object = TRUE;
|
|
if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
|
|
int datablkshift = dn->dn_datablkshift ?
|
|
dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
|
|
int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
int shift = datablkshift + epbs * db->db_level;
|
|
uint64_t beginblk = shift >= 64 ? 0 :
|
|
(txh->txh_arg1 >> shift);
|
|
uint64_t endblk = shift >= 64 ? 0 :
|
|
((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
|
|
uint64_t blkid = db->db_blkid;
|
|
|
|
/* XXX txh_arg2 better not be zero... */
|
|
|
|
dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
|
|
txh->txh_type, (u_longlong_t)beginblk,
|
|
(u_longlong_t)endblk);
|
|
|
|
switch (txh->txh_type) {
|
|
case THT_WRITE:
|
|
if (blkid >= beginblk && blkid <= endblk)
|
|
match_offset = TRUE;
|
|
/*
|
|
* We will let this hold work for the bonus
|
|
* or spill buffer so that we don't need to
|
|
* hold it when creating a new object.
|
|
*/
|
|
if (blkid == DMU_BONUS_BLKID ||
|
|
blkid == DMU_SPILL_BLKID)
|
|
match_offset = TRUE;
|
|
/*
|
|
* They might have to increase nlevels,
|
|
* thus dirtying the new TLIBs. Or the
|
|
* might have to change the block size,
|
|
* thus dirying the new lvl=0 blk=0.
|
|
*/
|
|
if (blkid == 0)
|
|
match_offset = TRUE;
|
|
break;
|
|
case THT_FREE:
|
|
/*
|
|
* We will dirty all the level 1 blocks in
|
|
* the free range and perhaps the first and
|
|
* last level 0 block.
|
|
*/
|
|
if (blkid >= beginblk && (blkid <= endblk ||
|
|
txh->txh_arg2 == DMU_OBJECT_END))
|
|
match_offset = TRUE;
|
|
break;
|
|
case THT_SPILL:
|
|
if (blkid == DMU_SPILL_BLKID)
|
|
match_offset = TRUE;
|
|
break;
|
|
case THT_BONUS:
|
|
if (blkid == DMU_BONUS_BLKID)
|
|
match_offset = TRUE;
|
|
break;
|
|
case THT_ZAP:
|
|
match_offset = TRUE;
|
|
break;
|
|
case THT_NEWOBJECT:
|
|
match_object = TRUE;
|
|
break;
|
|
default:
|
|
cmn_err(CE_PANIC, "bad txh_type %d",
|
|
txh->txh_type);
|
|
}
|
|
}
|
|
if (match_object && match_offset) {
|
|
DB_DNODE_EXIT(db);
|
|
return;
|
|
}
|
|
}
|
|
DB_DNODE_EXIT(db);
|
|
panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
|
|
(u_longlong_t)db->db.db_object, db->db_level,
|
|
(u_longlong_t)db->db_blkid);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If we can't do 10 iops, something is wrong. Let us go ahead
|
|
* and hit zfs_dirty_data_max.
|
|
*/
|
|
hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
|
|
int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
|
|
|
|
/*
|
|
* We delay transactions when we've determined that the backend storage
|
|
* isn't able to accommodate the rate of incoming writes.
|
|
*
|
|
* If there is already a transaction waiting, we delay relative to when
|
|
* that transaction finishes waiting. This way the calculated min_time
|
|
* is independent of the number of threads concurrently executing
|
|
* transactions.
|
|
*
|
|
* If we are the only waiter, wait relative to when the transaction
|
|
* started, rather than the current time. This credits the transaction for
|
|
* "time already served", e.g. reading indirect blocks.
|
|
*
|
|
* The minimum time for a transaction to take is calculated as:
|
|
* min_time = scale * (dirty - min) / (max - dirty)
|
|
* min_time is then capped at zfs_delay_max_ns.
|
|
*
|
|
* The delay has two degrees of freedom that can be adjusted via tunables.
|
|
* The percentage of dirty data at which we start to delay is defined by
|
|
* zfs_delay_min_dirty_percent. This should typically be at or above
|
|
* zfs_vdev_async_write_active_max_dirty_percent so that we only start to
|
|
* delay after writing at full speed has failed to keep up with the incoming
|
|
* write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
|
|
* speaking, this variable determines the amount of delay at the midpoint of
|
|
* the curve.
|
|
*
|
|
* delay
|
|
* 10ms +-------------------------------------------------------------*+
|
|
* | *|
|
|
* 9ms + *+
|
|
* | *|
|
|
* 8ms + *+
|
|
* | * |
|
|
* 7ms + * +
|
|
* | * |
|
|
* 6ms + * +
|
|
* | * |
|
|
* 5ms + * +
|
|
* | * |
|
|
* 4ms + * +
|
|
* | * |
|
|
* 3ms + * +
|
|
* | * |
|
|
* 2ms + (midpoint) * +
|
|
* | | ** |
|
|
* 1ms + v *** +
|
|
* | zfs_delay_scale ----------> ******** |
|
|
* 0 +-------------------------------------*********----------------+
|
|
* 0% <- zfs_dirty_data_max -> 100%
|
|
*
|
|
* Note that since the delay is added to the outstanding time remaining on the
|
|
* most recent transaction, the delay is effectively the inverse of IOPS.
|
|
* Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
|
|
* was chosen such that small changes in the amount of accumulated dirty data
|
|
* in the first 3/4 of the curve yield relatively small differences in the
|
|
* amount of delay.
|
|
*
|
|
* The effects can be easier to understand when the amount of delay is
|
|
* represented on a log scale:
|
|
*
|
|
* delay
|
|
* 100ms +-------------------------------------------------------------++
|
|
* + +
|
|
* | |
|
|
* + *+
|
|
* 10ms + *+
|
|
* + ** +
|
|
* | (midpoint) ** |
|
|
* + | ** +
|
|
* 1ms + v **** +
|
|
* + zfs_delay_scale ----------> ***** +
|
|
* | **** |
|
|
* + **** +
|
|
* 100us + ** +
|
|
* + * +
|
|
* | * |
|
|
* + * +
|
|
* 10us + * +
|
|
* + +
|
|
* | |
|
|
* + +
|
|
* +--------------------------------------------------------------+
|
|
* 0% <- zfs_dirty_data_max -> 100%
|
|
*
|
|
* Note here that only as the amount of dirty data approaches its limit does
|
|
* the delay start to increase rapidly. The goal of a properly tuned system
|
|
* should be to keep the amount of dirty data out of that range by first
|
|
* ensuring that the appropriate limits are set for the I/O scheduler to reach
|
|
* optimal throughput on the backend storage, and then by changing the value
|
|
* of zfs_delay_scale to increase the steepness of the curve.
|
|
*/
|
|
static void
|
|
dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
|
|
{
|
|
dsl_pool_t *dp = tx->tx_pool;
|
|
uint64_t delay_min_bytes =
|
|
zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
|
|
hrtime_t wakeup, min_tx_time, now;
|
|
|
|
if (dirty <= delay_min_bytes)
|
|
return;
|
|
|
|
/*
|
|
* The caller has already waited until we are under the max.
|
|
* We make them pass us the amount of dirty data so we don't
|
|
* have to handle the case of it being >= the max, which could
|
|
* cause a divide-by-zero if it's == the max.
|
|
*/
|
|
ASSERT3U(dirty, <, zfs_dirty_data_max);
|
|
|
|
now = gethrtime();
|
|
min_tx_time = zfs_delay_scale *
|
|
(dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
|
|
min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
|
|
if (now > tx->tx_start + min_tx_time)
|
|
return;
|
|
|
|
DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
|
|
uint64_t, min_tx_time);
|
|
|
|
mutex_enter(&dp->dp_lock);
|
|
wakeup = MAX(tx->tx_start + min_tx_time,
|
|
dp->dp_last_wakeup + min_tx_time);
|
|
dp->dp_last_wakeup = wakeup;
|
|
mutex_exit(&dp->dp_lock);
|
|
|
|
zfs_sleep_until(wakeup);
|
|
}
|
|
|
|
/*
|
|
* This routine attempts to assign the transaction to a transaction group.
|
|
* To do so, we must determine if there is sufficient free space on disk.
|
|
*
|
|
* If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
|
|
* on it), then it is assumed that there is sufficient free space,
|
|
* unless there's insufficient slop space in the pool (see the comment
|
|
* above spa_slop_shift in spa_misc.c).
|
|
*
|
|
* If it is not a "netfree" transaction, then if the data already on disk
|
|
* is over the allowed usage (e.g. quota), this will fail with EDQUOT or
|
|
* ENOSPC. Otherwise, if the current rough estimate of pending changes,
|
|
* plus the rough estimate of this transaction's changes, may exceed the
|
|
* allowed usage, then this will fail with ERESTART, which will cause the
|
|
* caller to wait for the pending changes to be written to disk (by waiting
|
|
* for the next TXG to open), and then check the space usage again.
|
|
*
|
|
* The rough estimate of pending changes is comprised of the sum of:
|
|
*
|
|
* - this transaction's holds' txh_space_towrite
|
|
*
|
|
* - dd_tempreserved[], which is the sum of in-flight transactions'
|
|
* holds' txh_space_towrite (i.e. those transactions that have called
|
|
* dmu_tx_assign() but not yet called dmu_tx_commit()).
|
|
*
|
|
* - dd_space_towrite[], which is the amount of dirtied dbufs.
|
|
*
|
|
* Note that all of these values are inflated by spa_get_worst_case_asize(),
|
|
* which means that we may get ERESTART well before we are actually in danger
|
|
* of running out of space, but this also mitigates any small inaccuracies
|
|
* in the rough estimate (e.g. txh_space_towrite doesn't take into account
|
|
* indirect blocks, and dd_space_towrite[] doesn't take into account changes
|
|
* to the MOS).
|
|
*
|
|
* Note that due to this algorithm, it is possible to exceed the allowed
|
|
* usage by one transaction. Also, as we approach the allowed usage,
|
|
* we will allow a very limited amount of changes into each TXG, thus
|
|
* decreasing performance.
|
|
*/
|
|
static int
|
|
dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
|
|
{
|
|
spa_t *spa = tx->tx_pool->dp_spa;
|
|
|
|
ASSERT0(tx->tx_txg);
|
|
|
|
if (tx->tx_err) {
|
|
DMU_TX_STAT_BUMP(dmu_tx_error);
|
|
return (tx->tx_err);
|
|
}
|
|
|
|
if (spa_suspended(spa)) {
|
|
DMU_TX_STAT_BUMP(dmu_tx_suspended);
|
|
|
|
/*
|
|
* If the user has indicated a blocking failure mode
|
|
* then return ERESTART which will block in dmu_tx_wait().
|
|
* Otherwise, return EIO so that an error can get
|
|
* propagated back to the VOP calls.
|
|
*
|
|
* Note that we always honor the txg_how flag regardless
|
|
* of the failuremode setting.
|
|
*/
|
|
if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
|
|
!(txg_how & TXG_WAIT))
|
|
return (SET_ERROR(EIO));
|
|
|
|
return (SET_ERROR(ERESTART));
|
|
}
|
|
|
|
if (!tx->tx_dirty_delayed &&
|
|
dsl_pool_need_dirty_delay(tx->tx_pool)) {
|
|
tx->tx_wait_dirty = B_TRUE;
|
|
DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
|
|
return (SET_ERROR(ERESTART));
|
|
}
|
|
|
|
tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
|
|
tx->tx_needassign_txh = NULL;
|
|
|
|
/*
|
|
* NB: No error returns are allowed after txg_hold_open, but
|
|
* before processing the dnode holds, due to the
|
|
* dmu_tx_unassign() logic.
|
|
*/
|
|
|
|
uint64_t towrite = 0;
|
|
uint64_t tohold = 0;
|
|
for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
|
|
txh = list_next(&tx->tx_holds, txh)) {
|
|
dnode_t *dn = txh->txh_dnode;
|
|
if (dn != NULL) {
|
|
/*
|
|
* This thread can't hold the dn_struct_rwlock
|
|
* while assigning the tx, because this can lead to
|
|
* deadlock. Specifically, if this dnode is already
|
|
* assigned to an earlier txg, this thread may need
|
|
* to wait for that txg to sync (the ERESTART case
|
|
* below). The other thread that has assigned this
|
|
* dnode to an earlier txg prevents this txg from
|
|
* syncing until its tx can complete (calling
|
|
* dmu_tx_commit()), but it may need to acquire the
|
|
* dn_struct_rwlock to do so (e.g. via
|
|
* dmu_buf_hold*()).
|
|
*
|
|
* Note that this thread can't hold the lock for
|
|
* read either, but the rwlock doesn't record
|
|
* enough information to make that assertion.
|
|
*/
|
|
ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
|
|
|
|
mutex_enter(&dn->dn_mtx);
|
|
if (dn->dn_assigned_txg == tx->tx_txg - 1) {
|
|
mutex_exit(&dn->dn_mtx);
|
|
tx->tx_needassign_txh = txh;
|
|
DMU_TX_STAT_BUMP(dmu_tx_group);
|
|
return (SET_ERROR(ERESTART));
|
|
}
|
|
if (dn->dn_assigned_txg == 0)
|
|
dn->dn_assigned_txg = tx->tx_txg;
|
|
ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
|
|
(void) zfs_refcount_add(&dn->dn_tx_holds, tx);
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
towrite += zfs_refcount_count(&txh->txh_space_towrite);
|
|
tohold += zfs_refcount_count(&txh->txh_memory_tohold);
|
|
}
|
|
|
|
/* needed allocation: worst-case estimate of write space */
|
|
uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
|
|
/* calculate memory footprint estimate */
|
|
uint64_t memory = towrite + tohold;
|
|
|
|
if (tx->tx_dir != NULL && asize != 0) {
|
|
int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
|
|
asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
|
|
DMU_TX_STAT_BUMP(dmu_tx_assigned);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dmu_tx_unassign(dmu_tx_t *tx)
|
|
{
|
|
if (tx->tx_txg == 0)
|
|
return;
|
|
|
|
txg_rele_to_quiesce(&tx->tx_txgh);
|
|
|
|
/*
|
|
* Walk the transaction's hold list, removing the hold on the
|
|
* associated dnode, and notifying waiters if the refcount drops to 0.
|
|
*/
|
|
for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
|
|
txh && txh != tx->tx_needassign_txh;
|
|
txh = list_next(&tx->tx_holds, txh)) {
|
|
dnode_t *dn = txh->txh_dnode;
|
|
|
|
if (dn == NULL)
|
|
continue;
|
|
mutex_enter(&dn->dn_mtx);
|
|
ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
|
|
|
|
if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
|
|
dn->dn_assigned_txg = 0;
|
|
cv_broadcast(&dn->dn_notxholds);
|
|
}
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
|
|
txg_rele_to_sync(&tx->tx_txgh);
|
|
|
|
tx->tx_lasttried_txg = tx->tx_txg;
|
|
tx->tx_txg = 0;
|
|
}
|
|
|
|
/*
|
|
* Assign tx to a transaction group; txg_how is a bitmask:
|
|
*
|
|
* If TXG_WAIT is set and the currently open txg is full, this function
|
|
* will wait until there's a new txg. This should be used when no locks
|
|
* are being held. With this bit set, this function will only fail if
|
|
* we're truly out of space (or over quota).
|
|
*
|
|
* If TXG_WAIT is *not* set and we can't assign into the currently open
|
|
* txg without blocking, this function will return immediately with
|
|
* ERESTART. This should be used whenever locks are being held. On an
|
|
* ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
|
|
* and try again.
|
|
*
|
|
* If TXG_NOTHROTTLE is set, this indicates that this tx should not be
|
|
* delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
|
|
* details on the throttle). This is used by the VFS operations, after
|
|
* they have already called dmu_tx_wait() (though most likely on a
|
|
* different tx).
|
|
*
|
|
* It is guaranteed that subsequent successful calls to dmu_tx_assign()
|
|
* will assign the tx to monotonically increasing txgs. Of course this is
|
|
* not strong monotonicity, because the same txg can be returned multiple
|
|
* times in a row. This guarantee holds both for subsequent calls from
|
|
* one thread and for multiple threads. For example, it is impossible to
|
|
* observe the following sequence of events:
|
|
*
|
|
* Thread 1 Thread 2
|
|
*
|
|
* dmu_tx_assign(T1, ...)
|
|
* 1 <- dmu_tx_get_txg(T1)
|
|
* dmu_tx_assign(T2, ...)
|
|
* 2 <- dmu_tx_get_txg(T2)
|
|
* dmu_tx_assign(T3, ...)
|
|
* 1 <- dmu_tx_get_txg(T3)
|
|
*/
|
|
int
|
|
dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
|
|
{
|
|
int err;
|
|
|
|
ASSERT(tx->tx_txg == 0);
|
|
ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
|
|
ASSERT(!dsl_pool_sync_context(tx->tx_pool));
|
|
|
|
/* If we might wait, we must not hold the config lock. */
|
|
IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
|
|
|
|
if ((txg_how & TXG_NOTHROTTLE))
|
|
tx->tx_dirty_delayed = B_TRUE;
|
|
|
|
while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
|
|
dmu_tx_unassign(tx);
|
|
|
|
if (err != ERESTART || !(txg_how & TXG_WAIT))
|
|
return (err);
|
|
|
|
dmu_tx_wait(tx);
|
|
}
|
|
|
|
txg_rele_to_quiesce(&tx->tx_txgh);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dmu_tx_wait(dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = tx->tx_pool->dp_spa;
|
|
dsl_pool_t *dp = tx->tx_pool;
|
|
hrtime_t before;
|
|
|
|
ASSERT(tx->tx_txg == 0);
|
|
ASSERT(!dsl_pool_config_held(tx->tx_pool));
|
|
|
|
before = gethrtime();
|
|
|
|
if (tx->tx_wait_dirty) {
|
|
uint64_t dirty;
|
|
|
|
/*
|
|
* dmu_tx_try_assign() has determined that we need to wait
|
|
* because we've consumed much or all of the dirty buffer
|
|
* space.
|
|
*/
|
|
mutex_enter(&dp->dp_lock);
|
|
if (dp->dp_dirty_total >= zfs_dirty_data_max)
|
|
DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
|
|
while (dp->dp_dirty_total >= zfs_dirty_data_max)
|
|
cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
|
|
dirty = dp->dp_dirty_total;
|
|
mutex_exit(&dp->dp_lock);
|
|
|
|
dmu_tx_delay(tx, dirty);
|
|
|
|
tx->tx_wait_dirty = B_FALSE;
|
|
|
|
/*
|
|
* Note: setting tx_dirty_delayed only has effect if the
|
|
* caller used TX_WAIT. Otherwise they are going to
|
|
* destroy this tx and try again. The common case,
|
|
* zfs_write(), uses TX_WAIT.
|
|
*/
|
|
tx->tx_dirty_delayed = B_TRUE;
|
|
} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
|
|
/*
|
|
* If the pool is suspended we need to wait until it
|
|
* is resumed. Note that it's possible that the pool
|
|
* has become active after this thread has tried to
|
|
* obtain a tx. If that's the case then tx_lasttried_txg
|
|
* would not have been set.
|
|
*/
|
|
txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
|
|
} else if (tx->tx_needassign_txh) {
|
|
dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
|
|
|
|
mutex_enter(&dn->dn_mtx);
|
|
while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
|
|
cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
|
|
mutex_exit(&dn->dn_mtx);
|
|
tx->tx_needassign_txh = NULL;
|
|
} else {
|
|
/*
|
|
* If we have a lot of dirty data just wait until we sync
|
|
* out a TXG at which point we'll hopefully have synced
|
|
* a portion of the changes.
|
|
*/
|
|
txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
|
|
}
|
|
|
|
spa_tx_assign_add_nsecs(spa, gethrtime() - before);
|
|
}
|
|
|
|
static void
|
|
dmu_tx_destroy(dmu_tx_t *tx)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
while ((txh = list_head(&tx->tx_holds)) != NULL) {
|
|
dnode_t *dn = txh->txh_dnode;
|
|
|
|
list_remove(&tx->tx_holds, txh);
|
|
zfs_refcount_destroy_many(&txh->txh_space_towrite,
|
|
zfs_refcount_count(&txh->txh_space_towrite));
|
|
zfs_refcount_destroy_many(&txh->txh_memory_tohold,
|
|
zfs_refcount_count(&txh->txh_memory_tohold));
|
|
kmem_free(txh, sizeof (dmu_tx_hold_t));
|
|
if (dn != NULL)
|
|
dnode_rele(dn, tx);
|
|
}
|
|
|
|
list_destroy(&tx->tx_callbacks);
|
|
list_destroy(&tx->tx_holds);
|
|
kmem_free(tx, sizeof (dmu_tx_t));
|
|
}
|
|
|
|
void
|
|
dmu_tx_commit(dmu_tx_t *tx)
|
|
{
|
|
ASSERT(tx->tx_txg != 0);
|
|
|
|
/*
|
|
* Go through the transaction's hold list and remove holds on
|
|
* associated dnodes, notifying waiters if no holds remain.
|
|
*/
|
|
for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
|
|
txh = list_next(&tx->tx_holds, txh)) {
|
|
dnode_t *dn = txh->txh_dnode;
|
|
|
|
if (dn == NULL)
|
|
continue;
|
|
|
|
mutex_enter(&dn->dn_mtx);
|
|
ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
|
|
|
|
if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
|
|
dn->dn_assigned_txg = 0;
|
|
cv_broadcast(&dn->dn_notxholds);
|
|
}
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
|
|
if (tx->tx_tempreserve_cookie)
|
|
dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
|
|
|
|
if (!list_is_empty(&tx->tx_callbacks))
|
|
txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
|
|
|
|
if (tx->tx_anyobj == FALSE)
|
|
txg_rele_to_sync(&tx->tx_txgh);
|
|
|
|
dmu_tx_destroy(tx);
|
|
}
|
|
|
|
void
|
|
dmu_tx_abort(dmu_tx_t *tx)
|
|
{
|
|
ASSERT(tx->tx_txg == 0);
|
|
|
|
/*
|
|
* Call any registered callbacks with an error code.
|
|
*/
|
|
if (!list_is_empty(&tx->tx_callbacks))
|
|
dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED));
|
|
|
|
dmu_tx_destroy(tx);
|
|
}
|
|
|
|
uint64_t
|
|
dmu_tx_get_txg(dmu_tx_t *tx)
|
|
{
|
|
ASSERT(tx->tx_txg != 0);
|
|
return (tx->tx_txg);
|
|
}
|
|
|
|
dsl_pool_t *
|
|
dmu_tx_pool(dmu_tx_t *tx)
|
|
{
|
|
ASSERT(tx->tx_pool != NULL);
|
|
return (tx->tx_pool);
|
|
}
|
|
|
|
void
|
|
dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
|
|
{
|
|
dmu_tx_callback_t *dcb;
|
|
|
|
dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
|
|
|
|
dcb->dcb_func = func;
|
|
dcb->dcb_data = data;
|
|
|
|
list_insert_tail(&tx->tx_callbacks, dcb);
|
|
}
|
|
|
|
/*
|
|
* Call all the commit callbacks on a list, with a given error code.
|
|
*/
|
|
void
|
|
dmu_tx_do_callbacks(list_t *cb_list, int error)
|
|
{
|
|
dmu_tx_callback_t *dcb;
|
|
|
|
while ((dcb = list_tail(cb_list)) != NULL) {
|
|
list_remove(cb_list, dcb);
|
|
dcb->dcb_func(dcb->dcb_data, error);
|
|
kmem_free(dcb, sizeof (dmu_tx_callback_t));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Interface to hold a bunch of attributes.
|
|
* used for creating new files.
|
|
* attrsize is the total size of all attributes
|
|
* to be added during object creation
|
|
*
|
|
* For updating/adding a single attribute dmu_tx_hold_sa() should be used.
|
|
*/
|
|
|
|
/*
|
|
* hold necessary attribute name for attribute registration.
|
|
* should be a very rare case where this is needed. If it does
|
|
* happen it would only happen on the first write to the file system.
|
|
*/
|
|
static void
|
|
dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
|
|
{
|
|
if (!sa->sa_need_attr_registration)
|
|
return;
|
|
|
|
for (int i = 0; i != sa->sa_num_attrs; i++) {
|
|
if (!sa->sa_attr_table[i].sa_registered) {
|
|
if (sa->sa_reg_attr_obj)
|
|
dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
|
|
B_TRUE, sa->sa_attr_table[i].sa_name);
|
|
else
|
|
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
|
|
B_TRUE, sa->sa_attr_table[i].sa_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
|
|
{
|
|
dmu_tx_hold_t *txh;
|
|
|
|
txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
|
|
THT_SPILL, 0, 0);
|
|
if (txh != NULL)
|
|
(void) zfs_refcount_add_many(&txh->txh_space_towrite,
|
|
SPA_OLD_MAXBLOCKSIZE, FTAG);
|
|
}
|
|
|
|
void
|
|
dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
|
|
{
|
|
sa_os_t *sa = tx->tx_objset->os_sa;
|
|
|
|
dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
|
|
|
|
if (tx->tx_objset->os_sa->sa_master_obj == 0)
|
|
return;
|
|
|
|
if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
|
|
dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
|
|
} else {
|
|
dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
|
|
dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
|
|
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
|
|
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
|
|
}
|
|
|
|
dmu_tx_sa_registration_hold(sa, tx);
|
|
|
|
if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
|
|
return;
|
|
|
|
(void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
|
|
THT_SPILL, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* Hold SA attribute
|
|
*
|
|
* dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
|
|
*
|
|
* variable_size is the total size of all variable sized attributes
|
|
* passed to this function. It is not the total size of all
|
|
* variable size attributes that *may* exist on this object.
|
|
*/
|
|
void
|
|
dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
|
|
{
|
|
uint64_t object;
|
|
sa_os_t *sa = tx->tx_objset->os_sa;
|
|
|
|
ASSERT(hdl != NULL);
|
|
|
|
object = sa_handle_object(hdl);
|
|
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
|
|
DB_DNODE_ENTER(db);
|
|
dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
|
|
DB_DNODE_EXIT(db);
|
|
|
|
if (tx->tx_objset->os_sa->sa_master_obj == 0)
|
|
return;
|
|
|
|
if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
|
|
tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
|
|
dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
|
|
dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
|
|
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
|
|
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
|
|
}
|
|
|
|
dmu_tx_sa_registration_hold(sa, tx);
|
|
|
|
if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
|
|
dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
|
|
|
|
if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
|
|
ASSERT(tx->tx_txg == 0);
|
|
dmu_tx_hold_spill(tx, object);
|
|
} else {
|
|
dnode_t *dn;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
if (dn->dn_have_spill) {
|
|
ASSERT(tx->tx_txg == 0);
|
|
dmu_tx_hold_spill(tx, object);
|
|
}
|
|
DB_DNODE_EXIT(db);
|
|
}
|
|
}
|
|
|
|
void
|
|
dmu_tx_init(void)
|
|
{
|
|
dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
|
|
KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
|
|
if (dmu_tx_ksp != NULL) {
|
|
dmu_tx_ksp->ks_data = &dmu_tx_stats;
|
|
kstat_install(dmu_tx_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
dmu_tx_fini(void)
|
|
{
|
|
if (dmu_tx_ksp != NULL) {
|
|
kstat_delete(dmu_tx_ksp);
|
|
dmu_tx_ksp = NULL;
|
|
}
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
EXPORT_SYMBOL(dmu_tx_create);
|
|
EXPORT_SYMBOL(dmu_tx_hold_write);
|
|
EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
|
|
EXPORT_SYMBOL(dmu_tx_hold_free);
|
|
EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
|
|
EXPORT_SYMBOL(dmu_tx_hold_zap);
|
|
EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
|
|
EXPORT_SYMBOL(dmu_tx_hold_bonus);
|
|
EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
|
|
EXPORT_SYMBOL(dmu_tx_abort);
|
|
EXPORT_SYMBOL(dmu_tx_assign);
|
|
EXPORT_SYMBOL(dmu_tx_wait);
|
|
EXPORT_SYMBOL(dmu_tx_commit);
|
|
EXPORT_SYMBOL(dmu_tx_mark_netfree);
|
|
EXPORT_SYMBOL(dmu_tx_get_txg);
|
|
EXPORT_SYMBOL(dmu_tx_callback_register);
|
|
EXPORT_SYMBOL(dmu_tx_do_callbacks);
|
|
EXPORT_SYMBOL(dmu_tx_hold_spill);
|
|
EXPORT_SYMBOL(dmu_tx_hold_sa_create);
|
|
EXPORT_SYMBOL(dmu_tx_hold_sa);
|
|
#endif
|