mirror_zfs/cmd/zed/agents/zfs_retire.c
Brian Behlendorf 9a49d3f3d3
Add device rebuild feature
The device_rebuild feature enables sequential reconstruction when
resilvering.  Mirror vdevs can be rebuilt in LBA order which may
more quickly restore redundancy depending on the pools average block
size, overall fragmentation and the performance characteristics
of the devices.  However, block checksums cannot be verified
as part of the rebuild thus a scrub is automatically started after
the sequential resilver completes.

The new '-s' option has been added to the `zpool attach` and
`zpool replace` command to request sequential reconstruction
instead of healing reconstruction when resilvering.

    zpool attach -s <pool> <existing vdev> <new vdev>
    zpool replace -s <pool> <old vdev> <new vdev>

The `zpool status` output has been updated to report the progress
of sequential resilvering in the same way as healing resilvering.
The one notable difference is that multiple sequential resilvers
may be in progress as long as they're operating on different
top-level vdevs.

The `zpool wait -t resilver` command was extended to wait on
sequential resilvers.  From this perspective they are no different
than healing resilvers.

Sequential resilvers cannot be supported for RAIDZ, but are
compatible with the dRAID feature being developed.

As part of this change the resilver_restart_* tests were moved
in to the functional/replacement directory.  Additionally, the
replacement tests were renamed and extended to verify both
resilvering and rebuilding.

Original-patch-by: Isaac Huang <he.huang@intel.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: John Poduska <jpoduska@datto.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10349
2020-07-03 11:05:50 -07:00

559 lines
14 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
*
* Copyright (c) 2016, Intel Corporation.
* Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>
*/
/*
* The ZFS retire agent is responsible for managing hot spares across all pools.
* When we see a device fault or a device removal, we try to open the associated
* pool and look for any hot spares. We iterate over any available hot spares
* and attempt a 'zpool replace' for each one.
*
* For vdevs diagnosed as faulty, the agent is also responsible for proactively
* marking the vdev FAULTY (for I/O errors) or DEGRADED (for checksum errors).
*/
#include <sys/fs/zfs.h>
#include <sys/fm/protocol.h>
#include <sys/fm/fs/zfs.h>
#include <libzfs.h>
#include <string.h>
#include "zfs_agents.h"
#include "fmd_api.h"
typedef struct zfs_retire_repaired {
struct zfs_retire_repaired *zrr_next;
uint64_t zrr_pool;
uint64_t zrr_vdev;
} zfs_retire_repaired_t;
typedef struct zfs_retire_data {
libzfs_handle_t *zrd_hdl;
zfs_retire_repaired_t *zrd_repaired;
} zfs_retire_data_t;
static void
zfs_retire_clear_data(fmd_hdl_t *hdl, zfs_retire_data_t *zdp)
{
zfs_retire_repaired_t *zrp;
while ((zrp = zdp->zrd_repaired) != NULL) {
zdp->zrd_repaired = zrp->zrr_next;
fmd_hdl_free(hdl, zrp, sizeof (zfs_retire_repaired_t));
}
}
/*
* Find a pool with a matching GUID.
*/
typedef struct find_cbdata {
uint64_t cb_guid;
zpool_handle_t *cb_zhp;
nvlist_t *cb_vdev;
} find_cbdata_t;
static int
find_pool(zpool_handle_t *zhp, void *data)
{
find_cbdata_t *cbp = data;
if (cbp->cb_guid ==
zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) {
cbp->cb_zhp = zhp;
return (1);
}
zpool_close(zhp);
return (0);
}
/*
* Find a vdev within a tree with a matching GUID.
*/
static nvlist_t *
find_vdev(libzfs_handle_t *zhdl, nvlist_t *nv, uint64_t search_guid)
{
uint64_t guid;
nvlist_t **child;
uint_t c, children;
nvlist_t *ret;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 &&
guid == search_guid) {
fmd_hdl_debug(fmd_module_hdl("zfs-retire"),
"matched vdev %llu", guid);
return (nv);
}
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
&child, &children) != 0)
return (NULL);
for (c = 0; c < children; c++) {
if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
return (ret);
}
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
&child, &children) != 0)
return (NULL);
for (c = 0; c < children; c++) {
if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
return (ret);
}
if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
&child, &children) != 0)
return (NULL);
for (c = 0; c < children; c++) {
if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL)
return (ret);
}
return (NULL);
}
/*
* Given a (pool, vdev) GUID pair, find the matching pool and vdev.
*/
static zpool_handle_t *
find_by_guid(libzfs_handle_t *zhdl, uint64_t pool_guid, uint64_t vdev_guid,
nvlist_t **vdevp)
{
find_cbdata_t cb;
zpool_handle_t *zhp;
nvlist_t *config, *nvroot;
/*
* Find the corresponding pool and make sure the vdev still exists.
*/
cb.cb_guid = pool_guid;
if (zpool_iter(zhdl, find_pool, &cb) != 1)
return (NULL);
zhp = cb.cb_zhp;
config = zpool_get_config(zhp, NULL);
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) != 0) {
zpool_close(zhp);
return (NULL);
}
if (vdev_guid != 0) {
if ((*vdevp = find_vdev(zhdl, nvroot, vdev_guid)) == NULL) {
zpool_close(zhp);
return (NULL);
}
}
return (zhp);
}
/*
* Given a vdev, attempt to replace it with every known spare until one
* succeeds or we run out of devices to try.
* Return whether we were successful or not in replacing the device.
*/
static boolean_t
replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
{
nvlist_t *config, *nvroot, *replacement;
nvlist_t **spares;
uint_t s, nspares;
char *dev_name;
zprop_source_t source;
int ashift;
config = zpool_get_config(zhp, NULL);
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
&nvroot) != 0)
return (B_FALSE);
/*
* Find out if there are any hot spares available in the pool.
*/
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
&spares, &nspares) != 0)
return (B_FALSE);
/*
* lookup "ashift" pool property, we may need it for the replacement
*/
ashift = zpool_get_prop_int(zhp, ZPOOL_PROP_ASHIFT, &source);
replacement = fmd_nvl_alloc(hdl, FMD_SLEEP);
(void) nvlist_add_string(replacement, ZPOOL_CONFIG_TYPE,
VDEV_TYPE_ROOT);
dev_name = zpool_vdev_name(NULL, zhp, vdev, B_FALSE);
/*
* Try to replace each spare, ending when we successfully
* replace it.
*/
for (s = 0; s < nspares; s++) {
char *spare_name;
if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH,
&spare_name) != 0)
continue;
/* if set, add the "ashift" pool property to the spare nvlist */
if (source != ZPROP_SRC_DEFAULT)
(void) nvlist_add_uint64(spares[s],
ZPOOL_CONFIG_ASHIFT, ashift);
(void) nvlist_add_nvlist_array(replacement,
ZPOOL_CONFIG_CHILDREN, &spares[s], 1);
fmd_hdl_debug(hdl, "zpool_vdev_replace '%s' with spare '%s'",
dev_name, basename(spare_name));
if (zpool_vdev_attach(zhp, dev_name, spare_name,
replacement, B_TRUE, B_FALSE) == 0) {
free(dev_name);
nvlist_free(replacement);
return (B_TRUE);
}
}
free(dev_name);
nvlist_free(replacement);
return (B_FALSE);
}
/*
* Repair this vdev if we had diagnosed a 'fault.fs.zfs.device' and
* ASRU is now usable. ZFS has found the device to be present and
* functioning.
*/
/*ARGSUSED*/
static void
zfs_vdev_repair(fmd_hdl_t *hdl, nvlist_t *nvl)
{
zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
zfs_retire_repaired_t *zrp;
uint64_t pool_guid, vdev_guid;
if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
&pool_guid) != 0 || nvlist_lookup_uint64(nvl,
FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
return;
/*
* Before checking the state of the ASRU, go through and see if we've
* already made an attempt to repair this ASRU. This list is cleared
* whenever we receive any kind of list event, and is designed to
* prevent us from generating a feedback loop when we attempt repairs
* against a faulted pool. The problem is that checking the unusable
* state of the ASRU can involve opening the pool, which can post
* statechange events but otherwise leave the pool in the faulted
* state. This list allows us to detect when a statechange event is
* due to our own request.
*/
for (zrp = zdp->zrd_repaired; zrp != NULL; zrp = zrp->zrr_next) {
if (zrp->zrr_pool == pool_guid &&
zrp->zrr_vdev == vdev_guid)
return;
}
zrp = fmd_hdl_alloc(hdl, sizeof (zfs_retire_repaired_t), FMD_SLEEP);
zrp->zrr_next = zdp->zrd_repaired;
zrp->zrr_pool = pool_guid;
zrp->zrr_vdev = vdev_guid;
zdp->zrd_repaired = zrp;
fmd_hdl_debug(hdl, "marking repaired vdev %llu on pool %llu",
vdev_guid, pool_guid);
}
/*ARGSUSED*/
static void
zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl,
const char *class)
{
uint64_t pool_guid, vdev_guid;
zpool_handle_t *zhp;
nvlist_t *resource, *fault;
nvlist_t **faults;
uint_t f, nfaults;
zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
libzfs_handle_t *zhdl = zdp->zrd_hdl;
boolean_t fault_device, degrade_device;
boolean_t is_repair;
char *scheme;
nvlist_t *vdev = NULL;
char *uuid;
int repair_done = 0;
boolean_t retire;
boolean_t is_disk;
vdev_aux_t aux;
uint64_t state = 0;
fmd_hdl_debug(hdl, "zfs_retire_recv: '%s'", class);
nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, &state);
/*
* If this is a resource notifying us of device removal then simply
* check for an available spare and continue unless the device is a
* l2arc vdev, in which case we just offline it.
*/
if (strcmp(class, "resource.fs.zfs.removed") == 0 ||
(strcmp(class, "resource.fs.zfs.statechange") == 0 &&
state == VDEV_STATE_REMOVED)) {
char *devtype;
char *devname;
if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
&pool_guid) != 0 ||
nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
&vdev_guid) != 0)
return;
if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
&vdev)) == NULL)
return;
devname = zpool_vdev_name(NULL, zhp, vdev, B_FALSE);
/* Can't replace l2arc with a spare: offline the device */
if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
&devtype) == 0 && strcmp(devtype, VDEV_TYPE_L2CACHE) == 0) {
fmd_hdl_debug(hdl, "zpool_vdev_offline '%s'", devname);
zpool_vdev_offline(zhp, devname, B_TRUE);
} else if (!fmd_prop_get_int32(hdl, "spare_on_remove") ||
replace_with_spare(hdl, zhp, vdev) == B_FALSE) {
/* Could not handle with spare: offline the device */
fmd_hdl_debug(hdl, "zpool_vdev_offline '%s'", devname);
zpool_vdev_offline(zhp, devname, B_TRUE);
}
free(devname);
zpool_close(zhp);
return;
}
if (strcmp(class, FM_LIST_RESOLVED_CLASS) == 0)
return;
/*
* Note: on zfsonlinux statechange events are more than just
* healthy ones so we need to confirm the actual state value.
*/
if (strcmp(class, "resource.fs.zfs.statechange") == 0 &&
state == VDEV_STATE_HEALTHY) {
zfs_vdev_repair(hdl, nvl);
return;
}
if (strcmp(class, "sysevent.fs.zfs.vdev_remove") == 0) {
zfs_vdev_repair(hdl, nvl);
return;
}
zfs_retire_clear_data(hdl, zdp);
if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0)
is_repair = B_TRUE;
else
is_repair = B_FALSE;
/*
* We subscribe to zfs faults as well as all repair events.
*/
if (nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST,
&faults, &nfaults) != 0)
return;
for (f = 0; f < nfaults; f++) {
fault = faults[f];
fault_device = B_FALSE;
degrade_device = B_FALSE;
is_disk = B_FALSE;
if (nvlist_lookup_boolean_value(fault, FM_SUSPECT_RETIRE,
&retire) == 0 && retire == 0)
continue;
/*
* While we subscribe to fault.fs.zfs.*, we only take action
* for faults targeting a specific vdev (open failure or SERD
* failure). We also subscribe to fault.io.* events, so that
* faulty disks will be faulted in the ZFS configuration.
*/
if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.io")) {
fault_device = B_TRUE;
} else if (fmd_nvl_class_match(hdl, fault,
"fault.fs.zfs.vdev.checksum")) {
degrade_device = B_TRUE;
} else if (fmd_nvl_class_match(hdl, fault,
"fault.fs.zfs.device")) {
fault_device = B_FALSE;
} else if (fmd_nvl_class_match(hdl, fault, "fault.io.*")) {
is_disk = B_TRUE;
fault_device = B_TRUE;
} else {
continue;
}
if (is_disk) {
continue;
} else {
/*
* This is a ZFS fault. Lookup the resource, and
* attempt to find the matching vdev.
*/
if (nvlist_lookup_nvlist(fault, FM_FAULT_RESOURCE,
&resource) != 0 ||
nvlist_lookup_string(resource, FM_FMRI_SCHEME,
&scheme) != 0)
continue;
if (strcmp(scheme, FM_FMRI_SCHEME_ZFS) != 0)
continue;
if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_POOL,
&pool_guid) != 0)
continue;
if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_VDEV,
&vdev_guid) != 0) {
if (is_repair)
vdev_guid = 0;
else
continue;
}
if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid,
&vdev)) == NULL)
continue;
aux = VDEV_AUX_ERR_EXCEEDED;
}
if (vdev_guid == 0) {
/*
* For pool-level repair events, clear the entire pool.
*/
fmd_hdl_debug(hdl, "zpool_clear of pool '%s'",
zpool_get_name(zhp));
(void) zpool_clear(zhp, NULL, NULL);
zpool_close(zhp);
continue;
}
/*
* If this is a repair event, then mark the vdev as repaired and
* continue.
*/
if (is_repair) {
repair_done = 1;
fmd_hdl_debug(hdl, "zpool_clear of pool '%s' vdev %llu",
zpool_get_name(zhp), vdev_guid);
(void) zpool_vdev_clear(zhp, vdev_guid);
zpool_close(zhp);
continue;
}
/*
* Actively fault the device if needed.
*/
if (fault_device)
(void) zpool_vdev_fault(zhp, vdev_guid, aux);
if (degrade_device)
(void) zpool_vdev_degrade(zhp, vdev_guid, aux);
if (fault_device || degrade_device)
fmd_hdl_debug(hdl, "zpool_vdev_%s: vdev %llu on '%s'",
fault_device ? "fault" : "degrade", vdev_guid,
zpool_get_name(zhp));
/*
* Attempt to substitute a hot spare.
*/
(void) replace_with_spare(hdl, zhp, vdev);
zpool_close(zhp);
}
if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0 && repair_done &&
nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0)
fmd_case_uuresolved(hdl, uuid);
}
static const fmd_hdl_ops_t fmd_ops = {
zfs_retire_recv, /* fmdo_recv */
NULL, /* fmdo_timeout */
NULL, /* fmdo_close */
NULL, /* fmdo_stats */
NULL, /* fmdo_gc */
};
static const fmd_prop_t fmd_props[] = {
{ "spare_on_remove", FMD_TYPE_BOOL, "true" },
{ NULL, 0, NULL }
};
static const fmd_hdl_info_t fmd_info = {
"ZFS Retire Agent", "1.0", &fmd_ops, fmd_props
};
void
_zfs_retire_init(fmd_hdl_t *hdl)
{
zfs_retire_data_t *zdp;
libzfs_handle_t *zhdl;
if ((zhdl = libzfs_init()) == NULL)
return;
if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
libzfs_fini(zhdl);
return;
}
zdp = fmd_hdl_zalloc(hdl, sizeof (zfs_retire_data_t), FMD_SLEEP);
zdp->zrd_hdl = zhdl;
fmd_hdl_setspecific(hdl, zdp);
}
void
_zfs_retire_fini(fmd_hdl_t *hdl)
{
zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl);
if (zdp != NULL) {
zfs_retire_clear_data(hdl, zdp);
libzfs_fini(zdp->zrd_hdl);
fmd_hdl_free(hdl, zdp, sizeof (zfs_retire_data_t));
}
}