mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 04:30:33 +03:00
46364cb2f3
OpenZFS provides a library called tpool which implements thread pools for user space applications. Porting this library means the zpool utility no longer needs to borrow the kernel mutex and taskq interfaces from libzpool. This code was updated to use the tpool library which behaves in a very similar fashion. Porting libtpool was relatively straight forward and minimal modifications were needed. The core changes were: * Fully convert the library to use pthreads. * Updated signal handling. * lmalloc/lfree converted to calloc/free * Implemented portable pthread_attr_clone() function. Finally, update the build system such that libzpool.so is no longer linked in to zfs(8), zpool(8), etc. All that is required is libzfs to which the zcommon soures were added (which is the way it always should have been). Removing the libzpool dependency resulted in several build issues which needed to be resolved. * Moved zfeature support to module/zcommon/zfeature_common.c * Moved ratelimiting to to module/zfs/zfs_ratelimit.c * Moved get_system_hostid() to lib/libspl/gethostid.c * Removed use of cmn_err() in zcommon source * Removed dprintf_setup() call from zpool_main.c and zfs_main.c * Removed highbit() and lowbit() * Removed unnecessary library dependencies from Makefiles * Removed fletcher-4 kstat in user space * Added sha2 support explicitly to libzfs * Added highbit64() and lowbit64() to zpool_util.c Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #6442
926 lines
24 KiB
C
926 lines
24 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* mod_hash: flexible hash table implementation.
|
|
*
|
|
* This is a reasonably fast, reasonably flexible hash table implementation
|
|
* which features pluggable hash algorithms to support storing arbitrary keys
|
|
* and values. It is designed to handle small (< 100,000 items) amounts of
|
|
* data. The hash uses chaining to resolve collisions, and does not feature a
|
|
* mechanism to grow the hash. Care must be taken to pick nchains to be large
|
|
* enough for the application at hand, or lots of time will be wasted searching
|
|
* hash chains.
|
|
*
|
|
* The client of the hash is required to supply a number of items to support
|
|
* the various hash functions:
|
|
*
|
|
* - Destructor functions for the key and value being hashed.
|
|
* A destructor is responsible for freeing an object when the hash
|
|
* table is no longer storing it. Since keys and values can be of
|
|
* arbitrary type, separate destructors for keys & values are used.
|
|
* These may be mod_hash_null_keydtor and mod_hash_null_valdtor if no
|
|
* destructor is needed for either a key or value.
|
|
*
|
|
* - A hashing algorithm which returns a uint_t representing a hash index
|
|
* The number returned need _not_ be between 0 and nchains. The mod_hash
|
|
* code will take care of doing that. The second argument (after the
|
|
* key) to the hashing function is a void * that represents
|
|
* hash_alg_data-- this is provided so that the hashing algrorithm can
|
|
* maintain some state across calls, or keep algorithm-specific
|
|
* constants associated with the hash table.
|
|
*
|
|
* A pointer-hashing and a string-hashing algorithm are supplied in
|
|
* this file.
|
|
*
|
|
* - A key comparator (a la qsort).
|
|
* This is used when searching the hash chain. The key comparator
|
|
* determines if two keys match. It should follow the return value
|
|
* semantics of strcmp.
|
|
*
|
|
* string and pointer comparators are supplied in this file.
|
|
*
|
|
* mod_hash_create_strhash() and mod_hash_create_ptrhash() provide good
|
|
* examples of how to create a customized hash table.
|
|
*
|
|
* Basic hash operations:
|
|
*
|
|
* mod_hash_create_strhash(name, nchains, dtor),
|
|
* create a hash using strings as keys.
|
|
* NOTE: This create a hash which automatically cleans up the string
|
|
* values it is given for keys.
|
|
*
|
|
* mod_hash_create_ptrhash(name, nchains, dtor, key_elem_size):
|
|
* create a hash using pointers as keys.
|
|
*
|
|
* mod_hash_create_extended(name, nchains, kdtor, vdtor,
|
|
* hash_alg, hash_alg_data,
|
|
* keycmp, sleep)
|
|
* create a customized hash table.
|
|
*
|
|
* mod_hash_destroy_hash(hash):
|
|
* destroy the given hash table, calling the key and value destructors
|
|
* on each key-value pair stored in the hash.
|
|
*
|
|
* mod_hash_insert(hash, key, val):
|
|
* place a key, value pair into the given hash.
|
|
* duplicate keys are rejected.
|
|
*
|
|
* mod_hash_insert_reserve(hash, key, val, handle):
|
|
* place a key, value pair into the given hash, using handle to indicate
|
|
* the reserved storage for the pair. (no memory allocation is needed
|
|
* during a mod_hash_insert_reserve.) duplicate keys are rejected.
|
|
*
|
|
* mod_hash_reserve(hash, *handle):
|
|
* reserve storage for a key-value pair using the memory allocation
|
|
* policy of 'hash', returning the storage handle in 'handle'.
|
|
*
|
|
* mod_hash_reserve_nosleep(hash, *handle): reserve storage for a key-value
|
|
* pair ignoring the memory allocation policy of 'hash' and always without
|
|
* sleep, returning the storage handle in 'handle'.
|
|
*
|
|
* mod_hash_remove(hash, key, *val):
|
|
* remove a key-value pair with key 'key' from 'hash', destroying the
|
|
* stored key, and returning the value in val.
|
|
*
|
|
* mod_hash_replace(hash, key, val)
|
|
* atomically remove an existing key-value pair from a hash, and replace
|
|
* the key and value with the ones supplied. The removed key and value
|
|
* (if any) are destroyed.
|
|
*
|
|
* mod_hash_destroy(hash, key):
|
|
* remove a key-value pair with key 'key' from 'hash', destroying both
|
|
* stored key and stored value.
|
|
*
|
|
* mod_hash_find(hash, key, val):
|
|
* find a value in the hash table corresponding to the given key.
|
|
*
|
|
* mod_hash_find_cb(hash, key, val, found_callback)
|
|
* find a value in the hash table corresponding to the given key.
|
|
* If a value is found, call specified callback passing key and val to it.
|
|
* The callback is called with the hash lock held.
|
|
* It is intended to be used in situations where the act of locating the
|
|
* data must also modify it - such as in reference counting schemes.
|
|
*
|
|
* mod_hash_walk(hash, callback(key, elem, arg), arg)
|
|
* walks all the elements in the hashtable and invokes the callback
|
|
* function with the key/value pair for each element. the hashtable
|
|
* is locked for readers so the callback function should not attempt
|
|
* to do any updates to the hashable. the callback function should
|
|
* return MH_WALK_CONTINUE to continue walking the hashtable or
|
|
* MH_WALK_TERMINATE to abort the walk of the hashtable.
|
|
*
|
|
* mod_hash_clear(hash):
|
|
* clears the given hash table of entries, calling the key and value
|
|
* destructors for every element in the hash.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/bitmap.h>
|
|
#include <sys/modhash_impl.h>
|
|
#include <sys/sysmacros.h>
|
|
|
|
/*
|
|
* MH_KEY_DESTROY()
|
|
* Invoke the key destructor.
|
|
*/
|
|
#define MH_KEY_DESTROY(hash, key) ((hash->mh_kdtor)(key))
|
|
|
|
/*
|
|
* MH_VAL_DESTROY()
|
|
* Invoke the value destructor.
|
|
*/
|
|
#define MH_VAL_DESTROY(hash, val) ((hash->mh_vdtor)(val))
|
|
|
|
/*
|
|
* MH_KEYCMP()
|
|
* Call the key comparator for the given hash keys.
|
|
*/
|
|
#define MH_KEYCMP(hash, key1, key2) ((hash->mh_keycmp)(key1, key2))
|
|
|
|
/*
|
|
* Cache for struct mod_hash_entry
|
|
*/
|
|
kmem_cache_t *mh_e_cache = NULL;
|
|
mod_hash_t *mh_head = NULL;
|
|
kmutex_t mh_head_lock;
|
|
|
|
/*
|
|
* mod_hash_null_keydtor()
|
|
* mod_hash_null_valdtor()
|
|
* no-op key and value destructors.
|
|
*/
|
|
/*ARGSUSED*/
|
|
void
|
|
mod_hash_null_keydtor(mod_hash_key_t key)
|
|
{
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
mod_hash_null_valdtor(mod_hash_val_t val)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* mod_hash_bystr()
|
|
* mod_hash_strkey_cmp()
|
|
* mod_hash_strkey_dtor()
|
|
* mod_hash_strval_dtor()
|
|
* Hash and key comparison routines for hashes with string keys.
|
|
*
|
|
* mod_hash_create_strhash()
|
|
* Create a hash using strings as keys
|
|
*
|
|
* The string hashing algorithm is from the "Dragon Book" --
|
|
* "Compilers: Principles, Tools & Techniques", by Aho, Sethi, Ullman
|
|
*/
|
|
|
|
/*ARGSUSED*/
|
|
uint_t
|
|
mod_hash_bystr(void *hash_data, mod_hash_key_t key)
|
|
{
|
|
uint_t hash = 0;
|
|
uint_t g;
|
|
char *p, *k = (char *)key;
|
|
|
|
ASSERT(k);
|
|
for (p = k; *p != '\0'; p++) {
|
|
hash = (hash << 4) + *p;
|
|
if ((g = (hash & 0xf0000000)) != 0) {
|
|
hash ^= (g >> 24);
|
|
hash ^= g;
|
|
}
|
|
}
|
|
return (hash);
|
|
}
|
|
|
|
int
|
|
mod_hash_strkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
|
|
{
|
|
return (strcmp((char *)key1, (char *)key2));
|
|
}
|
|
|
|
void
|
|
mod_hash_strkey_dtor(mod_hash_key_t key)
|
|
{
|
|
char *c = (char *)key;
|
|
kmem_free(c, strlen(c) + 1);
|
|
}
|
|
|
|
void
|
|
mod_hash_strval_dtor(mod_hash_val_t val)
|
|
{
|
|
char *c = (char *)val;
|
|
kmem_free(c, strlen(c) + 1);
|
|
}
|
|
|
|
mod_hash_t *
|
|
mod_hash_create_strhash_nodtr(char *name, size_t nchains,
|
|
void (*val_dtor)(mod_hash_val_t))
|
|
{
|
|
return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
|
|
val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
|
|
}
|
|
|
|
mod_hash_t *
|
|
mod_hash_create_strhash(char *name, size_t nchains,
|
|
void (*val_dtor)(mod_hash_val_t))
|
|
{
|
|
return mod_hash_create_extended(name, nchains, mod_hash_strkey_dtor,
|
|
val_dtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP);
|
|
}
|
|
|
|
void
|
|
mod_hash_destroy_strhash(mod_hash_t *strhash)
|
|
{
|
|
ASSERT(strhash);
|
|
mod_hash_destroy_hash(strhash);
|
|
}
|
|
|
|
|
|
/*
|
|
* mod_hash_byptr()
|
|
* mod_hash_ptrkey_cmp()
|
|
* Hash and key comparison routines for hashes with pointer keys.
|
|
*
|
|
* mod_hash_create_ptrhash()
|
|
* mod_hash_destroy_ptrhash()
|
|
* Create a hash that uses pointers as keys. This hash algorithm
|
|
* picks an appropriate set of middle bits in the address to hash on
|
|
* based on the size of the hash table and a hint about the size of
|
|
* the items pointed at.
|
|
*/
|
|
uint_t
|
|
mod_hash_byptr(void *hash_data, mod_hash_key_t key)
|
|
{
|
|
uintptr_t k = (uintptr_t)key;
|
|
k >>= (int)(uintptr_t)hash_data;
|
|
|
|
return ((uint_t)k);
|
|
}
|
|
|
|
int
|
|
mod_hash_ptrkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
|
|
{
|
|
uintptr_t k1 = (uintptr_t)key1;
|
|
uintptr_t k2 = (uintptr_t)key2;
|
|
if (k1 > k2)
|
|
return (-1);
|
|
else if (k1 < k2)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
mod_hash_t *
|
|
mod_hash_create_ptrhash(char *name, size_t nchains,
|
|
void (*val_dtor)(mod_hash_val_t), size_t key_elem_size)
|
|
{
|
|
size_t rshift;
|
|
|
|
/*
|
|
* We want to hash on the bits in the middle of the address word
|
|
* Bits far to the right in the word have little significance, and
|
|
* are likely to all look the same (for example, an array of
|
|
* 256-byte structures will have the bottom 8 bits of address
|
|
* words the same). So we want to right-shift each address to
|
|
* ignore the bottom bits.
|
|
*
|
|
* The high bits, which are also unused, will get taken out when
|
|
* mod_hash takes hashkey % nchains.
|
|
*/
|
|
rshift = highbit64(key_elem_size);
|
|
|
|
return mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
|
|
val_dtor, mod_hash_byptr, (void *)rshift, mod_hash_ptrkey_cmp,
|
|
KM_SLEEP);
|
|
}
|
|
|
|
void
|
|
mod_hash_destroy_ptrhash(mod_hash_t *hash)
|
|
{
|
|
ASSERT(hash);
|
|
mod_hash_destroy_hash(hash);
|
|
}
|
|
|
|
/*
|
|
* mod_hash_byid()
|
|
* mod_hash_idkey_cmp()
|
|
* Hash and key comparison routines for hashes with 32-bit unsigned keys.
|
|
*
|
|
* mod_hash_create_idhash()
|
|
* mod_hash_destroy_idhash()
|
|
* mod_hash_iddata_gen()
|
|
* Create a hash that uses numeric keys.
|
|
*
|
|
* The hash algorithm is documented in "Introduction to Algorithms"
|
|
* (Cormen, Leiserson, Rivest); when the hash table is created, it
|
|
* attempts to find the next largest prime above the number of hash
|
|
* slots. The hash index is then this number times the key modulo
|
|
* the hash size, or (key * prime) % nchains.
|
|
*/
|
|
uint_t
|
|
mod_hash_byid(void *hash_data, mod_hash_key_t key)
|
|
{
|
|
uint_t kval = (uint_t)(uintptr_t)hash_data;
|
|
return ((uint_t)(uintptr_t)key * (uint_t)kval);
|
|
}
|
|
|
|
int
|
|
mod_hash_idkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
|
|
{
|
|
return ((uint_t)(uintptr_t)key1 - (uint_t)(uintptr_t)key2);
|
|
}
|
|
|
|
/*
|
|
* Generate the next largest prime number greater than nchains; this value
|
|
* is intended to be later passed in to mod_hash_create_extended() as the
|
|
* hash_data.
|
|
*/
|
|
uint_t
|
|
mod_hash_iddata_gen(size_t nchains)
|
|
{
|
|
uint_t kval, i, prime;
|
|
|
|
/*
|
|
* Pick the first (odd) prime greater than nchains. Make sure kval is
|
|
* odd (so start with nchains +1 or +2 as appropriate).
|
|
*/
|
|
kval = (nchains % 2 == 0) ? nchains + 1 : nchains + 2;
|
|
|
|
for (;;) {
|
|
prime = 1;
|
|
for (i = 3; i * i <= kval; i += 2) {
|
|
if (kval % i == 0)
|
|
prime = 0;
|
|
}
|
|
if (prime == 1)
|
|
break;
|
|
kval += 2;
|
|
}
|
|
return (kval);
|
|
}
|
|
|
|
mod_hash_t *
|
|
mod_hash_create_idhash(char *name, size_t nchains,
|
|
void (*val_dtor)(mod_hash_val_t))
|
|
{
|
|
uint_t kval = mod_hash_iddata_gen(nchains);
|
|
|
|
return (mod_hash_create_extended(name, nchains, mod_hash_null_keydtor,
|
|
val_dtor, mod_hash_byid, (void *)(uintptr_t)kval,
|
|
mod_hash_idkey_cmp, KM_SLEEP));
|
|
}
|
|
|
|
void
|
|
mod_hash_destroy_idhash(mod_hash_t *hash)
|
|
{
|
|
ASSERT(hash);
|
|
mod_hash_destroy_hash(hash);
|
|
}
|
|
|
|
void
|
|
mod_hash_fini(void)
|
|
{
|
|
mutex_destroy(&mh_head_lock);
|
|
|
|
if (mh_e_cache) {
|
|
kmem_cache_destroy(mh_e_cache);
|
|
mh_e_cache = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* mod_hash_init()
|
|
* sets up globals, etc for mod_hash_*
|
|
*/
|
|
void
|
|
mod_hash_init(void)
|
|
{
|
|
ASSERT(mh_e_cache == NULL);
|
|
mh_e_cache = kmem_cache_create("mod_hash_entries",
|
|
sizeof (struct mod_hash_entry), 0, NULL, NULL, NULL, NULL,
|
|
NULL, 0);
|
|
|
|
mutex_init(&mh_head_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
}
|
|
|
|
/*
|
|
* mod_hash_create_extended()
|
|
* The full-blown hash creation function.
|
|
*
|
|
* notes:
|
|
* nchains - how many hash slots to create. More hash slots will
|
|
* result in shorter hash chains, but will consume
|
|
* slightly more memory up front.
|
|
* sleep - should be KM_SLEEP or KM_NOSLEEP, to indicate whether
|
|
* to sleep for memory, or fail in low-memory conditions.
|
|
*
|
|
* Fails only if KM_NOSLEEP was specified, and no memory was available.
|
|
*/
|
|
mod_hash_t *
|
|
mod_hash_create_extended(
|
|
char *hname, /* descriptive name for hash */
|
|
size_t nchains, /* number of hash slots */
|
|
void (*kdtor)(mod_hash_key_t), /* key destructor */
|
|
void (*vdtor)(mod_hash_val_t), /* value destructor */
|
|
uint_t (*hash_alg)(void *, mod_hash_key_t), /* hash algorithm */
|
|
void *hash_alg_data, /* pass-thru arg for hash_alg */
|
|
int (*keycmp)(mod_hash_key_t, mod_hash_key_t), /* key comparator */
|
|
int sleep) /* whether to sleep for mem */
|
|
{
|
|
mod_hash_t *mod_hash;
|
|
ASSERT(hname && keycmp && hash_alg && vdtor && kdtor);
|
|
|
|
if ((mod_hash = kmem_zalloc(MH_SIZE(nchains), sleep)) == NULL)
|
|
return (NULL);
|
|
|
|
mod_hash->mh_name = kmem_alloc(strlen(hname) + 1, sleep);
|
|
if (mod_hash->mh_name == NULL) {
|
|
kmem_free(mod_hash, MH_SIZE(nchains));
|
|
return (NULL);
|
|
}
|
|
(void) strcpy(mod_hash->mh_name, hname);
|
|
|
|
rw_init(&mod_hash->mh_contents, NULL, RW_DEFAULT, NULL);
|
|
mod_hash->mh_sleep = sleep;
|
|
mod_hash->mh_nchains = nchains;
|
|
mod_hash->mh_kdtor = kdtor;
|
|
mod_hash->mh_vdtor = vdtor;
|
|
mod_hash->mh_hashalg = hash_alg;
|
|
mod_hash->mh_hashalg_data = hash_alg_data;
|
|
mod_hash->mh_keycmp = keycmp;
|
|
|
|
/*
|
|
* Link the hash up on the list of hashes
|
|
*/
|
|
mutex_enter(&mh_head_lock);
|
|
mod_hash->mh_next = mh_head;
|
|
mh_head = mod_hash;
|
|
mutex_exit(&mh_head_lock);
|
|
|
|
return (mod_hash);
|
|
}
|
|
|
|
/*
|
|
* mod_hash_destroy_hash()
|
|
* destroy a hash table, destroying all of its stored keys and values
|
|
* as well.
|
|
*/
|
|
void
|
|
mod_hash_destroy_hash(mod_hash_t *hash)
|
|
{
|
|
mod_hash_t *mhp, *mhpp;
|
|
|
|
mutex_enter(&mh_head_lock);
|
|
/*
|
|
* Remove the hash from the hash list
|
|
*/
|
|
if (hash == mh_head) { /* removing 1st list elem */
|
|
mh_head = mh_head->mh_next;
|
|
} else {
|
|
/*
|
|
* mhpp can start out NULL since we know the 1st elem isn't the
|
|
* droid we're looking for.
|
|
*/
|
|
mhpp = NULL;
|
|
for (mhp = mh_head; mhp != NULL; mhp = mhp->mh_next) {
|
|
if (mhp == hash) {
|
|
mhpp->mh_next = mhp->mh_next;
|
|
break;
|
|
}
|
|
mhpp = mhp;
|
|
}
|
|
}
|
|
mutex_exit(&mh_head_lock);
|
|
|
|
/*
|
|
* Clean out keys and values.
|
|
*/
|
|
mod_hash_clear(hash);
|
|
|
|
rw_destroy(&hash->mh_contents);
|
|
kmem_free(hash->mh_name, strlen(hash->mh_name) + 1);
|
|
kmem_free(hash, MH_SIZE(hash->mh_nchains));
|
|
}
|
|
|
|
/*
|
|
* i_mod_hash()
|
|
* Call the hashing algorithm for this hash table, with the given key.
|
|
*/
|
|
uint_t
|
|
i_mod_hash(mod_hash_t *hash, mod_hash_key_t key)
|
|
{
|
|
uint_t h;
|
|
/*
|
|
* Prevent div by 0 problems;
|
|
* Also a nice shortcut when using a hash as a list
|
|
*/
|
|
if (hash->mh_nchains == 1)
|
|
return (0);
|
|
|
|
h = (hash->mh_hashalg)(hash->mh_hashalg_data, key);
|
|
return (h % (hash->mh_nchains - 1));
|
|
}
|
|
|
|
/*
|
|
* i_mod_hash_insert_nosync()
|
|
* mod_hash_insert()
|
|
* mod_hash_insert_reserve()
|
|
* insert 'val' into the hash table, using 'key' as its key. If 'key' is
|
|
* already a key in the hash, an error will be returned, and the key-val
|
|
* pair will not be inserted. i_mod_hash_insert_nosync() supports a simple
|
|
* handle abstraction, allowing hash entry allocation to be separated from
|
|
* the hash insertion. this abstraction allows simple use of the mod_hash
|
|
* structure in situations where mod_hash_insert() with a KM_SLEEP
|
|
* allocation policy would otherwise be unsafe.
|
|
*/
|
|
int
|
|
i_mod_hash_insert_nosync(mod_hash_t *hash, mod_hash_key_t key,
|
|
mod_hash_val_t val, mod_hash_hndl_t handle)
|
|
{
|
|
uint_t hashidx;
|
|
struct mod_hash_entry *entry;
|
|
|
|
ASSERT(hash);
|
|
|
|
/*
|
|
* If we've not been given reserved storage, allocate storage directly,
|
|
* using the hash's allocation policy.
|
|
*/
|
|
if (handle == (mod_hash_hndl_t)0) {
|
|
entry = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
|
|
if (entry == NULL) {
|
|
hash->mh_stat.mhs_nomem++;
|
|
return (MH_ERR_NOMEM);
|
|
}
|
|
} else {
|
|
entry = (struct mod_hash_entry *)handle;
|
|
}
|
|
|
|
hashidx = i_mod_hash(hash, key);
|
|
entry->mhe_key = key;
|
|
entry->mhe_val = val;
|
|
entry->mhe_next = hash->mh_entries[hashidx];
|
|
|
|
hash->mh_entries[hashidx] = entry;
|
|
hash->mh_stat.mhs_nelems++;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
mod_hash_insert(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
|
|
{
|
|
int res;
|
|
mod_hash_val_t v;
|
|
|
|
rw_enter(&hash->mh_contents, RW_WRITER);
|
|
|
|
/*
|
|
* Disallow duplicate keys in the hash
|
|
*/
|
|
if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
|
|
rw_exit(&hash->mh_contents);
|
|
hash->mh_stat.mhs_coll++;
|
|
return (MH_ERR_DUPLICATE);
|
|
}
|
|
|
|
res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
|
|
rw_exit(&hash->mh_contents);
|
|
|
|
return (res);
|
|
}
|
|
|
|
int
|
|
mod_hash_insert_reserve(mod_hash_t *hash, mod_hash_key_t key,
|
|
mod_hash_val_t val, mod_hash_hndl_t handle)
|
|
{
|
|
int res;
|
|
mod_hash_val_t v;
|
|
|
|
rw_enter(&hash->mh_contents, RW_WRITER);
|
|
|
|
/*
|
|
* Disallow duplicate keys in the hash
|
|
*/
|
|
if (i_mod_hash_find_nosync(hash, key, &v) == 0) {
|
|
rw_exit(&hash->mh_contents);
|
|
hash->mh_stat.mhs_coll++;
|
|
return (MH_ERR_DUPLICATE);
|
|
}
|
|
res = i_mod_hash_insert_nosync(hash, key, val, handle);
|
|
rw_exit(&hash->mh_contents);
|
|
|
|
return (res);
|
|
}
|
|
|
|
/*
|
|
* mod_hash_reserve()
|
|
* mod_hash_reserve_nosleep()
|
|
* mod_hash_cancel()
|
|
* Make or cancel a mod_hash_entry_t reservation. Reservations are used in
|
|
* mod_hash_insert_reserve() above.
|
|
*/
|
|
int
|
|
mod_hash_reserve(mod_hash_t *hash, mod_hash_hndl_t *handlep)
|
|
{
|
|
*handlep = kmem_cache_alloc(mh_e_cache, hash->mh_sleep);
|
|
if (*handlep == NULL) {
|
|
hash->mh_stat.mhs_nomem++;
|
|
return (MH_ERR_NOMEM);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
mod_hash_reserve_nosleep(mod_hash_t *hash, mod_hash_hndl_t *handlep)
|
|
{
|
|
*handlep = kmem_cache_alloc(mh_e_cache, KM_NOSLEEP);
|
|
if (*handlep == NULL) {
|
|
hash->mh_stat.mhs_nomem++;
|
|
return (MH_ERR_NOMEM);
|
|
}
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
mod_hash_cancel(mod_hash_t *hash, mod_hash_hndl_t *handlep)
|
|
{
|
|
kmem_cache_free(mh_e_cache, *handlep);
|
|
*handlep = (mod_hash_hndl_t)0;
|
|
}
|
|
|
|
/*
|
|
* i_mod_hash_remove_nosync()
|
|
* mod_hash_remove()
|
|
* Remove an element from the hash table.
|
|
*/
|
|
int
|
|
i_mod_hash_remove_nosync(mod_hash_t *hash, mod_hash_key_t key,
|
|
mod_hash_val_t *val)
|
|
{
|
|
int hashidx;
|
|
struct mod_hash_entry *e, *ep;
|
|
|
|
hashidx = i_mod_hash(hash, key);
|
|
ep = NULL; /* e's parent */
|
|
|
|
for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
|
|
if (MH_KEYCMP(hash, e->mhe_key, key) == 0)
|
|
break;
|
|
ep = e;
|
|
}
|
|
|
|
if (e == NULL) { /* not found */
|
|
return (MH_ERR_NOTFOUND);
|
|
}
|
|
|
|
if (ep == NULL) /* special case 1st element in bucket */
|
|
hash->mh_entries[hashidx] = e->mhe_next;
|
|
else
|
|
ep->mhe_next = e->mhe_next;
|
|
|
|
/*
|
|
* Clean up resources used by the node's key.
|
|
*/
|
|
MH_KEY_DESTROY(hash, e->mhe_key);
|
|
|
|
*val = e->mhe_val;
|
|
kmem_cache_free(mh_e_cache, e);
|
|
hash->mh_stat.mhs_nelems--;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
mod_hash_remove(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
|
|
{
|
|
int res;
|
|
|
|
rw_enter(&hash->mh_contents, RW_WRITER);
|
|
res = i_mod_hash_remove_nosync(hash, key, val);
|
|
rw_exit(&hash->mh_contents);
|
|
|
|
return (res);
|
|
}
|
|
|
|
/*
|
|
* mod_hash_replace()
|
|
* atomically remove an existing key-value pair from a hash, and replace
|
|
* the key and value with the ones supplied. The removed key and value
|
|
* (if any) are destroyed.
|
|
*/
|
|
int
|
|
mod_hash_replace(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t val)
|
|
{
|
|
int res;
|
|
mod_hash_val_t v;
|
|
|
|
rw_enter(&hash->mh_contents, RW_WRITER);
|
|
|
|
if (i_mod_hash_remove_nosync(hash, key, &v) == 0) {
|
|
/*
|
|
* mod_hash_remove() takes care of freeing up the key resources.
|
|
*/
|
|
MH_VAL_DESTROY(hash, v);
|
|
}
|
|
res = i_mod_hash_insert_nosync(hash, key, val, (mod_hash_hndl_t)0);
|
|
|
|
rw_exit(&hash->mh_contents);
|
|
|
|
return (res);
|
|
}
|
|
|
|
/*
|
|
* mod_hash_destroy()
|
|
* Remove an element from the hash table matching 'key', and destroy it.
|
|
*/
|
|
int
|
|
mod_hash_destroy(mod_hash_t *hash, mod_hash_key_t key)
|
|
{
|
|
mod_hash_val_t val;
|
|
int rv;
|
|
|
|
rw_enter(&hash->mh_contents, RW_WRITER);
|
|
|
|
if ((rv = i_mod_hash_remove_nosync(hash, key, &val)) == 0) {
|
|
/*
|
|
* mod_hash_remove() takes care of freeing up the key resources.
|
|
*/
|
|
MH_VAL_DESTROY(hash, val);
|
|
}
|
|
|
|
rw_exit(&hash->mh_contents);
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* i_mod_hash_find_nosync()
|
|
* mod_hash_find()
|
|
* Find a value in the hash table corresponding to the given key.
|
|
*/
|
|
int
|
|
i_mod_hash_find_nosync(mod_hash_t *hash, mod_hash_key_t key,
|
|
mod_hash_val_t *val)
|
|
{
|
|
uint_t hashidx;
|
|
struct mod_hash_entry *e;
|
|
|
|
hashidx = i_mod_hash(hash, key);
|
|
|
|
for (e = hash->mh_entries[hashidx]; e != NULL; e = e->mhe_next) {
|
|
if (MH_KEYCMP(hash, e->mhe_key, key) == 0) {
|
|
*val = e->mhe_val;
|
|
hash->mh_stat.mhs_hit++;
|
|
return (0);
|
|
}
|
|
}
|
|
hash->mh_stat.mhs_miss++;
|
|
return (MH_ERR_NOTFOUND);
|
|
}
|
|
|
|
int
|
|
mod_hash_find(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val)
|
|
{
|
|
int res;
|
|
|
|
rw_enter(&hash->mh_contents, RW_READER);
|
|
res = i_mod_hash_find_nosync(hash, key, val);
|
|
rw_exit(&hash->mh_contents);
|
|
|
|
return (res);
|
|
}
|
|
|
|
int
|
|
mod_hash_find_cb(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
|
|
void (*find_cb)(mod_hash_key_t, mod_hash_val_t))
|
|
{
|
|
int res;
|
|
|
|
rw_enter(&hash->mh_contents, RW_READER);
|
|
res = i_mod_hash_find_nosync(hash, key, val);
|
|
if (res == 0) {
|
|
find_cb(key, *val);
|
|
}
|
|
rw_exit(&hash->mh_contents);
|
|
|
|
return (res);
|
|
}
|
|
|
|
int
|
|
mod_hash_find_cb_rval(mod_hash_t *hash, mod_hash_key_t key, mod_hash_val_t *val,
|
|
int (*find_cb)(mod_hash_key_t, mod_hash_val_t), int *cb_rval)
|
|
{
|
|
int res;
|
|
|
|
rw_enter(&hash->mh_contents, RW_READER);
|
|
res = i_mod_hash_find_nosync(hash, key, val);
|
|
if (res == 0) {
|
|
*cb_rval = find_cb(key, *val);
|
|
}
|
|
rw_exit(&hash->mh_contents);
|
|
|
|
return (res);
|
|
}
|
|
|
|
void
|
|
i_mod_hash_walk_nosync(mod_hash_t *hash,
|
|
uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
|
|
{
|
|
struct mod_hash_entry *e;
|
|
uint_t hashidx;
|
|
int res = MH_WALK_CONTINUE;
|
|
|
|
for (hashidx = 0;
|
|
(hashidx < (hash->mh_nchains - 1)) && (res == MH_WALK_CONTINUE);
|
|
hashidx++) {
|
|
e = hash->mh_entries[hashidx];
|
|
while ((e != NULL) && (res == MH_WALK_CONTINUE)) {
|
|
res = callback(e->mhe_key, e->mhe_val, arg);
|
|
e = e->mhe_next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* mod_hash_walk()
|
|
* Walks all the elements in the hashtable and invokes the callback
|
|
* function with the key/value pair for each element. The hashtable
|
|
* is locked for readers so the callback function should not attempt
|
|
* to do any updates to the hashable. The callback function should
|
|
* return MH_WALK_CONTINUE to continue walking the hashtable or
|
|
* MH_WALK_TERMINATE to abort the walk of the hashtable.
|
|
*/
|
|
void
|
|
mod_hash_walk(mod_hash_t *hash,
|
|
uint_t (*callback)(mod_hash_key_t, mod_hash_val_t *, void *), void *arg)
|
|
{
|
|
rw_enter(&hash->mh_contents, RW_READER);
|
|
i_mod_hash_walk_nosync(hash, callback, arg);
|
|
rw_exit(&hash->mh_contents);
|
|
}
|
|
|
|
|
|
/*
|
|
* i_mod_hash_clear_nosync()
|
|
* mod_hash_clear()
|
|
* Clears the given hash table by calling the destructor of every hash
|
|
* element and freeing up all mod_hash_entry's.
|
|
*/
|
|
void
|
|
i_mod_hash_clear_nosync(mod_hash_t *hash)
|
|
{
|
|
int i;
|
|
struct mod_hash_entry *e, *old_e;
|
|
|
|
for (i = 0; i < hash->mh_nchains; i++) {
|
|
e = hash->mh_entries[i];
|
|
while (e != NULL) {
|
|
MH_KEY_DESTROY(hash, e->mhe_key);
|
|
MH_VAL_DESTROY(hash, e->mhe_val);
|
|
old_e = e;
|
|
e = e->mhe_next;
|
|
kmem_cache_free(mh_e_cache, old_e);
|
|
}
|
|
hash->mh_entries[i] = NULL;
|
|
}
|
|
hash->mh_stat.mhs_nelems = 0;
|
|
}
|
|
|
|
void
|
|
mod_hash_clear(mod_hash_t *hash)
|
|
{
|
|
ASSERT(hash);
|
|
rw_enter(&hash->mh_contents, RW_WRITER);
|
|
i_mod_hash_clear_nosync(hash);
|
|
rw_exit(&hash->mh_contents);
|
|
}
|