mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-26 01:44:31 +03:00
ab9f4b0b82
This is a new implementation of RAIDZ1/2/3 routines using x86_64 scalar, SSE, and AVX2 instruction sets. Included are 3 parity generation routines (P, PQ, and PQR) and 7 reconstruction routines, for all RAIDZ level. On module load, a quick benchmark of supported routines will select the fastest for each operation and they will be used at runtime. Original implementation is still present and can be selected via module parameter. Patch contains: - specialized gen/rec routines for all RAIDZ levels, - new scalar raidz implementation (unrolled), - two x86_64 SIMD implementations (SSE and AVX2 instructions sets), - fastest routines selected on module load (benchmark). - cmd/raidz_test - verify and benchmark all implementations - added raidz_test to the ZFS Test Suite New zfs module parameters: - zfs_vdev_raidz_impl (str): selects the implementation to use. On module load, the parameter will only accept first 3 options, and the other implementations can be set once module is finished loading. Possible values for this option are: "fastest" - use the fastest math available "original" - use the original raidz code "scalar" - new scalar impl "sse" - new SSE impl if available "avx2" - new AVX2 impl if available See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to get the list of supported values. If an implementation is not supported on the system, it will not be shown. Currently selected option is enclosed in `[]`. Signed-off-by: Gvozden Neskovic <neskovic@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4328
771 lines
18 KiB
C
771 lines
18 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/time.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/zio.h>
|
|
#include <umem.h>
|
|
#include <sys/vdev_raidz.h>
|
|
#include <sys/vdev_raidz_impl.h>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include "raidz_test.h"
|
|
|
|
static int *rand_data;
|
|
raidz_test_opts_t rto_opts;
|
|
|
|
static char gdb[256];
|
|
static const char gdb_tmpl[] = "gdb -ex \"set pagination 0\" -p %d";
|
|
|
|
static void sig_handler(int signo)
|
|
{
|
|
struct sigaction action;
|
|
/*
|
|
* Restore default action and re-raise signal so SIGSEGV and
|
|
* SIGABRT can trigger a core dump.
|
|
*/
|
|
action.sa_handler = SIG_DFL;
|
|
sigemptyset(&action.sa_mask);
|
|
action.sa_flags = 0;
|
|
(void) sigaction(signo, &action, NULL);
|
|
|
|
if (rto_opts.rto_gdb)
|
|
if (system(gdb));
|
|
|
|
raise(signo);
|
|
}
|
|
|
|
static void print_opts(raidz_test_opts_t *opts, boolean_t force)
|
|
{
|
|
char *verbose;
|
|
switch (opts->rto_v) {
|
|
case 0:
|
|
verbose = "no";
|
|
break;
|
|
case 1:
|
|
verbose = "info";
|
|
break;
|
|
default:
|
|
verbose = "debug";
|
|
break;
|
|
}
|
|
|
|
if (force || opts->rto_v >= D_INFO) {
|
|
(void) fprintf(stdout, DBLSEP "Running with options:\n"
|
|
" (-a) zio ashift : %zu\n"
|
|
" (-o) zio offset : 1 << %zu\n"
|
|
" (-d) number of raidz data columns : %zu\n"
|
|
" (-s) size of DATA : 1 << %zu\n"
|
|
" (-S) sweep parameters : %s \n"
|
|
" (-v) verbose : %s \n\n",
|
|
opts->rto_ashift, /* -a */
|
|
ilog2(opts->rto_offset), /* -o */
|
|
opts->rto_dcols, /* -d */
|
|
ilog2(opts->rto_dsize), /* -s */
|
|
opts->rto_sweep ? "yes" : "no", /* -S */
|
|
verbose /* -v */
|
|
);
|
|
}
|
|
}
|
|
|
|
static void usage(boolean_t requested)
|
|
{
|
|
const raidz_test_opts_t *o = &rto_opts_defaults;
|
|
|
|
FILE *fp = requested ? stdout : stderr;
|
|
|
|
(void) fprintf(fp, "Usage:\n"
|
|
"\t[-a zio ashift (default: %zu)]\n"
|
|
"\t[-o zio offset, exponent radix 2 (default: %zu)]\n"
|
|
"\t[-d number of raidz data columns (default: %zu)]\n"
|
|
"\t[-s zio size, exponent radix 2 (default: %zu)]\n"
|
|
"\t[-S parameter sweep (default: %s)]\n"
|
|
"\t[-t timeout for parameter sweep test]\n"
|
|
"\t[-B benchmark all raidz implementations]\n"
|
|
"\t[-v increase verbosity (default: %zu)]\n"
|
|
"\t[-h (print help)]\n"
|
|
"\t[-T test the test, see if failure would be detected]\n"
|
|
"\t[-D debug (attach gdb on SIGSEGV)]\n"
|
|
"",
|
|
o->rto_ashift, /* -a */
|
|
ilog2(o->rto_offset), /* -o */
|
|
o->rto_dcols, /* -d */
|
|
ilog2(o->rto_dsize), /* -s */
|
|
rto_opts.rto_sweep ? "yes" : "no", /* -S */
|
|
o->rto_v /* -d */
|
|
);
|
|
|
|
exit(requested ? 0 : 1);
|
|
}
|
|
|
|
static void process_options(int argc, char **argv)
|
|
{
|
|
size_t value;
|
|
int opt;
|
|
|
|
raidz_test_opts_t *o = &rto_opts;
|
|
|
|
bcopy(&rto_opts_defaults, o, sizeof (*o));
|
|
|
|
while ((opt = getopt(argc, argv, "TDBSvha:o:d:s:t:")) != -1) {
|
|
value = 0;
|
|
|
|
switch (opt) {
|
|
case 'a':
|
|
value = strtoull(optarg, NULL, 0);
|
|
o->rto_ashift = MIN(13, MAX(9, value));
|
|
break;
|
|
case 'o':
|
|
value = strtoull(optarg, NULL, 0);
|
|
o->rto_offset = ((1ULL << MIN(12, value)) >> 9) << 9;
|
|
break;
|
|
case 'd':
|
|
value = strtoull(optarg, NULL, 0);
|
|
o->rto_dcols = MIN(255, MAX(1, value));
|
|
break;
|
|
case 's':
|
|
value = strtoull(optarg, NULL, 0);
|
|
o->rto_dsize = 1ULL << MIN(SPA_MAXBLOCKSHIFT,
|
|
MAX(SPA_MINBLOCKSHIFT, value));
|
|
break;
|
|
case 't':
|
|
value = strtoull(optarg, NULL, 0);
|
|
o->rto_sweep_timeout = value;
|
|
break;
|
|
case 'v':
|
|
o->rto_v++;
|
|
break;
|
|
case 'S':
|
|
o->rto_sweep = 1;
|
|
break;
|
|
case 'B':
|
|
o->rto_benchmark = 1;
|
|
break;
|
|
case 'D':
|
|
o->rto_gdb = 1;
|
|
break;
|
|
case 'T':
|
|
o->rto_sanity = 1;
|
|
break;
|
|
case 'h':
|
|
usage(B_TRUE);
|
|
break;
|
|
case '?':
|
|
default:
|
|
usage(B_FALSE);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define DATA_COL(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_data)
|
|
#define DATA_COL_SIZE(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_size)
|
|
|
|
#define CODE_COL(rm, i) ((rm)->rm_col[(i)].rc_data)
|
|
#define CODE_COL_SIZE(rm, i) ((rm)->rm_col[(i)].rc_size)
|
|
|
|
static int
|
|
cmp_code(raidz_test_opts_t *opts, const raidz_map_t *rm, const int parity)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
VERIFY(parity >= 1 && parity <= 3);
|
|
|
|
for (i = 0; i < parity; i++) {
|
|
if (0 != memcmp(CODE_COL(rm, i), CODE_COL(opts->rm_golden, i),
|
|
CODE_COL_SIZE(rm, i))) {
|
|
ret++;
|
|
|
|
LOG_OPT(D_DEBUG, opts,
|
|
"\nParity block [%d] different!\n", i);
|
|
}
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
cmp_data(raidz_test_opts_t *opts, raidz_map_t *rm)
|
|
{
|
|
int i, ret = 0;
|
|
int dcols = opts->rm_golden->rm_cols - raidz_parity(opts->rm_golden);
|
|
|
|
for (i = 0; i < dcols; i++) {
|
|
if (0 != memcmp(DATA_COL(opts->rm_golden, i), DATA_COL(rm, i),
|
|
DATA_COL_SIZE(opts->rm_golden, i))) {
|
|
ret++;
|
|
|
|
LOG_OPT(D_DEBUG, opts,
|
|
"\nData block [%d] different!\n", i);
|
|
}
|
|
}
|
|
return (ret);
|
|
}
|
|
|
|
static void
|
|
corrupt_colums(raidz_map_t *rm, const int *tgts, const int cnt)
|
|
{
|
|
int i;
|
|
int *dst;
|
|
raidz_col_t *col;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
col = &rm->rm_col[tgts[i]];
|
|
dst = col->rc_data;
|
|
for (i = 0; i < col->rc_size / sizeof (int); i++)
|
|
dst[i] = rand();
|
|
}
|
|
}
|
|
|
|
void
|
|
init_zio_data(zio_t *zio)
|
|
{
|
|
int i;
|
|
int *dst = (int *) zio->io_data;
|
|
|
|
for (i = 0; i < zio->io_size / sizeof (int); i++) {
|
|
dst[i] = rand_data[i];
|
|
}
|
|
}
|
|
|
|
static void
|
|
fini_raidz_map(zio_t **zio, raidz_map_t **rm)
|
|
{
|
|
vdev_raidz_map_free(*rm);
|
|
raidz_free((*zio)->io_data, (*zio)->io_size);
|
|
umem_free(*zio, sizeof (zio_t));
|
|
|
|
*zio = NULL;
|
|
*rm = NULL;
|
|
}
|
|
|
|
static int
|
|
init_raidz_golden_map(raidz_test_opts_t *opts, const int parity)
|
|
{
|
|
int err = 0;
|
|
zio_t *zio_test;
|
|
raidz_map_t *rm_test;
|
|
const size_t total_ncols = opts->rto_dcols + parity;
|
|
|
|
if (opts->rm_golden) {
|
|
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
|
|
}
|
|
|
|
opts->zio_golden = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
|
|
zio_test = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
|
|
|
|
opts->zio_golden->io_offset = zio_test->io_offset = opts->rto_offset;
|
|
opts->zio_golden->io_size = zio_test->io_size = opts->rto_dsize;
|
|
|
|
opts->zio_golden->io_data = raidz_alloc(opts->rto_dsize);
|
|
zio_test->io_data = raidz_alloc(opts->rto_dsize);
|
|
|
|
init_zio_data(opts->zio_golden);
|
|
init_zio_data(zio_test);
|
|
|
|
VERIFY0(vdev_raidz_impl_set("original"));
|
|
|
|
opts->rm_golden = vdev_raidz_map_alloc(opts->zio_golden,
|
|
opts->rto_ashift, total_ncols, parity);
|
|
rm_test = vdev_raidz_map_alloc(zio_test,
|
|
opts->rto_ashift, total_ncols, parity);
|
|
|
|
VERIFY(opts->zio_golden);
|
|
VERIFY(opts->rm_golden);
|
|
|
|
vdev_raidz_generate_parity(opts->rm_golden);
|
|
vdev_raidz_generate_parity(rm_test);
|
|
|
|
/* sanity check */
|
|
err |= cmp_data(opts, rm_test);
|
|
err |= cmp_code(opts, rm_test, parity);
|
|
|
|
if (err)
|
|
ERR("initializing the golden copy ... [FAIL]!\n");
|
|
|
|
/* tear down raidz_map of test zio */
|
|
fini_raidz_map(&zio_test, &rm_test);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static raidz_map_t *
|
|
init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity)
|
|
{
|
|
raidz_map_t *rm = NULL;
|
|
const size_t alloc_dsize = opts->rto_dsize;
|
|
const size_t total_ncols = opts->rto_dcols + parity;
|
|
const int ccols[] = { 0, 1, 2 };
|
|
|
|
VERIFY(zio);
|
|
VERIFY(parity <= 3 && parity >= 1);
|
|
|
|
*zio = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
|
|
|
|
(*zio)->io_offset = 0;
|
|
(*zio)->io_size = alloc_dsize;
|
|
(*zio)->io_data = raidz_alloc(alloc_dsize);
|
|
init_zio_data(*zio);
|
|
|
|
rm = vdev_raidz_map_alloc(*zio, opts->rto_ashift,
|
|
total_ncols, parity);
|
|
VERIFY(rm);
|
|
|
|
/* Make sure code columns are destroyed */
|
|
corrupt_colums(rm, ccols, parity);
|
|
|
|
return (rm);
|
|
}
|
|
|
|
static int
|
|
run_gen_check(raidz_test_opts_t *opts)
|
|
{
|
|
char **impl_name;
|
|
int fn, err = 0;
|
|
zio_t *zio_test;
|
|
raidz_map_t *rm_test;
|
|
|
|
err = init_raidz_golden_map(opts, PARITY_PQR);
|
|
if (0 != err)
|
|
return (err);
|
|
|
|
LOG(D_INFO, DBLSEP);
|
|
LOG(D_INFO, "Testing parity generation...\n");
|
|
|
|
for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
|
|
impl_name++) {
|
|
|
|
LOG(D_INFO, SEP);
|
|
LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
|
|
|
|
if (0 != vdev_raidz_impl_set(*impl_name)) {
|
|
LOG(D_INFO, "[SKIP]\n");
|
|
continue;
|
|
} else {
|
|
LOG(D_INFO, "[SUPPORTED]\n");
|
|
}
|
|
|
|
for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
|
|
|
|
/* create suitable raidz_map */
|
|
rm_test = init_raidz_map(opts, &zio_test, fn+1);
|
|
VERIFY(rm_test);
|
|
|
|
LOG(D_INFO, "\t\tTesting method [%s] ...",
|
|
raidz_gen_name[fn]);
|
|
|
|
if (!opts->rto_sanity)
|
|
vdev_raidz_generate_parity(rm_test);
|
|
|
|
if (cmp_code(opts, rm_test, fn+1) != 0) {
|
|
LOG(D_INFO, "[FAIL]\n");
|
|
err++;
|
|
} else
|
|
LOG(D_INFO, "[PASS]\n");
|
|
|
|
fini_raidz_map(&zio_test, &rm_test);
|
|
}
|
|
}
|
|
|
|
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
|
|
{
|
|
int x0, x1, x2;
|
|
int tgtidx[3];
|
|
int err = 0;
|
|
static const int rec_tgts[7][3] = {
|
|
{1, 2, 3}, /* rec_p: bad QR & D[0] */
|
|
{0, 2, 3}, /* rec_q: bad PR & D[0] */
|
|
{0, 1, 3}, /* rec_r: bad PQ & D[0] */
|
|
{2, 3, 4}, /* rec_pq: bad R & D[0][1] */
|
|
{1, 3, 4}, /* rec_pr: bad Q & D[0][1] */
|
|
{0, 3, 4}, /* rec_qr: bad P & D[0][1] */
|
|
{3, 4, 5} /* rec_pqr: bad & D[0][1][2] */
|
|
};
|
|
|
|
memcpy(tgtidx, rec_tgts[fn], sizeof (tgtidx));
|
|
|
|
if (fn < RAIDZ_REC_PQ) {
|
|
/* can reconstruct 1 failed data disk */
|
|
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
|
|
if (x0 >= rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
|
|
LOG(D_DEBUG, "[%d] ", x0);
|
|
|
|
tgtidx[2] = x0 + raidz_parity(rm);
|
|
|
|
corrupt_colums(rm, tgtidx+2, 1);
|
|
|
|
if (!opts->rto_sanity)
|
|
vdev_raidz_reconstruct(rm, tgtidx, 3);
|
|
|
|
if (cmp_data(opts, rm) != 0) {
|
|
err++;
|
|
LOG(D_DEBUG, "\nREC D[%d]... [FAIL]\n", x0);
|
|
}
|
|
}
|
|
|
|
} else if (fn < RAIDZ_REC_PQR) {
|
|
/* can reconstruct 2 failed data disk */
|
|
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
|
|
if (x0 >= rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
|
|
if (x1 >= rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
|
|
LOG(D_DEBUG, "[%d %d] ", x0, x1);
|
|
|
|
tgtidx[1] = x0 + raidz_parity(rm);
|
|
tgtidx[2] = x1 + raidz_parity(rm);
|
|
|
|
corrupt_colums(rm, tgtidx+1, 2);
|
|
|
|
if (!opts->rto_sanity)
|
|
vdev_raidz_reconstruct(rm, tgtidx, 3);
|
|
|
|
if (cmp_data(opts, rm) != 0) {
|
|
err++;
|
|
LOG(D_DEBUG, "\nREC D[%d %d]... "
|
|
"[FAIL]\n", x0, x1);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* can reconstruct 3 failed data disk */
|
|
for (x0 = 0;
|
|
x0 < opts->rto_dcols; x0++) {
|
|
if (x0 >= rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
for (x1 = x0 + 1;
|
|
x1 < opts->rto_dcols; x1++) {
|
|
if (x1 >= rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
for (x2 = x1 + 1;
|
|
x2 < opts->rto_dcols; x2++) {
|
|
if (x2 >=
|
|
rm->rm_cols - raidz_parity(rm))
|
|
continue;
|
|
|
|
LOG(D_DEBUG, "[%d %d %d]", x0, x1, x2);
|
|
|
|
tgtidx[0] = x0 + raidz_parity(rm);
|
|
tgtidx[1] = x1 + raidz_parity(rm);
|
|
tgtidx[2] = x2 + raidz_parity(rm);
|
|
|
|
corrupt_colums(rm, tgtidx, 3);
|
|
|
|
if (!opts->rto_sanity)
|
|
vdev_raidz_reconstruct(rm,
|
|
tgtidx, 3);
|
|
|
|
if (cmp_data(opts, rm) != 0) {
|
|
err++;
|
|
LOG(D_DEBUG,
|
|
"\nREC D[%d %d %d]... "
|
|
"[FAIL]\n", x0, x1, x2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
run_rec_check(raidz_test_opts_t *opts)
|
|
{
|
|
char **impl_name;
|
|
unsigned fn, err = 0;
|
|
zio_t *zio_test;
|
|
raidz_map_t *rm_test;
|
|
|
|
err = init_raidz_golden_map(opts, PARITY_PQR);
|
|
if (0 != err)
|
|
return (err);
|
|
|
|
LOG(D_INFO, DBLSEP);
|
|
LOG(D_INFO, "Testing data reconstruction...\n");
|
|
|
|
for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
|
|
impl_name++) {
|
|
|
|
LOG(D_INFO, SEP);
|
|
LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
|
|
|
|
if (vdev_raidz_impl_set(*impl_name) != 0) {
|
|
LOG(D_INFO, "[SKIP]\n");
|
|
continue;
|
|
} else
|
|
LOG(D_INFO, "[SUPPORTED]\n");
|
|
|
|
|
|
/* create suitable raidz_map */
|
|
rm_test = init_raidz_map(opts, &zio_test, PARITY_PQR);
|
|
/* generate parity */
|
|
vdev_raidz_generate_parity(rm_test);
|
|
|
|
for (fn = 0; fn < RAIDZ_REC_NUM; fn++) {
|
|
|
|
LOG(D_INFO, "\t\tTesting method [%s] ...",
|
|
raidz_rec_name[fn]);
|
|
|
|
if (run_rec_check_impl(opts, rm_test, fn) != 0) {
|
|
LOG(D_INFO, "[FAIL]\n");
|
|
err++;
|
|
|
|
} else
|
|
LOG(D_INFO, "[PASS]\n");
|
|
|
|
}
|
|
/* tear down test raidz_map */
|
|
fini_raidz_map(&zio_test, &rm_test);
|
|
}
|
|
|
|
fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
run_test(raidz_test_opts_t *opts)
|
|
{
|
|
int err = 0;
|
|
|
|
if (opts == NULL)
|
|
opts = &rto_opts;
|
|
|
|
print_opts(opts, B_FALSE);
|
|
|
|
err |= run_gen_check(opts);
|
|
err |= run_rec_check(opts);
|
|
|
|
return (err);
|
|
}
|
|
|
|
#define SWEEP_RUNNING 0
|
|
#define SWEEP_FINISHED 1
|
|
#define SWEEP_ERROR 2
|
|
#define SWEEP_TIMEOUT 3
|
|
|
|
static int sweep_state = 0;
|
|
static raidz_test_opts_t failed_opts;
|
|
|
|
static kmutex_t sem_mtx;
|
|
static kcondvar_t sem_cv;
|
|
static int max_free_slots;
|
|
static int free_slots;
|
|
|
|
static void
|
|
sweep_thread(void *arg)
|
|
{
|
|
int err = 0;
|
|
raidz_test_opts_t *opts = (raidz_test_opts_t *) arg;
|
|
VERIFY(opts != NULL);
|
|
|
|
err = run_test(opts);
|
|
|
|
if (rto_opts.rto_sanity) {
|
|
/* 25% chance that a sweep test fails */
|
|
if (rand() < (RAND_MAX/4))
|
|
err = 1;
|
|
}
|
|
|
|
if (0 != err) {
|
|
mutex_enter(&sem_mtx);
|
|
memcpy(&failed_opts, opts, sizeof (raidz_test_opts_t));
|
|
sweep_state = SWEEP_ERROR;
|
|
mutex_exit(&sem_mtx);
|
|
}
|
|
|
|
umem_free(opts, sizeof (raidz_test_opts_t));
|
|
|
|
/* signal the next thread */
|
|
mutex_enter(&sem_mtx);
|
|
free_slots++;
|
|
cv_signal(&sem_cv);
|
|
mutex_exit(&sem_mtx);
|
|
|
|
thread_exit();
|
|
}
|
|
|
|
static int
|
|
run_sweep(void)
|
|
{
|
|
static const size_t dcols_v[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
|
|
static const size_t ashift_v[] = { 9, 12 };
|
|
static const size_t offset_cnt = 4;
|
|
static const size_t size_v[] = { 1 << 9, 21 * (1 << 9), 13 * (1 << 12),
|
|
1 << 17, (1 << 20) - (1 << 12), SPA_MAXBLOCKSIZE };
|
|
|
|
(void) setvbuf(stdout, NULL, _IONBF, 0);
|
|
|
|
ulong_t total_comb = ARRAY_SIZE(size_v) * ARRAY_SIZE(ashift_v) *
|
|
ARRAY_SIZE(dcols_v) * offset_cnt;
|
|
ulong_t tried_comb = 0;
|
|
hrtime_t time_diff, start_time = gethrtime();
|
|
raidz_test_opts_t *opts;
|
|
int a, d, o, s;
|
|
|
|
max_free_slots = free_slots = MAX(2, boot_ncpus);
|
|
|
|
mutex_init(&sem_mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&sem_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
for (s = 0; s < ARRAY_SIZE(size_v); s++)
|
|
for (a = 0; a < ARRAY_SIZE(ashift_v); a++)
|
|
for (o = 0; o < offset_cnt; o++)
|
|
for (d = 0; d < ARRAY_SIZE(dcols_v); d++) {
|
|
|
|
if ((size_v[s] < (1 << ashift_v[a]) * o) ||
|
|
(size_v[s] < (1 << ashift_v[a]) * dcols_v[d])) {
|
|
total_comb--;
|
|
continue;
|
|
}
|
|
|
|
if (++tried_comb % 20 == 0)
|
|
LOG(D_ALL, "%lu/%lu... ", tried_comb, total_comb);
|
|
|
|
/* wait for signal to start new thread */
|
|
mutex_enter(&sem_mtx);
|
|
while (cv_timedwait_sig(&sem_cv, &sem_mtx,
|
|
ddi_get_lbolt() + hz)) {
|
|
|
|
/* check if should stop the test (timeout) */
|
|
time_diff = (gethrtime() - start_time) / NANOSEC;
|
|
if (rto_opts.rto_sweep_timeout > 0 &&
|
|
time_diff >= rto_opts.rto_sweep_timeout) {
|
|
sweep_state = SWEEP_TIMEOUT;
|
|
mutex_exit(&sem_mtx);
|
|
goto exit;
|
|
}
|
|
|
|
/* check if should stop the test (error) */
|
|
if (sweep_state != SWEEP_RUNNING) {
|
|
mutex_exit(&sem_mtx);
|
|
goto exit;
|
|
}
|
|
|
|
/* exit loop if a slot is available */
|
|
if (free_slots > 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
free_slots--;
|
|
mutex_exit(&sem_mtx);
|
|
|
|
opts = umem_zalloc(sizeof (raidz_test_opts_t), UMEM_NOFAIL);
|
|
opts->rto_ashift = ashift_v[a];
|
|
opts->rto_dcols = dcols_v[d];
|
|
opts->rto_offset = (1 << ashift_v[a]) * o;
|
|
opts->rto_dsize = size_v[s];
|
|
opts->rto_v = 0; /* be quiet */
|
|
|
|
VERIFY3P(zk_thread_create(NULL, 0,
|
|
(thread_func_t) sweep_thread,
|
|
(void *) opts, TS_RUN, NULL, 0, 0,
|
|
PTHREAD_CREATE_JOINABLE), !=, NULL);
|
|
}
|
|
|
|
exit:
|
|
LOG(D_ALL, "\nWaiting for test threads to finish...\n");
|
|
mutex_enter(&sem_mtx);
|
|
VERIFY(free_slots <= max_free_slots);
|
|
while (free_slots < max_free_slots) {
|
|
(void) cv_wait(&sem_cv, &sem_mtx);
|
|
}
|
|
mutex_exit(&sem_mtx);
|
|
|
|
if (sweep_state == SWEEP_ERROR) {
|
|
ERR("Sweep test failed! Failed option: \n");
|
|
print_opts(&failed_opts, B_TRUE);
|
|
} else {
|
|
if (sweep_state == SWEEP_TIMEOUT)
|
|
LOG(D_ALL, "Test timeout (%lus). Stopping...\n",
|
|
(ulong_t)rto_opts.rto_sweep_timeout);
|
|
|
|
LOG(D_ALL, "Sweep test succeeded on %lu raidz maps!\n",
|
|
(ulong_t)tried_comb);
|
|
}
|
|
|
|
return (sweep_state == SWEEP_ERROR ? SWEEP_ERROR : 0);
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
size_t i;
|
|
struct sigaction action;
|
|
int err = 0;
|
|
|
|
/* init gdb string early */
|
|
(void) sprintf(gdb, gdb_tmpl, getpid());
|
|
|
|
action.sa_handler = sig_handler;
|
|
sigemptyset(&action.sa_mask);
|
|
action.sa_flags = 0;
|
|
|
|
if (sigaction(SIGSEGV, &action, NULL) < 0) {
|
|
ERR("raidz_test: cannot catch SIGSEGV: %s.\n", strerror(errno));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
(void) setvbuf(stdout, NULL, _IOLBF, 0);
|
|
|
|
dprintf_setup(&argc, argv);
|
|
|
|
process_options(argc, argv);
|
|
|
|
kernel_init(FREAD);
|
|
|
|
/* setup random data because rand() is not reentrant */
|
|
rand_data = (int *) umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
|
|
srand((unsigned)time(NULL) * getpid());
|
|
for (i = 0; i < SPA_MAXBLOCKSIZE / sizeof (int); i++)
|
|
rand_data[i] = rand();
|
|
|
|
mprotect(rand_data, SPA_MAXBLOCKSIZE, PROT_READ);
|
|
|
|
if (rto_opts.rto_benchmark) {
|
|
run_raidz_benchmark();
|
|
} else if (rto_opts.rto_sweep) {
|
|
err = run_sweep();
|
|
} else {
|
|
err = run_test(NULL);
|
|
}
|
|
|
|
umem_free(rand_data, SPA_MAXBLOCKSIZE);
|
|
kernel_fini();
|
|
|
|
return (err);
|
|
}
|