mirror_zfs/module/os/linux/zfs/arc_os.c
shodanshok bbe8512a93
Ignore zfs_arc_shrinker_limit in direct reclaim mode
zfs_arc_shrinker_limit (default: 10000) avoids ARC collapse
due to excessive memory reclaim. However, when the kernel is
in direct reclaim mode (ie: low on memory), limiting ARC reclaim
increases OOM risk. This is especially true on system without
(or with inadequate) swap.

This patch ignores zfs_arc_shrinker_limit when the kernel is in
direct reclaim mode, avoiding most OOM. It also restores
"echo 3 > /proc/sys/vm/drop_caches" ability to correctly drop
(almost) all ARC.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam Moss <c@yotes.com>
Signed-off-by: Gionatan Danti <g.danti@assyoma.it>
Closes #16313
2024-08-21 10:00:33 -07:00

509 lines
14 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, Joyent, Inc.
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
* Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
* Copyright 2017 Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/spa_impl.h>
#include <sys/zio_compress.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_context.h>
#include <sys/arc.h>
#include <sys/zfs_refcount.h>
#include <sys/vdev.h>
#include <sys/vdev_trim.h>
#include <sys/vdev_impl.h>
#include <sys/dsl_pool.h>
#include <sys/multilist.h>
#include <sys/abd.h>
#include <sys/zil.h>
#include <sys/fm/fs/zfs.h>
#ifdef _KERNEL
#include <sys/shrinker.h>
#include <sys/vmsystm.h>
#include <sys/zpl.h>
#include <linux/page_compat.h>
#include <linux/notifier.h>
#include <linux/memory.h>
#include <linux/version.h>
#endif
#include <sys/callb.h>
#include <sys/kstat.h>
#include <sys/zthr.h>
#include <zfs_fletcher.h>
#include <sys/arc_impl.h>
#include <sys/trace_zfs.h>
#include <sys/aggsum.h>
#ifdef _KERNEL
/*
* This is a limit on how many pages the ARC shrinker makes available for
* eviction in response to one page allocation attempt. Note that in
* practice, the kernel's shrinker can ask us to evict up to about 4x this
* for one allocation attempt.
*
* The default limit of 10,000 (in practice, 160MB per allocation attempt
* with 4K pages) limits the amount of time spent attempting to reclaim ARC
* memory to less than 100ms per allocation attempt, even with a small
* average compressed block size of ~8KB.
*
* See also the comment in arc_shrinker_count().
* Set to 0 to disable limit.
*/
static int zfs_arc_shrinker_limit = 10000;
/*
* Relative cost of ARC eviction, AKA number of seeks needed to restore evicted
* page. Bigger values make ARC more precious and evictions smaller comparing
* to other kernel subsystems. Value of 4 means parity with page cache,
* according to my reading of kernel's do_shrink_slab() and other code.
*/
static int zfs_arc_shrinker_seeks = DEFAULT_SEEKS;
#ifdef CONFIG_MEMORY_HOTPLUG
static struct notifier_block arc_hotplug_callback_mem_nb;
#endif
#endif
/*
* Return a default max arc size based on the amount of physical memory.
* This may be overridden by tuning the zfs_arc_max module parameter.
*/
uint64_t
arc_default_max(uint64_t min, uint64_t allmem)
{
uint64_t size;
if (allmem >= 1 << 30)
size = allmem - (1 << 30);
else
size = min;
return (MAX(allmem * 5 / 8, size));
}
#ifdef _KERNEL
/*
* Return maximum amount of memory that we could possibly use. Reduced
* to half of all memory in user space which is primarily used for testing.
*/
uint64_t
arc_all_memory(void)
{
#ifdef CONFIG_HIGHMEM
return (ptob(zfs_totalram_pages - zfs_totalhigh_pages));
#else
return (ptob(zfs_totalram_pages));
#endif /* CONFIG_HIGHMEM */
}
/*
* Return the amount of memory that is considered free. In user space
* which is primarily used for testing we pretend that free memory ranges
* from 0-20% of all memory.
*/
uint64_t
arc_free_memory(void)
{
#ifdef CONFIG_HIGHMEM
struct sysinfo si;
si_meminfo(&si);
return (ptob(si.freeram - si.freehigh));
#else
return (ptob(nr_free_pages() +
nr_inactive_file_pages()));
#endif /* CONFIG_HIGHMEM */
}
/*
* Return the amount of memory that can be consumed before reclaim will be
* needed. Positive if there is sufficient free memory, negative indicates
* the amount of memory that needs to be freed up.
*/
int64_t
arc_available_memory(void)
{
return (arc_free_memory() - arc_sys_free);
}
static uint64_t
arc_evictable_memory(void)
{
int64_t asize = aggsum_value(&arc_sums.arcstat_size);
uint64_t arc_clean =
zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
/*
* Scale reported evictable memory in proportion to page cache, cap
* at specified min/max.
*/
uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
min = MAX(arc_c_min, MIN(arc_c_max, min));
if (arc_dirty >= min)
return (arc_clean);
return (MAX((int64_t)asize - (int64_t)min, 0));
}
/*
* The _count() function returns the number of free-able objects.
* The _scan() function returns the number of objects that were freed.
*/
static unsigned long
arc_shrinker_count(struct shrinker *shrink, struct shrink_control *sc)
{
/*
* The kernel's shrinker code may not understand how many pages the
* ARC's callback actually frees, so it may ask the ARC to shrink a
* lot for one page allocation. This is problematic because it may
* take a long time, thus delaying the page allocation, and because
* it may force the ARC to unnecessarily shrink very small.
*
* Therefore, we limit the amount of data that we say is evictable,
* which limits the amount that the shrinker will ask us to evict for
* one page allocation attempt.
*
* In practice, we may be asked to shrink 4x the limit to satisfy one
* page allocation, before the kernel's shrinker code gives up on us.
* When that happens, we rely on the kernel code to find the pages
* that we freed before invoking the OOM killer. This happens in
* __alloc_pages_slowpath(), which retries and finds the pages we
* freed when it calls get_page_from_freelist().
*
* See also the comment above zfs_arc_shrinker_limit.
*/
int64_t can_free = btop(arc_evictable_memory());
if (current_is_kswapd() && zfs_arc_shrinker_limit)
can_free = MIN(can_free, zfs_arc_shrinker_limit);
return (can_free);
}
static unsigned long
arc_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc)
{
/* The arc is considered warm once reclaim has occurred */
if (unlikely(arc_warm == B_FALSE))
arc_warm = B_TRUE;
/*
* We are experiencing memory pressure which the arc_evict_zthr was
* unable to keep up with. Set arc_no_grow to briefly pause ARC
* growth to avoid compounding the memory pressure.
*/
arc_no_grow = B_TRUE;
/*
* Evict the requested number of pages by reducing arc_c and waiting
* for the requested amount of data to be evicted. To avoid deadlock
* do not wait for eviction if we may be called from ZFS itself (see
* kmem_flags_convert() removing __GFP_FS). It may cause excessive
* eviction later if many evictions are accumulated, but just skipping
* the eviction is not good either if most of memory is used by ARC.
*/
uint64_t to_free = arc_reduce_target_size(ptob(sc->nr_to_scan));
if (sc->gfp_mask & __GFP_FS)
arc_wait_for_eviction(to_free, B_FALSE, B_FALSE);
if (current->reclaim_state != NULL)
#ifdef HAVE_RECLAIM_STATE_RECLAIMED
current->reclaim_state->reclaimed += btop(to_free);
#else
current->reclaim_state->reclaimed_slab += btop(to_free);
#endif
/*
* When direct reclaim is observed it usually indicates a rapid
* increase in memory pressure. This occurs because the kswapd
* threads were unable to asynchronously keep enough free memory
* available.
*/
if (current_is_kswapd()) {
ARCSTAT_BUMP(arcstat_memory_indirect_count);
} else {
ARCSTAT_BUMP(arcstat_memory_direct_count);
}
return (btop(to_free));
}
static struct shrinker *arc_shrinker = NULL;
int
arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
{
uint64_t free_memory = arc_free_memory();
if (free_memory > arc_all_memory() * arc_lotsfree_percent / 100)
return (0);
if (txg > spa->spa_lowmem_last_txg) {
spa->spa_lowmem_last_txg = txg;
spa->spa_lowmem_page_load = 0;
}
/*
* If we are in pageout, we know that memory is already tight,
* the arc is already going to be evicting, so we just want to
* continue to let page writes occur as quickly as possible.
*/
if (current_is_kswapd()) {
if (spa->spa_lowmem_page_load >
MAX(arc_sys_free / 4, free_memory) / 4) {
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
return (SET_ERROR(ERESTART));
}
/* Note: reserve is inflated, so we deflate */
atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
return (0);
} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
/* memory is low, delay before restarting */
ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
return (SET_ERROR(EAGAIN));
}
spa->spa_lowmem_page_load = 0;
return (0);
}
static void
arc_set_sys_free(uint64_t allmem)
{
/*
* The ARC tries to keep at least this much memory available for the
* system. This gives the ARC time to shrink in response to memory
* pressure, before running completely out of memory and invoking the
* direct-reclaim ARC shrinker.
*
* This should be more than twice high_wmark_pages(), so that
* arc_wait_for_eviction() will wait until at least the
* high_wmark_pages() are free (see arc_evict_state_impl()).
*
* Note: If concurrent allocations consume these pages, there may
* still be insufficient free pages, and the OOM killer takes action.
*
* By setting arc_sys_free large enough, and having
* arc_wait_for_eviction() wait until there is at least arc_sys_free/2
* free memory, it is much less likely that concurrent allocations can
* consume all the memory that was evicted before checking for
* OOM.
*
* It's hard to iterate the zones from a linux kernel module, which
* makes it difficult to determine the watermark dynamically. Instead
* we compute the maximum high watermark for this system, based
* on the amount of memory, using the same method as the kernel uses
* to calculate its internal `min_free_kbytes` variable. See
* torvalds/linux@ee8eb9a5fe86 for the change in the upper clamp value
* from 64M to 256M.
*/
/*
* Base wmark_low is 4 * the square root of Kbytes of RAM.
*/
long wmark = int_sqrt(allmem / 1024 * 16) * 1024;
/*
* Clamp to between 128K and 256/64MB.
*/
wmark = MAX(wmark, 128 * 1024);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 7, 0)
wmark = MIN(wmark, 256 * 1024 * 1024);
#else
wmark = MIN(wmark, 64 * 1024 * 1024);
#endif
/*
* watermark_boost can increase the wmark by up to 150%.
*/
wmark += wmark * 150 / 100;
/*
* arc_sys_free needs to be more than 2x the watermark, because
* arc_wait_for_eviction() waits for half of arc_sys_free. Bump this up
* to 3x to ensure we're above it.
*/
arc_sys_free = wmark * 3 + allmem / 32;
}
void
arc_lowmem_init(void)
{
uint64_t allmem = arc_all_memory();
/*
* Register a shrinker to support synchronous (direct) memory
* reclaim from the arc. This is done to prevent kswapd from
* swapping out pages when it is preferable to shrink the arc.
*/
arc_shrinker = spl_register_shrinker("zfs-arc-shrinker",
arc_shrinker_count, arc_shrinker_scan, zfs_arc_shrinker_seeks);
VERIFY(arc_shrinker);
arc_set_sys_free(allmem);
}
void
arc_lowmem_fini(void)
{
spl_unregister_shrinker(arc_shrinker);
arc_shrinker = NULL;
}
int
param_set_arc_u64(const char *buf, zfs_kernel_param_t *kp)
{
int error;
error = spl_param_set_u64(buf, kp);
if (error < 0)
return (SET_ERROR(error));
arc_tuning_update(B_TRUE);
return (0);
}
int
param_set_arc_min(const char *buf, zfs_kernel_param_t *kp)
{
return (param_set_arc_u64(buf, kp));
}
int
param_set_arc_max(const char *buf, zfs_kernel_param_t *kp)
{
return (param_set_arc_u64(buf, kp));
}
int
param_set_arc_int(const char *buf, zfs_kernel_param_t *kp)
{
int error;
error = param_set_int(buf, kp);
if (error < 0)
return (SET_ERROR(error));
arc_tuning_update(B_TRUE);
return (0);
}
#ifdef CONFIG_MEMORY_HOTPLUG
static int
arc_hotplug_callback(struct notifier_block *self, unsigned long action,
void *arg)
{
(void) self, (void) arg;
uint64_t allmem = arc_all_memory();
if (action != MEM_ONLINE)
return (NOTIFY_OK);
arc_set_limits(allmem);
#ifdef __LP64__
if (zfs_dirty_data_max_max == 0)
zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
allmem * zfs_dirty_data_max_max_percent / 100);
#else
if (zfs_dirty_data_max_max == 0)
zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
allmem * zfs_dirty_data_max_max_percent / 100);
#endif
arc_set_sys_free(allmem);
return (NOTIFY_OK);
}
#endif
void
arc_register_hotplug(void)
{
#ifdef CONFIG_MEMORY_HOTPLUG
arc_hotplug_callback_mem_nb.notifier_call = arc_hotplug_callback;
/* There is no significance to the value 100 */
arc_hotplug_callback_mem_nb.priority = 100;
register_memory_notifier(&arc_hotplug_callback_mem_nb);
#endif
}
void
arc_unregister_hotplug(void)
{
#ifdef CONFIG_MEMORY_HOTPLUG
unregister_memory_notifier(&arc_hotplug_callback_mem_nb);
#endif
}
#else /* _KERNEL */
int64_t
arc_available_memory(void)
{
int64_t lowest = INT64_MAX;
/* Every 100 calls, free a small amount */
if (random_in_range(100) == 0)
lowest = -1024;
return (lowest);
}
int
arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
{
(void) spa, (void) reserve, (void) txg;
return (0);
}
uint64_t
arc_all_memory(void)
{
return (ptob(physmem) / 2);
}
uint64_t
arc_free_memory(void)
{
return (random_in_range(arc_all_memory() * 20 / 100));
}
void
arc_register_hotplug(void)
{
}
void
arc_unregister_hotplug(void)
{
}
#endif /* _KERNEL */
ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_limit, INT, ZMOD_RW,
"Limit on number of pages that ARC shrinker can reclaim at once");
ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_seeks, INT, ZMOD_RD,
"Relative cost of ARC eviction vs other kernel subsystems");