mirror_zfs/module/zfs/vdev_raidz_math_impl.h

1207 lines
30 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
*/
#ifndef _VDEV_RAIDZ_MATH_IMPL_H
#define _VDEV_RAIDZ_MATH_IMPL_H
#include <sys/types.h>
#define raidz_inline inline __attribute__((always_inline))
#ifndef noinline
#define noinline __attribute__((noinline))
#endif
/* Calculate data offset in raidz column, offset is in bytes */
/* ADB BRINGUP -- needs to be refactored for ABD */
#define COL_OFF(col, off) ((v_t *)(((char *)(col)->rc_abd) + (off)))
/*
* PARITY CALCULATION
* An optimized function is called for a full length of data columns
* If RAIDZ map contains remainder columns (shorter columns) the same function
* is called for reminder of full columns.
*
* GEN_[P|PQ|PQR]_BLOCK() functions are designed to be efficiently in-lined by
* the compiler. This removes a lot of conditionals from the inside loop which
* makes the code faster, especially for vectorized code.
* They are also highly parametrized, allowing for each implementation to define
* most optimal stride, and register allocation.
*/
static raidz_inline void
GEN_P_BLOCK(raidz_map_t * const rm, const size_t off, const size_t end,
const int ncols)
{
int c;
size_t ioff;
raidz_col_t * const pcol = raidz_col_p(rm, CODE_P);
raidz_col_t *col;
GEN_P_DEFINE();
for (ioff = off; ioff < end; ioff += (GEN_P_STRIDE * sizeof (v_t))) {
LOAD(COL_OFF(&(rm->rm_col[1]), ioff), GEN_P_P);
for (c = 2; c < ncols; c++) {
col = &rm->rm_col[c];
XOR_ACC(COL_OFF(col, ioff), GEN_P_P);
}
STORE(COL_OFF(pcol, ioff), GEN_P_P);
}
}
/*
* Generate P parity (RAIDZ1)
*
* @rm RAIDZ map
*/
static raidz_inline void
raidz_generate_p_impl(raidz_map_t * const rm)
{
const int ncols = raidz_ncols(rm);
const size_t psize = raidz_big_size(rm);
const size_t short_size = raidz_short_size(rm);
panic("not ABD ready");
raidz_math_begin();
/* short_size */
GEN_P_BLOCK(rm, 0, short_size, ncols);
/* fullcols */
GEN_P_BLOCK(rm, short_size, psize, raidz_nbigcols(rm));
raidz_math_end();
}
static raidz_inline void
GEN_PQ_BLOCK(raidz_map_t * const rm, const size_t off, const size_t end,
const int ncols, const int nbigcols)
{
int c;
size_t ioff;
raidz_col_t * const pcol = raidz_col_p(rm, CODE_P);
raidz_col_t * const qcol = raidz_col_p(rm, CODE_Q);
raidz_col_t *col;
GEN_PQ_DEFINE();
MUL2_SETUP();
for (ioff = off; ioff < end; ioff += (GEN_PQ_STRIDE * sizeof (v_t))) {
LOAD(COL_OFF(&rm->rm_col[2], ioff), GEN_PQ_P);
COPY(GEN_PQ_P, GEN_PQ_Q);
for (c = 3; c < nbigcols; c++) {
col = &rm->rm_col[c];
LOAD(COL_OFF(col, ioff), GEN_PQ_D);
MUL2(GEN_PQ_Q);
XOR(GEN_PQ_D, GEN_PQ_P);
XOR(GEN_PQ_D, GEN_PQ_Q);
}
STORE(COL_OFF(pcol, ioff), GEN_PQ_P);
for (; c < ncols; c++)
MUL2(GEN_PQ_Q);
STORE(COL_OFF(qcol, ioff), GEN_PQ_Q);
}
}
/*
* Generate PQ parity (RAIDZ2)
*
* @rm RAIDZ map
*/
static raidz_inline void
raidz_generate_pq_impl(raidz_map_t * const rm)
{
const int ncols = raidz_ncols(rm);
const size_t psize = raidz_big_size(rm);
const size_t short_size = raidz_short_size(rm);
panic("not ABD ready");
raidz_math_begin();
/* short_size */
GEN_PQ_BLOCK(rm, 0, short_size, ncols, ncols);
/* fullcols */
GEN_PQ_BLOCK(rm, short_size, psize, ncols, raidz_nbigcols(rm));
raidz_math_end();
}
static raidz_inline void
GEN_PQR_BLOCK(raidz_map_t * const rm, const size_t off, const size_t end,
const int ncols, const int nbigcols)
{
int c;
size_t ioff;
raidz_col_t *col;
raidz_col_t * const pcol = raidz_col_p(rm, CODE_P);
raidz_col_t * const qcol = raidz_col_p(rm, CODE_Q);
raidz_col_t * const rcol = raidz_col_p(rm, CODE_R);
GEN_PQR_DEFINE();
MUL2_SETUP();
for (ioff = off; ioff < end; ioff += (GEN_PQR_STRIDE * sizeof (v_t))) {
LOAD(COL_OFF(&rm->rm_col[3], ioff), GEN_PQR_P);
COPY(GEN_PQR_P, GEN_PQR_Q);
COPY(GEN_PQR_P, GEN_PQR_R);
for (c = 4; c < nbigcols; c++) {
col = &rm->rm_col[c];
LOAD(COL_OFF(col, ioff), GEN_PQR_D);
MUL2(GEN_PQR_Q);
MUL4(GEN_PQR_R);
XOR(GEN_PQR_D, GEN_PQR_P);
XOR(GEN_PQR_D, GEN_PQR_Q);
XOR(GEN_PQR_D, GEN_PQR_R);
}
STORE(COL_OFF(pcol, ioff), GEN_PQR_P);
for (; c < ncols; c++) {
MUL2(GEN_PQR_Q);
MUL4(GEN_PQR_R);
}
STORE(COL_OFF(qcol, ioff), GEN_PQR_Q);
STORE(COL_OFF(rcol, ioff), GEN_PQR_R);
}
}
/*
* Generate PQR parity (RAIDZ3)
*
* @rm RAIDZ map
*/
static raidz_inline void
raidz_generate_pqr_impl(raidz_map_t * const rm)
{
const int ncols = raidz_ncols(rm);
const size_t psize = raidz_big_size(rm);
const size_t short_size = raidz_short_size(rm);
panic("not ABD ready");
raidz_math_begin();
/* short_size */
GEN_PQR_BLOCK(rm, 0, short_size, ncols, ncols);
/* fullcols */
GEN_PQR_BLOCK(rm, short_size, psize, ncols, raidz_nbigcols(rm));
raidz_math_end();
}
/*
* DATA RECONSTRUCTION
*
* Data reconstruction process consists of two phases:
* - Syndrome calculation
* - Data reconstruction
*
* Syndrome is calculated by generating parity using available data columns
* and zeros in places of erasure. Existing parity is added to corresponding
* syndrome value to obtain the [P|Q|R]syn values from equation:
* P = Psyn + Dx + Dy + Dz
* Q = Qsyn + 2^x * Dx + 2^y * Dy + 2^z * Dz
* R = Rsyn + 4^x * Dx + 4^y * Dy + 4^z * Dz
*
* For data reconstruction phase, the corresponding equations are solved
* for missing data (Dx, Dy, Dz). This generally involves multiplying known
* symbols by an coefficient and adding them together. The multiplication
* constant coefficients are calculated ahead of the operation in
* raidz_rec_[q|r|pq|pq|qr|pqr]_coeff() functions.
*
* IMPLEMENTATION NOTE: RAID-Z block can have complex geometry, with "big"
* and "short" columns.
* For this reason, reconstruction is performed in minimum of
* two steps. First, from offset 0 to short_size, then from short_size to
* short_size. Calculation functions REC_[*]_BLOCK() are implemented to work
* over both ranges. The split also enables removal of conditional expressions
* from loop bodies, improving throughput of SIMD implementations.
* For the best performance, all functions marked with raidz_inline attribute
* must be inlined by compiler.
*
* parity data
* columns columns
* <----------> <------------------>
* x y <----+ missing columns (x, y)
* | |
* +---+---+---+---+-v-+---+-v-+---+ ^ 0
* | | | | | | | | | |
* | | | | | | | | | |
* | P | Q | R | D | D | D | D | D | |
* | | | | 0 | 1 | 2 | 3 | 4 | |
* | | | | | | | | | v
* | | | | | +---+---+---+ ^ short_size
* | | | | | | |
* +---+---+---+---+---+ v big_size
* <------------------> <---------->
* big columns short columns
*
*/
/*
* Functions calculate multiplication constants for data reconstruction.
* Coefficients depend on RAIDZ geometry, indexes of failed child vdevs, and
* used parity columns for reconstruction.
* @rm RAIDZ map
* @tgtidx array of missing data indexes
* @coeff output array of coefficients. Array must be user
* provided and must hold minimum MUL_CNT values
*/
static noinline void
raidz_rec_q_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
{
const unsigned ncols = raidz_ncols(rm);
const unsigned x = tgtidx[TARGET_X];
coeff[MUL_Q_X] = gf_exp2(255 - (ncols - x - 1));
}
static noinline void
raidz_rec_r_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
{
const unsigned ncols = raidz_ncols(rm);
const unsigned x = tgtidx[TARGET_X];
coeff[MUL_R_X] = gf_exp4(255 - (ncols - x - 1));
}
static noinline void
raidz_rec_pq_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
{
const unsigned ncols = raidz_ncols(rm);
const unsigned x = tgtidx[TARGET_X];
const unsigned y = tgtidx[TARGET_Y];
gf_t a, b, e;
a = gf_exp2(x + 255 - y);
b = gf_exp2(255 - (ncols - x - 1));
e = a ^ 0x01;
coeff[MUL_PQ_X] = gf_div(a, e);
coeff[MUL_PQ_Y] = gf_div(b, e);
}
static noinline void
raidz_rec_pr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
{
const unsigned ncols = raidz_ncols(rm);
const unsigned x = tgtidx[TARGET_X];
const unsigned y = tgtidx[TARGET_Y];
gf_t a, b, e;
a = gf_exp4(x + 255 - y);
b = gf_exp4(255 - (ncols - x - 1));
e = a ^ 0x01;
coeff[MUL_PR_X] = gf_div(a, e);
coeff[MUL_PR_Y] = gf_div(b, e);
}
static noinline void
raidz_rec_qr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
{
const unsigned ncols = raidz_ncols(rm);
const unsigned x = tgtidx[TARGET_X];
const unsigned y = tgtidx[TARGET_Y];
gf_t nx, ny, nxxy, nxyy, d;
nx = gf_exp2(ncols - x - 1);
ny = gf_exp2(ncols - y - 1);
nxxy = gf_mul(gf_mul(nx, nx), ny);
nxyy = gf_mul(gf_mul(nx, ny), ny);
d = nxxy ^ nxyy;
coeff[MUL_QR_XQ] = ny;
coeff[MUL_QR_X] = gf_div(ny, d);
coeff[MUL_QR_YQ] = nx;
coeff[MUL_QR_Y] = gf_div(nx, d);
}
static noinline void
raidz_rec_pqr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
{
const unsigned ncols = raidz_ncols(rm);
const unsigned x = tgtidx[TARGET_X];
const unsigned y = tgtidx[TARGET_Y];
const unsigned z = tgtidx[TARGET_Z];
gf_t nx, ny, nz, nxx, nyy, nzz, nyyz, nyzz, xd, yd;
nx = gf_exp2(ncols - x - 1);
ny = gf_exp2(ncols - y - 1);
nz = gf_exp2(ncols - z - 1);
nxx = gf_exp4(ncols - x - 1);
nyy = gf_exp4(ncols - y - 1);
nzz = gf_exp4(ncols - z - 1);
nyyz = gf_mul(gf_mul(ny, nz), ny);
nyzz = gf_mul(nzz, ny);
xd = gf_mul(nxx, ny) ^ gf_mul(nx, nyy) ^ nyyz ^
gf_mul(nxx, nz) ^ gf_mul(nzz, nx) ^ nyzz;
yd = gf_inv(ny ^ nz);
coeff[MUL_PQR_XP] = gf_div(nyyz ^ nyzz, xd);
coeff[MUL_PQR_XQ] = gf_div(nyy ^ nzz, xd);
coeff[MUL_PQR_XR] = gf_div(ny ^ nz, xd);
coeff[MUL_PQR_YU] = nx;
coeff[MUL_PQR_YP] = gf_mul(nz, yd);
coeff[MUL_PQR_YQ] = yd;
}
/*
* Reconstruction using P parity
* @rm RAIDZ map
* @off starting offset
* @end ending offset
* @x missing data column
* @ncols number of column
*/
static raidz_inline void
REC_P_BLOCK(raidz_map_t * const rm, const size_t off, const size_t end,
const int x, const int ncols)
{
int c;
size_t ioff;
const size_t firstdc = raidz_parity(rm);
raidz_col_t * const pcol = raidz_col_p(rm, CODE_P);
raidz_col_t * const xcol = raidz_col_p(rm, x);
raidz_col_t *col;
REC_P_DEFINE();
for (ioff = off; ioff < end; ioff += (REC_P_STRIDE * sizeof (v_t))) {
LOAD(COL_OFF(pcol, ioff), REC_P_X);
for (c = firstdc; c < x; c++) {
col = &rm->rm_col[c];
XOR_ACC(COL_OFF(col, ioff), REC_P_X);
}
for (c++; c < ncols; c++) {
col = &rm->rm_col[c];
XOR_ACC(COL_OFF(col, ioff), REC_P_X);
}
STORE(COL_OFF(xcol, ioff), REC_P_X);
}
}
/*
* Reconstruct single data column using P parity
* @rec_method REC_P_BLOCK()
*
* @rm RAIDZ map
* @tgtidx array of missing data indexes
*/
static raidz_inline int
raidz_reconstruct_p_impl(raidz_map_t *rm, const int *tgtidx)
{
const int x = tgtidx[TARGET_X];
const int ncols = raidz_ncols(rm);
const int nbigcols = raidz_nbigcols(rm);
const size_t xsize = raidz_col_size(rm, x);
const size_t short_size = raidz_short_size(rm);
raidz_math_begin();
/* 0 - short_size */
REC_P_BLOCK(rm, 0, short_size, x, ncols);
/* short_size - xsize */
REC_P_BLOCK(rm, short_size, xsize, x, nbigcols);
raidz_math_end();
return (1 << CODE_P);
}
/*
* Reconstruct using Q parity
*/
#define REC_Q_SYN_UPDATE() MUL2(REC_Q_X)
#define REC_Q_INNER_LOOP(c) \
{ \
col = &rm->rm_col[c]; \
REC_Q_SYN_UPDATE(); \
XOR_ACC(COL_OFF(col, ioff), REC_Q_X); \
}
/*
* Reconstruction using Q parity
* @rm RAIDZ map
* @off starting offset
* @end ending offset
* @x missing data column
* @coeff multiplication coefficients
* @ncols number of column
* @nbigcols number of big columns
*/
static raidz_inline void
REC_Q_BLOCK(raidz_map_t * const rm, const size_t off, const size_t end,
const int x, const unsigned *coeff, const int ncols, const int nbigcols)
{
int c;
size_t ioff = 0;
const size_t firstdc = raidz_parity(rm);
raidz_col_t * const qcol = raidz_col_p(rm, CODE_Q);
raidz_col_t * const xcol = raidz_col_p(rm, x);
raidz_col_t *col;
REC_Q_DEFINE();
for (ioff = off; ioff < end; ioff += (REC_Q_STRIDE * sizeof (v_t))) {
MUL2_SETUP();
ZERO(REC_Q_X);
if (ncols == nbigcols) {
for (c = firstdc; c < x; c++)
REC_Q_INNER_LOOP(c);
REC_Q_SYN_UPDATE();
for (c++; c < nbigcols; c++)
REC_Q_INNER_LOOP(c);
} else {
for (c = firstdc; c < nbigcols; c++) {
REC_Q_SYN_UPDATE();
if (x != c) {
col = &rm->rm_col[c];
XOR_ACC(COL_OFF(col, ioff), REC_Q_X);
}
}
for (; c < ncols; c++)
REC_Q_SYN_UPDATE();
}
XOR_ACC(COL_OFF(qcol, ioff), REC_Q_X);
MUL(coeff[MUL_Q_X], REC_Q_X);
STORE(COL_OFF(xcol, ioff), REC_Q_X);
}
}
/*
* Reconstruct single data column using Q parity
* @rec_method REC_Q_BLOCK()
*
* @rm RAIDZ map
* @tgtidx array of missing data indexes
*/
static raidz_inline int
raidz_reconstruct_q_impl(raidz_map_t *rm, const int *tgtidx)
{
const int x = tgtidx[TARGET_X];
const int ncols = raidz_ncols(rm);
const int nbigcols = raidz_nbigcols(rm);
const size_t xsize = raidz_col_size(rm, x);
const size_t short_size = raidz_short_size(rm);
unsigned coeff[MUL_CNT];
raidz_rec_q_coeff(rm, tgtidx, coeff);
raidz_math_begin();
/* 0 - short_size */
REC_Q_BLOCK(rm, 0, short_size, x, coeff, ncols, ncols);
/* short_size - xsize */
REC_Q_BLOCK(rm, short_size, xsize, x, coeff, ncols, nbigcols);
raidz_math_end();
return (1 << CODE_Q);
}
/*
* Reconstruct using R parity
*/
#define REC_R_SYN_UPDATE() MUL4(REC_R_X)
#define REC_R_INNER_LOOP(c) \
{ \
col = &rm->rm_col[c]; \
REC_R_SYN_UPDATE(); \
XOR_ACC(COL_OFF(col, ioff), REC_R_X); \
}
/*
* Reconstruction using R parity
* @rm RAIDZ map
* @off starting offset
* @end ending offset
* @x missing data column
* @coeff multiplication coefficients
* @ncols number of column
* @nbigcols number of big columns
*/
static raidz_inline void
REC_R_BLOCK(raidz_map_t * const rm, const size_t off, const size_t end,
const int x, const unsigned *coeff, const int ncols, const int nbigcols)
{
int c;
size_t ioff = 0;
const size_t firstdc = raidz_parity(rm);
raidz_col_t * const rcol = raidz_col_p(rm, CODE_R);
raidz_col_t * const xcol = raidz_col_p(rm, x);
raidz_col_t *col;
REC_R_DEFINE();
for (ioff = off; ioff < end; ioff += (REC_R_STRIDE * sizeof (v_t))) {
MUL2_SETUP();
ZERO(REC_R_X);
if (ncols == nbigcols) {
for (c = firstdc; c < x; c++)
REC_R_INNER_LOOP(c);
REC_R_SYN_UPDATE();
for (c++; c < nbigcols; c++)
REC_R_INNER_LOOP(c);
} else {
for (c = firstdc; c < nbigcols; c++) {
REC_R_SYN_UPDATE();
if (c != x) {
col = &rm->rm_col[c];
XOR_ACC(COL_OFF(col, ioff), REC_R_X);
}
}
for (; c < ncols; c++)
REC_R_SYN_UPDATE();
}
XOR_ACC(COL_OFF(rcol, ioff), REC_R_X);
MUL(coeff[MUL_R_X], REC_R_X);
STORE(COL_OFF(xcol, ioff), REC_R_X);
}
}
/*
* Reconstruct single data column using R parity
* @rec_method REC_R_BLOCK()
*
* @rm RAIDZ map
* @tgtidx array of missing data indexes
*/
static raidz_inline int
raidz_reconstruct_r_impl(raidz_map_t *rm, const int *tgtidx)
{
const int x = tgtidx[TARGET_X];
const int ncols = raidz_ncols(rm);
const int nbigcols = raidz_nbigcols(rm);
const size_t xsize = raidz_col_size(rm, x);
const size_t short_size = raidz_short_size(rm);
unsigned coeff[MUL_CNT];
raidz_rec_r_coeff(rm, tgtidx, coeff);
raidz_math_begin();
/* 0 - short_size */
REC_R_BLOCK(rm, 0, short_size, x, coeff, ncols, ncols);
/* short_size - xsize */
REC_R_BLOCK(rm, short_size, xsize, x, coeff, ncols, nbigcols);
raidz_math_end();
return (1 << CODE_R);
}
/*
* Reconstruct using PQ parity
*/
#define REC_PQ_SYN_UPDATE() MUL2(REC_PQ_Y)
#define REC_PQ_INNER_LOOP(c) \
{ \
col = &rm->rm_col[c]; \
LOAD(COL_OFF(col, ioff), REC_PQ_D); \
REC_PQ_SYN_UPDATE(); \
XOR(REC_PQ_D, REC_PQ_X); \
XOR(REC_PQ_D, REC_PQ_Y); \
}
/*
* Reconstruction using PQ parity
* @rm RAIDZ map
* @off starting offset
* @end ending offset
* @x missing data column
* @y missing data column
* @coeff multiplication coefficients
* @ncols number of column
* @nbigcols number of big columns
* @calcy calculate second data column
*/
static raidz_inline void
REC_PQ_BLOCK(raidz_map_t * const rm, const size_t off, const size_t end,
const int x, const int y, const unsigned *coeff, const int ncols,
const int nbigcols, const boolean_t calcy)
{
int c;
size_t ioff = 0;
const size_t firstdc = raidz_parity(rm);
raidz_col_t * const pcol = raidz_col_p(rm, CODE_P);
raidz_col_t * const qcol = raidz_col_p(rm, CODE_Q);
raidz_col_t * const xcol = raidz_col_p(rm, x);
raidz_col_t * const ycol = raidz_col_p(rm, y);
raidz_col_t *col;
REC_PQ_DEFINE();
for (ioff = off; ioff < end; ioff += (REC_PQ_STRIDE * sizeof (v_t))) {
LOAD(COL_OFF(pcol, ioff), REC_PQ_X);
ZERO(REC_PQ_Y);
MUL2_SETUP();
if (ncols == nbigcols) {
for (c = firstdc; c < x; c++)
REC_PQ_INNER_LOOP(c);
REC_PQ_SYN_UPDATE();
for (c++; c < y; c++)
REC_PQ_INNER_LOOP(c);
REC_PQ_SYN_UPDATE();
for (c++; c < nbigcols; c++)
REC_PQ_INNER_LOOP(c);
} else {
for (c = firstdc; c < nbigcols; c++) {
REC_PQ_SYN_UPDATE();
if (c != x && c != y) {
col = &rm->rm_col[c];
LOAD(COL_OFF(col, ioff), REC_PQ_D);
XOR(REC_PQ_D, REC_PQ_X);
XOR(REC_PQ_D, REC_PQ_Y);
}
}
for (; c < ncols; c++)
REC_PQ_SYN_UPDATE();
}
XOR_ACC(COL_OFF(qcol, ioff), REC_PQ_Y);
/* Save Pxy */
COPY(REC_PQ_X, REC_PQ_D);
/* Calc X */
MUL(coeff[MUL_PQ_X], REC_PQ_X);
MUL(coeff[MUL_PQ_Y], REC_PQ_Y);
XOR(REC_PQ_Y, REC_PQ_X);
STORE(COL_OFF(xcol, ioff), REC_PQ_X);
if (calcy) {
/* Calc Y */
XOR(REC_PQ_D, REC_PQ_X);
STORE(COL_OFF(ycol, ioff), REC_PQ_X);
}
}
}
/*
* Reconstruct two data columns using PQ parity
* @rec_method REC_PQ_BLOCK()
*
* @rm RAIDZ map
* @tgtidx array of missing data indexes
*/
static raidz_inline int
raidz_reconstruct_pq_impl(raidz_map_t *rm, const int *tgtidx)
{
const int x = tgtidx[TARGET_X];
const int y = tgtidx[TARGET_Y];
const int ncols = raidz_ncols(rm);
const int nbigcols = raidz_nbigcols(rm);
const size_t xsize = raidz_col_size(rm, x);
const size_t ysize = raidz_col_size(rm, y);
const size_t short_size = raidz_short_size(rm);
unsigned coeff[MUL_CNT];
raidz_rec_pq_coeff(rm, tgtidx, coeff);
raidz_math_begin();
/* 0 - short_size */
REC_PQ_BLOCK(rm, 0, short_size, x, y, coeff, ncols, ncols, B_TRUE);
/* short_size - xsize */
REC_PQ_BLOCK(rm, short_size, xsize, x, y, coeff, ncols, nbigcols,
xsize == ysize);
raidz_math_end();
return ((1 << CODE_P) | (1 << CODE_Q));
}
/*
* Reconstruct using PR parity
*/
#define REC_PR_SYN_UPDATE() MUL4(REC_PR_Y)
#define REC_PR_INNER_LOOP(c) \
{ \
col = &rm->rm_col[c]; \
LOAD(COL_OFF(col, ioff), REC_PR_D); \
REC_PR_SYN_UPDATE(); \
XOR(REC_PR_D, REC_PR_X); \
XOR(REC_PR_D, REC_PR_Y); \
}
/*
* Reconstruction using PR parity
* @rm RAIDZ map
* @off starting offset
* @end ending offset
* @x missing data column
* @y missing data column
* @coeff multiplication coefficients
* @ncols number of column
* @nbigcols number of big columns
* @calcy calculate second data column
*/
static raidz_inline void
REC_PR_BLOCK(raidz_map_t * const rm, const size_t off, const size_t end,
const int x, const int y, const unsigned *coeff, const int ncols,
const int nbigcols, const boolean_t calcy)
{
int c;
size_t ioff;
const size_t firstdc = raidz_parity(rm);
raidz_col_t * const pcol = raidz_col_p(rm, CODE_P);
raidz_col_t * const rcol = raidz_col_p(rm, CODE_R);
raidz_col_t * const xcol = raidz_col_p(rm, x);
raidz_col_t * const ycol = raidz_col_p(rm, y);
raidz_col_t *col;
REC_PR_DEFINE();
for (ioff = off; ioff < end; ioff += (REC_PR_STRIDE * sizeof (v_t))) {
LOAD(COL_OFF(pcol, ioff), REC_PR_X);
ZERO(REC_PR_Y);
MUL2_SETUP();
if (ncols == nbigcols) {
for (c = firstdc; c < x; c++)
REC_PR_INNER_LOOP(c);
REC_PR_SYN_UPDATE();
for (c++; c < y; c++)
REC_PR_INNER_LOOP(c);
REC_PR_SYN_UPDATE();
for (c++; c < nbigcols; c++)
REC_PR_INNER_LOOP(c);
} else {
for (c = firstdc; c < nbigcols; c++) {
REC_PR_SYN_UPDATE();
if (c != x && c != y) {
col = &rm->rm_col[c];
LOAD(COL_OFF(col, ioff), REC_PR_D);
XOR(REC_PR_D, REC_PR_X);
XOR(REC_PR_D, REC_PR_Y);
}
}
for (; c < ncols; c++)
REC_PR_SYN_UPDATE();
}
XOR_ACC(COL_OFF(rcol, ioff), REC_PR_Y);
/* Save Pxy */
COPY(REC_PR_X, REC_PR_D);
/* Calc X */
MUL(coeff[MUL_PR_X], REC_PR_X);
MUL(coeff[MUL_PR_Y], REC_PR_Y);
XOR(REC_PR_Y, REC_PR_X);
STORE(COL_OFF(xcol, ioff), REC_PR_X);
if (calcy) {
/* Calc Y */
XOR(REC_PR_D, REC_PR_X);
STORE(COL_OFF(ycol, ioff), REC_PR_X);
}
}
}
/*
* Reconstruct two data columns using PR parity
* @rec_method REC_PR_BLOCK()
*
* @rm RAIDZ map
* @tgtidx array of missing data indexes
*/
static raidz_inline int
raidz_reconstruct_pr_impl(raidz_map_t *rm, const int *tgtidx)
{
const int x = tgtidx[TARGET_X];
const int y = tgtidx[TARGET_Y];
const int ncols = raidz_ncols(rm);
const int nbigcols = raidz_nbigcols(rm);
const size_t xsize = raidz_col_size(rm, x);
const size_t ysize = raidz_col_size(rm, y);
const size_t short_size = raidz_short_size(rm);
unsigned coeff[MUL_CNT];
raidz_rec_pr_coeff(rm, tgtidx, coeff);
raidz_math_begin();
/* 0 - short_size */
REC_PR_BLOCK(rm, 0, short_size, x, y, coeff, ncols, ncols, B_TRUE);
/* short_size - xsize */
REC_PR_BLOCK(rm, short_size, xsize, x, y, coeff, ncols, nbigcols,
xsize == ysize);
raidz_math_end();
return ((1 << CODE_P) | (1 << CODE_R));
}
/*
* Reconstruct using QR parity
*/
#define REC_QR_SYN_UPDATE() \
{ \
MUL2(REC_QR_X); \
MUL4(REC_QR_Y); \
}
#define REC_QR_INNER_LOOP(c) \
{ \
col = &rm->rm_col[c]; \
LOAD(COL_OFF(col, ioff), REC_QR_D); \
REC_QR_SYN_UPDATE(); \
XOR(REC_QR_D, REC_QR_X); \
XOR(REC_QR_D, REC_QR_Y); \
}
/*
* Reconstruction using QR parity
* @rm RAIDZ map
* @off starting offset
* @end ending offset
* @x missing data column
* @y missing data column
* @coeff multiplication coefficients
* @ncols number of column
* @nbigcols number of big columns
* @calcy calculate second data column
*/
static raidz_inline void
REC_QR_BLOCK(raidz_map_t * const rm, const size_t off, const size_t end,
const int x, const int y, const unsigned *coeff, const int ncols,
const int nbigcols, const boolean_t calcy)
{
int c;
size_t ioff;
const size_t firstdc = raidz_parity(rm);
raidz_col_t * const qcol = raidz_col_p(rm, CODE_Q);
raidz_col_t * const rcol = raidz_col_p(rm, CODE_R);
raidz_col_t * const xcol = raidz_col_p(rm, x);
raidz_col_t * const ycol = raidz_col_p(rm, y);
raidz_col_t *col;
REC_QR_DEFINE();
for (ioff = off; ioff < end; ioff += (REC_QR_STRIDE * sizeof (v_t))) {
MUL2_SETUP();
ZERO(REC_QR_X);
ZERO(REC_QR_Y);
if (ncols == nbigcols) {
for (c = firstdc; c < x; c++)
REC_QR_INNER_LOOP(c);
REC_QR_SYN_UPDATE();
for (c++; c < y; c++)
REC_QR_INNER_LOOP(c);
REC_QR_SYN_UPDATE();
for (c++; c < nbigcols; c++)
REC_QR_INNER_LOOP(c);
} else {
for (c = firstdc; c < nbigcols; c++) {
REC_QR_SYN_UPDATE();
if (c != x && c != y) {
col = &rm->rm_col[c];
LOAD(COL_OFF(col, ioff), REC_QR_D);
XOR(REC_QR_D, REC_QR_X);
XOR(REC_QR_D, REC_QR_Y);
}
}
for (; c < ncols; c++)
REC_QR_SYN_UPDATE();
}
XOR_ACC(COL_OFF(qcol, ioff), REC_QR_X);
XOR_ACC(COL_OFF(rcol, ioff), REC_QR_Y);
/* Save Qxy */
COPY(REC_QR_X, REC_QR_D);
/* Calc X */
MUL(coeff[MUL_QR_XQ], REC_QR_X); /* X = Q * xqm */
XOR(REC_QR_Y, REC_QR_X); /* X = R ^ X */
MUL(coeff[MUL_QR_X], REC_QR_X); /* X = X * xm */
STORE(COL_OFF(xcol, ioff), REC_QR_X);
if (calcy) {
/* Calc Y */
MUL(coeff[MUL_QR_YQ], REC_QR_D); /* X = Q * xqm */
XOR(REC_QR_Y, REC_QR_D); /* X = R ^ X */
MUL(coeff[MUL_QR_Y], REC_QR_D); /* X = X * xm */
STORE(COL_OFF(ycol, ioff), REC_QR_D);
}
}
}
/*
* Reconstruct two data columns using QR parity
* @rec_method REC_QR_BLOCK()
*
* @rm RAIDZ map
* @tgtidx array of missing data indexes
*/
static raidz_inline int
raidz_reconstruct_qr_impl(raidz_map_t *rm, const int *tgtidx)
{
const int x = tgtidx[TARGET_X];
const int y = tgtidx[TARGET_Y];
const int ncols = raidz_ncols(rm);
const int nbigcols = raidz_nbigcols(rm);
const size_t xsize = raidz_col_size(rm, x);
const size_t ysize = raidz_col_size(rm, y);
const size_t short_size = raidz_short_size(rm);
unsigned coeff[MUL_CNT];
raidz_rec_qr_coeff(rm, tgtidx, coeff);
raidz_math_begin();
/* 0 - short_size */
REC_QR_BLOCK(rm, 0, short_size, x, y, coeff, ncols, ncols, B_TRUE);
/* short_size - xsize */
REC_QR_BLOCK(rm, short_size, xsize, x, y, coeff, ncols, nbigcols,
xsize == ysize);
raidz_math_end();
return ((1 << CODE_Q) | (1 << CODE_R));
}
/*
* Reconstruct using PQR parity
*/
#define REC_PQR_SYN_UPDATE() \
{ \
MUL2(REC_PQR_Y); \
MUL4(REC_PQR_Z); \
}
#define REC_PQR_INNER_LOOP(c) \
{ \
col = &rm->rm_col[(c)]; \
LOAD(COL_OFF(col, ioff), REC_PQR_D); \
REC_PQR_SYN_UPDATE(); \
XOR(REC_PQR_D, REC_PQR_X); \
XOR(REC_PQR_D, REC_PQR_Y); \
XOR(REC_PQR_D, REC_PQR_Z); \
}
/*
* Reconstruction using PQR parity
* @rm RAIDZ map
* @off starting offset
* @end ending offset
* @x missing data column
* @y missing data column
* @z missing data column
* @coeff multiplication coefficients
* @ncols number of column
* @nbigcols number of big columns
* @calcy calculate second data column
* @calcz calculate third data column
*/
static raidz_inline void
REC_PQR_BLOCK(raidz_map_t * const rm, const size_t off, const size_t end,
const int x, const int y, const int z, const unsigned *coeff,
const int ncols, const int nbigcols, const boolean_t calcy,
const boolean_t calcz)
{
int c;
size_t ioff;
const size_t firstdc = raidz_parity(rm);
raidz_col_t * const pcol = raidz_col_p(rm, CODE_P);
raidz_col_t * const qcol = raidz_col_p(rm, CODE_Q);
raidz_col_t * const rcol = raidz_col_p(rm, CODE_R);
raidz_col_t * const xcol = raidz_col_p(rm, x);
raidz_col_t * const ycol = raidz_col_p(rm, y);
raidz_col_t * const zcol = raidz_col_p(rm, z);
raidz_col_t *col;
REC_PQR_DEFINE();
for (ioff = off; ioff < end; ioff += (REC_PQR_STRIDE * sizeof (v_t))) {
MUL2_SETUP();
LOAD(COL_OFF(pcol, ioff), REC_PQR_X);
ZERO(REC_PQR_Y);
ZERO(REC_PQR_Z);
if (ncols == nbigcols) {
for (c = firstdc; c < x; c++)
REC_PQR_INNER_LOOP(c);
REC_PQR_SYN_UPDATE();
for (c++; c < y; c++)
REC_PQR_INNER_LOOP(c);
REC_PQR_SYN_UPDATE();
for (c++; c < z; c++)
REC_PQR_INNER_LOOP(c);
REC_PQR_SYN_UPDATE();
for (c++; c < nbigcols; c++)
REC_PQR_INNER_LOOP(c);
} else {
for (c = firstdc; c < nbigcols; c++) {
REC_PQR_SYN_UPDATE();
if (c != x && c != y && c != z) {
col = &rm->rm_col[c];
LOAD(COL_OFF(col, ioff), REC_PQR_D);
XOR(REC_PQR_D, REC_PQR_X);
XOR(REC_PQR_D, REC_PQR_Y);
XOR(REC_PQR_D, REC_PQR_Z);
}
}
for (; c < ncols; c++)
REC_PQR_SYN_UPDATE();
}
XOR_ACC(COL_OFF(qcol, ioff), REC_PQR_Y);
XOR_ACC(COL_OFF(rcol, ioff), REC_PQR_Z);
/* Save Pxyz and Qxyz */
COPY(REC_PQR_X, REC_PQR_XS);
COPY(REC_PQR_Y, REC_PQR_YS);
/* Calc X */
MUL(coeff[MUL_PQR_XP], REC_PQR_X); /* Xp = Pxyz * xp */
MUL(coeff[MUL_PQR_XQ], REC_PQR_Y); /* Xq = Qxyz * xq */
XOR(REC_PQR_Y, REC_PQR_X);
MUL(coeff[MUL_PQR_XR], REC_PQR_Z); /* Xr = Rxyz * xr */
XOR(REC_PQR_Z, REC_PQR_X); /* X = Xp + Xq + Xr */
STORE(COL_OFF(xcol, ioff), REC_PQR_X);
if (calcy) {
/* Calc Y */
XOR(REC_PQR_X, REC_PQR_XS); /* Pyz = Pxyz + X */
MUL(coeff[MUL_PQR_YU], REC_PQR_X); /* Xq = X * upd_q */
XOR(REC_PQR_X, REC_PQR_YS); /* Qyz = Qxyz + Xq */
COPY(REC_PQR_XS, REC_PQR_X); /* restore Pyz */
MUL(coeff[MUL_PQR_YP], REC_PQR_X); /* Yp = Pyz * yp */
MUL(coeff[MUL_PQR_YQ], REC_PQR_YS); /* Yq = Qyz * yq */
XOR(REC_PQR_X, REC_PQR_YS); /* Y = Yp + Yq */
STORE(COL_OFF(ycol, ioff), REC_PQR_YS);
}
if (calcz) {
/* Calc Z */
XOR(REC_PQR_XS, REC_PQR_YS); /* Z = Pz = Pyz + Y */
STORE(COL_OFF(zcol, ioff), REC_PQR_YS);
}
}
}
/*
* Reconstruct three data columns using PQR parity
* @rec_method REC_PQR_BLOCK()
*
* @rm RAIDZ map
* @tgtidx array of missing data indexes
*/
static raidz_inline int
raidz_reconstruct_pqr_impl(raidz_map_t *rm, const int *tgtidx)
{
const int x = tgtidx[TARGET_X];
const int y = tgtidx[TARGET_Y];
const int z = tgtidx[TARGET_Z];
const int ncols = raidz_ncols(rm);
const int nbigcols = raidz_nbigcols(rm);
const size_t xsize = raidz_col_size(rm, x);
const size_t ysize = raidz_col_size(rm, y);
const size_t zsize = raidz_col_size(rm, z);
const size_t short_size = raidz_short_size(rm);
unsigned coeff[MUL_CNT];
raidz_rec_pqr_coeff(rm, tgtidx, coeff);
raidz_math_begin();
/* 0 - short_size */
REC_PQR_BLOCK(rm, 0, short_size, x, y, z, coeff, ncols, ncols,
B_TRUE, B_TRUE);
/* short_size - xsize */
REC_PQR_BLOCK(rm, short_size, xsize, x, y, z, coeff, ncols, nbigcols,
xsize == ysize, xsize == zsize);
raidz_math_end();
return ((1 << CODE_P) | (1 << CODE_Q) | (1 << CODE_R));
}
#endif /* _VDEV_RAIDZ_MATH_IMPL_H */