mirror_zfs/cmd/zdb/zdb.c
Richard Yao 2e08df84d8 Cleanup dump_bookmarks()
Assertions are meant to check assumptions, but the way that this
assertion is written does not check an assumption, since it is provably
always true. Removing the assertion will cause a compiler warning (made
into an error by -Werror) about printing up to 512 bytes to a 256-byte
buffer, so instead, we change the assertion to verify the assumption
that we never do a snprintf() that is truncated to avoid overrunning the
256-byte buffer.

This was caught by an audit of the codebase to look for misuse of
`snprintf()` after CodeQL reported that we had misused `snprintf()`. An
explanation of how snprintf() can be misused is here:

https://www.redhat.com/en/blog/trouble-snprintf

This particular instance did not misuse `snprintf()`, but it was caught
by the audit anyway.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #14098
2022-10-29 13:05:02 -07:00

9033 lines
247 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2016 Nexenta Systems, Inc.
* Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
* Copyright (c) 2015, 2017, Intel Corporation.
* Copyright (c) 2020 Datto Inc.
* Copyright (c) 2020, The FreeBSD Foundation [1]
*
* [1] Portions of this software were developed by Allan Jude
* under sponsorship from the FreeBSD Foundation.
* Copyright (c) 2021 Allan Jude
* Copyright (c) 2021 Toomas Soome <tsoome@me.com>
*/
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <ctype.h>
#include <getopt.h>
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/dmu.h>
#include <sys/zap.h>
#include <sys/fs/zfs.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_sa.h>
#include <sys/sa.h>
#include <sys/sa_impl.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/metaslab_impl.h>
#include <sys/dmu_objset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_bookmark.h>
#include <sys/dbuf.h>
#include <sys/zil.h>
#include <sys/zil_impl.h>
#include <sys/stat.h>
#include <sys/resource.h>
#include <sys/dmu_send.h>
#include <sys/dmu_traverse.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/zfs_fuid.h>
#include <sys/arc.h>
#include <sys/arc_impl.h>
#include <sys/ddt.h>
#include <sys/zfeature.h>
#include <sys/abd.h>
#include <sys/blkptr.h>
#include <sys/dsl_crypt.h>
#include <sys/dsl_scan.h>
#include <sys/btree.h>
#include <zfs_comutil.h>
#include <sys/zstd/zstd.h>
#include <libnvpair.h>
#include <libzutil.h>
#include "zdb.h"
#define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \
zio_compress_table[(idx)].ci_name : "UNKNOWN")
#define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \
zio_checksum_table[(idx)].ci_name : "UNKNOWN")
#define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \
(idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \
DMU_OT_ZAP_OTHER : \
(idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \
DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES)
/* Some platforms require part of inode IDs to be remapped */
#ifdef __APPLE__
#define ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2)
#else
#define ZDB_MAP_OBJECT_ID(obj) (obj)
#endif
static const char *
zdb_ot_name(dmu_object_type_t type)
{
if (type < DMU_OT_NUMTYPES)
return (dmu_ot[type].ot_name);
else if ((type & DMU_OT_NEWTYPE) &&
((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS))
return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name);
else
return ("UNKNOWN");
}
extern int reference_tracking_enable;
extern int zfs_recover;
extern unsigned long zfs_arc_meta_min, zfs_arc_meta_limit;
extern uint_t zfs_vdev_async_read_max_active;
extern boolean_t spa_load_verify_dryrun;
extern boolean_t spa_mode_readable_spacemaps;
extern uint_t zfs_reconstruct_indirect_combinations_max;
extern uint_t zfs_btree_verify_intensity;
static const char cmdname[] = "zdb";
uint8_t dump_opt[256];
typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
static uint64_t *zopt_metaslab = NULL;
static unsigned zopt_metaslab_args = 0;
typedef struct zopt_object_range {
uint64_t zor_obj_start;
uint64_t zor_obj_end;
uint64_t zor_flags;
} zopt_object_range_t;
static zopt_object_range_t *zopt_object_ranges = NULL;
static unsigned zopt_object_args = 0;
static int flagbits[256];
#define ZOR_FLAG_PLAIN_FILE 0x0001
#define ZOR_FLAG_DIRECTORY 0x0002
#define ZOR_FLAG_SPACE_MAP 0x0004
#define ZOR_FLAG_ZAP 0x0008
#define ZOR_FLAG_ALL_TYPES -1
#define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \
ZOR_FLAG_DIRECTORY | \
ZOR_FLAG_SPACE_MAP | \
ZOR_FLAG_ZAP)
#define ZDB_FLAG_CHECKSUM 0x0001
#define ZDB_FLAG_DECOMPRESS 0x0002
#define ZDB_FLAG_BSWAP 0x0004
#define ZDB_FLAG_GBH 0x0008
#define ZDB_FLAG_INDIRECT 0x0010
#define ZDB_FLAG_RAW 0x0020
#define ZDB_FLAG_PRINT_BLKPTR 0x0040
#define ZDB_FLAG_VERBOSE 0x0080
static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
static int leaked_objects = 0;
static range_tree_t *mos_refd_objs;
static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
boolean_t);
static void mos_obj_refd(uint64_t);
static void mos_obj_refd_multiple(uint64_t);
static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
dmu_tx_t *tx);
typedef struct sublivelist_verify {
/* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */
zfs_btree_t sv_pair;
/* ALLOC's without a matching FREE, accumulates across sub-livelists */
zfs_btree_t sv_leftover;
} sublivelist_verify_t;
static int
livelist_compare(const void *larg, const void *rarg)
{
const blkptr_t *l = larg;
const blkptr_t *r = rarg;
/* Sort them according to dva[0] */
uint64_t l_dva0_vdev, r_dva0_vdev;
l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
if (l_dva0_vdev < r_dva0_vdev)
return (-1);
else if (l_dva0_vdev > r_dva0_vdev)
return (+1);
/* if vdevs are equal, sort by offsets. */
uint64_t l_dva0_offset;
uint64_t r_dva0_offset;
l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
if (l_dva0_offset < r_dva0_offset) {
return (-1);
} else if (l_dva0_offset > r_dva0_offset) {
return (+1);
}
/*
* Since we're storing blkptrs without cancelling FREE/ALLOC pairs,
* it's possible the offsets are equal. In that case, sort by txg
*/
if (l->blk_birth < r->blk_birth) {
return (-1);
} else if (l->blk_birth > r->blk_birth) {
return (+1);
}
return (0);
}
typedef struct sublivelist_verify_block {
dva_t svb_dva;
/*
* We need this to check if the block marked as allocated
* in the livelist was freed (and potentially reallocated)
* in the metaslab spacemaps at a later TXG.
*/
uint64_t svb_allocated_txg;
} sublivelist_verify_block_t;
static void zdb_print_blkptr(const blkptr_t *bp, int flags);
typedef struct sublivelist_verify_block_refcnt {
/* block pointer entry in livelist being verified */
blkptr_t svbr_blk;
/*
* Refcount gets incremented to 1 when we encounter the first
* FREE entry for the svfbr block pointer and a node for it
* is created in our ZDB verification/tracking metadata.
*
* As we encounter more FREE entries we increment this counter
* and similarly decrement it whenever we find the respective
* ALLOC entries for this block.
*
* When the refcount gets to 0 it means that all the FREE and
* ALLOC entries of this block have paired up and we no longer
* need to track it in our verification logic (e.g. the node
* containing this struct in our verification data structure
* should be freed).
*
* [refer to sublivelist_verify_blkptr() for the actual code]
*/
uint32_t svbr_refcnt;
} sublivelist_verify_block_refcnt_t;
static int
sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
{
const sublivelist_verify_block_refcnt_t *l = larg;
const sublivelist_verify_block_refcnt_t *r = rarg;
return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
}
static int
sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
dmu_tx_t *tx)
{
ASSERT3P(tx, ==, NULL);
struct sublivelist_verify *sv = arg;
sublivelist_verify_block_refcnt_t current = {
.svbr_blk = *bp,
/*
* Start with 1 in case this is the first free entry.
* This field is not used for our B-Tree comparisons
* anyway.
*/
.svbr_refcnt = 1,
};
zfs_btree_index_t where;
sublivelist_verify_block_refcnt_t *pair =
zfs_btree_find(&sv->sv_pair, &current, &where);
if (free) {
if (pair == NULL) {
/* first free entry for this block pointer */
zfs_btree_add(&sv->sv_pair, &current);
} else {
pair->svbr_refcnt++;
}
} else {
if (pair == NULL) {
/* block that is currently marked as allocated */
for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
if (DVA_IS_EMPTY(&bp->blk_dva[i]))
break;
sublivelist_verify_block_t svb = {
.svb_dva = bp->blk_dva[i],
.svb_allocated_txg = bp->blk_birth
};
if (zfs_btree_find(&sv->sv_leftover, &svb,
&where) == NULL) {
zfs_btree_add_idx(&sv->sv_leftover,
&svb, &where);
}
}
} else {
/* alloc matches a free entry */
pair->svbr_refcnt--;
if (pair->svbr_refcnt == 0) {
/* all allocs and frees have been matched */
zfs_btree_remove_idx(&sv->sv_pair, &where);
}
}
}
return (0);
}
static int
sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
{
int err;
struct sublivelist_verify *sv = args;
zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare,
sizeof (sublivelist_verify_block_refcnt_t));
err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
sv, NULL);
sublivelist_verify_block_refcnt_t *e;
zfs_btree_index_t *cookie = NULL;
while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
char blkbuf[BP_SPRINTF_LEN];
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
&e->svbr_blk, B_TRUE);
(void) printf("\tERROR: %d unmatched FREE(s): %s\n",
e->svbr_refcnt, blkbuf);
}
zfs_btree_destroy(&sv->sv_pair);
return (err);
}
static int
livelist_block_compare(const void *larg, const void *rarg)
{
const sublivelist_verify_block_t *l = larg;
const sublivelist_verify_block_t *r = rarg;
if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
return (-1);
else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
return (+1);
if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
return (-1);
else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
return (+1);
if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
return (-1);
else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
return (+1);
return (0);
}
/*
* Check for errors in a livelist while tracking all unfreed ALLOCs in the
* sublivelist_verify_t: sv->sv_leftover
*/
static void
livelist_verify(dsl_deadlist_t *dl, void *arg)
{
sublivelist_verify_t *sv = arg;
dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
}
/*
* Check for errors in the livelist entry and discard the intermediary
* data structures
*/
static int
sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
{
(void) args;
sublivelist_verify_t sv;
zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
sizeof (sublivelist_verify_block_t));
int err = sublivelist_verify_func(&sv, dle);
zfs_btree_clear(&sv.sv_leftover);
zfs_btree_destroy(&sv.sv_leftover);
return (err);
}
typedef struct metaslab_verify {
/*
* Tree containing all the leftover ALLOCs from the livelists
* that are part of this metaslab.
*/
zfs_btree_t mv_livelist_allocs;
/*
* Metaslab information.
*/
uint64_t mv_vdid;
uint64_t mv_msid;
uint64_t mv_start;
uint64_t mv_end;
/*
* What's currently allocated for this metaslab.
*/
range_tree_t *mv_allocated;
} metaslab_verify_t;
typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
void *arg);
typedef struct unflushed_iter_cb_arg {
spa_t *uic_spa;
uint64_t uic_txg;
void *uic_arg;
zdb_log_sm_cb_t uic_cb;
} unflushed_iter_cb_arg_t;
static int
iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
{
unflushed_iter_cb_arg_t *uic = arg;
return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
}
static void
iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
{
if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
return;
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
space_map_t *sm = NULL;
VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
unflushed_iter_cb_arg_t uic = {
.uic_spa = spa,
.uic_txg = sls->sls_txg,
.uic_arg = arg,
.uic_cb = cb
};
VERIFY0(space_map_iterate(sm, space_map_length(sm),
iterate_through_spacemap_logs_cb, &uic));
space_map_close(sm);
}
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
static void
verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
uint64_t offset, uint64_t size)
{
sublivelist_verify_block_t svb;
DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
DVA_SET_OFFSET(&svb.svb_dva, offset);
DVA_SET_ASIZE(&svb.svb_dva, size);
zfs_btree_index_t where;
uint64_t end_offset = offset + size;
/*
* Look for an exact match for spacemap entry in the livelist entries.
* Then, look for other livelist entries that fall within the range
* of the spacemap entry as it may have been condensed
*/
sublivelist_verify_block_t *found =
zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
if (found == NULL) {
found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
}
for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
DVA_GET_OFFSET(&found->svb_dva) < end_offset;
found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
if (found->svb_allocated_txg <= txg) {
(void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
"from TXG %llx FREED at TXG %llx\n",
(u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
(u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
(u_longlong_t)found->svb_allocated_txg,
(u_longlong_t)txg);
}
}
}
static int
metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
{
metaslab_verify_t *mv = arg;
uint64_t offset = sme->sme_offset;
uint64_t size = sme->sme_run;
uint64_t txg = sme->sme_txg;
if (sme->sme_type == SM_ALLOC) {
if (range_tree_contains(mv->mv_allocated,
offset, size)) {
(void) printf("ERROR: DOUBLE ALLOC: "
"%llu [%llx:%llx] "
"%llu:%llu LOG_SM\n",
(u_longlong_t)txg, (u_longlong_t)offset,
(u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
(u_longlong_t)mv->mv_msid);
} else {
range_tree_add(mv->mv_allocated,
offset, size);
}
} else {
if (!range_tree_contains(mv->mv_allocated,
offset, size)) {
(void) printf("ERROR: DOUBLE FREE: "
"%llu [%llx:%llx] "
"%llu:%llu LOG_SM\n",
(u_longlong_t)txg, (u_longlong_t)offset,
(u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
(u_longlong_t)mv->mv_msid);
} else {
range_tree_remove(mv->mv_allocated,
offset, size);
}
}
if (sme->sme_type != SM_ALLOC) {
/*
* If something is freed in the spacemap, verify that
* it is not listed as allocated in the livelist.
*/
verify_livelist_allocs(mv, txg, offset, size);
}
return (0);
}
static int
spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
uint64_t txg, void *arg)
{
metaslab_verify_t *mv = arg;
uint64_t offset = sme->sme_offset;
uint64_t vdev_id = sme->sme_vdev;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
/* skip indirect vdevs */
if (!vdev_is_concrete(vd))
return (0);
if (vdev_id != mv->mv_vdid)
return (0);
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
if (ms->ms_id != mv->mv_msid)
return (0);
if (txg < metaslab_unflushed_txg(ms))
return (0);
ASSERT3U(txg, ==, sme->sme_txg);
return (metaslab_spacemap_validation_cb(sme, mv));
}
static void
spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
{
iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
}
static void
spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv)
{
if (sm == NULL)
return;
VERIFY0(space_map_iterate(sm, space_map_length(sm),
metaslab_spacemap_validation_cb, mv));
}
static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
/*
* Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
* they are part of that metaslab (mv_msid).
*/
static void
mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
{
zfs_btree_index_t where;
sublivelist_verify_block_t *svb;
ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
for (svb = zfs_btree_first(&sv->sv_leftover, &where);
svb != NULL;
svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
continue;
if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
(DVA_GET_OFFSET(&svb->svb_dva) +
DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
(void) printf("ERROR: Found block that crosses "
"metaslab boundary: <%llu:%llx:%llx>\n",
(u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
(u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
(u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
continue;
}
if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
continue;
if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
continue;
if ((DVA_GET_OFFSET(&svb->svb_dva) +
DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
(void) printf("ERROR: Found block that crosses "
"metaslab boundary: <%llu:%llx:%llx>\n",
(u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
(u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
(u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
continue;
}
zfs_btree_add(&mv->mv_livelist_allocs, svb);
}
for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
svb != NULL;
svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
zfs_btree_remove(&sv->sv_leftover, svb);
}
}
/*
* [Livelist Check]
* Iterate through all the sublivelists and:
* - report leftover frees (**)
* - record leftover ALLOCs together with their TXG [see Cross Check]
*
* (**) Note: Double ALLOCs are valid in datasets that have dedup
* enabled. Similarly double FREEs are allowed as well but
* only if they pair up with a corresponding ALLOC entry once
* we our done with our sublivelist iteration.
*
* [Spacemap Check]
* for each metaslab:
* - iterate over spacemap and then the metaslab's entries in the
* spacemap log, then report any double FREEs and ALLOCs (do not
* blow up).
*
* [Cross Check]
* After finishing the Livelist Check phase and while being in the
* Spacemap Check phase, we find all the recorded leftover ALLOCs
* of the livelist check that are part of the metaslab that we are
* currently looking at in the Spacemap Check. We report any entries
* that are marked as ALLOCs in the livelists but have been actually
* freed (and potentially allocated again) after their TXG stamp in
* the spacemaps. Also report any ALLOCs from the livelists that
* belong to indirect vdevs (e.g. their vdev completed removal).
*
* Note that this will miss Log Spacemap entries that cancelled each other
* out before being flushed to the metaslab, so we are not guaranteed
* to match all erroneous ALLOCs.
*/
static void
livelist_metaslab_validate(spa_t *spa)
{
(void) printf("Verifying deleted livelist entries\n");
sublivelist_verify_t sv;
zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
sizeof (sublivelist_verify_block_t));
iterate_deleted_livelists(spa, livelist_verify, &sv);
(void) printf("Verifying metaslab entries\n");
vdev_t *rvd = spa->spa_root_vdev;
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
vdev_t *vd = rvd->vdev_child[c];
if (!vdev_is_concrete(vd))
continue;
for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
metaslab_t *m = vd->vdev_ms[mid];
(void) fprintf(stderr,
"\rverifying concrete vdev %llu, "
"metaslab %llu of %llu ...",
(longlong_t)vd->vdev_id,
(longlong_t)mid,
(longlong_t)vd->vdev_ms_count);
uint64_t shift, start;
range_seg_type_t type =
metaslab_calculate_range_tree_type(vd, m,
&start, &shift);
metaslab_verify_t mv;
mv.mv_allocated = range_tree_create(NULL,
type, NULL, start, shift);
mv.mv_vdid = vd->vdev_id;
mv.mv_msid = m->ms_id;
mv.mv_start = m->ms_start;
mv.mv_end = m->ms_start + m->ms_size;
zfs_btree_create(&mv.mv_livelist_allocs,
livelist_block_compare,
sizeof (sublivelist_verify_block_t));
mv_populate_livelist_allocs(&mv, &sv);
spacemap_check_ms_sm(m->ms_sm, &mv);
spacemap_check_sm_log(spa, &mv);
range_tree_vacate(mv.mv_allocated, NULL, NULL);
range_tree_destroy(mv.mv_allocated);
zfs_btree_clear(&mv.mv_livelist_allocs);
zfs_btree_destroy(&mv.mv_livelist_allocs);
}
}
(void) fprintf(stderr, "\n");
/*
* If there are any segments in the leftover tree after we walked
* through all the metaslabs in the concrete vdevs then this means
* that we have segments in the livelists that belong to indirect
* vdevs and are marked as allocated.
*/
if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
zfs_btree_destroy(&sv.sv_leftover);
return;
}
(void) printf("ERROR: Found livelist blocks marked as allocated "
"for indirect vdevs:\n");
zfs_btree_index_t *where = NULL;
sublivelist_verify_block_t *svb;
while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
NULL) {
int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
ASSERT3U(vdev_id, <, rvd->vdev_children);
vdev_t *vd = rvd->vdev_child[vdev_id];
ASSERT(!vdev_is_concrete(vd));
(void) printf("<%d:%llx:%llx> TXG %llx\n",
vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
(u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
(u_longlong_t)svb->svb_allocated_txg);
}
(void) printf("\n");
zfs_btree_destroy(&sv.sv_leftover);
}
/*
* These libumem hooks provide a reasonable set of defaults for the allocator's
* debugging facilities.
*/
const char *
_umem_debug_init(void)
{
return ("default,verbose"); /* $UMEM_DEBUG setting */
}
const char *
_umem_logging_init(void)
{
return ("fail,contents"); /* $UMEM_LOGGING setting */
}
static void
usage(void)
{
(void) fprintf(stderr,
"Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
"[-I <inflight I/Os>]\n"
"\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
"\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
"\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
"\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
"\t%s [-v] <bookmark>\n"
"\t%s -C [-A] [-U <cache>]\n"
"\t%s -l [-Aqu] <device>\n"
"\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
"[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
"\t%s -O <dataset> <path>\n"
"\t%s -r <dataset> <path> <destination>\n"
"\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
"\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
"\t%s -E [-A] word0:word1:...:word15\n"
"\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
"<poolname>\n\n",
cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
cmdname, cmdname, cmdname, cmdname);
(void) fprintf(stderr, " Dataset name must include at least one "
"separator character '/' or '@'\n");
(void) fprintf(stderr, " If dataset name is specified, only that "
"dataset is dumped\n");
(void) fprintf(stderr, " If object numbers or object number "
"ranges are specified, only those\n"
" objects or ranges are dumped.\n\n");
(void) fprintf(stderr,
" Object ranges take the form <start>:<end>[:<flags>]\n"
" start Starting object number\n"
" end Ending object number, or -1 for no upper bound\n"
" flags Optional flags to select object types:\n"
" A All objects (this is the default)\n"
" d ZFS directories\n"
" f ZFS files \n"
" m SPA space maps\n"
" z ZAPs\n"
" - Negate effect of next flag\n\n");
(void) fprintf(stderr, " Options to control amount of output:\n");
(void) fprintf(stderr, " -b --block-stats "
"block statistics\n");
(void) fprintf(stderr, " -c --checksum "
"checksum all metadata (twice for all data) blocks\n");
(void) fprintf(stderr, " -C --config "
"config (or cachefile if alone)\n");
(void) fprintf(stderr, " -d --datasets "
"dataset(s)\n");
(void) fprintf(stderr, " -D --dedup-stats "
"dedup statistics\n");
(void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n"
" decode and display block "
"from an embedded block pointer\n");
(void) fprintf(stderr, " -h --history "
"pool history\n");
(void) fprintf(stderr, " -i --intent-logs "
"intent logs\n");
(void) fprintf(stderr, " -l --label "
"read label contents\n");
(void) fprintf(stderr, " -k --checkpointed-state "
"examine the checkpointed state of the pool\n");
(void) fprintf(stderr, " -L --disable-leak-tracking "
"disable leak tracking (do not load spacemaps)\n");
(void) fprintf(stderr, " -m --metaslabs "
"metaslabs\n");
(void) fprintf(stderr, " -M --metaslab-groups "
"metaslab groups\n");
(void) fprintf(stderr, " -O --object-lookups "
"perform object lookups by path\n");
(void) fprintf(stderr, " -r --copy-object "
"copy an object by path to file\n");
(void) fprintf(stderr, " -R --read-block "
"read and display block from a device\n");
(void) fprintf(stderr, " -s --io-stats "
"report stats on zdb's I/O\n");
(void) fprintf(stderr, " -S --simulate-dedup "
"simulate dedup to measure effect\n");
(void) fprintf(stderr, " -v --verbose "
"verbose (applies to all others)\n");
(void) fprintf(stderr, " -y --livelist "
"perform livelist and metaslab validation on any livelists being "
"deleted\n\n");
(void) fprintf(stderr, " Below options are intended for use "
"with other options:\n");
(void) fprintf(stderr, " -A --ignore-assertions "
"ignore assertions (-A), enable panic recovery (-AA) or both "
"(-AAA)\n");
(void) fprintf(stderr, " -e --exported "
"pool is exported/destroyed/has altroot/not in a cachefile\n");
(void) fprintf(stderr, " -F --automatic-rewind "
"attempt automatic rewind within safe range of transaction "
"groups\n");
(void) fprintf(stderr, " -G --dump-debug-msg "
"dump zfs_dbgmsg buffer before exiting\n");
(void) fprintf(stderr, " -I --inflight=INTEGER "
"specify the maximum number of checksumming I/Os "
"[default is 200]\n");
(void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" "
"set global variable to an unsigned 32-bit integer\n");
(void) fprintf(stderr, " -p --path==PATH "
"use one or more with -e to specify path to vdev dir\n");
(void) fprintf(stderr, " -P --parseable "
"print numbers in parseable form\n");
(void) fprintf(stderr, " -q --skip-label "
"don't print label contents\n");
(void) fprintf(stderr, " -t --txg=INTEGER "
"highest txg to use when searching for uberblocks\n");
(void) fprintf(stderr, " -u --uberblock "
"uberblock\n");
(void) fprintf(stderr, " -U --cachefile=PATH "
"use alternate cachefile\n");
(void) fprintf(stderr, " -V --verbatim "
"do verbatim import\n");
(void) fprintf(stderr, " -x --dump-blocks=PATH "
"dump all read blocks into specified directory\n");
(void) fprintf(stderr, " -X --extreme-rewind "
"attempt extreme rewind (does not work with dataset)\n");
(void) fprintf(stderr, " -Y --all-reconstruction "
"attempt all reconstruction combinations for split blocks\n");
(void) fprintf(stderr, " -Z --zstd-headers "
"show ZSTD headers \n");
(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
"to make only that option verbose\n");
(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
exit(1);
}
static void
dump_debug_buffer(void)
{
if (dump_opt['G']) {
(void) printf("\n");
(void) fflush(stdout);
zfs_dbgmsg_print("zdb");
}
}
/*
* Called for usage errors that are discovered after a call to spa_open(),
* dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
*/
static void
fatal(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
(void) fprintf(stderr, "%s: ", cmdname);
(void) vfprintf(stderr, fmt, ap);
va_end(ap);
(void) fprintf(stderr, "\n");
dump_debug_buffer();
exit(1);
}
static void
dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) size;
nvlist_t *nv;
size_t nvsize = *(uint64_t *)data;
char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
umem_free(packed, nvsize);
dump_nvlist(nv, 8);
nvlist_free(nv);
}
static void
dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) os, (void) object, (void) size;
spa_history_phys_t *shp = data;
if (shp == NULL)
return;
(void) printf("\t\tpool_create_len = %llu\n",
(u_longlong_t)shp->sh_pool_create_len);
(void) printf("\t\tphys_max_off = %llu\n",
(u_longlong_t)shp->sh_phys_max_off);
(void) printf("\t\tbof = %llu\n",
(u_longlong_t)shp->sh_bof);
(void) printf("\t\teof = %llu\n",
(u_longlong_t)shp->sh_eof);
(void) printf("\t\trecords_lost = %llu\n",
(u_longlong_t)shp->sh_records_lost);
}
static void
zdb_nicenum(uint64_t num, char *buf, size_t buflen)
{
if (dump_opt['P'])
(void) snprintf(buf, buflen, "%llu", (longlong_t)num);
else
nicenum(num, buf, buflen);
}
static const char histo_stars[] = "****************************************";
static const uint64_t histo_width = sizeof (histo_stars) - 1;
static void
dump_histogram(const uint64_t *histo, int size, int offset)
{
int i;
int minidx = size - 1;
int maxidx = 0;
uint64_t max = 0;
for (i = 0; i < size; i++) {
if (histo[i] > max)
max = histo[i];
if (histo[i] > 0 && i > maxidx)
maxidx = i;
if (histo[i] > 0 && i < minidx)
minidx = i;
}
if (max < histo_width)
max = histo_width;
for (i = minidx; i <= maxidx; i++) {
(void) printf("\t\t\t%3u: %6llu %s\n",
i + offset, (u_longlong_t)histo[i],
&histo_stars[(max - histo[i]) * histo_width / max]);
}
}
static void
dump_zap_stats(objset_t *os, uint64_t object)
{
int error;
zap_stats_t zs;
error = zap_get_stats(os, object, &zs);
if (error)
return;
if (zs.zs_ptrtbl_len == 0) {
ASSERT(zs.zs_num_blocks == 1);
(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
(u_longlong_t)zs.zs_blocksize,
(u_longlong_t)zs.zs_num_entries);
return;
}
(void) printf("\tFat ZAP stats:\n");
(void) printf("\t\tPointer table:\n");
(void) printf("\t\t\t%llu elements\n",
(u_longlong_t)zs.zs_ptrtbl_len);
(void) printf("\t\t\tzt_blk: %llu\n",
(u_longlong_t)zs.zs_ptrtbl_zt_blk);
(void) printf("\t\t\tzt_numblks: %llu\n",
(u_longlong_t)zs.zs_ptrtbl_zt_numblks);
(void) printf("\t\t\tzt_shift: %llu\n",
(u_longlong_t)zs.zs_ptrtbl_zt_shift);
(void) printf("\t\t\tzt_blks_copied: %llu\n",
(u_longlong_t)zs.zs_ptrtbl_blks_copied);
(void) printf("\t\t\tzt_nextblk: %llu\n",
(u_longlong_t)zs.zs_ptrtbl_nextblk);
(void) printf("\t\tZAP entries: %llu\n",
(u_longlong_t)zs.zs_num_entries);
(void) printf("\t\tLeaf blocks: %llu\n",
(u_longlong_t)zs.zs_num_leafs);
(void) printf("\t\tTotal blocks: %llu\n",
(u_longlong_t)zs.zs_num_blocks);
(void) printf("\t\tzap_block_type: 0x%llx\n",
(u_longlong_t)zs.zs_block_type);
(void) printf("\t\tzap_magic: 0x%llx\n",
(u_longlong_t)zs.zs_magic);
(void) printf("\t\tzap_salt: 0x%llx\n",
(u_longlong_t)zs.zs_salt);
(void) printf("\t\tLeafs with 2^n pointers:\n");
dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
(void) printf("\t\tBlocks with n*5 entries:\n");
dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
(void) printf("\t\tBlocks n/10 full:\n");
dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
(void) printf("\t\tEntries with n chunks:\n");
dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
(void) printf("\t\tBuckets with n entries:\n");
dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
}
static void
dump_none(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) os, (void) object, (void) data, (void) size;
}
static void
dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) os, (void) object, (void) data, (void) size;
(void) printf("\tUNKNOWN OBJECT TYPE\n");
}
static void
dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) os, (void) object, (void) data, (void) size;
}
static void
dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
{
uint64_t *arr;
uint64_t oursize;
if (dump_opt['d'] < 6)
return;
if (data == NULL) {
dmu_object_info_t doi;
VERIFY0(dmu_object_info(os, object, &doi));
size = doi.doi_max_offset;
/*
* We cap the size at 1 mebibyte here to prevent
* allocation failures and nigh-infinite printing if the
* object is extremely large.
*/
oursize = MIN(size, 1 << 20);
arr = kmem_alloc(oursize, KM_SLEEP);
int err = dmu_read(os, object, 0, oursize, arr, 0);
if (err != 0) {
(void) printf("got error %u from dmu_read\n", err);
kmem_free(arr, oursize);
return;
}
} else {
/*
* Even though the allocation is already done in this code path,
* we still cap the size to prevent excessive printing.
*/
oursize = MIN(size, 1 << 20);
arr = data;
}
if (size == 0) {
if (data == NULL)
kmem_free(arr, oursize);
(void) printf("\t\t[]\n");
return;
}
(void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
if (i % 4 != 0)
(void) printf(", %0llx", (u_longlong_t)arr[i]);
else
(void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
}
if (oursize != size)
(void) printf(", ... ");
(void) printf("]\n");
if (data == NULL)
kmem_free(arr, oursize);
}
static void
dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) data, (void) size;
zap_cursor_t zc;
zap_attribute_t attr;
void *prop;
unsigned i;
dump_zap_stats(os, object);
(void) printf("\n");
for (zap_cursor_init(&zc, os, object);
zap_cursor_retrieve(&zc, &attr) == 0;
zap_cursor_advance(&zc)) {
(void) printf("\t\t%s = ", attr.za_name);
if (attr.za_num_integers == 0) {
(void) printf("\n");
continue;
}
prop = umem_zalloc(attr.za_num_integers *
attr.za_integer_length, UMEM_NOFAIL);
(void) zap_lookup(os, object, attr.za_name,
attr.za_integer_length, attr.za_num_integers, prop);
if (attr.za_integer_length == 1) {
if (strcmp(attr.za_name,
DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
strcmp(attr.za_name,
DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 ||
strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) {
uint8_t *u8 = prop;
for (i = 0; i < attr.za_num_integers; i++) {
(void) printf("%02x", u8[i]);
}
} else {
(void) printf("%s", (char *)prop);
}
} else {
for (i = 0; i < attr.za_num_integers; i++) {
switch (attr.za_integer_length) {
case 2:
(void) printf("%u ",
((uint16_t *)prop)[i]);
break;
case 4:
(void) printf("%u ",
((uint32_t *)prop)[i]);
break;
case 8:
(void) printf("%lld ",
(u_longlong_t)((int64_t *)prop)[i]);
break;
}
}
}
(void) printf("\n");
umem_free(prop, attr.za_num_integers * attr.za_integer_length);
}
zap_cursor_fini(&zc);
}
static void
dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
{
bpobj_phys_t *bpop = data;
uint64_t i;
char bytes[32], comp[32], uncomp[32];
/* make sure the output won't get truncated */
_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
if (bpop == NULL)
return;
zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
(void) printf("\t\tnum_blkptrs = %llu\n",
(u_longlong_t)bpop->bpo_num_blkptrs);
(void) printf("\t\tbytes = %s\n", bytes);
if (size >= BPOBJ_SIZE_V1) {
(void) printf("\t\tcomp = %s\n", comp);
(void) printf("\t\tuncomp = %s\n", uncomp);
}
if (size >= BPOBJ_SIZE_V2) {
(void) printf("\t\tsubobjs = %llu\n",
(u_longlong_t)bpop->bpo_subobjs);
(void) printf("\t\tnum_subobjs = %llu\n",
(u_longlong_t)bpop->bpo_num_subobjs);
}
if (size >= sizeof (*bpop)) {
(void) printf("\t\tnum_freed = %llu\n",
(u_longlong_t)bpop->bpo_num_freed);
}
if (dump_opt['d'] < 5)
return;
for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
char blkbuf[BP_SPRINTF_LEN];
blkptr_t bp;
int err = dmu_read(os, object,
i * sizeof (bp), sizeof (bp), &bp, 0);
if (err != 0) {
(void) printf("got error %u from dmu_read\n", err);
break;
}
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
BP_GET_FREE(&bp));
(void) printf("\t%s\n", blkbuf);
}
}
static void
dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) data, (void) size;
dmu_object_info_t doi;
int64_t i;
VERIFY0(dmu_object_info(os, object, &doi));
uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
if (err != 0) {
(void) printf("got error %u from dmu_read\n", err);
kmem_free(subobjs, doi.doi_max_offset);
return;
}
int64_t last_nonzero = -1;
for (i = 0; i < doi.doi_max_offset / 8; i++) {
if (subobjs[i] != 0)
last_nonzero = i;
}
for (i = 0; i <= last_nonzero; i++) {
(void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
}
kmem_free(subobjs, doi.doi_max_offset);
}
static void
dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) data, (void) size;
dump_zap_stats(os, object);
/* contents are printed elsewhere, properly decoded */
}
static void
dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) data, (void) size;
zap_cursor_t zc;
zap_attribute_t attr;
dump_zap_stats(os, object);
(void) printf("\n");
for (zap_cursor_init(&zc, os, object);
zap_cursor_retrieve(&zc, &attr) == 0;
zap_cursor_advance(&zc)) {
(void) printf("\t\t%s = ", attr.za_name);
if (attr.za_num_integers == 0) {
(void) printf("\n");
continue;
}
(void) printf(" %llx : [%d:%d:%d]\n",
(u_longlong_t)attr.za_first_integer,
(int)ATTR_LENGTH(attr.za_first_integer),
(int)ATTR_BSWAP(attr.za_first_integer),
(int)ATTR_NUM(attr.za_first_integer));
}
zap_cursor_fini(&zc);
}
static void
dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) data, (void) size;
zap_cursor_t zc;
zap_attribute_t attr;
uint16_t *layout_attrs;
unsigned i;
dump_zap_stats(os, object);
(void) printf("\n");
for (zap_cursor_init(&zc, os, object);
zap_cursor_retrieve(&zc, &attr) == 0;
zap_cursor_advance(&zc)) {
(void) printf("\t\t%s = [", attr.za_name);
if (attr.za_num_integers == 0) {
(void) printf("\n");
continue;
}
VERIFY(attr.za_integer_length == 2);
layout_attrs = umem_zalloc(attr.za_num_integers *
attr.za_integer_length, UMEM_NOFAIL);
VERIFY(zap_lookup(os, object, attr.za_name,
attr.za_integer_length,
attr.za_num_integers, layout_attrs) == 0);
for (i = 0; i != attr.za_num_integers; i++)
(void) printf(" %d ", (int)layout_attrs[i]);
(void) printf("]\n");
umem_free(layout_attrs,
attr.za_num_integers * attr.za_integer_length);
}
zap_cursor_fini(&zc);
}
static void
dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) data, (void) size;
zap_cursor_t zc;
zap_attribute_t attr;
const char *typenames[] = {
/* 0 */ "not specified",
/* 1 */ "FIFO",
/* 2 */ "Character Device",
/* 3 */ "3 (invalid)",
/* 4 */ "Directory",
/* 5 */ "5 (invalid)",
/* 6 */ "Block Device",
/* 7 */ "7 (invalid)",
/* 8 */ "Regular File",
/* 9 */ "9 (invalid)",
/* 10 */ "Symbolic Link",
/* 11 */ "11 (invalid)",
/* 12 */ "Socket",
/* 13 */ "Door",
/* 14 */ "Event Port",
/* 15 */ "15 (invalid)",
};
dump_zap_stats(os, object);
(void) printf("\n");
for (zap_cursor_init(&zc, os, object);
zap_cursor_retrieve(&zc, &attr) == 0;
zap_cursor_advance(&zc)) {
(void) printf("\t\t%s = %lld (type: %s)\n",
attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
}
zap_cursor_fini(&zc);
}
static int
get_dtl_refcount(vdev_t *vd)
{
int refcount = 0;
if (vd->vdev_ops->vdev_op_leaf) {
space_map_t *sm = vd->vdev_dtl_sm;
if (sm != NULL &&
sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
return (1);
return (0);
}
for (unsigned c = 0; c < vd->vdev_children; c++)
refcount += get_dtl_refcount(vd->vdev_child[c]);
return (refcount);
}
static int
get_metaslab_refcount(vdev_t *vd)
{
int refcount = 0;
if (vd->vdev_top == vd) {
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
space_map_t *sm = vd->vdev_ms[m]->ms_sm;
if (sm != NULL &&
sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
refcount++;
}
}
for (unsigned c = 0; c < vd->vdev_children; c++)
refcount += get_metaslab_refcount(vd->vdev_child[c]);
return (refcount);
}
static int
get_obsolete_refcount(vdev_t *vd)
{
uint64_t obsolete_sm_object;
int refcount = 0;
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
if (vd->vdev_top == vd && obsolete_sm_object != 0) {
dmu_object_info_t doi;
VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
obsolete_sm_object, &doi));
if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
refcount++;
}
} else {
ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
ASSERT3U(obsolete_sm_object, ==, 0);
}
for (unsigned c = 0; c < vd->vdev_children; c++) {
refcount += get_obsolete_refcount(vd->vdev_child[c]);
}
return (refcount);
}
static int
get_prev_obsolete_spacemap_refcount(spa_t *spa)
{
uint64_t prev_obj =
spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
if (prev_obj != 0) {
dmu_object_info_t doi;
VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
return (1);
}
}
return (0);
}
static int
get_checkpoint_refcount(vdev_t *vd)
{
int refcount = 0;
if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
zap_contains(spa_meta_objset(vd->vdev_spa),
vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
refcount++;
for (uint64_t c = 0; c < vd->vdev_children; c++)
refcount += get_checkpoint_refcount(vd->vdev_child[c]);
return (refcount);
}
static int
get_log_spacemap_refcount(spa_t *spa)
{
return (avl_numnodes(&spa->spa_sm_logs_by_txg));
}
static int
verify_spacemap_refcounts(spa_t *spa)
{
uint64_t expected_refcount = 0;
uint64_t actual_refcount;
(void) feature_get_refcount(spa,
&spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
&expected_refcount);
actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
actual_refcount += get_log_spacemap_refcount(spa);
if (expected_refcount != actual_refcount) {
(void) printf("space map refcount mismatch: expected %lld != "
"actual %lld\n",
(longlong_t)expected_refcount,
(longlong_t)actual_refcount);
return (2);
}
return (0);
}
static void
dump_spacemap(objset_t *os, space_map_t *sm)
{
const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
"INVALID", "INVALID", "INVALID", "INVALID" };
if (sm == NULL)
return;
(void) printf("space map object %llu:\n",
(longlong_t)sm->sm_object);
(void) printf(" smp_length = 0x%llx\n",
(longlong_t)sm->sm_phys->smp_length);
(void) printf(" smp_alloc = 0x%llx\n",
(longlong_t)sm->sm_phys->smp_alloc);
if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
return;
/*
* Print out the freelist entries in both encoded and decoded form.
*/
uint8_t mapshift = sm->sm_shift;
int64_t alloc = 0;
uint64_t word, entry_id = 0;
for (uint64_t offset = 0; offset < space_map_length(sm);
offset += sizeof (word)) {
VERIFY0(dmu_read(os, space_map_object(sm), offset,
sizeof (word), &word, DMU_READ_PREFETCH));
if (sm_entry_is_debug(word)) {
uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
if (de_txg == 0) {
(void) printf(
"\t [%6llu] PADDING\n",
(u_longlong_t)entry_id);
} else {
(void) printf(
"\t [%6llu] %s: txg %llu pass %llu\n",
(u_longlong_t)entry_id,
ddata[SM_DEBUG_ACTION_DECODE(word)],
(u_longlong_t)de_txg,
(u_longlong_t)de_sync_pass);
}
entry_id++;
continue;
}
uint8_t words;
char entry_type;
uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
if (sm_entry_is_single_word(word)) {
entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
'A' : 'F';
entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
sm->sm_start;
entry_run = SM_RUN_DECODE(word) << mapshift;
words = 1;
} else {
/* it is a two-word entry so we read another word */
ASSERT(sm_entry_is_double_word(word));
uint64_t extra_word;
offset += sizeof (extra_word);
VERIFY0(dmu_read(os, space_map_object(sm), offset,
sizeof (extra_word), &extra_word,
DMU_READ_PREFETCH));
ASSERT3U(offset, <=, space_map_length(sm));
entry_run = SM2_RUN_DECODE(word) << mapshift;
entry_vdev = SM2_VDEV_DECODE(word);
entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
'A' : 'F';
entry_off = (SM2_OFFSET_DECODE(extra_word) <<
mapshift) + sm->sm_start;
words = 2;
}
(void) printf("\t [%6llu] %c range:"
" %010llx-%010llx size: %06llx vdev: %06llu words: %u\n",
(u_longlong_t)entry_id,
entry_type, (u_longlong_t)entry_off,
(u_longlong_t)(entry_off + entry_run),
(u_longlong_t)entry_run,
(u_longlong_t)entry_vdev, words);
if (entry_type == 'A')
alloc += entry_run;
else
alloc -= entry_run;
entry_id++;
}
if (alloc != space_map_allocated(sm)) {
(void) printf("space_map_object alloc (%lld) INCONSISTENT "
"with space map summary (%lld)\n",
(longlong_t)space_map_allocated(sm), (longlong_t)alloc);
}
}
static void
dump_metaslab_stats(metaslab_t *msp)
{
char maxbuf[32];
range_tree_t *rt = msp->ms_allocatable;
zfs_btree_t *t = &msp->ms_allocatable_by_size;
int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
/* max sure nicenum has enough space */
_Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
(void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
"segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
"freepct", free_pct);
(void) printf("\tIn-memory histogram:\n");
dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
}
static void
dump_metaslab(metaslab_t *msp)
{
vdev_t *vd = msp->ms_group->mg_vd;
spa_t *spa = vd->vdev_spa;
space_map_t *sm = msp->ms_sm;
char freebuf[32];
zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
sizeof (freebuf));
(void) printf(
"\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
(u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
(u_longlong_t)space_map_object(sm), freebuf);
if (dump_opt['m'] > 2 && !dump_opt['L']) {
mutex_enter(&msp->ms_lock);
VERIFY0(metaslab_load(msp));
range_tree_stat_verify(msp->ms_allocatable);
dump_metaslab_stats(msp);
metaslab_unload(msp);
mutex_exit(&msp->ms_lock);
}
if (dump_opt['m'] > 1 && sm != NULL &&
spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
/*
* The space map histogram represents free space in chunks
* of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
*/
(void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
(u_longlong_t)msp->ms_fragmentation);
dump_histogram(sm->sm_phys->smp_histogram,
SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
}
if (vd->vdev_ops == &vdev_draid_ops)
ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
else
ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
(void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
(u_longlong_t)metaslab_unflushed_txg(msp));
}
}
static void
print_vdev_metaslab_header(vdev_t *vd)
{
vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
const char *bias_str = "";
if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
bias_str = VDEV_ALLOC_BIAS_LOG;
} else if (alloc_bias == VDEV_BIAS_SPECIAL) {
bias_str = VDEV_ALLOC_BIAS_SPECIAL;
} else if (alloc_bias == VDEV_BIAS_DEDUP) {
bias_str = VDEV_ALLOC_BIAS_DEDUP;
}
uint64_t ms_flush_data_obj = 0;
if (vd->vdev_top_zap != 0) {
int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
sizeof (uint64_t), 1, &ms_flush_data_obj);
if (error != ENOENT) {
ASSERT0(error);
}
}
(void) printf("\tvdev %10llu %s",
(u_longlong_t)vd->vdev_id, bias_str);
if (ms_flush_data_obj != 0) {
(void) printf(" ms_unflushed_phys object %llu",
(u_longlong_t)ms_flush_data_obj);
}
(void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
"metaslabs", (u_longlong_t)vd->vdev_ms_count,
"offset", "spacemap", "free");
(void) printf("\t%15s %19s %15s %12s\n",
"---------------", "-------------------",
"---------------", "------------");
}
static void
dump_metaslab_groups(spa_t *spa, boolean_t show_special)
{
vdev_t *rvd = spa->spa_root_vdev;
metaslab_class_t *mc = spa_normal_class(spa);
metaslab_class_t *smc = spa_special_class(spa);
uint64_t fragmentation;
metaslab_class_histogram_verify(mc);
for (unsigned c = 0; c < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
metaslab_group_t *mg = tvd->vdev_mg;
if (mg == NULL || (mg->mg_class != mc &&
(!show_special || mg->mg_class != smc)))
continue;
metaslab_group_histogram_verify(mg);
mg->mg_fragmentation = metaslab_group_fragmentation(mg);
(void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
"fragmentation",
(u_longlong_t)tvd->vdev_id,
(u_longlong_t)tvd->vdev_ms_count);
if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
(void) printf("%3s\n", "-");
} else {
(void) printf("%3llu%%\n",
(u_longlong_t)mg->mg_fragmentation);
}
dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
}
(void) printf("\tpool %s\tfragmentation", spa_name(spa));
fragmentation = metaslab_class_fragmentation(mc);
if (fragmentation == ZFS_FRAG_INVALID)
(void) printf("\t%3s\n", "-");
else
(void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
}
static void
print_vdev_indirect(vdev_t *vd)
{
vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
vdev_indirect_births_t *vib = vd->vdev_indirect_births;
if (vim == NULL) {
ASSERT3P(vib, ==, NULL);
return;
}
ASSERT3U(vdev_indirect_mapping_object(vim), ==,
vic->vic_mapping_object);
ASSERT3U(vdev_indirect_births_object(vib), ==,
vic->vic_births_object);
(void) printf("indirect births obj %llu:\n",
(longlong_t)vic->vic_births_object);
(void) printf(" vib_count = %llu\n",
(longlong_t)vdev_indirect_births_count(vib));
for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
vdev_indirect_birth_entry_phys_t *cur_vibe =
&vib->vib_entries[i];
(void) printf("\toffset %llx -> txg %llu\n",
(longlong_t)cur_vibe->vibe_offset,
(longlong_t)cur_vibe->vibe_phys_birth_txg);
}
(void) printf("\n");
(void) printf("indirect mapping obj %llu:\n",
(longlong_t)vic->vic_mapping_object);
(void) printf(" vim_max_offset = 0x%llx\n",
(longlong_t)vdev_indirect_mapping_max_offset(vim));
(void) printf(" vim_bytes_mapped = 0x%llx\n",
(longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
(void) printf(" vim_count = %llu\n",
(longlong_t)vdev_indirect_mapping_num_entries(vim));
if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
return;
uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
vdev_indirect_mapping_entry_phys_t *vimep =
&vim->vim_entries[i];
(void) printf("\t<%llx:%llx:%llx> -> "
"<%llx:%llx:%llx> (%x obsolete)\n",
(longlong_t)vd->vdev_id,
(longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
(longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
(longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
(longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
(longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
counts[i]);
}
(void) printf("\n");
uint64_t obsolete_sm_object;
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
if (obsolete_sm_object != 0) {
objset_t *mos = vd->vdev_spa->spa_meta_objset;
(void) printf("obsolete space map object %llu:\n",
(u_longlong_t)obsolete_sm_object);
ASSERT(vd->vdev_obsolete_sm != NULL);
ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
obsolete_sm_object);
dump_spacemap(mos, vd->vdev_obsolete_sm);
(void) printf("\n");
}
}
static void
dump_metaslabs(spa_t *spa)
{
vdev_t *vd, *rvd = spa->spa_root_vdev;
uint64_t m, c = 0, children = rvd->vdev_children;
(void) printf("\nMetaslabs:\n");
if (!dump_opt['d'] && zopt_metaslab_args > 0) {
c = zopt_metaslab[0];
if (c >= children)
(void) fatal("bad vdev id: %llu", (u_longlong_t)c);
if (zopt_metaslab_args > 1) {
vd = rvd->vdev_child[c];
print_vdev_metaslab_header(vd);
for (m = 1; m < zopt_metaslab_args; m++) {
if (zopt_metaslab[m] < vd->vdev_ms_count)
dump_metaslab(
vd->vdev_ms[zopt_metaslab[m]]);
else
(void) fprintf(stderr, "bad metaslab "
"number %llu\n",
(u_longlong_t)zopt_metaslab[m]);
}
(void) printf("\n");
return;
}
children = c + 1;
}
for (; c < children; c++) {
vd = rvd->vdev_child[c];
print_vdev_metaslab_header(vd);
print_vdev_indirect(vd);
for (m = 0; m < vd->vdev_ms_count; m++)
dump_metaslab(vd->vdev_ms[m]);
(void) printf("\n");
}
}
static void
dump_log_spacemaps(spa_t *spa)
{
if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
return;
(void) printf("\nLog Space Maps in Pool:\n");
for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
space_map_t *sm = NULL;
VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
(void) printf("Log Spacemap object %llu txg %llu\n",
(u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
dump_spacemap(spa->spa_meta_objset, sm);
space_map_close(sm);
}
(void) printf("\n");
}
static void
dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
{
const ddt_phys_t *ddp = dde->dde_phys;
const ddt_key_t *ddk = &dde->dde_key;
const char *types[4] = { "ditto", "single", "double", "triple" };
char blkbuf[BP_SPRINTF_LEN];
blkptr_t blk;
int p;
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
if (ddp->ddp_phys_birth == 0)
continue;
ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
(void) printf("index %llx refcnt %llu %s %s\n",
(u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
types[p], blkbuf);
}
}
static void
dump_dedup_ratio(const ddt_stat_t *dds)
{
double rL, rP, rD, D, dedup, compress, copies;
if (dds->dds_blocks == 0)
return;
rL = (double)dds->dds_ref_lsize;
rP = (double)dds->dds_ref_psize;
rD = (double)dds->dds_ref_dsize;
D = (double)dds->dds_dsize;
dedup = rD / D;
compress = rL / rP;
copies = rD / rP;
(void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
"dedup * compress / copies = %.2f\n\n",
dedup, compress, copies, dedup * compress / copies);
}
static void
dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
{
char name[DDT_NAMELEN];
ddt_entry_t dde;
uint64_t walk = 0;
dmu_object_info_t doi;
uint64_t count, dspace, mspace;
int error;
error = ddt_object_info(ddt, type, class, &doi);
if (error == ENOENT)
return;
ASSERT(error == 0);
error = ddt_object_count(ddt, type, class, &count);
ASSERT(error == 0);
if (count == 0)
return;
dspace = doi.doi_physical_blocks_512 << 9;
mspace = doi.doi_fill_count * doi.doi_data_block_size;
ddt_object_name(ddt, type, class, name);
(void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
name,
(u_longlong_t)count,
(u_longlong_t)(dspace / count),
(u_longlong_t)(mspace / count));
if (dump_opt['D'] < 3)
return;
zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
if (dump_opt['D'] < 4)
return;
if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
return;
(void) printf("%s contents:\n\n", name);
while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
dump_dde(ddt, &dde, walk);
ASSERT3U(error, ==, ENOENT);
(void) printf("\n");
}
static void
dump_all_ddts(spa_t *spa)
{
ddt_histogram_t ddh_total = {{{0}}};
ddt_stat_t dds_total = {0};
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
ddt_t *ddt = spa->spa_ddt[c];
for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
for (enum ddt_class class = 0; class < DDT_CLASSES;
class++) {
dump_ddt(ddt, type, class);
}
}
}
ddt_get_dedup_stats(spa, &dds_total);
if (dds_total.dds_blocks == 0) {
(void) printf("All DDTs are empty\n");
return;
}
(void) printf("\n");
if (dump_opt['D'] > 1) {
(void) printf("DDT histogram (aggregated over all DDTs):\n");
ddt_get_dedup_histogram(spa, &ddh_total);
zpool_dump_ddt(&dds_total, &ddh_total);
}
dump_dedup_ratio(&dds_total);
}
static void
dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
{
char *prefix = arg;
(void) printf("%s [%llu,%llu) length %llu\n",
prefix,
(u_longlong_t)start,
(u_longlong_t)(start + size),
(u_longlong_t)(size));
}
static void
dump_dtl(vdev_t *vd, int indent)
{
spa_t *spa = vd->vdev_spa;
boolean_t required;
const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
"outage" };
char prefix[256];
spa_vdev_state_enter(spa, SCL_NONE);
required = vdev_dtl_required(vd);
(void) spa_vdev_state_exit(spa, NULL, 0);
if (indent == 0)
(void) printf("\nDirty time logs:\n\n");
(void) printf("\t%*s%s [%s]\n", indent, "",
vd->vdev_path ? vd->vdev_path :
vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
required ? "DTL-required" : "DTL-expendable");
for (int t = 0; t < DTL_TYPES; t++) {
range_tree_t *rt = vd->vdev_dtl[t];
if (range_tree_space(rt) == 0)
continue;
(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
indent + 2, "", name[t]);
range_tree_walk(rt, dump_dtl_seg, prefix);
if (dump_opt['d'] > 5 && vd->vdev_children == 0)
dump_spacemap(spa->spa_meta_objset,
vd->vdev_dtl_sm);
}
for (unsigned c = 0; c < vd->vdev_children; c++)
dump_dtl(vd->vdev_child[c], indent + 4);
}
static void
dump_history(spa_t *spa)
{
nvlist_t **events = NULL;
char *buf;
uint64_t resid, len, off = 0;
uint_t num = 0;
int error;
char tbuf[30];
if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
(void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
__func__);
return;
}
do {
len = SPA_OLD_MAXBLOCKSIZE;
if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
(void) fprintf(stderr, "Unable to read history: "
"error %d\n", error);
free(buf);
return;
}
if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
break;
off -= resid;
} while (len != 0);
(void) printf("\nHistory:\n");
for (unsigned i = 0; i < num; i++) {
boolean_t printed = B_FALSE;
if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
time_t tsec;
struct tm t;
tsec = fnvlist_lookup_uint64(events[i],
ZPOOL_HIST_TIME);
(void) localtime_r(&tsec, &t);
(void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
} else {
tbuf[0] = '\0';
}
if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
(void) printf("%s %s\n", tbuf,
fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
uint64_t ievent;
ievent = fnvlist_lookup_uint64(events[i],
ZPOOL_HIST_INT_EVENT);
if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
goto next;
(void) printf(" %s [internal %s txg:%ju] %s\n",
tbuf,
zfs_history_event_names[ievent],
fnvlist_lookup_uint64(events[i],
ZPOOL_HIST_TXG),
fnvlist_lookup_string(events[i],
ZPOOL_HIST_INT_STR));
} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
(void) printf("%s [txg:%ju] %s", tbuf,
fnvlist_lookup_uint64(events[i],
ZPOOL_HIST_TXG),
fnvlist_lookup_string(events[i],
ZPOOL_HIST_INT_NAME));
if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
(void) printf(" %s (%llu)",
fnvlist_lookup_string(events[i],
ZPOOL_HIST_DSNAME),
(u_longlong_t)fnvlist_lookup_uint64(
events[i],
ZPOOL_HIST_DSID));
}
(void) printf(" %s\n", fnvlist_lookup_string(events[i],
ZPOOL_HIST_INT_STR));
} else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
(void) printf("%s ioctl %s\n", tbuf,
fnvlist_lookup_string(events[i],
ZPOOL_HIST_IOCTL));
if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
(void) printf(" input:\n");
dump_nvlist(fnvlist_lookup_nvlist(events[i],
ZPOOL_HIST_INPUT_NVL), 8);
}
if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
(void) printf(" output:\n");
dump_nvlist(fnvlist_lookup_nvlist(events[i],
ZPOOL_HIST_OUTPUT_NVL), 8);
}
if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
(void) printf(" errno: %lld\n",
(longlong_t)fnvlist_lookup_int64(events[i],
ZPOOL_HIST_ERRNO));
}
} else {
goto next;
}
printed = B_TRUE;
next:
if (dump_opt['h'] > 1) {
if (!printed)
(void) printf("unrecognized record:\n");
dump_nvlist(events[i], 2);
}
}
free(buf);
}
static void
dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) os, (void) object, (void) data, (void) size;
}
static uint64_t
blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
const zbookmark_phys_t *zb)
{
if (dnp == NULL) {
ASSERT(zb->zb_level < 0);
if (zb->zb_object == 0)
return (zb->zb_blkid);
return (zb->zb_blkid * BP_GET_LSIZE(bp));
}
ASSERT(zb->zb_level >= 0);
return ((zb->zb_blkid <<
(zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
}
static void
snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
const blkptr_t *bp)
{
abd_t *pabd;
void *buf;
zio_t *zio;
zfs_zstdhdr_t zstd_hdr;
int error;
if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
return;
if (BP_IS_HOLE(bp))
return;
if (BP_IS_EMBEDDED(bp)) {
buf = malloc(SPA_MAXBLOCKSIZE);
if (buf == NULL) {
(void) fprintf(stderr, "out of memory\n");
exit(1);
}
decode_embedded_bp_compressed(bp, buf);
memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
free(buf);
zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
(void) snprintf(blkbuf + strlen(blkbuf),
buflen - strlen(blkbuf),
" ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
zfs_get_hdrlevel(&zstd_hdr));
return;
}
pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
zio = zio_root(spa, NULL, NULL, 0);
/* Decrypt but don't decompress so we can read the compression header */
zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
NULL));
error = zio_wait(zio);
if (error) {
(void) fprintf(stderr, "read failed: %d\n", error);
return;
}
buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
(void) snprintf(blkbuf + strlen(blkbuf),
buflen - strlen(blkbuf),
" ZSTD:size=%u:version=%u:level=%u:NORMAL",
zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
zfs_get_hdrlevel(&zstd_hdr));
abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
}
static void
snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
boolean_t bp_freed)
{
const dva_t *dva = bp->blk_dva;
int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
int i;
if (dump_opt['b'] >= 6) {
snprintf_blkptr(blkbuf, buflen, bp);
if (bp_freed) {
(void) snprintf(blkbuf + strlen(blkbuf),
buflen - strlen(blkbuf), " %s", "FREE");
}
return;
}
if (BP_IS_EMBEDDED(bp)) {
(void) sprintf(blkbuf,
"EMBEDDED et=%u %llxL/%llxP B=%llu",
(int)BPE_GET_ETYPE(bp),
(u_longlong_t)BPE_GET_LSIZE(bp),
(u_longlong_t)BPE_GET_PSIZE(bp),
(u_longlong_t)bp->blk_birth);
return;
}
blkbuf[0] = '\0';
for (i = 0; i < ndvas; i++)
(void) snprintf(blkbuf + strlen(blkbuf),
buflen - strlen(blkbuf), "%llu:%llx:%llx ",
(u_longlong_t)DVA_GET_VDEV(&dva[i]),
(u_longlong_t)DVA_GET_OFFSET(&dva[i]),
(u_longlong_t)DVA_GET_ASIZE(&dva[i]));
if (BP_IS_HOLE(bp)) {
(void) snprintf(blkbuf + strlen(blkbuf),
buflen - strlen(blkbuf),
"%llxL B=%llu",
(u_longlong_t)BP_GET_LSIZE(bp),
(u_longlong_t)bp->blk_birth);
} else {
(void) snprintf(blkbuf + strlen(blkbuf),
buflen - strlen(blkbuf),
"%llxL/%llxP F=%llu B=%llu/%llu",
(u_longlong_t)BP_GET_LSIZE(bp),
(u_longlong_t)BP_GET_PSIZE(bp),
(u_longlong_t)BP_GET_FILL(bp),
(u_longlong_t)bp->blk_birth,
(u_longlong_t)BP_PHYSICAL_BIRTH(bp));
if (bp_freed)
(void) snprintf(blkbuf + strlen(blkbuf),
buflen - strlen(blkbuf), " %s", "FREE");
(void) snprintf(blkbuf + strlen(blkbuf),
buflen - strlen(blkbuf), " cksum=%llx:%llx:%llx:%llx",
(u_longlong_t)bp->blk_cksum.zc_word[0],
(u_longlong_t)bp->blk_cksum.zc_word[1],
(u_longlong_t)bp->blk_cksum.zc_word[2],
(u_longlong_t)bp->blk_cksum.zc_word[3]);
}
}
static void
print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
const dnode_phys_t *dnp)
{
char blkbuf[BP_SPRINTF_LEN];
int l;
if (!BP_IS_EMBEDDED(bp)) {
ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
}
(void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
ASSERT(zb->zb_level >= 0);
for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
if (l == zb->zb_level) {
(void) printf("L%llx", (u_longlong_t)zb->zb_level);
} else {
(void) printf(" ");
}
}
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
(void) printf("%s\n", blkbuf);
}
static int
visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
blkptr_t *bp, const zbookmark_phys_t *zb)
{
int err = 0;
if (bp->blk_birth == 0)
return (0);
print_indirect(spa, bp, zb, dnp);
if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
arc_flags_t flags = ARC_FLAG_WAIT;
int i;
blkptr_t *cbp;
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
arc_buf_t *buf;
uint64_t fill = 0;
ASSERT(!BP_IS_REDACTED(bp));
err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
if (err)
return (err);
ASSERT(buf->b_data);
/* recursively visit blocks below this */
cbp = buf->b_data;
for (i = 0; i < epb; i++, cbp++) {
zbookmark_phys_t czb;
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
zb->zb_level - 1,
zb->zb_blkid * epb + i);
err = visit_indirect(spa, dnp, cbp, &czb);
if (err)
break;
fill += BP_GET_FILL(cbp);
}
if (!err)
ASSERT3U(fill, ==, BP_GET_FILL(bp));
arc_buf_destroy(buf, &buf);
}
return (err);
}
static void
dump_indirect(dnode_t *dn)
{
dnode_phys_t *dnp = dn->dn_phys;
zbookmark_phys_t czb;
(void) printf("Indirect blocks:\n");
SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
dn->dn_object, dnp->dn_nlevels - 1, 0);
for (int j = 0; j < dnp->dn_nblkptr; j++) {
czb.zb_blkid = j;
(void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
&dnp->dn_blkptr[j], &czb);
}
(void) printf("\n");
}
static void
dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) os, (void) object;
dsl_dir_phys_t *dd = data;
time_t crtime;
char nice[32];
/* make sure nicenum has enough space */
_Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
if (dd == NULL)
return;
ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
crtime = dd->dd_creation_time;
(void) printf("\t\tcreation_time = %s", ctime(&crtime));
(void) printf("\t\thead_dataset_obj = %llu\n",
(u_longlong_t)dd->dd_head_dataset_obj);
(void) printf("\t\tparent_dir_obj = %llu\n",
(u_longlong_t)dd->dd_parent_obj);
(void) printf("\t\torigin_obj = %llu\n",
(u_longlong_t)dd->dd_origin_obj);
(void) printf("\t\tchild_dir_zapobj = %llu\n",
(u_longlong_t)dd->dd_child_dir_zapobj);
zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
(void) printf("\t\tused_bytes = %s\n", nice);
zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
(void) printf("\t\tcompressed_bytes = %s\n", nice);
zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
(void) printf("\t\tuncompressed_bytes = %s\n", nice);
zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
(void) printf("\t\tquota = %s\n", nice);
zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
(void) printf("\t\treserved = %s\n", nice);
(void) printf("\t\tprops_zapobj = %llu\n",
(u_longlong_t)dd->dd_props_zapobj);
(void) printf("\t\tdeleg_zapobj = %llu\n",
(u_longlong_t)dd->dd_deleg_zapobj);
(void) printf("\t\tflags = %llx\n",
(u_longlong_t)dd->dd_flags);
#define DO(which) \
zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
sizeof (nice)); \
(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
DO(HEAD);
DO(SNAP);
DO(CHILD);
DO(CHILD_RSRV);
DO(REFRSRV);
#undef DO
(void) printf("\t\tclones = %llu\n",
(u_longlong_t)dd->dd_clones);
}
static void
dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) os, (void) object;
dsl_dataset_phys_t *ds = data;
time_t crtime;
char used[32], compressed[32], uncompressed[32], unique[32];
char blkbuf[BP_SPRINTF_LEN];
/* make sure nicenum has enough space */
_Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
_Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
"compressed truncated");
_Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
"uncompressed truncated");
_Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
if (ds == NULL)
return;
ASSERT(size == sizeof (*ds));
crtime = ds->ds_creation_time;
zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
sizeof (uncompressed));
zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
(void) printf("\t\tdir_obj = %llu\n",
(u_longlong_t)ds->ds_dir_obj);
(void) printf("\t\tprev_snap_obj = %llu\n",
(u_longlong_t)ds->ds_prev_snap_obj);
(void) printf("\t\tprev_snap_txg = %llu\n",
(u_longlong_t)ds->ds_prev_snap_txg);
(void) printf("\t\tnext_snap_obj = %llu\n",
(u_longlong_t)ds->ds_next_snap_obj);
(void) printf("\t\tsnapnames_zapobj = %llu\n",
(u_longlong_t)ds->ds_snapnames_zapobj);
(void) printf("\t\tnum_children = %llu\n",
(u_longlong_t)ds->ds_num_children);
(void) printf("\t\tuserrefs_obj = %llu\n",
(u_longlong_t)ds->ds_userrefs_obj);
(void) printf("\t\tcreation_time = %s", ctime(&crtime));
(void) printf("\t\tcreation_txg = %llu\n",
(u_longlong_t)ds->ds_creation_txg);
(void) printf("\t\tdeadlist_obj = %llu\n",
(u_longlong_t)ds->ds_deadlist_obj);
(void) printf("\t\tused_bytes = %s\n", used);
(void) printf("\t\tcompressed_bytes = %s\n", compressed);
(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
(void) printf("\t\tunique = %s\n", unique);
(void) printf("\t\tfsid_guid = %llu\n",
(u_longlong_t)ds->ds_fsid_guid);
(void) printf("\t\tguid = %llu\n",
(u_longlong_t)ds->ds_guid);
(void) printf("\t\tflags = %llx\n",
(u_longlong_t)ds->ds_flags);
(void) printf("\t\tnext_clones_obj = %llu\n",
(u_longlong_t)ds->ds_next_clones_obj);
(void) printf("\t\tprops_obj = %llu\n",
(u_longlong_t)ds->ds_props_obj);
(void) printf("\t\tbp = %s\n", blkbuf);
}
static int
dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
(void) arg, (void) tx;
char blkbuf[BP_SPRINTF_LEN];
if (bp->blk_birth != 0) {
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
(void) printf("\t%s\n", blkbuf);
}
return (0);
}
static void
dump_bptree(objset_t *os, uint64_t obj, const char *name)
{
char bytes[32];
bptree_phys_t *bt;
dmu_buf_t *db;
/* make sure nicenum has enough space */
_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
if (dump_opt['d'] < 3)
return;
VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
bt = db->db_data;
zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
(void) printf("\n %s: %llu datasets, %s\n",
name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
dmu_buf_rele(db, FTAG);
if (dump_opt['d'] < 5)
return;
(void) printf("\n");
(void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
}
static int
dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
{
(void) arg, (void) tx;
char blkbuf[BP_SPRINTF_LEN];
ASSERT(bp->blk_birth != 0);
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
(void) printf("\t%s\n", blkbuf);
return (0);
}
static void
dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
{
char bytes[32];
char comp[32];
char uncomp[32];
uint64_t i;
/* make sure nicenum has enough space */
_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
if (dump_opt['d'] < 3)
return;
zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
if (bpo->bpo_havefreed) {
(void) printf(" %*s: object %llu, %llu local "
"blkptrs, %llu freed, %llu subobjs in object %llu, "
"%s (%s/%s comp)\n",
indent * 8, name,
(u_longlong_t)bpo->bpo_object,
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
(u_longlong_t)bpo->bpo_phys->bpo_num_freed,
(u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
(u_longlong_t)bpo->bpo_phys->bpo_subobjs,
bytes, comp, uncomp);
} else {
(void) printf(" %*s: object %llu, %llu local "
"blkptrs, %llu subobjs in object %llu, "
"%s (%s/%s comp)\n",
indent * 8, name,
(u_longlong_t)bpo->bpo_object,
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
(u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
(u_longlong_t)bpo->bpo_phys->bpo_subobjs,
bytes, comp, uncomp);
}
for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
uint64_t subobj;
bpobj_t subbpo;
int error;
VERIFY0(dmu_read(bpo->bpo_os,
bpo->bpo_phys->bpo_subobjs,
i * sizeof (subobj), sizeof (subobj), &subobj, 0));
error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
if (error != 0) {
(void) printf("ERROR %u while trying to open "
"subobj id %llu\n",
error, (u_longlong_t)subobj);
continue;
}
dump_full_bpobj(&subbpo, "subobj", indent + 1);
bpobj_close(&subbpo);
}
} else {
if (bpo->bpo_havefreed) {
(void) printf(" %*s: object %llu, %llu blkptrs, "
"%llu freed, %s\n",
indent * 8, name,
(u_longlong_t)bpo->bpo_object,
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
(u_longlong_t)bpo->bpo_phys->bpo_num_freed,
bytes);
} else {
(void) printf(" %*s: object %llu, %llu blkptrs, "
"%s\n",
indent * 8, name,
(u_longlong_t)bpo->bpo_object,
(u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
bytes);
}
}
if (dump_opt['d'] < 5)
return;
if (indent == 0) {
(void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
(void) printf("\n");
}
}
static int
dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
boolean_t print_list)
{
int err = 0;
zfs_bookmark_phys_t prop;
objset_t *mos = dp->dp_spa->spa_meta_objset;
err = dsl_bookmark_lookup(dp, name, NULL, &prop);
if (err != 0) {
return (err);
}
(void) printf("\t#%s: ", strchr(name, '#') + 1);
(void) printf("{guid: %llx creation_txg: %llu creation_time: "
"%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
(u_longlong_t)prop.zbm_creation_txg,
(u_longlong_t)prop.zbm_creation_time,
(u_longlong_t)prop.zbm_redaction_obj);
IMPLY(print_list, print_redact);
if (!print_redact || prop.zbm_redaction_obj == 0)
return (0);
redaction_list_t *rl;
VERIFY0(dsl_redaction_list_hold_obj(dp,
prop.zbm_redaction_obj, FTAG, &rl));
redaction_list_phys_t *rlp = rl->rl_phys;
(void) printf("\tRedacted:\n\t\tProgress: ");
if (rlp->rlp_last_object != UINT64_MAX ||
rlp->rlp_last_blkid != UINT64_MAX) {
(void) printf("%llu %llu (incomplete)\n",
(u_longlong_t)rlp->rlp_last_object,
(u_longlong_t)rlp->rlp_last_blkid);
} else {
(void) printf("complete\n");
}
(void) printf("\t\tSnapshots: [");
for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
if (i > 0)
(void) printf(", ");
(void) printf("%0llu",
(u_longlong_t)rlp->rlp_snaps[i]);
}
(void) printf("]\n\t\tLength: %llu\n",
(u_longlong_t)rlp->rlp_num_entries);
if (!print_list) {
dsl_redaction_list_rele(rl, FTAG);
return (0);
}
if (rlp->rlp_num_entries == 0) {
dsl_redaction_list_rele(rl, FTAG);
(void) printf("\t\tRedaction List: []\n\n");
return (0);
}
redact_block_phys_t *rbp_buf;
uint64_t size;
dmu_object_info_t doi;
VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
size = doi.doi_max_offset;
rbp_buf = kmem_alloc(size, KM_SLEEP);
err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
rbp_buf, 0);
if (err != 0) {
dsl_redaction_list_rele(rl, FTAG);
kmem_free(rbp_buf, size);
return (err);
}
(void) printf("\t\tRedaction List: [{object: %llx, offset: "
"%llx, blksz: %x, count: %llx}",
(u_longlong_t)rbp_buf[0].rbp_object,
(u_longlong_t)rbp_buf[0].rbp_blkid,
(uint_t)(redact_block_get_size(&rbp_buf[0])),
(u_longlong_t)redact_block_get_count(&rbp_buf[0]));
for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
(void) printf(",\n\t\t{object: %llx, offset: %llx, "
"blksz: %x, count: %llx}",
(u_longlong_t)rbp_buf[i].rbp_object,
(u_longlong_t)rbp_buf[i].rbp_blkid,
(uint_t)(redact_block_get_size(&rbp_buf[i])),
(u_longlong_t)redact_block_get_count(&rbp_buf[i]));
}
dsl_redaction_list_rele(rl, FTAG);
kmem_free(rbp_buf, size);
(void) printf("]\n\n");
return (0);
}
static void
dump_bookmarks(objset_t *os, int verbosity)
{
zap_cursor_t zc;
zap_attribute_t attr;
dsl_dataset_t *ds = dmu_objset_ds(os);
dsl_pool_t *dp = spa_get_dsl(os->os_spa);
objset_t *mos = os->os_spa->spa_meta_objset;
if (verbosity < 4)
return;
dsl_pool_config_enter(dp, FTAG);
for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
zap_cursor_retrieve(&zc, &attr) == 0;
zap_cursor_advance(&zc)) {
char osname[ZFS_MAX_DATASET_NAME_LEN];
char buf[ZFS_MAX_DATASET_NAME_LEN];
int len;
dmu_objset_name(os, osname);
len = snprintf(buf, sizeof (buf), "%s#%s", osname,
attr.za_name);
VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
(void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
}
zap_cursor_fini(&zc);
dsl_pool_config_exit(dp, FTAG);
}
static void
bpobj_count_refd(bpobj_t *bpo)
{
mos_obj_refd(bpo->bpo_object);
if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
uint64_t subobj;
bpobj_t subbpo;
int error;
VERIFY0(dmu_read(bpo->bpo_os,
bpo->bpo_phys->bpo_subobjs,
i * sizeof (subobj), sizeof (subobj), &subobj, 0));
error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
if (error != 0) {
(void) printf("ERROR %u while trying to open "
"subobj id %llu\n",
error, (u_longlong_t)subobj);
continue;
}
bpobj_count_refd(&subbpo);
bpobj_close(&subbpo);
}
}
}
static int
dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
{
spa_t *spa = arg;
uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
if (dle->dle_bpobj.bpo_object != empty_bpobj)
bpobj_count_refd(&dle->dle_bpobj);
return (0);
}
static int
dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
{
ASSERT(arg == NULL);
if (dump_opt['d'] >= 5) {
char buf[128];
(void) snprintf(buf, sizeof (buf),
"mintxg %llu -> obj %llu",
(longlong_t)dle->dle_mintxg,
(longlong_t)dle->dle_bpobj.bpo_object);
dump_full_bpobj(&dle->dle_bpobj, buf, 0);
} else {
(void) printf("mintxg %llu -> obj %llu\n",
(longlong_t)dle->dle_mintxg,
(longlong_t)dle->dle_bpobj.bpo_object);
}
return (0);
}
static void
dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
{
char bytes[32];
char comp[32];
char uncomp[32];
char entries[32];
spa_t *spa = dmu_objset_spa(dl->dl_os);
uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
if (dl->dl_oldfmt) {
if (dl->dl_bpobj.bpo_object != empty_bpobj)
bpobj_count_refd(&dl->dl_bpobj);
} else {
mos_obj_refd(dl->dl_object);
dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
}
/* make sure nicenum has enough space */
_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
_Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
if (dump_opt['d'] < 3)
return;
if (dl->dl_oldfmt) {
dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
return;
}
zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
(void) printf("\n %s: %s (%s/%s comp), %s entries\n",
name, bytes, comp, uncomp, entries);
if (dump_opt['d'] < 4)
return;
(void) putchar('\n');
dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
}
static int
verify_dd_livelist(objset_t *os)
{
uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
dsl_pool_t *dp = spa_get_dsl(os->os_spa);
dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
ASSERT(!dmu_objset_is_snapshot(os));
if (!dsl_deadlist_is_open(&dd->dd_livelist))
return (0);
/* Iterate through the livelist to check for duplicates */
dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
NULL);
dsl_pool_config_enter(dp, FTAG);
dsl_deadlist_space(&dd->dd_livelist, &ll_used,
&ll_comp, &ll_uncomp);
dsl_dataset_t *origin_ds;
ASSERT(dsl_pool_config_held(dp));
VERIFY0(dsl_dataset_hold_obj(dp,
dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
&used, &comp, &uncomp));
dsl_dataset_rele(origin_ds, FTAG);
dsl_pool_config_exit(dp, FTAG);
/*
* It's possible that the dataset's uncomp space is larger than the
* livelist's because livelists do not track embedded block pointers
*/
if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
char nice_used[32], nice_comp[32], nice_uncomp[32];
(void) printf("Discrepancy in space accounting:\n");
zdb_nicenum(used, nice_used, sizeof (nice_used));
zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
(void) printf("dir: used %s, comp %s, uncomp %s\n",
nice_used, nice_comp, nice_uncomp);
zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
(void) printf("livelist: used %s, comp %s, uncomp %s\n",
nice_used, nice_comp, nice_uncomp);
return (1);
}
return (0);
}
static avl_tree_t idx_tree;
static avl_tree_t domain_tree;
static boolean_t fuid_table_loaded;
static objset_t *sa_os = NULL;
static sa_attr_type_t *sa_attr_table = NULL;
static int
open_objset(const char *path, const void *tag, objset_t **osp)
{
int err;
uint64_t sa_attrs = 0;
uint64_t version = 0;
VERIFY3P(sa_os, ==, NULL);
/*
* We can't own an objset if it's redacted. Therefore, we do this
* dance: hold the objset, then acquire a long hold on its dataset, then
* release the pool (which is held as part of holding the objset).
*/
err = dmu_objset_hold(path, tag, osp);
if (err != 0) {
(void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
path, strerror(err));
return (err);
}
dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
dsl_pool_rele(dmu_objset_pool(*osp), tag);
if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) {
(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
8, 1, &version);
if (version >= ZPL_VERSION_SA) {
(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
8, 1, &sa_attrs);
}
err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
&sa_attr_table);
if (err != 0) {
(void) fprintf(stderr, "sa_setup failed: %s\n",
strerror(err));
dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
dsl_dataset_rele(dmu_objset_ds(*osp), tag);
*osp = NULL;
}
}
sa_os = *osp;
return (err);
}
static void
close_objset(objset_t *os, const void *tag)
{
VERIFY3P(os, ==, sa_os);
if (os->os_sa != NULL)
sa_tear_down(os);
dsl_dataset_long_rele(dmu_objset_ds(os), tag);
dsl_dataset_rele(dmu_objset_ds(os), tag);
sa_attr_table = NULL;
sa_os = NULL;
}
static void
fuid_table_destroy(void)
{
if (fuid_table_loaded) {
zfs_fuid_table_destroy(&idx_tree, &domain_tree);
fuid_table_loaded = B_FALSE;
}
}
/*
* print uid or gid information.
* For normal POSIX id just the id is printed in decimal format.
* For CIFS files with FUID the fuid is printed in hex followed by
* the domain-rid string.
*/
static void
print_idstr(uint64_t id, const char *id_type)
{
if (FUID_INDEX(id)) {
const char *domain =
zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
(void) printf("\t%s %llx [%s-%d]\n", id_type,
(u_longlong_t)id, domain, (int)FUID_RID(id));
} else {
(void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
}
}
static void
dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
{
uint32_t uid_idx, gid_idx;
uid_idx = FUID_INDEX(uid);
gid_idx = FUID_INDEX(gid);
/* Load domain table, if not already loaded */
if (!fuid_table_loaded && (uid_idx || gid_idx)) {
uint64_t fuid_obj;
/* first find the fuid object. It lives in the master node */
VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
8, 1, &fuid_obj) == 0);
zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
(void) zfs_fuid_table_load(os, fuid_obj,
&idx_tree, &domain_tree);
fuid_table_loaded = B_TRUE;
}
print_idstr(uid, "uid");
print_idstr(gid, "gid");
}
static void
dump_znode_sa_xattr(sa_handle_t *hdl)
{
nvlist_t *sa_xattr;
nvpair_t *elem = NULL;
int sa_xattr_size = 0;
int sa_xattr_entries = 0;
int error;
char *sa_xattr_packed;
error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
if (error || sa_xattr_size == 0)
return;
sa_xattr_packed = malloc(sa_xattr_size);
if (sa_xattr_packed == NULL)
return;
error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
sa_xattr_packed, sa_xattr_size);
if (error) {
free(sa_xattr_packed);
return;
}
error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
if (error) {
free(sa_xattr_packed);
return;
}
while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
sa_xattr_entries++;
(void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
sa_xattr_size, sa_xattr_entries);
while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
uchar_t *value;
uint_t cnt, idx;
(void) printf("\t\t%s = ", nvpair_name(elem));
nvpair_value_byte_array(elem, &value, &cnt);
for (idx = 0; idx < cnt; ++idx) {
if (isprint(value[idx]))
(void) putchar(value[idx]);
else
(void) printf("\\%3.3o", value[idx]);
}
(void) putchar('\n');
}
nvlist_free(sa_xattr);
free(sa_xattr_packed);
}
static void
dump_znode_symlink(sa_handle_t *hdl)
{
int sa_symlink_size = 0;
char linktarget[MAXPATHLEN];
int error;
error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
if (error || sa_symlink_size == 0) {
return;
}
if (sa_symlink_size >= sizeof (linktarget)) {
(void) printf("symlink size %d is too large\n",
sa_symlink_size);
return;
}
linktarget[sa_symlink_size] = '\0';
if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
&linktarget, sa_symlink_size) == 0)
(void) printf("\ttarget %s\n", linktarget);
}
static void
dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) data, (void) size;
char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
sa_handle_t *hdl;
uint64_t xattr, rdev, gen;
uint64_t uid, gid, mode, fsize, parent, links;
uint64_t pflags;
uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
time_t z_crtime, z_atime, z_mtime, z_ctime;
sa_bulk_attr_t bulk[12];
int idx = 0;
int error;
VERIFY3P(os, ==, sa_os);
if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
(void) printf("Failed to get handle for SA znode\n");
return;
}
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
&links, 8);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
&mode, 8);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
NULL, &parent, 8);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
&fsize, 8);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
acctm, 16);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
modtm, 16);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
crtm, 16);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
chgtm, 16);
SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
&pflags, 8);
if (sa_bulk_lookup(hdl, bulk, idx)) {
(void) sa_handle_destroy(hdl);
return;
}
z_crtime = (time_t)crtm[0];
z_atime = (time_t)acctm[0];
z_mtime = (time_t)modtm[0];
z_ctime = (time_t)chgtm[0];
if (dump_opt['d'] > 4) {
error = zfs_obj_to_path(os, object, path, sizeof (path));
if (error == ESTALE) {
(void) snprintf(path, sizeof (path), "on delete queue");
} else if (error != 0) {
leaked_objects++;
(void) snprintf(path, sizeof (path),
"path not found, possibly leaked");
}
(void) printf("\tpath %s\n", path);
}
if (S_ISLNK(mode))
dump_znode_symlink(hdl);
dump_uidgid(os, uid, gid);
(void) printf("\tatime %s", ctime(&z_atime));
(void) printf("\tmtime %s", ctime(&z_mtime));
(void) printf("\tctime %s", ctime(&z_ctime));
(void) printf("\tcrtime %s", ctime(&z_crtime));
(void) printf("\tgen %llu\n", (u_longlong_t)gen);
(void) printf("\tmode %llo\n", (u_longlong_t)mode);
(void) printf("\tsize %llu\n", (u_longlong_t)fsize);
(void) printf("\tparent %llu\n", (u_longlong_t)parent);
(void) printf("\tlinks %llu\n", (u_longlong_t)links);
(void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
uint64_t projid;
if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
sizeof (uint64_t)) == 0)
(void) printf("\tprojid %llu\n", (u_longlong_t)projid);
}
if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
sizeof (uint64_t)) == 0)
(void) printf("\txattr %llu\n", (u_longlong_t)xattr);
if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
sizeof (uint64_t)) == 0)
(void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
dump_znode_sa_xattr(hdl);
sa_handle_destroy(hdl);
}
static void
dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) os, (void) object, (void) data, (void) size;
}
static void
dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
{
(void) os, (void) object, (void) data, (void) size;
}
static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
dump_none, /* unallocated */
dump_zap, /* object directory */
dump_uint64, /* object array */
dump_none, /* packed nvlist */
dump_packed_nvlist, /* packed nvlist size */
dump_none, /* bpobj */
dump_bpobj, /* bpobj header */
dump_none, /* SPA space map header */
dump_none, /* SPA space map */
dump_none, /* ZIL intent log */
dump_dnode, /* DMU dnode */
dump_dmu_objset, /* DMU objset */
dump_dsl_dir, /* DSL directory */
dump_zap, /* DSL directory child map */
dump_zap, /* DSL dataset snap map */
dump_zap, /* DSL props */
dump_dsl_dataset, /* DSL dataset */
dump_znode, /* ZFS znode */
dump_acl, /* ZFS V0 ACL */
dump_uint8, /* ZFS plain file */
dump_zpldir, /* ZFS directory */
dump_zap, /* ZFS master node */
dump_zap, /* ZFS delete queue */
dump_uint8, /* zvol object */
dump_zap, /* zvol prop */
dump_uint8, /* other uint8[] */
dump_uint64, /* other uint64[] */
dump_zap, /* other ZAP */
dump_zap, /* persistent error log */
dump_uint8, /* SPA history */
dump_history_offsets, /* SPA history offsets */
dump_zap, /* Pool properties */
dump_zap, /* DSL permissions */
dump_acl, /* ZFS ACL */
dump_uint8, /* ZFS SYSACL */
dump_none, /* FUID nvlist */
dump_packed_nvlist, /* FUID nvlist size */
dump_zap, /* DSL dataset next clones */
dump_zap, /* DSL scrub queue */
dump_zap, /* ZFS user/group/project used */
dump_zap, /* ZFS user/group/project quota */
dump_zap, /* snapshot refcount tags */
dump_ddt_zap, /* DDT ZAP object */
dump_zap, /* DDT statistics */
dump_znode, /* SA object */
dump_zap, /* SA Master Node */
dump_sa_attrs, /* SA attribute registration */
dump_sa_layouts, /* SA attribute layouts */
dump_zap, /* DSL scrub translations */
dump_none, /* fake dedup BP */
dump_zap, /* deadlist */
dump_none, /* deadlist hdr */
dump_zap, /* dsl clones */
dump_bpobj_subobjs, /* bpobj subobjs */
dump_unknown, /* Unknown type, must be last */
};
static boolean_t
match_object_type(dmu_object_type_t obj_type, uint64_t flags)
{
boolean_t match = B_TRUE;
switch (obj_type) {
case DMU_OT_DIRECTORY_CONTENTS:
if (!(flags & ZOR_FLAG_DIRECTORY))
match = B_FALSE;
break;
case DMU_OT_PLAIN_FILE_CONTENTS:
if (!(flags & ZOR_FLAG_PLAIN_FILE))
match = B_FALSE;
break;
case DMU_OT_SPACE_MAP:
if (!(flags & ZOR_FLAG_SPACE_MAP))
match = B_FALSE;
break;
default:
if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
if (!(flags & ZOR_FLAG_ZAP))
match = B_FALSE;
break;
}
/*
* If all bits except some of the supported flags are
* set, the user combined the all-types flag (A) with
* a negated flag to exclude some types (e.g. A-f to
* show all object types except plain files).
*/
if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
match = B_FALSE;
break;
}
return (match);
}
static void
dump_object(objset_t *os, uint64_t object, int verbosity,
boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
{
dmu_buf_t *db = NULL;
dmu_object_info_t doi;
dnode_t *dn;
boolean_t dnode_held = B_FALSE;
void *bonus = NULL;
size_t bsize = 0;
char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
char bonus_size[32];
char aux[50];
int error;
/* make sure nicenum has enough space */
_Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
_Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
_Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
"bonus_size truncated");
if (*print_header) {
(void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
"Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
"lsize", "%full", "type");
*print_header = 0;
}
if (object == 0) {
dn = DMU_META_DNODE(os);
dmu_object_info_from_dnode(dn, &doi);
} else {
/*
* Encrypted datasets will have sensitive bonus buffers
* encrypted. Therefore we cannot hold the bonus buffer and
* must hold the dnode itself instead.
*/
error = dmu_object_info(os, object, &doi);
if (error)
fatal("dmu_object_info() failed, errno %u", error);
if (os->os_encrypted &&
DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
error = dnode_hold(os, object, FTAG, &dn);
if (error)
fatal("dnode_hold() failed, errno %u", error);
dnode_held = B_TRUE;
} else {
error = dmu_bonus_hold(os, object, FTAG, &db);
if (error)
fatal("dmu_bonus_hold(%llu) failed, errno %u",
object, error);
bonus = db->db_data;
bsize = db->db_size;
dn = DB_DNODE((dmu_buf_impl_t *)db);
}
}
/*
* Default to showing all object types if no flags were specified.
*/
if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
!match_object_type(doi.doi_type, flags))
goto out;
if (dnode_slots_used)
*dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
(void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count *
doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) /
doi.doi_max_offset);
aux[0] = '\0';
if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
" (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
}
if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
const char *compname = NULL;
if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
&compname) == 0) {
(void) snprintf(aux + strlen(aux),
sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
compname);
} else {
(void) snprintf(aux + strlen(aux),
sizeof (aux) - strlen(aux),
" (Z=inherit=%s-unknown)",
ZDB_COMPRESS_NAME(os->os_compress));
}
} else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
" (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
} else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
" (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
}
(void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
(u_longlong_t)object, doi.doi_indirection, iblk, dblk,
asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
(void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
"", "", "", "", "", "", bonus_size, "bonus",
zdb_ot_name(doi.doi_bonus_type));
}
if (verbosity >= 4) {
(void) printf("\tdnode flags: %s%s%s%s\n",
(dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
"USED_BYTES " : "",
(dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
"USERUSED_ACCOUNTED " : "",
(dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
"USEROBJUSED_ACCOUNTED " : "",
(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
"SPILL_BLKPTR" : "");
(void) printf("\tdnode maxblkid: %llu\n",
(longlong_t)dn->dn_phys->dn_maxblkid);
if (!dnode_held) {
object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
object, bonus, bsize);
} else {
(void) printf("\t\t(bonus encrypted)\n");
}
if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) {
object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
NULL, 0);
} else {
(void) printf("\t\t(object encrypted)\n");
}
*print_header = B_TRUE;
}
if (verbosity >= 5) {
if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
char blkbuf[BP_SPRINTF_LEN];
snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
(void) printf("\nSpill block: %s\n", blkbuf);
}
dump_indirect(dn);
}
if (verbosity >= 5) {
/*
* Report the list of segments that comprise the object.
*/
uint64_t start = 0;
uint64_t end;
uint64_t blkfill = 1;
int minlvl = 1;
if (dn->dn_type == DMU_OT_DNODE) {
minlvl = 0;
blkfill = DNODES_PER_BLOCK;
}
for (;;) {
char segsize[32];
/* make sure nicenum has enough space */
_Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
"segsize truncated");
error = dnode_next_offset(dn,
0, &start, minlvl, blkfill, 0);
if (error)
break;
end = start;
error = dnode_next_offset(dn,
DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
zdb_nicenum(end - start, segsize, sizeof (segsize));
(void) printf("\t\tsegment [%016llx, %016llx)"
" size %5s\n", (u_longlong_t)start,
(u_longlong_t)end, segsize);
if (error)
break;
start = end;
}
}
out:
if (db != NULL)
dmu_buf_rele(db, FTAG);
if (dnode_held)
dnode_rele(dn, FTAG);
}
static void
count_dir_mos_objects(dsl_dir_t *dd)
{
mos_obj_refd(dd->dd_object);
mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
/*
* The dd_crypto_obj can be referenced by multiple dsl_dir's.
* Ignore the references after the first one.
*/
mos_obj_refd_multiple(dd->dd_crypto_obj);
}
static void
count_ds_mos_objects(dsl_dataset_t *ds)
{
mos_obj_refd(ds->ds_object);
mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
mos_obj_refd(ds->ds_bookmarks_obj);
if (!dsl_dataset_is_snapshot(ds)) {
count_dir_mos_objects(ds->ds_dir);
}
}
static const char *const objset_types[DMU_OST_NUMTYPES] = {
"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
/*
* Parse a string denoting a range of object IDs of the form
* <start>[:<end>[:flags]], and store the results in zor.
* Return 0 on success. On error, return 1 and update the msg
* pointer to point to a descriptive error message.
*/
static int
parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
{
uint64_t flags = 0;
char *p, *s, *dup, *flagstr, *tmp = NULL;
size_t len;
int i;
int rc = 0;
if (strchr(range, ':') == NULL) {
zor->zor_obj_start = strtoull(range, &p, 0);
if (*p != '\0') {
*msg = "Invalid characters in object ID";
rc = 1;
}
zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
zor->zor_obj_end = zor->zor_obj_start;
return (rc);
}
if (strchr(range, ':') == range) {
*msg = "Invalid leading colon";
rc = 1;
return (rc);
}
len = strlen(range);
if (range[len - 1] == ':') {
*msg = "Invalid trailing colon";
rc = 1;
return (rc);
}
dup = strdup(range);
s = strtok_r(dup, ":", &tmp);
zor->zor_obj_start = strtoull(s, &p, 0);
if (*p != '\0') {
*msg = "Invalid characters in start object ID";
rc = 1;
goto out;
}
s = strtok_r(NULL, ":", &tmp);
zor->zor_obj_end = strtoull(s, &p, 0);
if (*p != '\0') {
*msg = "Invalid characters in end object ID";
rc = 1;
goto out;
}
if (zor->zor_obj_start > zor->zor_obj_end) {
*msg = "Start object ID may not exceed end object ID";
rc = 1;
goto out;
}
s = strtok_r(NULL, ":", &tmp);
if (s == NULL) {
zor->zor_flags = ZOR_FLAG_ALL_TYPES;
goto out;
} else if (strtok_r(NULL, ":", &tmp) != NULL) {
*msg = "Invalid colon-delimited field after flags";
rc = 1;
goto out;
}
flagstr = s;
for (i = 0; flagstr[i]; i++) {
int bit;
boolean_t negation = (flagstr[i] == '-');
if (negation) {
i++;
if (flagstr[i] == '\0') {
*msg = "Invalid trailing negation operator";
rc = 1;
goto out;
}
}
bit = flagbits[(uchar_t)flagstr[i]];
if (bit == 0) {
*msg = "Invalid flag";
rc = 1;
goto out;
}
if (negation)
flags &= ~bit;
else
flags |= bit;
}
zor->zor_flags = flags;
zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
out:
free(dup);
return (rc);
}
static void
dump_objset(objset_t *os)
{
dmu_objset_stats_t dds = { 0 };
uint64_t object, object_count;
uint64_t refdbytes, usedobjs, scratch;
char numbuf[32];
char blkbuf[BP_SPRINTF_LEN + 20];
char osname[ZFS_MAX_DATASET_NAME_LEN];
const char *type = "UNKNOWN";
int verbosity = dump_opt['d'];
boolean_t print_header;
unsigned i;
int error;
uint64_t total_slots_used = 0;
uint64_t max_slot_used = 0;
uint64_t dnode_slots;
uint64_t obj_start;
uint64_t obj_end;
uint64_t flags;
/* make sure nicenum has enough space */
_Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
dmu_objset_fast_stat(os, &dds);
dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
print_header = B_TRUE;
if (dds.dds_type < DMU_OST_NUMTYPES)
type = objset_types[dds.dds_type];
if (dds.dds_type == DMU_OST_META) {
dds.dds_creation_txg = TXG_INITIAL;
usedobjs = BP_GET_FILL(os->os_rootbp);
refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
dd_used_bytes;
} else {
dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
}
ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
if (verbosity >= 4) {
(void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
(void) snprintf_blkptr(blkbuf + strlen(blkbuf),
sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
} else {
blkbuf[0] = '\0';
}
dmu_objset_name(os, osname);
(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
"%s, %llu objects%s%s\n",
osname, type, (u_longlong_t)dmu_objset_id(os),
(u_longlong_t)dds.dds_creation_txg,
numbuf, (u_longlong_t)usedobjs, blkbuf,
(dds.dds_inconsistent) ? " (inconsistent)" : "");
for (i = 0; i < zopt_object_args; i++) {
obj_start = zopt_object_ranges[i].zor_obj_start;
obj_end = zopt_object_ranges[i].zor_obj_end;
flags = zopt_object_ranges[i].zor_flags;
object = obj_start;
if (object == 0 || obj_start == obj_end)
dump_object(os, object, verbosity, &print_header, NULL,
flags);
else
object--;
while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
object <= obj_end) {
dump_object(os, object, verbosity, &print_header, NULL,
flags);
}
}
if (zopt_object_args > 0) {
(void) printf("\n");
return;
}
if (dump_opt['i'] != 0 || verbosity >= 2)
dump_intent_log(dmu_objset_zil(os));
if (dmu_objset_ds(os) != NULL) {
dsl_dataset_t *ds = dmu_objset_ds(os);
dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
!dmu_objset_is_snapshot(os)) {
dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
if (verify_dd_livelist(os) != 0)
fatal("livelist is incorrect");
}
if (dsl_dataset_remap_deadlist_exists(ds)) {
(void) printf("ds_remap_deadlist:\n");
dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
}
count_ds_mos_objects(ds);
}
if (dmu_objset_ds(os) != NULL)
dump_bookmarks(os, verbosity);
if (verbosity < 2)
return;
if (BP_IS_HOLE(os->os_rootbp))
return;
dump_object(os, 0, verbosity, &print_header, NULL, 0);
object_count = 0;
if (DMU_USERUSED_DNODE(os) != NULL &&
DMU_USERUSED_DNODE(os)->dn_type != 0) {
dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
NULL, 0);
dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
NULL, 0);
}
if (DMU_PROJECTUSED_DNODE(os) != NULL &&
DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
&print_header, NULL, 0);
object = 0;
while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
dump_object(os, object, verbosity, &print_header, &dnode_slots,
0);
object_count++;
total_slots_used += dnode_slots;
max_slot_used = object + dnode_slots - 1;
}
(void) printf("\n");
(void) printf(" Dnode slots:\n");
(void) printf("\tTotal used: %10llu\n",
(u_longlong_t)total_slots_used);
(void) printf("\tMax used: %10llu\n",
(u_longlong_t)max_slot_used);
(void) printf("\tPercent empty: %10lf\n",
(double)(max_slot_used - total_slots_used)*100 /
(double)max_slot_used);
(void) printf("\n");
if (error != ESRCH) {
(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
abort();
}
ASSERT3U(object_count, ==, usedobjs);
if (leaked_objects != 0) {
(void) printf("%d potentially leaked objects detected\n",
leaked_objects);
leaked_objects = 0;
}
}
static void
dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
{
time_t timestamp = ub->ub_timestamp;
(void) printf("%s", header ? header : "");
(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
(void) printf("\ttimestamp = %llu UTC = %s",
(u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
(void) printf("\tmmp_magic = %016llx\n",
(u_longlong_t)ub->ub_mmp_magic);
if (MMP_VALID(ub)) {
(void) printf("\tmmp_delay = %0llu\n",
(u_longlong_t)ub->ub_mmp_delay);
if (MMP_SEQ_VALID(ub))
(void) printf("\tmmp_seq = %u\n",
(unsigned int) MMP_SEQ(ub));
if (MMP_FAIL_INT_VALID(ub))
(void) printf("\tmmp_fail = %u\n",
(unsigned int) MMP_FAIL_INT(ub));
if (MMP_INTERVAL_VALID(ub))
(void) printf("\tmmp_write = %u\n",
(unsigned int) MMP_INTERVAL(ub));
/* After MMP_* to make summarize_uberblock_mmp cleaner */
(void) printf("\tmmp_valid = %x\n",
(unsigned int) ub->ub_mmp_config & 0xFF);
}
if (dump_opt['u'] >= 4) {
char blkbuf[BP_SPRINTF_LEN];
snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
(void) printf("\trootbp = %s\n", blkbuf);
}
(void) printf("\tcheckpoint_txg = %llu\n",
(u_longlong_t)ub->ub_checkpoint_txg);
(void) printf("%s", footer ? footer : "");
}
static void
dump_config(spa_t *spa)
{
dmu_buf_t *db;
size_t nvsize = 0;
int error = 0;
error = dmu_bonus_hold(spa->spa_meta_objset,
spa->spa_config_object, FTAG, &db);
if (error == 0) {
nvsize = *(uint64_t *)db->db_data;
dmu_buf_rele(db, FTAG);
(void) printf("\nMOS Configuration:\n");
dump_packed_nvlist(spa->spa_meta_objset,
spa->spa_config_object, (void *)&nvsize, 1);
} else {
(void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
(u_longlong_t)spa->spa_config_object, error);
}
}
static void
dump_cachefile(const char *cachefile)
{
int fd;
struct stat64 statbuf;
char *buf;
nvlist_t *config;
if ((fd = open64(cachefile, O_RDONLY)) < 0) {
(void) printf("cannot open '%s': %s\n", cachefile,
strerror(errno));
exit(1);
}
if (fstat64(fd, &statbuf) != 0) {
(void) printf("failed to stat '%s': %s\n", cachefile,
strerror(errno));
exit(1);
}
if ((buf = malloc(statbuf.st_size)) == NULL) {
(void) fprintf(stderr, "failed to allocate %llu bytes\n",
(u_longlong_t)statbuf.st_size);
exit(1);
}
if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
(void) fprintf(stderr, "failed to read %llu bytes\n",
(u_longlong_t)statbuf.st_size);
exit(1);
}
(void) close(fd);
if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
(void) fprintf(stderr, "failed to unpack nvlist\n");
exit(1);
}
free(buf);
dump_nvlist(config, 0);
nvlist_free(config);
}
/*
* ZFS label nvlist stats
*/
typedef struct zdb_nvl_stats {
int zns_list_count;
int zns_leaf_count;
size_t zns_leaf_largest;
size_t zns_leaf_total;
nvlist_t *zns_string;
nvlist_t *zns_uint64;
nvlist_t *zns_boolean;
} zdb_nvl_stats_t;
static void
collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
{
nvlist_t *list, **array;
nvpair_t *nvp = NULL;
char *name;
uint_t i, items;
stats->zns_list_count++;
while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
name = nvpair_name(nvp);
switch (nvpair_type(nvp)) {
case DATA_TYPE_STRING:
fnvlist_add_string(stats->zns_string, name,
fnvpair_value_string(nvp));
break;
case DATA_TYPE_UINT64:
fnvlist_add_uint64(stats->zns_uint64, name,
fnvpair_value_uint64(nvp));
break;
case DATA_TYPE_BOOLEAN:
fnvlist_add_boolean(stats->zns_boolean, name);
break;
case DATA_TYPE_NVLIST:
if (nvpair_value_nvlist(nvp, &list) == 0)
collect_nvlist_stats(list, stats);
break;
case DATA_TYPE_NVLIST_ARRAY:
if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
break;
for (i = 0; i < items; i++) {
collect_nvlist_stats(array[i], stats);
/* collect stats on leaf vdev */
if (strcmp(name, "children") == 0) {
size_t size;
(void) nvlist_size(array[i], &size,
NV_ENCODE_XDR);
stats->zns_leaf_total += size;
if (size > stats->zns_leaf_largest)
stats->zns_leaf_largest = size;
stats->zns_leaf_count++;
}
}
break;
default:
(void) printf("skip type %d!\n", (int)nvpair_type(nvp));
}
}
}
static void
dump_nvlist_stats(nvlist_t *nvl, size_t cap)
{
zdb_nvl_stats_t stats = { 0 };
size_t size, sum = 0, total;
size_t noise;
/* requires nvlist with non-unique names for stat collection */
VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
(void) printf("\n\nZFS Label NVList Config Stats:\n");
VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
(void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
(int)total, (int)(cap - total), 100.0 * total / cap);
collect_nvlist_stats(nvl, &stats);
VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
size -= noise;
sum += size;
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
(int)fnvlist_num_pairs(stats.zns_uint64),
(int)size, 100.0 * size / total);
VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
size -= noise;
sum += size;
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
(int)fnvlist_num_pairs(stats.zns_string),
(int)size, 100.0 * size / total);
VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
size -= noise;
sum += size;
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
(int)fnvlist_num_pairs(stats.zns_boolean),
(int)size, 100.0 * size / total);
size = total - sum; /* treat remainder as nvlist overhead */
(void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
stats.zns_list_count, (int)size, 100.0 * size / total);
if (stats.zns_leaf_count > 0) {
size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
(void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
stats.zns_leaf_count, (int)average);
(void) printf("%24d bytes largest\n",
(int)stats.zns_leaf_largest);
if (dump_opt['l'] >= 3 && average > 0)
(void) printf(" space for %d additional leaf vdevs\n",
(int)((cap - total) / average));
}
(void) printf("\n");
nvlist_free(stats.zns_string);
nvlist_free(stats.zns_uint64);
nvlist_free(stats.zns_boolean);
}
typedef struct cksum_record {
zio_cksum_t cksum;
boolean_t labels[VDEV_LABELS];
avl_node_t link;
} cksum_record_t;
static int
cksum_record_compare(const void *x1, const void *x2)
{
const cksum_record_t *l = (cksum_record_t *)x1;
const cksum_record_t *r = (cksum_record_t *)x2;
int arraysize = ARRAY_SIZE(l->cksum.zc_word);
int difference = 0;
for (int i = 0; i < arraysize; i++) {
difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
if (difference)
break;
}
return (difference);
}
static cksum_record_t *
cksum_record_alloc(zio_cksum_t *cksum, int l)
{
cksum_record_t *rec;
rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
rec->cksum = *cksum;
rec->labels[l] = B_TRUE;
return (rec);
}
static cksum_record_t *
cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
{
cksum_record_t lookup = { .cksum = *cksum };
avl_index_t where;
return (avl_find(tree, &lookup, &where));
}
static cksum_record_t *
cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
{
cksum_record_t *rec;
rec = cksum_record_lookup(tree, cksum);
if (rec) {
rec->labels[l] = B_TRUE;
} else {
rec = cksum_record_alloc(cksum, l);
avl_add(tree, rec);
}
return (rec);
}
static int
first_label(cksum_record_t *rec)
{
for (int i = 0; i < VDEV_LABELS; i++)
if (rec->labels[i])
return (i);
return (-1);
}
static void
print_label_numbers(const char *prefix, const cksum_record_t *rec)
{
fputs(prefix, stdout);
for (int i = 0; i < VDEV_LABELS; i++)
if (rec->labels[i] == B_TRUE)
printf("%d ", i);
putchar('\n');
}
#define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
typedef struct zdb_label {
vdev_label_t label;
uint64_t label_offset;
nvlist_t *config_nv;
cksum_record_t *config;
cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
boolean_t header_printed;
boolean_t read_failed;
boolean_t cksum_valid;
} zdb_label_t;
static void
print_label_header(zdb_label_t *label, int l)
{
if (dump_opt['q'])
return;
if (label->header_printed == B_TRUE)
return;
(void) printf("------------------------------------\n");
(void) printf("LABEL %d %s\n", l,
label->cksum_valid ? "" : "(Bad label cksum)");
(void) printf("------------------------------------\n");
label->header_printed = B_TRUE;
}
static void
print_l2arc_header(void)
{
(void) printf("------------------------------------\n");
(void) printf("L2ARC device header\n");
(void) printf("------------------------------------\n");
}
static void
print_l2arc_log_blocks(void)
{
(void) printf("------------------------------------\n");
(void) printf("L2ARC device log blocks\n");
(void) printf("------------------------------------\n");
}
static void
dump_l2arc_log_entries(uint64_t log_entries,
l2arc_log_ent_phys_t *le, uint64_t i)
{
for (int j = 0; j < log_entries; j++) {
dva_t dva = le[j].le_dva;
(void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
"vdev: %llu, offset: %llu\n",
(u_longlong_t)i, j + 1,
(u_longlong_t)DVA_GET_ASIZE(&dva),
(u_longlong_t)DVA_GET_VDEV(&dva),
(u_longlong_t)DVA_GET_OFFSET(&dva));
(void) printf("|\t\t\t\tbirth: %llu\n",
(u_longlong_t)le[j].le_birth);
(void) printf("|\t\t\t\tlsize: %llu\n",
(u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
(void) printf("|\t\t\t\tpsize: %llu\n",
(u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
(void) printf("|\t\t\t\tcompr: %llu\n",
(u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
(void) printf("|\t\t\t\tcomplevel: %llu\n",
(u_longlong_t)(&le[j])->le_complevel);
(void) printf("|\t\t\t\ttype: %llu\n",
(u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
(void) printf("|\t\t\t\tprotected: %llu\n",
(u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
(void) printf("|\t\t\t\tprefetch: %llu\n",
(u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
(void) printf("|\t\t\t\taddress: %llu\n",
(u_longlong_t)le[j].le_daddr);
(void) printf("|\t\t\t\tARC state: %llu\n",
(u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
(void) printf("|\n");
}
(void) printf("\n");
}
static void
dump_l2arc_log_blkptr(l2arc_log_blkptr_t lbps)
{
(void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps.lbp_daddr);
(void) printf("|\t\tpayload_asize: %llu\n",
(u_longlong_t)lbps.lbp_payload_asize);
(void) printf("|\t\tpayload_start: %llu\n",
(u_longlong_t)lbps.lbp_payload_start);
(void) printf("|\t\tlsize: %llu\n",
(u_longlong_t)L2BLK_GET_LSIZE((&lbps)->lbp_prop));
(void) printf("|\t\tasize: %llu\n",
(u_longlong_t)L2BLK_GET_PSIZE((&lbps)->lbp_prop));
(void) printf("|\t\tcompralgo: %llu\n",
(u_longlong_t)L2BLK_GET_COMPRESS((&lbps)->lbp_prop));
(void) printf("|\t\tcksumalgo: %llu\n",
(u_longlong_t)L2BLK_GET_CHECKSUM((&lbps)->lbp_prop));
(void) printf("|\n\n");
}
static void
dump_l2arc_log_blocks(int fd, l2arc_dev_hdr_phys_t l2dhdr,
l2arc_dev_hdr_phys_t *rebuild)
{
l2arc_log_blk_phys_t this_lb;
uint64_t asize;
l2arc_log_blkptr_t lbps[2];
abd_t *abd;
zio_cksum_t cksum;
int failed = 0;
l2arc_dev_t dev;
if (!dump_opt['q'])
print_l2arc_log_blocks();
memcpy(lbps, l2dhdr.dh_start_lbps, sizeof (lbps));
dev.l2ad_evict = l2dhdr.dh_evict;
dev.l2ad_start = l2dhdr.dh_start;
dev.l2ad_end = l2dhdr.dh_end;
if (l2dhdr.dh_start_lbps[0].lbp_daddr == 0) {
/* no log blocks to read */
if (!dump_opt['q']) {
(void) printf("No log blocks to read\n");
(void) printf("\n");
}
return;
} else {
dev.l2ad_hand = lbps[0].lbp_daddr +
L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
}
dev.l2ad_first = !!(l2dhdr.dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
for (;;) {
if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
break;
/* L2BLK_GET_PSIZE returns aligned size for log blocks */
asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
if (!dump_opt['q']) {
(void) printf("Error while reading next log "
"block\n\n");
}
break;
}
fletcher_4_native_varsize(&this_lb, asize, &cksum);
if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
failed++;
if (!dump_opt['q']) {
(void) printf("Invalid cksum\n");
dump_l2arc_log_blkptr(lbps[0]);
}
break;
}
switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
case ZIO_COMPRESS_OFF:
break;
default:
abd = abd_alloc_for_io(asize, B_TRUE);
abd_copy_from_buf_off(abd, &this_lb, 0, asize);
if (zio_decompress_data(L2BLK_GET_COMPRESS(
(&lbps[0])->lbp_prop), abd, &this_lb,
asize, sizeof (this_lb), NULL) != 0) {
(void) printf("L2ARC block decompression "
"failed\n");
abd_free(abd);
goto out;
}
abd_free(abd);
break;
}
if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
byteswap_uint64_array(&this_lb, sizeof (this_lb));
if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
if (!dump_opt['q'])
(void) printf("Invalid log block magic\n\n");
break;
}
rebuild->dh_lb_count++;
rebuild->dh_lb_asize += asize;
if (dump_opt['l'] > 1 && !dump_opt['q']) {
(void) printf("lb[%4llu]\tmagic: %llu\n",
(u_longlong_t)rebuild->dh_lb_count,
(u_longlong_t)this_lb.lb_magic);
dump_l2arc_log_blkptr(lbps[0]);
}
if (dump_opt['l'] > 2 && !dump_opt['q'])
dump_l2arc_log_entries(l2dhdr.dh_log_entries,
this_lb.lb_entries,
rebuild->dh_lb_count);
if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
lbps[0].lbp_payload_start, dev.l2ad_evict) &&
!dev.l2ad_first)
break;
lbps[0] = lbps[1];
lbps[1] = this_lb.lb_prev_lbp;
}
out:
if (!dump_opt['q']) {
(void) printf("log_blk_count:\t %llu with valid cksum\n",
(u_longlong_t)rebuild->dh_lb_count);
(void) printf("\t\t %d with invalid cksum\n", failed);
(void) printf("log_blk_asize:\t %llu\n\n",
(u_longlong_t)rebuild->dh_lb_asize);
}
}
static int
dump_l2arc_header(int fd)
{
l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
int error = B_FALSE;
if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
error = B_TRUE;
} else {
if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
error = B_TRUE;
}
if (error) {
(void) printf("L2ARC device header not found\n\n");
/* Do not return an error here for backward compatibility */
return (0);
} else if (!dump_opt['q']) {
print_l2arc_header();
(void) printf(" magic: %llu\n",
(u_longlong_t)l2dhdr.dh_magic);
(void) printf(" version: %llu\n",
(u_longlong_t)l2dhdr.dh_version);
(void) printf(" pool_guid: %llu\n",
(u_longlong_t)l2dhdr.dh_spa_guid);
(void) printf(" flags: %llu\n",
(u_longlong_t)l2dhdr.dh_flags);
(void) printf(" start_lbps[0]: %llu\n",
(u_longlong_t)
l2dhdr.dh_start_lbps[0].lbp_daddr);
(void) printf(" start_lbps[1]: %llu\n",
(u_longlong_t)
l2dhdr.dh_start_lbps[1].lbp_daddr);
(void) printf(" log_blk_ent: %llu\n",
(u_longlong_t)l2dhdr.dh_log_entries);
(void) printf(" start: %llu\n",
(u_longlong_t)l2dhdr.dh_start);
(void) printf(" end: %llu\n",
(u_longlong_t)l2dhdr.dh_end);
(void) printf(" evict: %llu\n",
(u_longlong_t)l2dhdr.dh_evict);
(void) printf(" lb_asize_refcount: %llu\n",
(u_longlong_t)l2dhdr.dh_lb_asize);
(void) printf(" lb_count_refcount: %llu\n",
(u_longlong_t)l2dhdr.dh_lb_count);
(void) printf(" trim_action_time: %llu\n",
(u_longlong_t)l2dhdr.dh_trim_action_time);
(void) printf(" trim_state: %llu\n\n",
(u_longlong_t)l2dhdr.dh_trim_state);
}
dump_l2arc_log_blocks(fd, l2dhdr, &rebuild);
/*
* The total aligned size of log blocks and the number of log blocks
* reported in the header of the device may be less than what zdb
* reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
* This happens because dump_l2arc_log_blocks() lacks the memory
* pressure valve that l2arc_rebuild() has. Thus, if we are on a system
* with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
* and dh_lb_count will be lower to begin with than what exists on the
* device. This is normal and zdb should not exit with an error. The
* opposite case should never happen though, the values reported in the
* header should never be higher than what dump_l2arc_log_blocks() and
* l2arc_rebuild() report. If this happens there is a leak in the
* accounting of log blocks.
*/
if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
l2dhdr.dh_lb_count > rebuild.dh_lb_count)
return (1);
return (0);
}
static void
dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
{
if (dump_opt['q'])
return;
if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
return;
print_label_header(label, l);
dump_nvlist(label->config_nv, 4);
print_label_numbers(" labels = ", label->config);
if (dump_opt['l'] >= 2)
dump_nvlist_stats(label->config_nv, buflen);
}
#define ZDB_MAX_UB_HEADER_SIZE 32
static void
dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
{
vdev_t vd;
char header[ZDB_MAX_UB_HEADER_SIZE];
vd.vdev_ashift = ashift;
vd.vdev_top = &vd;
for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
uberblock_t *ub = (void *)((char *)&label->label + uoff);
cksum_record_t *rec = label->uberblocks[i];
if (rec == NULL) {
if (dump_opt['u'] >= 2) {
print_label_header(label, label_num);
(void) printf(" Uberblock[%d] invalid\n", i);
}
continue;
}
if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
continue;
if ((dump_opt['u'] < 4) &&
(ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
(i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
continue;
print_label_header(label, label_num);
(void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
" Uberblock[%d]\n", i);
dump_uberblock(ub, header, "");
print_label_numbers(" labels = ", rec);
}
}
static char curpath[PATH_MAX];
/*
* Iterate through the path components, recursively passing
* current one's obj and remaining path until we find the obj
* for the last one.
*/
static int
dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
{
int err;
boolean_t header = B_TRUE;
uint64_t child_obj;
char *s;
dmu_buf_t *db;
dmu_object_info_t doi;
if ((s = strchr(name, '/')) != NULL)
*s = '\0';
err = zap_lookup(os, obj, name, 8, 1, &child_obj);
(void) strlcat(curpath, name, sizeof (curpath));
if (err != 0) {
(void) fprintf(stderr, "failed to lookup %s: %s\n",
curpath, strerror(err));
return (err);
}
child_obj = ZFS_DIRENT_OBJ(child_obj);
err = sa_buf_hold(os, child_obj, FTAG, &db);
if (err != 0) {
(void) fprintf(stderr,
"failed to get SA dbuf for obj %llu: %s\n",
(u_longlong_t)child_obj, strerror(err));
return (EINVAL);
}
dmu_object_info_from_db(db, &doi);
sa_buf_rele(db, FTAG);
if (doi.doi_bonus_type != DMU_OT_SA &&
doi.doi_bonus_type != DMU_OT_ZNODE) {
(void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
doi.doi_bonus_type, (u_longlong_t)child_obj);
return (EINVAL);
}
if (dump_opt['v'] > 6) {
(void) printf("obj=%llu %s type=%d bonustype=%d\n",
(u_longlong_t)child_obj, curpath, doi.doi_type,
doi.doi_bonus_type);
}
(void) strlcat(curpath, "/", sizeof (curpath));
switch (doi.doi_type) {
case DMU_OT_DIRECTORY_CONTENTS:
if (s != NULL && *(s + 1) != '\0')
return (dump_path_impl(os, child_obj, s + 1, retobj));
zfs_fallthrough;
case DMU_OT_PLAIN_FILE_CONTENTS:
if (retobj != NULL) {
*retobj = child_obj;
} else {
dump_object(os, child_obj, dump_opt['v'], &header,
NULL, 0);
}
return (0);
default:
(void) fprintf(stderr, "object %llu has non-file/directory "
"type %d\n", (u_longlong_t)obj, doi.doi_type);
break;
}
return (EINVAL);
}
/*
* Dump the blocks for the object specified by path inside the dataset.
*/
static int
dump_path(char *ds, char *path, uint64_t *retobj)
{
int err;
objset_t *os;
uint64_t root_obj;
err = open_objset(ds, FTAG, &os);
if (err != 0)
return (err);
err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
if (err != 0) {
(void) fprintf(stderr, "can't lookup root znode: %s\n",
strerror(err));
close_objset(os, FTAG);
return (EINVAL);
}
(void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
err = dump_path_impl(os, root_obj, path, retobj);
close_objset(os, FTAG);
return (err);
}
static int
zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
{
int err = 0;
uint64_t size, readsize, oursize, offset;
ssize_t writesize;
sa_handle_t *hdl;
(void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
destfile);
VERIFY3P(os, ==, sa_os);
if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
(void) printf("Failed to get handle for SA znode\n");
return (err);
}
if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
(void) sa_handle_destroy(hdl);
return (err);
}
(void) sa_handle_destroy(hdl);
(void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
size);
if (size == 0) {
return (EINVAL);
}
int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd == -1)
return (errno);
/*
* We cap the size at 1 mebibyte here to prevent
* allocation failures and nigh-infinite printing if the
* object is extremely large.
*/
oursize = MIN(size, 1 << 20);
offset = 0;
char *buf = kmem_alloc(oursize, KM_NOSLEEP);
if (buf == NULL) {
(void) close(fd);
return (ENOMEM);
}
while (offset < size) {
readsize = MIN(size - offset, 1 << 20);
err = dmu_read(os, srcobj, offset, readsize, buf, 0);
if (err != 0) {
(void) printf("got error %u from dmu_read\n", err);
kmem_free(buf, oursize);
(void) close(fd);
return (err);
}
if (dump_opt['v'] > 3) {
(void) printf("Read offset=%" PRIu64 " size=%" PRIu64
" error=%d\n", offset, readsize, err);
}
writesize = write(fd, buf, readsize);
if (writesize < 0) {
err = errno;
break;
} else if (writesize != readsize) {
/* Incomplete write */
(void) fprintf(stderr, "Short write, only wrote %llu of"
" %" PRIu64 " bytes, exiting...\n",
(u_longlong_t)writesize, readsize);
break;
}
offset += readsize;
}
(void) close(fd);
if (buf != NULL)
kmem_free(buf, oursize);
return (err);
}
static boolean_t
label_cksum_valid(vdev_label_t *label, uint64_t offset)
{
zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
zio_cksum_t expected_cksum;
zio_cksum_t actual_cksum;
zio_cksum_t verifier;
zio_eck_t *eck;
int byteswap;
void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
offset += offsetof(vdev_label_t, vl_vdev_phys);
ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
if (byteswap)
byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
expected_cksum = eck->zec_cksum;
eck->zec_cksum = verifier;
abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
abd_free(abd);
if (byteswap)
byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
return (B_TRUE);
return (B_FALSE);
}
static int
dump_label(const char *dev)
{
char path[MAXPATHLEN];
zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
uint64_t psize, ashift, l2cache;
struct stat64 statbuf;
boolean_t config_found = B_FALSE;
boolean_t error = B_FALSE;
boolean_t read_l2arc_header = B_FALSE;
avl_tree_t config_tree;
avl_tree_t uberblock_tree;
void *node, *cookie;
int fd;
/*
* Check if we were given absolute path and use it as is.
* Otherwise if the provided vdev name doesn't point to a file,
* try prepending expected disk paths and partition numbers.
*/
(void) strlcpy(path, dev, sizeof (path));
if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
int error;
error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
if (error == 0 && zfs_dev_is_whole_disk(path)) {
if (zfs_append_partition(path, MAXPATHLEN) == -1)
error = ENOENT;
}
if (error || (stat64(path, &statbuf) != 0)) {
(void) printf("failed to find device %s, try "
"specifying absolute path instead\n", dev);
return (1);
}
}
if ((fd = open64(path, O_RDONLY)) < 0) {
(void) printf("cannot open '%s': %s\n", path, strerror(errno));
exit(1);
}
if (fstat64_blk(fd, &statbuf) != 0) {
(void) printf("failed to stat '%s': %s\n", path,
strerror(errno));
(void) close(fd);
exit(1);
}
if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
(void) printf("failed to invalidate cache '%s' : %s\n", path,
strerror(errno));
avl_create(&config_tree, cksum_record_compare,
sizeof (cksum_record_t), offsetof(cksum_record_t, link));
avl_create(&uberblock_tree, cksum_record_compare,
sizeof (cksum_record_t), offsetof(cksum_record_t, link));
psize = statbuf.st_size;
psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
ashift = SPA_MINBLOCKSHIFT;
/*
* 1. Read the label from disk
* 2. Verify label cksum
* 3. Unpack the configuration and insert in config tree.
* 4. Traverse all uberblocks and insert in uberblock tree.
*/
for (int l = 0; l < VDEV_LABELS; l++) {
zdb_label_t *label = &labels[l];
char *buf = label->label.vl_vdev_phys.vp_nvlist;
size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
nvlist_t *config;
cksum_record_t *rec;
zio_cksum_t cksum;
vdev_t vd;
label->label_offset = vdev_label_offset(psize, l, 0);
if (pread64(fd, &label->label, sizeof (label->label),
label->label_offset) != sizeof (label->label)) {
if (!dump_opt['q'])
(void) printf("failed to read label %d\n", l);
label->read_failed = B_TRUE;
error = B_TRUE;
continue;
}
label->read_failed = B_FALSE;
label->cksum_valid = label_cksum_valid(&label->label,
label->label_offset);
if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
nvlist_t *vdev_tree = NULL;
size_t size;
if ((nvlist_lookup_nvlist(config,
ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
(nvlist_lookup_uint64(vdev_tree,
ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
ashift = SPA_MINBLOCKSHIFT;
if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
size = buflen;
/* If the device is a cache device clear the header. */
if (!read_l2arc_header) {
if (nvlist_lookup_uint64(config,
ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
l2cache == POOL_STATE_L2CACHE) {
read_l2arc_header = B_TRUE;
}
}
fletcher_4_native_varsize(buf, size, &cksum);
rec = cksum_record_insert(&config_tree, &cksum, l);
label->config = rec;
label->config_nv = config;
config_found = B_TRUE;
} else {
error = B_TRUE;
}
vd.vdev_ashift = ashift;
vd.vdev_top = &vd;
for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
uberblock_t *ub = (void *)((char *)label + uoff);
if (uberblock_verify(ub))
continue;
fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
rec = cksum_record_insert(&uberblock_tree, &cksum, l);
label->uberblocks[i] = rec;
}
}
/*
* Dump the label and uberblocks.
*/
for (int l = 0; l < VDEV_LABELS; l++) {
zdb_label_t *label = &labels[l];
size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
if (label->read_failed == B_TRUE)
continue;
if (label->config_nv) {
dump_config_from_label(label, buflen, l);
} else {
if (!dump_opt['q'])
(void) printf("failed to unpack label %d\n", l);
}
if (dump_opt['u'])
dump_label_uberblocks(label, ashift, l);
nvlist_free(label->config_nv);
}
/*
* Dump the L2ARC header, if existent.
*/
if (read_l2arc_header)
error |= dump_l2arc_header(fd);
cookie = NULL;
while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
umem_free(node, sizeof (cksum_record_t));
cookie = NULL;
while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
umem_free(node, sizeof (cksum_record_t));
avl_destroy(&config_tree);
avl_destroy(&uberblock_tree);
(void) close(fd);
return (config_found == B_FALSE ? 2 :
(error == B_TRUE ? 1 : 0));
}
static uint64_t dataset_feature_count[SPA_FEATURES];
static uint64_t global_feature_count[SPA_FEATURES];
static uint64_t remap_deadlist_count = 0;
static int
dump_one_objset(const char *dsname, void *arg)
{
(void) arg;
int error;
objset_t *os;
spa_feature_t f;
error = open_objset(dsname, FTAG, &os);
if (error != 0)
return (0);
for (f = 0; f < SPA_FEATURES; f++) {
if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
continue;
ASSERT(spa_feature_table[f].fi_flags &
ZFEATURE_FLAG_PER_DATASET);
dataset_feature_count[f]++;
}
if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
remap_deadlist_count++;
}
for (dsl_bookmark_node_t *dbn =
avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
if (dbn->dbn_phys.zbm_redaction_obj != 0)
global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++;
if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
}
if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
!dmu_objset_is_snapshot(os)) {
global_feature_count[SPA_FEATURE_LIVELIST]++;
}
dump_objset(os);
close_objset(os, FTAG);
fuid_table_destroy();
return (0);
}
/*
* Block statistics.
*/
#define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
typedef struct zdb_blkstats {
uint64_t zb_asize;
uint64_t zb_lsize;
uint64_t zb_psize;
uint64_t zb_count;
uint64_t zb_gangs;
uint64_t zb_ditto_samevdev;
uint64_t zb_ditto_same_ms;
uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
} zdb_blkstats_t;
/*
* Extended object types to report deferred frees and dedup auto-ditto blocks.
*/
#define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
#define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
#define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
#define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
static const char *zdb_ot_extname[] = {
"deferred free",
"dedup ditto",
"other",
"Total",
};
#define ZB_TOTAL DN_MAX_LEVELS
#define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
typedef struct zdb_cb {
zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
uint64_t zcb_removing_size;
uint64_t zcb_checkpoint_size;
uint64_t zcb_dedup_asize;
uint64_t zcb_dedup_blocks;
uint64_t zcb_psize_count[SPA_MAX_FOR_16M];
uint64_t zcb_lsize_count[SPA_MAX_FOR_16M];
uint64_t zcb_asize_count[SPA_MAX_FOR_16M];
uint64_t zcb_psize_len[SPA_MAX_FOR_16M];
uint64_t zcb_lsize_len[SPA_MAX_FOR_16M];
uint64_t zcb_asize_len[SPA_MAX_FOR_16M];
uint64_t zcb_psize_total;
uint64_t zcb_lsize_total;
uint64_t zcb_asize_total;
uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
[BPE_PAYLOAD_SIZE + 1];
uint64_t zcb_start;
hrtime_t zcb_lastprint;
uint64_t zcb_totalasize;
uint64_t zcb_errors[256];
int zcb_readfails;
int zcb_haderrors;
spa_t *zcb_spa;
uint32_t **zcb_vd_obsolete_counts;
} zdb_cb_t;
/* test if two DVA offsets from same vdev are within the same metaslab */
static boolean_t
same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
{
vdev_t *vd = vdev_lookup_top(spa, vdev);
uint64_t ms_shift = vd->vdev_ms_shift;
return ((off1 >> ms_shift) == (off2 >> ms_shift));
}
/*
* Used to simplify reporting of the histogram data.
*/
typedef struct one_histo {
const char *name;
uint64_t *count;
uint64_t *len;
uint64_t cumulative;
} one_histo_t;
/*
* The number of separate histograms processed for psize, lsize and asize.
*/
#define NUM_HISTO 3
/*
* This routine will create a fixed column size output of three different
* histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
* the count, length and cumulative length of the psize, lsize and
* asize blocks.
*
* All three types of blocks are listed on a single line
*
* By default the table is printed in nicenumber format (e.g. 123K) but
* if the '-P' parameter is specified then the full raw number (parseable)
* is printed out.
*/
static void
dump_size_histograms(zdb_cb_t *zcb)
{
/*
* A temporary buffer that allows us to convert a number into
* a string using zdb_nicenumber to allow either raw or human
* readable numbers to be output.
*/
char numbuf[32];
/*
* Define titles which are used in the headers of the tables
* printed by this routine.
*/
const char blocksize_title1[] = "block";
const char blocksize_title2[] = "size";
const char count_title[] = "Count";
const char length_title[] = "Size";
const char cumulative_title[] = "Cum.";
/*
* Setup the histogram arrays (psize, lsize, and asize).
*/
one_histo_t parm_histo[NUM_HISTO];
parm_histo[0].name = "psize";
parm_histo[0].count = zcb->zcb_psize_count;
parm_histo[0].len = zcb->zcb_psize_len;
parm_histo[0].cumulative = 0;
parm_histo[1].name = "lsize";
parm_histo[1].count = zcb->zcb_lsize_count;
parm_histo[1].len = zcb->zcb_lsize_len;
parm_histo[1].cumulative = 0;
parm_histo[2].name = "asize";
parm_histo[2].count = zcb->zcb_asize_count;
parm_histo[2].len = zcb->zcb_asize_len;
parm_histo[2].cumulative = 0;
(void) printf("\nBlock Size Histogram\n");
/*
* Print the first line titles
*/
if (dump_opt['P'])
(void) printf("\n%s\t", blocksize_title1);
else
(void) printf("\n%7s ", blocksize_title1);
for (int j = 0; j < NUM_HISTO; j++) {
if (dump_opt['P']) {
if (j < NUM_HISTO - 1) {
(void) printf("%s\t\t\t", parm_histo[j].name);
} else {
/* Don't print trailing spaces */
(void) printf(" %s", parm_histo[j].name);
}
} else {
if (j < NUM_HISTO - 1) {
/* Left aligned strings in the output */
(void) printf("%-7s ",
parm_histo[j].name);
} else {
/* Don't print trailing spaces */
(void) printf("%s", parm_histo[j].name);
}
}
}
(void) printf("\n");
/*
* Print the second line titles
*/
if (dump_opt['P']) {
(void) printf("%s\t", blocksize_title2);
} else {
(void) printf("%7s ", blocksize_title2);
}
for (int i = 0; i < NUM_HISTO; i++) {
if (dump_opt['P']) {
(void) printf("%s\t%s\t%s\t",
count_title, length_title, cumulative_title);
} else {
(void) printf("%7s%7s%7s",
count_title, length_title, cumulative_title);
}
}
(void) printf("\n");
/*
* Print the rows
*/
for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
/*
* Print the first column showing the blocksize
*/
zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
if (dump_opt['P']) {
printf("%s", numbuf);
} else {
printf("%7s:", numbuf);
}
/*
* Print the remaining set of 3 columns per size:
* for psize, lsize and asize
*/
for (int j = 0; j < NUM_HISTO; j++) {
parm_histo[j].cumulative += parm_histo[j].len[i];
zdb_nicenum(parm_histo[j].count[i],
numbuf, sizeof (numbuf));
if (dump_opt['P'])
(void) printf("\t%s", numbuf);
else
(void) printf("%7s", numbuf);
zdb_nicenum(parm_histo[j].len[i],
numbuf, sizeof (numbuf));
if (dump_opt['P'])
(void) printf("\t%s", numbuf);
else
(void) printf("%7s", numbuf);
zdb_nicenum(parm_histo[j].cumulative,
numbuf, sizeof (numbuf));
if (dump_opt['P'])
(void) printf("\t%s", numbuf);
else
(void) printf("%7s", numbuf);
}
(void) printf("\n");
}
}
static void
zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
dmu_object_type_t type)
{
uint64_t refcnt = 0;
int i;
ASSERT(type < ZDB_OT_TOTAL);
if (zilog && zil_bp_tree_add(zilog, bp) != 0)
return;
spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
for (i = 0; i < 4; i++) {
int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
int t = (i & 1) ? type : ZDB_OT_TOTAL;
int equal;
zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
zb->zb_asize += BP_GET_ASIZE(bp);
zb->zb_lsize += BP_GET_LSIZE(bp);
zb->zb_psize += BP_GET_PSIZE(bp);
zb->zb_count++;
/*
* The histogram is only big enough to record blocks up to
* SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
* "other", bucket.
*/
unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
zb->zb_psize_histogram[idx]++;
zb->zb_gangs += BP_COUNT_GANG(bp);
switch (BP_GET_NDVAS(bp)) {
case 2:
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[1])) {
zb->zb_ditto_samevdev++;
if (same_metaslab(zcb->zcb_spa,
DVA_GET_VDEV(&bp->blk_dva[0]),
DVA_GET_OFFSET(&bp->blk_dva[0]),
DVA_GET_OFFSET(&bp->blk_dva[1])))
zb->zb_ditto_same_ms++;
}
break;
case 3:
equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[1])) +
(DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[2])) +
(DVA_GET_VDEV(&bp->blk_dva[1]) ==
DVA_GET_VDEV(&bp->blk_dva[2]));
if (equal != 0) {
zb->zb_ditto_samevdev++;
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[1]) &&
same_metaslab(zcb->zcb_spa,
DVA_GET_VDEV(&bp->blk_dva[0]),
DVA_GET_OFFSET(&bp->blk_dva[0]),
DVA_GET_OFFSET(&bp->blk_dva[1])))
zb->zb_ditto_same_ms++;
else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
DVA_GET_VDEV(&bp->blk_dva[2]) &&
same_metaslab(zcb->zcb_spa,
DVA_GET_VDEV(&bp->blk_dva[0]),
DVA_GET_OFFSET(&bp->blk_dva[0]),
DVA_GET_OFFSET(&bp->blk_dva[2])))
zb->zb_ditto_same_ms++;
else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
DVA_GET_VDEV(&bp->blk_dva[2]) &&
same_metaslab(zcb->zcb_spa,
DVA_GET_VDEV(&bp->blk_dva[1]),
DVA_GET_OFFSET(&bp->blk_dva[1]),
DVA_GET_OFFSET(&bp->blk_dva[2])))
zb->zb_ditto_same_ms++;
}
break;
}
}
spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
if (BP_IS_EMBEDDED(bp)) {
zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
[BPE_GET_PSIZE(bp)]++;
return;
}
/*
* The binning histogram bins by powers of two up to
* SPA_MAXBLOCKSIZE rather than creating bins for
* every possible blocksize found in the pool.
*/
int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
zcb->zcb_psize_count[bin]++;
zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
zcb->zcb_psize_total += BP_GET_PSIZE(bp);
bin = highbit64(BP_GET_LSIZE(bp)) - 1;
zcb->zcb_lsize_count[bin]++;
zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
bin = highbit64(BP_GET_ASIZE(bp)) - 1;
zcb->zcb_asize_count[bin]++;
zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
zcb->zcb_asize_total += BP_GET_ASIZE(bp);
if (dump_opt['L'])
return;
if (BP_GET_DEDUP(bp)) {
ddt_t *ddt;
ddt_entry_t *dde;
ddt = ddt_select(zcb->zcb_spa, bp);
ddt_enter(ddt);
dde = ddt_lookup(ddt, bp, B_FALSE);
if (dde == NULL) {
refcnt = 0;
} else {
ddt_phys_t *ddp = ddt_phys_select(dde, bp);
ddt_phys_decref(ddp);
refcnt = ddp->ddp_refcnt;
if (ddt_phys_total_refcnt(dde) == 0)
ddt_remove(ddt, dde);
}
ddt_exit(ddt);
}
VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa),
bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
}
static void
zdb_blkptr_done(zio_t *zio)
{
spa_t *spa = zio->io_spa;
blkptr_t *bp = zio->io_bp;
int ioerr = zio->io_error;
zdb_cb_t *zcb = zio->io_private;
zbookmark_phys_t *zb = &zio->io_bookmark;
mutex_enter(&spa->spa_scrub_lock);
spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
cv_broadcast(&spa->spa_scrub_io_cv);
if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
char blkbuf[BP_SPRINTF_LEN];
zcb->zcb_haderrors = 1;
zcb->zcb_errors[ioerr]++;
if (dump_opt['b'] >= 2)
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
else
blkbuf[0] = '\0';
(void) printf("zdb_blkptr_cb: "
"Got error %d reading "
"<%llu, %llu, %lld, %llx> %s -- skipping\n",
ioerr,
(u_longlong_t)zb->zb_objset,
(u_longlong_t)zb->zb_object,
(u_longlong_t)zb->zb_level,
(u_longlong_t)zb->zb_blkid,
blkbuf);
}
mutex_exit(&spa->spa_scrub_lock);
abd_free(zio->io_abd);
}
static int
zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
{
zdb_cb_t *zcb = arg;
dmu_object_type_t type;
boolean_t is_metadata;
if (zb->zb_level == ZB_DNODE_LEVEL)
return (0);
if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
char blkbuf[BP_SPRINTF_LEN];
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
(void) printf("objset %llu object %llu "
"level %lld offset 0x%llx %s\n",
(u_longlong_t)zb->zb_objset,
(u_longlong_t)zb->zb_object,
(longlong_t)zb->zb_level,
(u_longlong_t)blkid2offset(dnp, bp, zb),
blkbuf);
}
if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
return (0);
type = BP_GET_TYPE(bp);
zdb_count_block(zcb, zilog, bp,
(type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
if (!BP_IS_EMBEDDED(bp) &&
(dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
size_t size = BP_GET_PSIZE(bp);
abd_t *abd = abd_alloc(size, B_FALSE);
int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
/* If it's an intent log block, failure is expected. */
if (zb->zb_level == ZB_ZIL_LEVEL)
flags |= ZIO_FLAG_SPECULATIVE;
mutex_enter(&spa->spa_scrub_lock);
while (spa->spa_load_verify_bytes > max_inflight_bytes)
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
spa->spa_load_verify_bytes += size;
mutex_exit(&spa->spa_scrub_lock);
zio_nowait(zio_read(NULL, spa, bp, abd, size,
zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
}
zcb->zcb_readfails = 0;
/* only call gethrtime() every 100 blocks */
static int iters;
if (++iters > 100)
iters = 0;
else
return (0);
if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
uint64_t now = gethrtime();
char buf[10];
uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
uint64_t kb_per_sec =
1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
uint64_t sec_remaining =
(zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
/* make sure nicenum has enough space */
_Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
zfs_nicebytes(bytes, buf, sizeof (buf));
(void) fprintf(stderr,
"\r%5s completed (%4"PRIu64"MB/s) "
"estimated time remaining: "
"%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ",
buf, kb_per_sec / 1024,
sec_remaining / 60 / 60,
sec_remaining / 60 % 60,
sec_remaining % 60);
zcb->zcb_lastprint = now;
}
return (0);
}
static void
zdb_leak(void *arg, uint64_t start, uint64_t size)
{
vdev_t *vd = arg;
(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
(u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
}
static metaslab_ops_t zdb_metaslab_ops = {
NULL /* alloc */
};
static int
load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
uint64_t txg, void *arg)
{
spa_vdev_removal_t *svr = arg;
uint64_t offset = sme->sme_offset;
uint64_t size = sme->sme_run;
/* skip vdevs we don't care about */
if (sme->sme_vdev != svr->svr_vdev_id)
return (0);
vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
if (txg < metaslab_unflushed_txg(ms))
return (0);
if (sme->sme_type == SM_ALLOC)
range_tree_add(svr->svr_allocd_segs, offset, size);
else
range_tree_remove(svr->svr_allocd_segs, offset, size);
return (0);
}
static void
claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
uint64_t size, void *arg)
{
(void) inner_offset, (void) arg;
/*
* This callback was called through a remap from
* a device being removed. Therefore, the vdev that
* this callback is applied to is a concrete
* vdev.
*/
ASSERT(vdev_is_concrete(vd));
VERIFY0(metaslab_claim_impl(vd, offset, size,
spa_min_claim_txg(vd->vdev_spa)));
}
static void
claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
{
vdev_t *vd = arg;
vdev_indirect_ops.vdev_op_remap(vd, offset, size,
claim_segment_impl_cb, NULL);
}
/*
* After accounting for all allocated blocks that are directly referenced,
* we might have missed a reference to a block from a partially complete
* (and thus unused) indirect mapping object. We perform a secondary pass
* through the metaslabs we have already mapped and claim the destination
* blocks.
*/
static void
zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
{
if (dump_opt['L'])
return;
if (spa->spa_vdev_removal == NULL)
return;
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
spa_vdev_removal_t *svr = spa->spa_vdev_removal;
vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
ASSERT0(range_tree_space(svr->svr_allocd_segs));
range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
metaslab_t *msp = vd->vdev_ms[msi];
ASSERT0(range_tree_space(allocs));
if (msp->ms_sm != NULL)
VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
}
range_tree_destroy(allocs);
iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
/*
* Clear everything past what has been synced,
* because we have not allocated mappings for
* it yet.
*/
range_tree_clear(svr->svr_allocd_segs,
vdev_indirect_mapping_max_offset(vim),
vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
static int
increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
(void) tx;
zdb_cb_t *zcb = arg;
spa_t *spa = zcb->zcb_spa;
vdev_t *vd;
const dva_t *dva = &bp->blk_dva[0];
ASSERT(!bp_freed);
ASSERT(!dump_opt['L']);
ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
ASSERT3P(vd, !=, NULL);
spa_config_exit(spa, SCL_VDEV, FTAG);
ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
vdev_indirect_mapping_increment_obsolete_count(
vd->vdev_indirect_mapping,
DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
return (0);
}
static uint32_t *
zdb_load_obsolete_counts(vdev_t *vd)
{
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
spa_t *spa = vd->vdev_spa;
spa_condensing_indirect_phys_t *scip =
&spa->spa_condensing_indirect_phys;
uint64_t obsolete_sm_object;
uint32_t *counts;
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
counts = vdev_indirect_mapping_load_obsolete_counts(vim);
if (vd->vdev_obsolete_sm != NULL) {
vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
vd->vdev_obsolete_sm);
}
if (scip->scip_vdev == vd->vdev_id &&
scip->scip_prev_obsolete_sm_object != 0) {
space_map_t *prev_obsolete_sm = NULL;
VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
prev_obsolete_sm);
space_map_close(prev_obsolete_sm);
}
return (counts);
}
static void
zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
{
ddt_bookmark_t ddb = {0};
ddt_entry_t dde;
int error;
int p;
ASSERT(!dump_opt['L']);
while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
blkptr_t blk;
ddt_phys_t *ddp = dde.dde_phys;
if (ddb.ddb_class == DDT_CLASS_UNIQUE)
return;
ASSERT(ddt_phys_total_refcnt(&dde) > 1);
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
if (ddp->ddp_phys_birth == 0)
continue;
ddt_bp_create(ddb.ddb_checksum,
&dde.dde_key, ddp, &blk);
if (p == DDT_PHYS_DITTO) {
zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
} else {
zcb->zcb_dedup_asize +=
BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
zcb->zcb_dedup_blocks++;
}
}
ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
ddt_enter(ddt);
VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
ddt_exit(ddt);
}
ASSERT(error == ENOENT);
}
typedef struct checkpoint_sm_exclude_entry_arg {
vdev_t *cseea_vd;
uint64_t cseea_checkpoint_size;
} checkpoint_sm_exclude_entry_arg_t;
static int
checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
{
checkpoint_sm_exclude_entry_arg_t *cseea = arg;
vdev_t *vd = cseea->cseea_vd;
metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
uint64_t end = sme->sme_offset + sme->sme_run;
ASSERT(sme->sme_type == SM_FREE);
/*
* Since the vdev_checkpoint_sm exists in the vdev level
* and the ms_sm space maps exist in the metaslab level,
* an entry in the checkpoint space map could theoretically
* cross the boundaries of the metaslab that it belongs.
*
* In reality, because of the way that we populate and
* manipulate the checkpoint's space maps currently,
* there shouldn't be any entries that cross metaslabs.
* Hence the assertion below.
*
* That said, there is no fundamental requirement that
* the checkpoint's space map entries should not cross
* metaslab boundaries. So if needed we could add code
* that handles metaslab-crossing segments in the future.
*/
VERIFY3U(sme->sme_offset, >=, ms->ms_start);
VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
/*
* By removing the entry from the allocated segments we
* also verify that the entry is there to begin with.
*/
mutex_enter(&ms->ms_lock);
range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
mutex_exit(&ms->ms_lock);
cseea->cseea_checkpoint_size += sme->sme_run;
return (0);
}
static void
zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
{
spa_t *spa = vd->vdev_spa;
space_map_t *checkpoint_sm = NULL;
uint64_t checkpoint_sm_obj;
/*
* If there is no vdev_top_zap, we are in a pool whose
* version predates the pool checkpoint feature.
*/
if (vd->vdev_top_zap == 0)
return;
/*
* If there is no reference of the vdev_checkpoint_sm in
* the vdev_top_zap, then one of the following scenarios
* is true:
*
* 1] There is no checkpoint
* 2] There is a checkpoint, but no checkpointed blocks
* have been freed yet
* 3] The current vdev is indirect
*
* In these cases we return immediately.
*/
if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
return;
VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
&checkpoint_sm_obj));
checkpoint_sm_exclude_entry_arg_t cseea;
cseea.cseea_vd = vd;
cseea.cseea_checkpoint_size = 0;
VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
VERIFY0(space_map_iterate(checkpoint_sm,
space_map_length(checkpoint_sm),
checkpoint_sm_exclude_entry_cb, &cseea));
space_map_close(checkpoint_sm);
zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
}
static void
zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
{
ASSERT(!dump_opt['L']);
vdev_t *rvd = spa->spa_root_vdev;
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
}
}
static int
count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
uint64_t txg, void *arg)
{
int64_t *ualloc_space = arg;
uint64_t offset = sme->sme_offset;
uint64_t vdev_id = sme->sme_vdev;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
if (!vdev_is_concrete(vd))
return (0);
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
if (txg < metaslab_unflushed_txg(ms))
return (0);
if (sme->sme_type == SM_ALLOC)
*ualloc_space += sme->sme_run;
else
*ualloc_space -= sme->sme_run;
return (0);
}
static int64_t
get_unflushed_alloc_space(spa_t *spa)
{
if (dump_opt['L'])
return (0);
int64_t ualloc_space = 0;
iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
&ualloc_space);
return (ualloc_space);
}
static int
load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
{
maptype_t *uic_maptype = arg;
uint64_t offset = sme->sme_offset;
uint64_t size = sme->sme_run;
uint64_t vdev_id = sme->sme_vdev;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
/* skip indirect vdevs */
if (!vdev_is_concrete(vd))
return (0);
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
if (txg < metaslab_unflushed_txg(ms))
return (0);
if (*uic_maptype == sme->sme_type)
range_tree_add(ms->ms_allocatable, offset, size);
else
range_tree_remove(ms->ms_allocatable, offset, size);
return (0);
}
static void
load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
{
iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
}
static void
load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
{
vdev_t *rvd = spa->spa_root_vdev;
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
vdev_t *vd = rvd->vdev_child[i];
ASSERT3U(i, ==, vd->vdev_id);
if (vd->vdev_ops == &vdev_indirect_ops)
continue;
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
metaslab_t *msp = vd->vdev_ms[m];
(void) fprintf(stderr,
"\rloading concrete vdev %llu, "
"metaslab %llu of %llu ...",
(longlong_t)vd->vdev_id,
(longlong_t)msp->ms_id,
(longlong_t)vd->vdev_ms_count);
mutex_enter(&msp->ms_lock);
range_tree_vacate(msp->ms_allocatable, NULL, NULL);
/*
* We don't want to spend the CPU manipulating the
* size-ordered tree, so clear the range_tree ops.
*/
msp->ms_allocatable->rt_ops = NULL;
if (msp->ms_sm != NULL) {
VERIFY0(space_map_load(msp->ms_sm,
msp->ms_allocatable, maptype));
}
if (!msp->ms_loaded)
msp->ms_loaded = B_TRUE;
mutex_exit(&msp->ms_lock);
}
}
load_unflushed_to_ms_allocatables(spa, maptype);
}
/*
* vm_idxp is an in-out parameter which (for indirect vdevs) is the
* index in vim_entries that has the first entry in this metaslab.
* On return, it will be set to the first entry after this metaslab.
*/
static void
load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
uint64_t *vim_idxp)
{
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
mutex_enter(&msp->ms_lock);
range_tree_vacate(msp->ms_allocatable, NULL, NULL);
/*
* We don't want to spend the CPU manipulating the
* size-ordered tree, so clear the range_tree ops.
*/
msp->ms_allocatable->rt_ops = NULL;
for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
(*vim_idxp)++) {
vdev_indirect_mapping_entry_phys_t *vimep =
&vim->vim_entries[*vim_idxp];
uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
ASSERT3U(ent_offset, >=, msp->ms_start);
if (ent_offset >= msp->ms_start + msp->ms_size)
break;
/*
* Mappings do not cross metaslab boundaries,
* because we create them by walking the metaslabs.
*/
ASSERT3U(ent_offset + ent_len, <=,
msp->ms_start + msp->ms_size);
range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
}
if (!msp->ms_loaded)
msp->ms_loaded = B_TRUE;
mutex_exit(&msp->ms_lock);
}
static void
zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
{
ASSERT(!dump_opt['L']);
vdev_t *rvd = spa->spa_root_vdev;
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
vdev_t *vd = rvd->vdev_child[c];
ASSERT3U(c, ==, vd->vdev_id);
if (vd->vdev_ops != &vdev_indirect_ops)
continue;
/*
* Note: we don't check for mapping leaks on
* removing vdevs because their ms_allocatable's
* are used to look for leaks in allocated space.
*/
zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
/*
* Normally, indirect vdevs don't have any
* metaslabs. We want to set them up for
* zio_claim().
*/
vdev_metaslab_group_create(vd);
VERIFY0(vdev_metaslab_init(vd, 0));
vdev_indirect_mapping_t *vim __maybe_unused =
vd->vdev_indirect_mapping;
uint64_t vim_idx = 0;
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
(void) fprintf(stderr,
"\rloading indirect vdev %llu, "
"metaslab %llu of %llu ...",
(longlong_t)vd->vdev_id,
(longlong_t)vd->vdev_ms[m]->ms_id,
(longlong_t)vd->vdev_ms_count);
load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
&vim_idx);
}
ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
}
}
static void
zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
{
zcb->zcb_spa = spa;
if (dump_opt['L'])
return;
dsl_pool_t *dp = spa->spa_dsl_pool;
vdev_t *rvd = spa->spa_root_vdev;
/*
* We are going to be changing the meaning of the metaslab's
* ms_allocatable. Ensure that the allocator doesn't try to
* use the tree.
*/
spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
zcb->zcb_vd_obsolete_counts =
umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
UMEM_NOFAIL);
/*
* For leak detection, we overload the ms_allocatable trees
* to contain allocated segments instead of free segments.
* As a result, we can't use the normal metaslab_load/unload
* interfaces.
*/
zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
/*
* On load_concrete_ms_allocatable_trees() we loaded all the
* allocated entries from the ms_sm to the ms_allocatable for
* each metaslab. If the pool has a checkpoint or is in the
* middle of discarding a checkpoint, some of these blocks
* may have been freed but their ms_sm may not have been
* updated because they are referenced by the checkpoint. In
* order to avoid false-positives during leak-detection, we
* go through the vdev's checkpoint space map and exclude all
* its entries from their relevant ms_allocatable.
*
* We also aggregate the space held by the checkpoint and add
* it to zcb_checkpoint_size.
*
* Note that at this point we are also verifying that all the
* entries on the checkpoint_sm are marked as allocated in
* the ms_sm of their relevant metaslab.
* [see comment in checkpoint_sm_exclude_entry_cb()]
*/
zdb_leak_init_exclude_checkpoint(spa, zcb);
ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
/* for cleaner progress output */
(void) fprintf(stderr, "\n");
if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
ASSERT(spa_feature_is_enabled(spa,
SPA_FEATURE_DEVICE_REMOVAL));
(void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
increment_indirect_mapping_cb, zcb, NULL);
}
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
zdb_ddt_leak_init(spa, zcb);
spa_config_exit(spa, SCL_CONFIG, FTAG);
}
static boolean_t
zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
{
boolean_t leaks = B_FALSE;
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
uint64_t total_leaked = 0;
boolean_t are_precise = B_FALSE;
ASSERT(vim != NULL);
for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
vdev_indirect_mapping_entry_phys_t *vimep =
&vim->vim_entries[i];
uint64_t obsolete_bytes = 0;
uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
/*
* This is not very efficient but it's easy to
* verify correctness.
*/
for (uint64_t inner_offset = 0;
inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
inner_offset += 1ULL << vd->vdev_ashift) {
if (range_tree_contains(msp->ms_allocatable,
offset + inner_offset, 1ULL << vd->vdev_ashift)) {
obsolete_bytes += 1ULL << vd->vdev_ashift;
}
}
int64_t bytes_leaked = obsolete_bytes -
zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
(void) printf("obsolete indirect mapping count "
"mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
(u_longlong_t)vd->vdev_id,
(u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
(u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
(u_longlong_t)bytes_leaked);
}
total_leaked += ABS(bytes_leaked);
}
VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
if (!are_precise && total_leaked > 0) {
int pct_leaked = total_leaked * 100 /
vdev_indirect_mapping_bytes_mapped(vim);
(void) printf("cannot verify obsolete indirect mapping "
"counts of vdev %llu because precise feature was not "
"enabled when it was removed: %d%% (%llx bytes) of mapping"
"unreferenced\n",
(u_longlong_t)vd->vdev_id, pct_leaked,
(u_longlong_t)total_leaked);
} else if (total_leaked > 0) {
(void) printf("obsolete indirect mapping count mismatch "
"for vdev %llu -- %llx total bytes mismatched\n",
(u_longlong_t)vd->vdev_id,
(u_longlong_t)total_leaked);
leaks |= B_TRUE;
}
vdev_indirect_mapping_free_obsolete_counts(vim,
zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
return (leaks);
}
static boolean_t
zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
{
if (dump_opt['L'])
return (B_FALSE);
boolean_t leaks = B_FALSE;
vdev_t *rvd = spa->spa_root_vdev;
for (unsigned c = 0; c < rvd->vdev_children; c++) {
vdev_t *vd = rvd->vdev_child[c];
if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
}
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
metaslab_t *msp = vd->vdev_ms[m];
ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
spa_embedded_log_class(spa)) ?
vd->vdev_log_mg : vd->vdev_mg);
/*
* ms_allocatable has been overloaded
* to contain allocated segments. Now that
* we finished traversing all blocks, any
* block that remains in the ms_allocatable
* represents an allocated block that we
* did not claim during the traversal.
* Claimed blocks would have been removed
* from the ms_allocatable. For indirect
* vdevs, space remaining in the tree
* represents parts of the mapping that are
* not referenced, which is not a bug.
*/
if (vd->vdev_ops == &vdev_indirect_ops) {
range_tree_vacate(msp->ms_allocatable,
NULL, NULL);
} else {
range_tree_vacate(msp->ms_allocatable,
zdb_leak, vd);
}
if (msp->ms_loaded) {
msp->ms_loaded = B_FALSE;
}
}
}
umem_free(zcb->zcb_vd_obsolete_counts,
rvd->vdev_children * sizeof (uint32_t *));
zcb->zcb_vd_obsolete_counts = NULL;
return (leaks);
}
static int
count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
{
(void) tx;
zdb_cb_t *zcb = arg;
if (dump_opt['b'] >= 5) {
char blkbuf[BP_SPRINTF_LEN];
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
(void) printf("[%s] %s\n",
"deferred free", blkbuf);
}
zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
return (0);
}
/*
* Iterate over livelists which have been destroyed by the user but
* are still present in the MOS, waiting to be freed
*/
static void
iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
{
objset_t *mos = spa->spa_meta_objset;
uint64_t zap_obj;
int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
if (err == ENOENT)
return;
ASSERT0(err);
zap_cursor_t zc;
zap_attribute_t attr;
dsl_deadlist_t ll;
/* NULL out os prior to dsl_deadlist_open in case it's garbage */
ll.dl_os = NULL;
for (zap_cursor_init(&zc, mos, zap_obj);
zap_cursor_retrieve(&zc, &attr) == 0;
(void) zap_cursor_advance(&zc)) {
dsl_deadlist_open(&ll, mos, attr.za_first_integer);
func(&ll, arg);
dsl_deadlist_close(&ll);
}
zap_cursor_fini(&zc);
}
static int
bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
dmu_tx_t *tx)
{
ASSERT(!bp_freed);
return (count_block_cb(arg, bp, tx));
}
static int
livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
{
zdb_cb_t *zbc = args;
bplist_t blks;
bplist_create(&blks);
/* determine which blocks have been alloc'd but not freed */
VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
/* count those blocks */
(void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
bplist_destroy(&blks);
return (0);
}
static void
livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
{
dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
}
/*
* Count the blocks in the livelists that have been destroyed by the user
* but haven't yet been freed.
*/
static void
deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
{
iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
}
static void
dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
{
ASSERT3P(arg, ==, NULL);
global_feature_count[SPA_FEATURE_LIVELIST]++;
dump_blkptr_list(ll, "Deleted Livelist");
dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
}
/*
* Print out, register object references to, and increment feature counts for
* livelists that have been destroyed by the user but haven't yet been freed.
*/
static void
deleted_livelists_dump_mos(spa_t *spa)
{
uint64_t zap_obj;
objset_t *mos = spa->spa_meta_objset;
int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
if (err == ENOENT)
return;
mos_obj_refd(zap_obj);
iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
}
static int
dump_block_stats(spa_t *spa)
{
zdb_cb_t *zcb;
zdb_blkstats_t *zb, *tzb;
uint64_t norm_alloc, norm_space, total_alloc, total_found;
int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
boolean_t leaks = B_FALSE;
int e, c, err;
bp_embedded_type_t i;
zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
(void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
(dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
(dump_opt['c'] == 1) ? "metadata " : "",
dump_opt['c'] ? "checksums " : "",
(dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
!dump_opt['L'] ? "nothing leaked " : "");
/*
* When leak detection is enabled we load all space maps as SM_ALLOC
* maps, then traverse the pool claiming each block we discover. If
* the pool is perfectly consistent, the segment trees will be empty
* when we're done. Anything left over is a leak; any block we can't
* claim (because it's not part of any space map) is a double
* allocation, reference to a freed block, or an unclaimed log block.
*
* When leak detection is disabled (-L option) we still traverse the
* pool claiming each block we discover, but we skip opening any space
* maps.
*/
zdb_leak_init(spa, zcb);
/*
* If there's a deferred-free bplist, process that first.
*/
(void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
bpobj_count_block_cb, zcb, NULL);
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
(void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
bpobj_count_block_cb, zcb, NULL);
}
zdb_claim_removing(spa, zcb);
if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
zcb, NULL));
}
deleted_livelists_count_blocks(spa, zcb);
if (dump_opt['c'] > 1)
flags |= TRAVERSE_PREFETCH_DATA;
zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
zcb->zcb_totalasize +=
metaslab_class_get_alloc(spa_embedded_log_class(spa));
zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
/*
* If we've traversed the data blocks then we need to wait for those
* I/Os to complete. We leverage "The Godfather" zio to wait on
* all async I/Os to complete.
*/
if (dump_opt['c']) {
for (c = 0; c < max_ncpus; c++) {
(void) zio_wait(spa->spa_async_zio_root[c]);
spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
ZIO_FLAG_GODFATHER);
}
}
ASSERT0(spa->spa_load_verify_bytes);
/*
* Done after zio_wait() since zcb_haderrors is modified in
* zdb_blkptr_done()
*/
zcb->zcb_haderrors |= err;
if (zcb->zcb_haderrors) {
(void) printf("\nError counts:\n\n");
(void) printf("\t%5s %s\n", "errno", "count");
for (e = 0; e < 256; e++) {
if (zcb->zcb_errors[e] != 0) {
(void) printf("\t%5d %llu\n",
e, (u_longlong_t)zcb->zcb_errors[e]);
}
}
}
/*
* Report any leaked segments.
*/
leaks |= zdb_leak_fini(spa, zcb);
tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
norm_space = metaslab_class_get_space(spa_normal_class(spa));
total_alloc = norm_alloc +
metaslab_class_get_alloc(spa_log_class(spa)) +
metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
metaslab_class_get_alloc(spa_special_class(spa)) +
metaslab_class_get_alloc(spa_dedup_class(spa)) +
get_unflushed_alloc_space(spa);
total_found = tzb->zb_asize - zcb->zcb_dedup_asize +
zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
if (total_found == total_alloc && !dump_opt['L']) {
(void) printf("\n\tNo leaks (block sum matches space"
" maps exactly)\n");
} else if (!dump_opt['L']) {
(void) printf("block traversal size %llu != alloc %llu "
"(%s %lld)\n",
(u_longlong_t)total_found,
(u_longlong_t)total_alloc,
(dump_opt['L']) ? "unreachable" : "leaked",
(longlong_t)(total_alloc - total_found));
leaks = B_TRUE;
}
if (tzb->zb_count == 0) {
umem_free(zcb, sizeof (zdb_cb_t));
return (2);
}
(void) printf("\n");
(void) printf("\t%-16s %14llu\n", "bp count:",
(u_longlong_t)tzb->zb_count);
(void) printf("\t%-16s %14llu\n", "ganged count:",
(longlong_t)tzb->zb_gangs);
(void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
(u_longlong_t)tzb->zb_lsize,
(u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
(void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
"bp physical:", (u_longlong_t)tzb->zb_psize,
(u_longlong_t)(tzb->zb_psize / tzb->zb_count),
(double)tzb->zb_lsize / tzb->zb_psize);
(void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
"bp allocated:", (u_longlong_t)tzb->zb_asize,
(u_longlong_t)(tzb->zb_asize / tzb->zb_count),
(double)tzb->zb_lsize / tzb->zb_asize);
(void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
"bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
(u_longlong_t)zcb->zcb_dedup_blocks,
(double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
(void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
(u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
uint64_t alloc = metaslab_class_get_alloc(
spa_special_class(spa));
uint64_t space = metaslab_class_get_space(
spa_special_class(spa));
(void) printf("\t%-16s %14llu used: %5.2f%%\n",
"Special class", (u_longlong_t)alloc,
100.0 * alloc / space);
}
if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
uint64_t alloc = metaslab_class_get_alloc(
spa_dedup_class(spa));
uint64_t space = metaslab_class_get_space(
spa_dedup_class(spa));
(void) printf("\t%-16s %14llu used: %5.2f%%\n",
"Dedup class", (u_longlong_t)alloc,
100.0 * alloc / space);
}
if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
uint64_t alloc = metaslab_class_get_alloc(
spa_embedded_log_class(spa));
uint64_t space = metaslab_class_get_space(
spa_embedded_log_class(spa));
(void) printf("\t%-16s %14llu used: %5.2f%%\n",
"Embedded log class", (u_longlong_t)alloc,
100.0 * alloc / space);
}
for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
if (zcb->zcb_embedded_blocks[i] == 0)
continue;
(void) printf("\n");
(void) printf("\tadditional, non-pointer bps of type %u: "
"%10llu\n",
i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
if (dump_opt['b'] >= 3) {
(void) printf("\t number of (compressed) bytes: "
"number of bps\n");
dump_histogram(zcb->zcb_embedded_histogram[i],
sizeof (zcb->zcb_embedded_histogram[i]) /
sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
}
}
if (tzb->zb_ditto_samevdev != 0) {
(void) printf("\tDittoed blocks on same vdev: %llu\n",
(longlong_t)tzb->zb_ditto_samevdev);
}
if (tzb->zb_ditto_same_ms != 0) {
(void) printf("\tDittoed blocks in same metaslab: %llu\n",
(longlong_t)tzb->zb_ditto_same_ms);
}
for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
if (vim == NULL) {
continue;
}
char mem[32];
zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
mem, vdev_indirect_mapping_size(vim));
(void) printf("\tindirect vdev id %llu has %llu segments "
"(%s in memory)\n",
(longlong_t)vd->vdev_id,
(longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
}
if (dump_opt['b'] >= 2) {
int l, t, level;
(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
"\t avg\t comp\t%%Total\tType\n");
for (t = 0; t <= ZDB_OT_TOTAL; t++) {
char csize[32], lsize[32], psize[32], asize[32];
char avg[32], gang[32];
const char *typename;
/* make sure nicenum has enough space */
_Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
"csize truncated");
_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
"lsize truncated");
_Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
"psize truncated");
_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
"asize truncated");
_Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
"avg truncated");
_Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
"gang truncated");
if (t < DMU_OT_NUMTYPES)
typename = dmu_ot[t].ot_name;
else
typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
(void) printf("%6s\t%5s\t%5s\t%5s"
"\t%5s\t%5s\t%6s\t%s\n",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
typename);
continue;
}
for (l = ZB_TOTAL - 1; l >= -1; l--) {
level = (l == -1 ? ZB_TOTAL : l);
zb = &zcb->zcb_type[level][t];
if (zb->zb_asize == 0)
continue;
if (dump_opt['b'] < 3 && level != ZB_TOTAL)
continue;
if (level == 0 && zb->zb_asize ==
zcb->zcb_type[ZB_TOTAL][t].zb_asize)
continue;
zdb_nicenum(zb->zb_count, csize,
sizeof (csize));
zdb_nicenum(zb->zb_lsize, lsize,
sizeof (lsize));
zdb_nicenum(zb->zb_psize, psize,
sizeof (psize));
zdb_nicenum(zb->zb_asize, asize,
sizeof (asize));
zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
sizeof (avg));
zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
"\t%5.2f\t%6.2f\t",
csize, lsize, psize, asize, avg,
(double)zb->zb_lsize / zb->zb_psize,
100.0 * zb->zb_asize / tzb->zb_asize);
if (level == ZB_TOTAL)
(void) printf("%s\n", typename);
else
(void) printf(" L%d %s\n",
level, typename);
if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
(void) printf("\t number of ganged "
"blocks: %s\n", gang);
}
if (dump_opt['b'] >= 4) {
(void) printf("psize "
"(in 512-byte sectors): "
"number of blocks\n");
dump_histogram(zb->zb_psize_histogram,
PSIZE_HISTO_SIZE, 0);
}
}
}
/* Output a table summarizing block sizes in the pool */
if (dump_opt['b'] >= 2) {
dump_size_histograms(zcb);
}
}
(void) printf("\n");
if (leaks) {
umem_free(zcb, sizeof (zdb_cb_t));
return (2);
}
if (zcb->zcb_haderrors) {
umem_free(zcb, sizeof (zdb_cb_t));
return (3);
}
umem_free(zcb, sizeof (zdb_cb_t));
return (0);
}
typedef struct zdb_ddt_entry {
ddt_key_t zdde_key;
uint64_t zdde_ref_blocks;
uint64_t zdde_ref_lsize;
uint64_t zdde_ref_psize;
uint64_t zdde_ref_dsize;
avl_node_t zdde_node;
} zdb_ddt_entry_t;
static int
zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
{
(void) zilog, (void) dnp;
avl_tree_t *t = arg;
avl_index_t where;
zdb_ddt_entry_t *zdde, zdde_search;
if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
BP_IS_EMBEDDED(bp))
return (0);
if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
(void) printf("traversing objset %llu, %llu objects, "
"%lu blocks so far\n",
(u_longlong_t)zb->zb_objset,
(u_longlong_t)BP_GET_FILL(bp),
avl_numnodes(t));
}
if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
return (0);
ddt_key_fill(&zdde_search.zdde_key, bp);
zdde = avl_find(t, &zdde_search, &where);
if (zdde == NULL) {
zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
zdde->zdde_key = zdde_search.zdde_key;
avl_insert(t, zdde, where);
}
zdde->zdde_ref_blocks += 1;
zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
return (0);
}
static void
dump_simulated_ddt(spa_t *spa)
{
avl_tree_t t;
void *cookie = NULL;
zdb_ddt_entry_t *zdde;
ddt_histogram_t ddh_total = {{{0}}};
ddt_stat_t dds_total = {0};
avl_create(&t, ddt_entry_compare,
sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
(void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
spa_config_exit(spa, SCL_CONFIG, FTAG);
while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
ddt_stat_t dds;
uint64_t refcnt = zdde->zdde_ref_blocks;
ASSERT(refcnt != 0);
dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
dds.dds_psize = zdde->zdde_ref_psize / refcnt;
dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
dds.dds_ref_blocks = zdde->zdde_ref_blocks;
dds.dds_ref_lsize = zdde->zdde_ref_lsize;
dds.dds_ref_psize = zdde->zdde_ref_psize;
dds.dds_ref_dsize = zdde->zdde_ref_dsize;
ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
&dds, 0);
umem_free(zdde, sizeof (*zdde));
}
avl_destroy(&t);
ddt_histogram_stat(&dds_total, &ddh_total);
(void) printf("Simulated DDT histogram:\n");
zpool_dump_ddt(&dds_total, &ddh_total);
dump_dedup_ratio(&dds_total);
}
static int
verify_device_removal_feature_counts(spa_t *spa)
{
uint64_t dr_feature_refcount = 0;
uint64_t oc_feature_refcount = 0;
uint64_t indirect_vdev_count = 0;
uint64_t precise_vdev_count = 0;
uint64_t obsolete_counts_object_count = 0;
uint64_t obsolete_sm_count = 0;
uint64_t obsolete_counts_count = 0;
uint64_t scip_count = 0;
uint64_t obsolete_bpobj_count = 0;
int ret = 0;
spa_condensing_indirect_phys_t *scip =
&spa->spa_condensing_indirect_phys;
if (scip->scip_next_mapping_object != 0) {
vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
ASSERT(scip->scip_prev_obsolete_sm_object != 0);
ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
(void) printf("Condensing indirect vdev %llu: new mapping "
"object %llu, prev obsolete sm %llu\n",
(u_longlong_t)scip->scip_vdev,
(u_longlong_t)scip->scip_next_mapping_object,
(u_longlong_t)scip->scip_prev_obsolete_sm_object);
if (scip->scip_prev_obsolete_sm_object != 0) {
space_map_t *prev_obsolete_sm = NULL;
VERIFY0(space_map_open(&prev_obsolete_sm,
spa->spa_meta_objset,
scip->scip_prev_obsolete_sm_object,
0, vd->vdev_asize, 0));
dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
(void) printf("\n");
space_map_close(prev_obsolete_sm);
}
scip_count += 2;
}
for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
if (vic->vic_mapping_object != 0) {
ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
vd->vdev_removing);
indirect_vdev_count++;
if (vd->vdev_indirect_mapping->vim_havecounts) {
obsolete_counts_count++;
}
}
boolean_t are_precise;
VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
if (are_precise) {
ASSERT(vic->vic_mapping_object != 0);
precise_vdev_count++;
}
uint64_t obsolete_sm_object;
VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
if (obsolete_sm_object != 0) {
ASSERT(vic->vic_mapping_object != 0);
obsolete_sm_count++;
}
}
(void) feature_get_refcount(spa,
&spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
&dr_feature_refcount);
(void) feature_get_refcount(spa,
&spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
&oc_feature_refcount);
if (dr_feature_refcount != indirect_vdev_count) {
ret = 1;
(void) printf("Number of indirect vdevs (%llu) " \
"does not match feature count (%llu)\n",
(u_longlong_t)indirect_vdev_count,
(u_longlong_t)dr_feature_refcount);
} else {
(void) printf("Verified device_removal feature refcount " \
"of %llu is correct\n",
(u_longlong_t)dr_feature_refcount);
}
if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_OBSOLETE_BPOBJ) == 0) {
obsolete_bpobj_count++;
}
obsolete_counts_object_count = precise_vdev_count;
obsolete_counts_object_count += obsolete_sm_count;
obsolete_counts_object_count += obsolete_counts_count;
obsolete_counts_object_count += scip_count;
obsolete_counts_object_count += obsolete_bpobj_count;
obsolete_counts_object_count += remap_deadlist_count;
if (oc_feature_refcount != obsolete_counts_object_count) {
ret = 1;
(void) printf("Number of obsolete counts objects (%llu) " \
"does not match feature count (%llu)\n",
(u_longlong_t)obsolete_counts_object_count,
(u_longlong_t)oc_feature_refcount);
(void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
"ob:%llu rd:%llu\n",
(u_longlong_t)precise_vdev_count,
(u_longlong_t)obsolete_sm_count,
(u_longlong_t)obsolete_counts_count,
(u_longlong_t)scip_count,
(u_longlong_t)obsolete_bpobj_count,
(u_longlong_t)remap_deadlist_count);
} else {
(void) printf("Verified indirect_refcount feature refcount " \
"of %llu is correct\n",
(u_longlong_t)oc_feature_refcount);
}
return (ret);
}
static void
zdb_set_skip_mmp(char *target)
{
spa_t *spa;
/*
* Disable the activity check to allow examination of
* active pools.
*/
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(target)) != NULL) {
spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
}
mutex_exit(&spa_namespace_lock);
}
#define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
/*
* Import the checkpointed state of the pool specified by the target
* parameter as readonly. The function also accepts a pool config
* as an optional parameter, else it attempts to infer the config by
* the name of the target pool.
*
* Note that the checkpointed state's pool name will be the name of
* the original pool with the above suffix appended to it. In addition,
* if the target is not a pool name (e.g. a path to a dataset) then
* the new_path parameter is populated with the updated path to
* reflect the fact that we are looking into the checkpointed state.
*
* The function returns a newly-allocated copy of the name of the
* pool containing the checkpointed state. When this copy is no
* longer needed it should be freed with free(3C). Same thing
* applies to the new_path parameter if allocated.
*/
static char *
import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
{
int error = 0;
char *poolname, *bogus_name = NULL;
boolean_t freecfg = B_FALSE;
/* If the target is not a pool, the extract the pool name */
char *path_start = strchr(target, '/');
if (path_start != NULL) {
size_t poolname_len = path_start - target;
poolname = strndup(target, poolname_len);
} else {
poolname = target;
}
if (cfg == NULL) {
zdb_set_skip_mmp(poolname);
error = spa_get_stats(poolname, &cfg, NULL, 0);
if (error != 0) {
fatal("Tried to read config of pool \"%s\" but "
"spa_get_stats() failed with error %d\n",
poolname, error);
}
freecfg = B_TRUE;
}
if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
if (target != poolname)
free(poolname);
return (NULL);
}
fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
error = spa_import(bogus_name, cfg, NULL,
ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
ZFS_IMPORT_SKIP_MMP);
if (freecfg)
nvlist_free(cfg);
if (error != 0) {
fatal("Tried to import pool \"%s\" but spa_import() failed "
"with error %d\n", bogus_name, error);
}
if (new_path != NULL && path_start != NULL) {
if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
free(bogus_name);
if (path_start != NULL)
free(poolname);
return (NULL);
}
}
if (target != poolname)
free(poolname);
return (bogus_name);
}
typedef struct verify_checkpoint_sm_entry_cb_arg {
vdev_t *vcsec_vd;
/* the following fields are only used for printing progress */
uint64_t vcsec_entryid;
uint64_t vcsec_num_entries;
} verify_checkpoint_sm_entry_cb_arg_t;
#define ENTRIES_PER_PROGRESS_UPDATE 10000
static int
verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
{
verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
vdev_t *vd = vcsec->vcsec_vd;
metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
uint64_t end = sme->sme_offset + sme->sme_run;
ASSERT(sme->sme_type == SM_FREE);
if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
(void) fprintf(stderr,
"\rverifying vdev %llu, space map entry %llu of %llu ...",
(longlong_t)vd->vdev_id,
(longlong_t)vcsec->vcsec_entryid,
(longlong_t)vcsec->vcsec_num_entries);
}
vcsec->vcsec_entryid++;
/*
* See comment in checkpoint_sm_exclude_entry_cb()
*/
VERIFY3U(sme->sme_offset, >=, ms->ms_start);
VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
/*
* The entries in the vdev_checkpoint_sm should be marked as
* allocated in the checkpointed state of the pool, therefore
* their respective ms_allocateable trees should not contain them.
*/
mutex_enter(&ms->ms_lock);
range_tree_verify_not_present(ms->ms_allocatable,
sme->sme_offset, sme->sme_run);
mutex_exit(&ms->ms_lock);
return (0);
}
/*
* Verify that all segments in the vdev_checkpoint_sm are allocated
* according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
* ms_allocatable).
*
* Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
* each vdev in the current state of the pool to the metaslab space maps
* (ms_sm) of the checkpointed state of the pool.
*
* Note that the function changes the state of the ms_allocatable
* trees of the current spa_t. The entries of these ms_allocatable
* trees are cleared out and then repopulated from with the free
* entries of their respective ms_sm space maps.
*/
static void
verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
{
vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
vdev_t *current_rvd = current->spa_root_vdev;
load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
vdev_t *current_vd = current_rvd->vdev_child[c];
space_map_t *checkpoint_sm = NULL;
uint64_t checkpoint_sm_obj;
if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
/*
* Since we don't allow device removal in a pool
* that has a checkpoint, we expect that all removed
* vdevs were removed from the pool before the
* checkpoint.
*/
ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
continue;
}
/*
* If the checkpoint space map doesn't exist, then nothing
* here is checkpointed so there's nothing to verify.
*/
if (current_vd->vdev_top_zap == 0 ||
zap_contains(spa_meta_objset(current),
current_vd->vdev_top_zap,
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
continue;
VERIFY0(zap_lookup(spa_meta_objset(current),
current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
sizeof (uint64_t), 1, &checkpoint_sm_obj));
VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
checkpoint_sm_obj, 0, current_vd->vdev_asize,
current_vd->vdev_ashift));
verify_checkpoint_sm_entry_cb_arg_t vcsec;
vcsec.vcsec_vd = ckpoint_vd;
vcsec.vcsec_entryid = 0;
vcsec.vcsec_num_entries =
space_map_length(checkpoint_sm) / sizeof (uint64_t);
VERIFY0(space_map_iterate(checkpoint_sm,
space_map_length(checkpoint_sm),
verify_checkpoint_sm_entry_cb, &vcsec));
if (dump_opt['m'] > 3)
dump_spacemap(current->spa_meta_objset, checkpoint_sm);
space_map_close(checkpoint_sm);
}
/*
* If we've added vdevs since we took the checkpoint, ensure
* that their checkpoint space maps are empty.
*/
if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
for (uint64_t c = ckpoint_rvd->vdev_children;
c < current_rvd->vdev_children; c++) {
vdev_t *current_vd = current_rvd->vdev_child[c];
VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
}
}
/* for cleaner progress output */
(void) fprintf(stderr, "\n");
}
/*
* Verifies that all space that's allocated in the checkpoint is
* still allocated in the current version, by checking that everything
* in checkpoint's ms_allocatable (which is actually allocated, not
* allocatable/free) is not present in current's ms_allocatable.
*
* Note that the function changes the state of the ms_allocatable
* trees of both spas when called. The entries of all ms_allocatable
* trees are cleared out and then repopulated from their respective
* ms_sm space maps. In the checkpointed state we load the allocated
* entries, and in the current state we load the free entries.
*/
static void
verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
{
vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
vdev_t *current_rvd = current->spa_root_vdev;
load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
load_concrete_ms_allocatable_trees(current, SM_FREE);
for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
vdev_t *current_vd = current_rvd->vdev_child[i];
if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
/*
* See comment in verify_checkpoint_vdev_spacemaps()
*/
ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
continue;
}
for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
metaslab_t *current_msp = current_vd->vdev_ms[m];
(void) fprintf(stderr,
"\rverifying vdev %llu of %llu, "
"metaslab %llu of %llu ...",
(longlong_t)current_vd->vdev_id,
(longlong_t)current_rvd->vdev_children,
(longlong_t)current_vd->vdev_ms[m]->ms_id,
(longlong_t)current_vd->vdev_ms_count);
/*
* We walk through the ms_allocatable trees that
* are loaded with the allocated blocks from the
* ms_sm spacemaps of the checkpoint. For each
* one of these ranges we ensure that none of them
* exists in the ms_allocatable trees of the
* current state which are loaded with the ranges
* that are currently free.
*
* This way we ensure that none of the blocks that
* are part of the checkpoint were freed by mistake.
*/
range_tree_walk(ckpoint_msp->ms_allocatable,
(range_tree_func_t *)range_tree_verify_not_present,
current_msp->ms_allocatable);
}
}
/* for cleaner progress output */
(void) fprintf(stderr, "\n");
}
static void
verify_checkpoint_blocks(spa_t *spa)
{
ASSERT(!dump_opt['L']);
spa_t *checkpoint_spa;
char *checkpoint_pool;
int error = 0;
/*
* We import the checkpointed state of the pool (under a different
* name) so we can do verification on it against the current state
* of the pool.
*/
checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
NULL);
ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
if (error != 0) {
fatal("Tried to open pool \"%s\" but spa_open() failed with "
"error %d\n", checkpoint_pool, error);
}
/*
* Ensure that ranges in the checkpoint space maps of each vdev
* are allocated according to the checkpointed state's metaslab
* space maps.
*/
verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
/*
* Ensure that allocated ranges in the checkpoint's metaslab
* space maps remain allocated in the metaslab space maps of
* the current state.
*/
verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
/*
* Once we are done, we get rid of the checkpointed state.
*/
spa_close(checkpoint_spa, FTAG);
free(checkpoint_pool);
}
static void
dump_leftover_checkpoint_blocks(spa_t *spa)
{
vdev_t *rvd = spa->spa_root_vdev;
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
vdev_t *vd = rvd->vdev_child[i];
space_map_t *checkpoint_sm = NULL;
uint64_t checkpoint_sm_obj;
if (vd->vdev_top_zap == 0)
continue;
if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
continue;
VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
sizeof (uint64_t), 1, &checkpoint_sm_obj));
VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
space_map_close(checkpoint_sm);
}
}
static int
verify_checkpoint(spa_t *spa)
{
uberblock_t checkpoint;
int error;
if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
return (0);
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
if (error == ENOENT && !dump_opt['L']) {
/*
* If the feature is active but the uberblock is missing
* then we must be in the middle of discarding the
* checkpoint.
*/
(void) printf("\nPartially discarded checkpoint "
"state found:\n");
if (dump_opt['m'] > 3)
dump_leftover_checkpoint_blocks(spa);
return (0);
} else if (error != 0) {
(void) printf("lookup error %d when looking for "
"checkpointed uberblock in MOS\n", error);
return (error);
}
dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
if (checkpoint.ub_checkpoint_txg == 0) {
(void) printf("\nub_checkpoint_txg not set in checkpointed "
"uberblock\n");
error = 3;
}
if (error == 0 && !dump_opt['L'])
verify_checkpoint_blocks(spa);
return (error);
}
static void
mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
{
(void) arg;
for (uint64_t i = start; i < size; i++) {
(void) printf("MOS object %llu referenced but not allocated\n",
(u_longlong_t)i);
}
}
static void
mos_obj_refd(uint64_t obj)
{
if (obj != 0 && mos_refd_objs != NULL)
range_tree_add(mos_refd_objs, obj, 1);
}
/*
* Call on a MOS object that may already have been referenced.
*/
static void
mos_obj_refd_multiple(uint64_t obj)
{
if (obj != 0 && mos_refd_objs != NULL &&
!range_tree_contains(mos_refd_objs, obj, 1))
range_tree_add(mos_refd_objs, obj, 1);
}
static void
mos_leak_vdev_top_zap(vdev_t *vd)
{
uint64_t ms_flush_data_obj;
int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
if (error == ENOENT)
return;
ASSERT0(error);
mos_obj_refd(ms_flush_data_obj);
}
static void
mos_leak_vdev(vdev_t *vd)
{
mos_obj_refd(vd->vdev_dtl_object);
mos_obj_refd(vd->vdev_ms_array);
mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
mos_obj_refd(vd->vdev_leaf_zap);
if (vd->vdev_checkpoint_sm != NULL)
mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
if (vd->vdev_indirect_mapping != NULL) {
mos_obj_refd(vd->vdev_indirect_mapping->
vim_phys->vimp_counts_object);
}
if (vd->vdev_obsolete_sm != NULL)
mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
metaslab_t *ms = vd->vdev_ms[m];
mos_obj_refd(space_map_object(ms->ms_sm));
}
if (vd->vdev_top_zap != 0) {
mos_obj_refd(vd->vdev_top_zap);
mos_leak_vdev_top_zap(vd);
}
for (uint64_t c = 0; c < vd->vdev_children; c++) {
mos_leak_vdev(vd->vdev_child[c]);
}
}
static void
mos_leak_log_spacemaps(spa_t *spa)
{
uint64_t spacemap_zap;
int error = zap_lookup(spa_meta_objset(spa),
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
sizeof (spacemap_zap), 1, &spacemap_zap);
if (error == ENOENT)
return;
ASSERT0(error);
mos_obj_refd(spacemap_zap);
for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
mos_obj_refd(sls->sls_sm_obj);
}
static int
dump_mos_leaks(spa_t *spa)
{
int rv = 0;
objset_t *mos = spa->spa_meta_objset;
dsl_pool_t *dp = spa->spa_dsl_pool;
/* Visit and mark all referenced objects in the MOS */
mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
mos_obj_refd(spa->spa_pool_props_object);
mos_obj_refd(spa->spa_config_object);
mos_obj_refd(spa->spa_ddt_stat_object);
mos_obj_refd(spa->spa_feat_desc_obj);
mos_obj_refd(spa->spa_feat_enabled_txg_obj);
mos_obj_refd(spa->spa_feat_for_read_obj);
mos_obj_refd(spa->spa_feat_for_write_obj);
mos_obj_refd(spa->spa_history);
mos_obj_refd(spa->spa_errlog_last);
mos_obj_refd(spa->spa_errlog_scrub);
mos_obj_refd(spa->spa_all_vdev_zaps);
mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
bpobj_count_refd(&spa->spa_deferred_bpobj);
mos_obj_refd(dp->dp_empty_bpobj);
bpobj_count_refd(&dp->dp_obsolete_bpobj);
bpobj_count_refd(&dp->dp_free_bpobj);
mos_obj_refd(spa->spa_l2cache.sav_object);
mos_obj_refd(spa->spa_spares.sav_object);
if (spa->spa_syncing_log_sm != NULL)
mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
mos_leak_log_spacemaps(spa);
mos_obj_refd(spa->spa_condensing_indirect_phys.
scip_next_mapping_object);
mos_obj_refd(spa->spa_condensing_indirect_phys.
scip_prev_obsolete_sm_object);
if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
vdev_indirect_mapping_t *vim =
vdev_indirect_mapping_open(mos,
spa->spa_condensing_indirect_phys.scip_next_mapping_object);
mos_obj_refd(vim->vim_phys->vimp_counts_object);
vdev_indirect_mapping_close(vim);
}
deleted_livelists_dump_mos(spa);
if (dp->dp_origin_snap != NULL) {
dsl_dataset_t *ds;
dsl_pool_config_enter(dp, FTAG);
VERIFY0(dsl_dataset_hold_obj(dp,
dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
FTAG, &ds));
count_ds_mos_objects(ds);
dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
dsl_dataset_rele(ds, FTAG);
dsl_pool_config_exit(dp, FTAG);
count_ds_mos_objects(dp->dp_origin_snap);
dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
}
count_dir_mos_objects(dp->dp_mos_dir);
if (dp->dp_free_dir != NULL)
count_dir_mos_objects(dp->dp_free_dir);
if (dp->dp_leak_dir != NULL)
count_dir_mos_objects(dp->dp_leak_dir);
mos_leak_vdev(spa->spa_root_vdev);
for (uint64_t class = 0; class < DDT_CLASSES; class++) {
for (uint64_t type = 0; type < DDT_TYPES; type++) {
for (uint64_t cksum = 0;
cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) {
ddt_t *ddt = spa->spa_ddt[cksum];
mos_obj_refd(ddt->ddt_object[type][class]);
}
}
}
/*
* Visit all allocated objects and make sure they are referenced.
*/
uint64_t object = 0;
while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
if (range_tree_contains(mos_refd_objs, object, 1)) {
range_tree_remove(mos_refd_objs, object, 1);
} else {
dmu_object_info_t doi;
const char *name;
VERIFY0(dmu_object_info(mos, object, &doi));
if (doi.doi_type & DMU_OT_NEWTYPE) {
dmu_object_byteswap_t bswap =
DMU_OT_BYTESWAP(doi.doi_type);
name = dmu_ot_byteswap[bswap].ob_name;
} else {
name = dmu_ot[doi.doi_type].ot_name;
}
(void) printf("MOS object %llu (%s) leaked\n",
(u_longlong_t)object, name);
rv = 2;
}
}
(void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
if (!range_tree_is_empty(mos_refd_objs))
rv = 2;
range_tree_vacate(mos_refd_objs, NULL, NULL);
range_tree_destroy(mos_refd_objs);
return (rv);
}
typedef struct log_sm_obsolete_stats_arg {
uint64_t lsos_current_txg;
uint64_t lsos_total_entries;
uint64_t lsos_valid_entries;
uint64_t lsos_sm_entries;
uint64_t lsos_valid_sm_entries;
} log_sm_obsolete_stats_arg_t;
static int
log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
uint64_t txg, void *arg)
{
log_sm_obsolete_stats_arg_t *lsos = arg;
uint64_t offset = sme->sme_offset;
uint64_t vdev_id = sme->sme_vdev;
if (lsos->lsos_current_txg == 0) {
/* this is the first log */
lsos->lsos_current_txg = txg;
} else if (lsos->lsos_current_txg < txg) {
/* we just changed log - print stats and reset */
(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
(u_longlong_t)lsos->lsos_valid_sm_entries,
(u_longlong_t)lsos->lsos_sm_entries,
(u_longlong_t)lsos->lsos_current_txg);
lsos->lsos_valid_sm_entries = 0;
lsos->lsos_sm_entries = 0;
lsos->lsos_current_txg = txg;
}
ASSERT3U(lsos->lsos_current_txg, ==, txg);
lsos->lsos_sm_entries++;
lsos->lsos_total_entries++;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
if (!vdev_is_concrete(vd))
return (0);
metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
if (txg < metaslab_unflushed_txg(ms))
return (0);
lsos->lsos_valid_sm_entries++;
lsos->lsos_valid_entries++;
return (0);
}
static void
dump_log_spacemap_obsolete_stats(spa_t *spa)
{
if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
return;
log_sm_obsolete_stats_arg_t lsos = {0};
(void) printf("Log Space Map Obsolete Entry Statistics:\n");
iterate_through_spacemap_logs(spa,
log_spacemap_obsolete_stats_cb, &lsos);
/* print stats for latest log */
(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
(u_longlong_t)lsos.lsos_valid_sm_entries,
(u_longlong_t)lsos.lsos_sm_entries,
(u_longlong_t)lsos.lsos_current_txg);
(void) printf("%-8llu valid entries out of %-8llu - total\n\n",
(u_longlong_t)lsos.lsos_valid_entries,
(u_longlong_t)lsos.lsos_total_entries);
}
static void
dump_zpool(spa_t *spa)
{
dsl_pool_t *dp = spa_get_dsl(spa);
int rc = 0;
if (dump_opt['y']) {
livelist_metaslab_validate(spa);
}
if (dump_opt['S']) {
dump_simulated_ddt(spa);
return;
}
if (!dump_opt['e'] && dump_opt['C'] > 1) {
(void) printf("\nCached configuration:\n");
dump_nvlist(spa->spa_config, 8);
}
if (dump_opt['C'])
dump_config(spa);
if (dump_opt['u'])
dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
if (dump_opt['D'])
dump_all_ddts(spa);
if (dump_opt['d'] > 2 || dump_opt['m'])
dump_metaslabs(spa);
if (dump_opt['M'])
dump_metaslab_groups(spa, dump_opt['M'] > 1);
if (dump_opt['d'] > 2 || dump_opt['m']) {
dump_log_spacemaps(spa);
dump_log_spacemap_obsolete_stats(spa);
}
if (dump_opt['d'] || dump_opt['i']) {
spa_feature_t f;
mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
0);
dump_objset(dp->dp_meta_objset);
if (dump_opt['d'] >= 3) {
dsl_pool_t *dp = spa->spa_dsl_pool;
dump_full_bpobj(&spa->spa_deferred_bpobj,
"Deferred frees", 0);
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
dump_full_bpobj(&dp->dp_free_bpobj,
"Pool snapshot frees", 0);
}
if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
ASSERT(spa_feature_is_enabled(spa,
SPA_FEATURE_DEVICE_REMOVAL));
dump_full_bpobj(&dp->dp_obsolete_bpobj,
"Pool obsolete blocks", 0);
}
if (spa_feature_is_active(spa,
SPA_FEATURE_ASYNC_DESTROY)) {
dump_bptree(spa->spa_meta_objset,
dp->dp_bptree_obj,
"Pool dataset frees");
}
dump_dtl(spa->spa_root_vdev, 0);
}
for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
global_feature_count[f] = UINT64_MAX;
global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
global_feature_count[SPA_FEATURE_LIVELIST] = 0;
(void) dmu_objset_find(spa_name(spa), dump_one_objset,
NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
if (rc == 0 && !dump_opt['L'])
rc = dump_mos_leaks(spa);
for (f = 0; f < SPA_FEATURES; f++) {
uint64_t refcount;
uint64_t *arr;
if (!(spa_feature_table[f].fi_flags &
ZFEATURE_FLAG_PER_DATASET)) {
if (global_feature_count[f] == UINT64_MAX)
continue;
if (!spa_feature_is_enabled(spa, f)) {
ASSERT0(global_feature_count[f]);
continue;
}
arr = global_feature_count;
} else {
if (!spa_feature_is_enabled(spa, f)) {
ASSERT0(dataset_feature_count[f]);
continue;
}
arr = dataset_feature_count;
}
if (feature_get_refcount(spa, &spa_feature_table[f],
&refcount) == ENOTSUP)
continue;
if (arr[f] != refcount) {
(void) printf("%s feature refcount mismatch: "
"%lld consumers != %lld refcount\n",
spa_feature_table[f].fi_uname,
(longlong_t)arr[f], (longlong_t)refcount);
rc = 2;
} else {
(void) printf("Verified %s feature refcount "
"of %llu is correct\n",
spa_feature_table[f].fi_uname,
(longlong_t)refcount);
}
}
if (rc == 0)
rc = verify_device_removal_feature_counts(spa);
}
if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
rc = dump_block_stats(spa);
if (rc == 0)
rc = verify_spacemap_refcounts(spa);
if (dump_opt['s'])
show_pool_stats(spa);
if (dump_opt['h'])
dump_history(spa);
if (rc == 0)
rc = verify_checkpoint(spa);
if (rc != 0) {
dump_debug_buffer();
exit(rc);
}
}
#define ZDB_FLAG_CHECKSUM 0x0001
#define ZDB_FLAG_DECOMPRESS 0x0002
#define ZDB_FLAG_BSWAP 0x0004
#define ZDB_FLAG_GBH 0x0008
#define ZDB_FLAG_INDIRECT 0x0010
#define ZDB_FLAG_RAW 0x0020
#define ZDB_FLAG_PRINT_BLKPTR 0x0040
#define ZDB_FLAG_VERBOSE 0x0080
static int flagbits[256];
static char flagbitstr[16];
static void
zdb_print_blkptr(const blkptr_t *bp, int flags)
{
char blkbuf[BP_SPRINTF_LEN];
if (flags & ZDB_FLAG_BSWAP)
byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
(void) printf("%s\n", blkbuf);
}
static void
zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
{
int i;
for (i = 0; i < nbps; i++)
zdb_print_blkptr(&bp[i], flags);
}
static void
zdb_dump_gbh(void *buf, int flags)
{
zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
}
static void
zdb_dump_block_raw(void *buf, uint64_t size, int flags)
{
if (flags & ZDB_FLAG_BSWAP)
byteswap_uint64_array(buf, size);
VERIFY(write(fileno(stdout), buf, size) == size);
}
static void
zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
{
uint64_t *d = (uint64_t *)buf;
unsigned nwords = size / sizeof (uint64_t);
int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
unsigned i, j;
const char *hdr;
char *c;
if (do_bswap)
hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
else
hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
(void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
#ifdef _LITTLE_ENDIAN
/* correct the endianness */
do_bswap = !do_bswap;
#endif
for (i = 0; i < nwords; i += 2) {
(void) printf("%06llx: %016llx %016llx ",
(u_longlong_t)(i * sizeof (uint64_t)),
(u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
(u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
c = (char *)&d[i];
for (j = 0; j < 2 * sizeof (uint64_t); j++)
(void) printf("%c", isprint(c[j]) ? c[j] : '.');
(void) printf("\n");
}
}
/*
* There are two acceptable formats:
* leaf_name - For example: c1t0d0 or /tmp/ztest.0a
* child[.child]* - For example: 0.1.1
*
* The second form can be used to specify arbitrary vdevs anywhere
* in the hierarchy. For example, in a pool with a mirror of
* RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
*/
static vdev_t *
zdb_vdev_lookup(vdev_t *vdev, const char *path)
{
char *s, *p, *q;
unsigned i;
if (vdev == NULL)
return (NULL);
/* First, assume the x.x.x.x format */
i = strtoul(path, &s, 10);
if (s == path || (s && *s != '.' && *s != '\0'))
goto name;
if (i >= vdev->vdev_children)
return (NULL);
vdev = vdev->vdev_child[i];
if (s && *s == '\0')
return (vdev);
return (zdb_vdev_lookup(vdev, s+1));
name:
for (i = 0; i < vdev->vdev_children; i++) {
vdev_t *vc = vdev->vdev_child[i];
if (vc->vdev_path == NULL) {
vc = zdb_vdev_lookup(vc, path);
if (vc == NULL)
continue;
else
return (vc);
}
p = strrchr(vc->vdev_path, '/');
p = p ? p + 1 : vc->vdev_path;
q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
if (strcmp(vc->vdev_path, path) == 0)
return (vc);
if (strcmp(p, path) == 0)
return (vc);
if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
return (vc);
}
return (NULL);
}
static int
name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
{
dsl_dataset_t *ds;
dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
NULL, &ds);
if (error != 0) {
(void) fprintf(stderr, "failed to hold objset %llu: %s\n",
(u_longlong_t)objset_id, strerror(error));
dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
return (error);
}
dsl_dataset_name(ds, outstr);
dsl_dataset_rele(ds, NULL);
dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
return (0);
}
static boolean_t
zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
{
char *s0, *s1, *tmp = NULL;
if (sizes == NULL)
return (B_FALSE);
s0 = strtok_r(sizes, "/", &tmp);
if (s0 == NULL)
return (B_FALSE);
s1 = strtok_r(NULL, "/", &tmp);
*lsize = strtoull(s0, NULL, 16);
*psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
return (*lsize >= *psize && *psize > 0);
}
#define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
static boolean_t
zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
uint64_t psize, int flags)
{
(void) buf;
boolean_t exceeded = B_FALSE;
/*
* We don't know how the data was compressed, so just try
* every decompress function at every inflated blocksize.
*/
void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
int *cfuncp = cfuncs;
uint64_t maxlsize = SPA_MAXBLOCKSIZE;
uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
(getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0);
*cfuncp++ = ZIO_COMPRESS_LZ4;
*cfuncp++ = ZIO_COMPRESS_LZJB;
mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
if (((1ULL << c) & mask) == 0)
*cfuncp++ = c;
/*
* On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
* could take a while and we should let the user know
* we are not stuck. On the other hand, printing progress
* info gets old after a while. User can specify 'v' flag
* to see the progression.
*/
if (lsize == psize)
lsize += SPA_MINBLOCKSIZE;
else
maxlsize = lsize;
for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
if (flags & ZDB_FLAG_VERBOSE) {
(void) fprintf(stderr,
"Trying %05llx -> %05llx (%s)\n",
(u_longlong_t)psize,
(u_longlong_t)lsize,
zio_compress_table[*cfuncp].\
ci_name);
}
/*
* We randomize lbuf2, and decompress to both
* lbuf and lbuf2. This way, we will know if
* decompression fill exactly to lsize.
*/
VERIFY0(random_get_pseudo_bytes(lbuf2, lsize));
if (zio_decompress_data(*cfuncp, pabd,
lbuf, psize, lsize, NULL) == 0 &&
zio_decompress_data(*cfuncp, pabd,
lbuf2, psize, lsize, NULL) == 0 &&
memcmp(lbuf, lbuf2, lsize) == 0)
break;
}
if (*cfuncp != 0)
break;
}
umem_free(lbuf2, SPA_MAXBLOCKSIZE);
if (lsize > maxlsize) {
exceeded = B_TRUE;
}
if (*cfuncp == ZIO_COMPRESS_ZLE) {
printf("\nZLE decompression was selected. If you "
"suspect the results are wrong,\ntry avoiding ZLE "
"by setting and exporting ZDB_NO_ZLE=\"true\"\n");
}
return (exceeded);
}
/*
* Read a block from a pool and print it out. The syntax of the
* block descriptor is:
*
* pool:vdev_specifier:offset:[lsize/]psize[:flags]
*
* pool - The name of the pool you wish to read from
* vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
* offset - offset, in hex, in bytes
* size - Amount of data to read, in hex, in bytes
* flags - A string of characters specifying options
* b: Decode a blkptr at given offset within block
* c: Calculate and display checksums
* d: Decompress data before dumping
* e: Byteswap data before dumping
* g: Display data as a gang block header
* i: Display as an indirect block
* r: Dump raw data to stdout
* v: Verbose
*
*/
static void
zdb_read_block(char *thing, spa_t *spa)
{
blkptr_t blk, *bp = &blk;
dva_t *dva = bp->blk_dva;
int flags = 0;
uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
zio_t *zio;
vdev_t *vd;
abd_t *pabd;
void *lbuf, *buf;
char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
const char *vdev, *errmsg = NULL;
int i, error;
boolean_t borrowed = B_FALSE, found = B_FALSE;
dup = strdup(thing);
s = strtok_r(dup, ":", &tmp);
vdev = s ?: "";
s = strtok_r(NULL, ":", &tmp);
offset = strtoull(s ? s : "", NULL, 16);
sizes = strtok_r(NULL, ":", &tmp);
s = strtok_r(NULL, ":", &tmp);
flagstr = strdup(s ?: "");
if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
errmsg = "invalid size(s)";
if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
errmsg = "size must be a multiple of sector size";
if (!IS_P2ALIGNED(offset, DEV_BSIZE))
errmsg = "offset must be a multiple of sector size";
if (errmsg) {
(void) printf("Invalid block specifier: %s - %s\n",
thing, errmsg);
goto done;
}
tmp = NULL;
for (s = strtok_r(flagstr, ":", &tmp);
s != NULL;
s = strtok_r(NULL, ":", &tmp)) {
for (i = 0; i < strlen(flagstr); i++) {
int bit = flagbits[(uchar_t)flagstr[i]];
if (bit == 0) {
(void) printf("***Ignoring flag: %c\n",
(uchar_t)flagstr[i]);
continue;
}
found = B_TRUE;
flags |= bit;
p = &flagstr[i + 1];
if (*p != ':' && *p != '\0') {
int j = 0, nextbit = flagbits[(uchar_t)*p];
char *end, offstr[8] = { 0 };
if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
(nextbit == 0)) {
/* look ahead to isolate the offset */
while (nextbit == 0 &&
strchr(flagbitstr, *p) == NULL) {
offstr[j] = *p;
j++;
if (i + j > strlen(flagstr))
break;
p++;
nextbit = flagbits[(uchar_t)*p];
}
blkptr_offset = strtoull(offstr, &end,
16);
i += j;
} else if (nextbit == 0) {
(void) printf("***Ignoring flag arg:"
" '%c'\n", (uchar_t)*p);
}
}
}
}
if (blkptr_offset % sizeof (blkptr_t)) {
printf("Block pointer offset 0x%llx "
"must be divisible by 0x%x\n",
(longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
goto done;
}
if (found == B_FALSE && strlen(flagstr) > 0) {
printf("Invalid flag arg: '%s'\n", flagstr);
goto done;
}
vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
if (vd == NULL) {
(void) printf("***Invalid vdev: %s\n", vdev);
goto done;
} else {
if (vd->vdev_path)
(void) fprintf(stderr, "Found vdev: %s\n",
vd->vdev_path);
else
(void) fprintf(stderr, "Found vdev type: %s\n",
vd->vdev_ops->vdev_op_type);
}
pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
BP_ZERO(bp);
DVA_SET_VDEV(&dva[0], vd->vdev_id);
DVA_SET_OFFSET(&dva[0], offset);
DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
BP_SET_LSIZE(bp, lsize);
BP_SET_PSIZE(bp, psize);
BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
BP_SET_TYPE(bp, DMU_OT_NONE);
BP_SET_LEVEL(bp, 0);
BP_SET_DEDUP(bp, 0);
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
zio = zio_root(spa, NULL, NULL, 0);
if (vd == vd->vdev_top) {
/*
* Treat this as a normal block read.
*/
zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
ZIO_PRIORITY_SYNC_READ,
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
} else {
/*
* Treat this as a vdev child I/O.
*/
zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE |
ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
ZIO_FLAG_OPTIONAL, NULL, NULL));
}
error = zio_wait(zio);
spa_config_exit(spa, SCL_STATE, FTAG);
if (error) {
(void) printf("Read of %s failed, error: %d\n", thing, error);
goto out;
}
uint64_t orig_lsize = lsize;
buf = lbuf;
if (flags & ZDB_FLAG_DECOMPRESS) {
boolean_t failed = zdb_decompress_block(pabd, buf, lbuf,
lsize, psize, flags);
if (failed) {
(void) printf("Decompress of %s failed\n", thing);
goto out;
}
} else {
buf = abd_borrow_buf_copy(pabd, lsize);
borrowed = B_TRUE;
}
/*
* Try to detect invalid block pointer. If invalid, try
* decompressing.
*/
if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
!(flags & ZDB_FLAG_DECOMPRESS)) {
const blkptr_t *b = (const blkptr_t *)(void *)
((uintptr_t)buf + (uintptr_t)blkptr_offset);
if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) ==
B_FALSE) {
abd_return_buf_copy(pabd, buf, lsize);
borrowed = B_FALSE;
buf = lbuf;
boolean_t failed = zdb_decompress_block(pabd, buf,
lbuf, lsize, psize, flags);
b = (const blkptr_t *)(void *)
((uintptr_t)buf + (uintptr_t)blkptr_offset);
if (failed || zfs_blkptr_verify(spa, b, B_FALSE,
BLK_VERIFY_LOG) == B_FALSE) {
printf("invalid block pointer at this DVA\n");
goto out;
}
}
}
if (flags & ZDB_FLAG_PRINT_BLKPTR)
zdb_print_blkptr((blkptr_t *)(void *)
((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
else if (flags & ZDB_FLAG_RAW)
zdb_dump_block_raw(buf, lsize, flags);
else if (flags & ZDB_FLAG_INDIRECT)
zdb_dump_indirect((blkptr_t *)buf,
orig_lsize / sizeof (blkptr_t), flags);
else if (flags & ZDB_FLAG_GBH)
zdb_dump_gbh(buf, flags);
else
zdb_dump_block(thing, buf, lsize, flags);
/*
* If :c was specified, iterate through the checksum table to
* calculate and display each checksum for our specified
* DVA and length.
*/
if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
!(flags & ZDB_FLAG_GBH)) {
zio_t *czio;
(void) printf("\n");
for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
if ((zio_checksum_table[ck].ci_flags &
ZCHECKSUM_FLAG_EMBEDDED) ||
ck == ZIO_CHECKSUM_NOPARITY) {
continue;
}
BP_SET_CHECKSUM(bp, ck);
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
czio->io_bp = bp;
if (vd == vd->vdev_top) {
zio_nowait(zio_read(czio, spa, bp, pabd, psize,
NULL, NULL,
ZIO_PRIORITY_SYNC_READ,
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
ZIO_FLAG_DONT_RETRY, NULL));
} else {
zio_nowait(zio_vdev_child_io(czio, bp, vd,
offset, pabd, psize, ZIO_TYPE_READ,
ZIO_PRIORITY_SYNC_READ,
ZIO_FLAG_DONT_CACHE |
ZIO_FLAG_DONT_PROPAGATE |
ZIO_FLAG_DONT_RETRY |
ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
ZIO_FLAG_SPECULATIVE |
ZIO_FLAG_OPTIONAL, NULL, NULL));
}
error = zio_wait(czio);
if (error == 0 || error == ECKSUM) {
zio_t *ck_zio = zio_root(spa, NULL, NULL, 0);
ck_zio->io_offset =
DVA_GET_OFFSET(&bp->blk_dva[0]);
ck_zio->io_bp = bp;
zio_checksum_compute(ck_zio, ck, pabd, lsize);
printf("%12s\tcksum=%llx:%llx:%llx:%llx\n",
zio_checksum_table[ck].ci_name,
(u_longlong_t)bp->blk_cksum.zc_word[0],
(u_longlong_t)bp->blk_cksum.zc_word[1],
(u_longlong_t)bp->blk_cksum.zc_word[2],
(u_longlong_t)bp->blk_cksum.zc_word[3]);
zio_wait(ck_zio);
} else {
printf("error %d reading block\n", error);
}
spa_config_exit(spa, SCL_STATE, FTAG);
}
}
if (borrowed)
abd_return_buf_copy(pabd, buf, lsize);
out:
abd_free(pabd);
umem_free(lbuf, SPA_MAXBLOCKSIZE);
done:
free(flagstr);
free(dup);
}
static void
zdb_embedded_block(char *thing)
{
blkptr_t bp = {{{{0}}}};
unsigned long long *words = (void *)&bp;
char *buf;
int err;
err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
"%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
words + 0, words + 1, words + 2, words + 3,
words + 4, words + 5, words + 6, words + 7,
words + 8, words + 9, words + 10, words + 11,
words + 12, words + 13, words + 14, words + 15);
if (err != 16) {
(void) fprintf(stderr, "invalid input format\n");
exit(1);
}
ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
buf = malloc(SPA_MAXBLOCKSIZE);
if (buf == NULL) {
(void) fprintf(stderr, "out of memory\n");
exit(1);
}
err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
if (err != 0) {
(void) fprintf(stderr, "decode failed: %u\n", err);
exit(1);
}
zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
free(buf);
}
/* check for valid hex or decimal numeric string */
static boolean_t
zdb_numeric(char *str)
{
int i = 0;
if (strlen(str) == 0)
return (B_FALSE);
if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
i = 2;
for (; i < strlen(str); i++) {
if (!isxdigit(str[i]))
return (B_FALSE);
}
return (B_TRUE);
}
int
main(int argc, char **argv)
{
int c;
spa_t *spa = NULL;
objset_t *os = NULL;
int dump_all = 1;
int verbose = 0;
int error = 0;
char **searchdirs = NULL;
int nsearch = 0;
char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
nvlist_t *policy = NULL;
uint64_t max_txg = UINT64_MAX;
int64_t objset_id = -1;
uint64_t object;
int flags = ZFS_IMPORT_MISSING_LOG;
int rewind = ZPOOL_NEVER_REWIND;
char *spa_config_path_env, *objset_str;
boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
nvlist_t *cfg = NULL;
dprintf_setup(&argc, argv);
/*
* If there is an environment variable SPA_CONFIG_PATH it overrides
* default spa_config_path setting. If -U flag is specified it will
* override this environment variable settings once again.
*/
spa_config_path_env = getenv("SPA_CONFIG_PATH");
if (spa_config_path_env != NULL)
spa_config_path = spa_config_path_env;
/*
* For performance reasons, we set this tunable down. We do so before
* the arg parsing section so that the user can override this value if
* they choose.
*/
zfs_btree_verify_intensity = 3;
struct option long_options[] = {
{"ignore-assertions", no_argument, NULL, 'A'},
{"block-stats", no_argument, NULL, 'b'},
{"checksum", no_argument, NULL, 'c'},
{"config", no_argument, NULL, 'C'},
{"datasets", no_argument, NULL, 'd'},
{"dedup-stats", no_argument, NULL, 'D'},
{"exported", no_argument, NULL, 'e'},
{"embedded-block-pointer", no_argument, NULL, 'E'},
{"automatic-rewind", no_argument, NULL, 'F'},
{"dump-debug-msg", no_argument, NULL, 'G'},
{"history", no_argument, NULL, 'h'},
{"intent-logs", no_argument, NULL, 'i'},
{"inflight", required_argument, NULL, 'I'},
{"checkpointed-state", no_argument, NULL, 'k'},
{"label", no_argument, NULL, 'l'},
{"disable-leak-tracking", no_argument, NULL, 'L'},
{"metaslabs", no_argument, NULL, 'm'},
{"metaslab-groups", no_argument, NULL, 'M'},
{"numeric", no_argument, NULL, 'N'},
{"option", required_argument, NULL, 'o'},
{"object-lookups", no_argument, NULL, 'O'},
{"path", required_argument, NULL, 'p'},
{"parseable", no_argument, NULL, 'P'},
{"skip-label", no_argument, NULL, 'q'},
{"copy-object", no_argument, NULL, 'r'},
{"read-block", no_argument, NULL, 'R'},
{"io-stats", no_argument, NULL, 's'},
{"simulate-dedup", no_argument, NULL, 'S'},
{"txg", required_argument, NULL, 't'},
{"uberblock", no_argument, NULL, 'u'},
{"cachefile", required_argument, NULL, 'U'},
{"verbose", no_argument, NULL, 'v'},
{"verbatim", no_argument, NULL, 'V'},
{"dump-blocks", required_argument, NULL, 'x'},
{"extreme-rewind", no_argument, NULL, 'X'},
{"all-reconstruction", no_argument, NULL, 'Y'},
{"livelist", no_argument, NULL, 'y'},
{"zstd-headers", no_argument, NULL, 'Z'},
{0, 0, 0, 0}
};
while ((c = getopt_long(argc, argv,
"AbcCdDeEFGhiI:klLmMNo:Op:PqrRsSt:uU:vVx:XYyZ",
long_options, NULL)) != -1) {
switch (c) {
case 'b':
case 'c':
case 'C':
case 'd':
case 'D':
case 'E':
case 'G':
case 'h':
case 'i':
case 'l':
case 'm':
case 'M':
case 'N':
case 'O':
case 'r':
case 'R':
case 's':
case 'S':
case 'u':
case 'y':
case 'Z':
dump_opt[c]++;
dump_all = 0;
break;
case 'A':
case 'e':
case 'F':
case 'k':
case 'L':
case 'P':
case 'q':
case 'X':
dump_opt[c]++;
break;
case 'Y':
zfs_reconstruct_indirect_combinations_max = INT_MAX;
zfs_deadman_enabled = 0;
break;
/* NB: Sort single match options below. */
case 'I':
max_inflight_bytes = strtoull(optarg, NULL, 0);
if (max_inflight_bytes == 0) {
(void) fprintf(stderr, "maximum number "
"of inflight bytes must be greater "
"than 0\n");
usage();
}
break;
case 'o':
error = set_global_var(optarg);
if (error != 0)
usage();
break;
case 'p':
if (searchdirs == NULL) {
searchdirs = umem_alloc(sizeof (char *),
UMEM_NOFAIL);
} else {
char **tmp = umem_alloc((nsearch + 1) *
sizeof (char *), UMEM_NOFAIL);
memcpy(tmp, searchdirs, nsearch *
sizeof (char *));
umem_free(searchdirs,
nsearch * sizeof (char *));
searchdirs = tmp;
}
searchdirs[nsearch++] = optarg;
break;
case 't':
max_txg = strtoull(optarg, NULL, 0);
if (max_txg < TXG_INITIAL) {
(void) fprintf(stderr, "incorrect txg "
"specified: %s\n", optarg);
usage();
}
break;
case 'U':
spa_config_path = optarg;
if (spa_config_path[0] != '/') {
(void) fprintf(stderr,
"cachefile must be an absolute path "
"(i.e. start with a slash)\n");
usage();
}
break;
case 'v':
verbose++;
break;
case 'V':
flags = ZFS_IMPORT_VERBATIM;
break;
case 'x':
vn_dumpdir = optarg;
break;
default:
usage();
break;
}
}
if (!dump_opt['e'] && searchdirs != NULL) {
(void) fprintf(stderr, "-p option requires use of -e\n");
usage();
}
#if defined(_LP64)
/*
* ZDB does not typically re-read blocks; therefore limit the ARC
* to 256 MB, which can be used entirely for metadata.
*/
zfs_arc_min = zfs_arc_meta_min = 2ULL << SPA_MAXBLOCKSHIFT;
zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024;
#endif
/*
* "zdb -c" uses checksum-verifying scrub i/os which are async reads.
* "zdb -b" uses traversal prefetch which uses async reads.
* For good performance, let several of them be active at once.
*/
zfs_vdev_async_read_max_active = 10;
/*
* Disable reference tracking for better performance.
*/
reference_tracking_enable = B_FALSE;
/*
* Do not fail spa_load when spa_load_verify fails. This is needed
* to load non-idle pools.
*/
spa_load_verify_dryrun = B_TRUE;
/*
* ZDB should have ability to read spacemaps.
*/
spa_mode_readable_spacemaps = B_TRUE;
kernel_init(SPA_MODE_READ);
if (dump_all)
verbose = MAX(verbose, 1);
for (c = 0; c < 256; c++) {
if (dump_all && strchr("AeEFklLNOPrRSXy", c) == NULL)
dump_opt[c] = 1;
if (dump_opt[c])
dump_opt[c] += verbose;
}
libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
zfs_recover = (dump_opt['A'] > 1);
argc -= optind;
argv += optind;
if (argc < 2 && dump_opt['R'])
usage();
if (dump_opt['E']) {
if (argc != 1)
usage();
zdb_embedded_block(argv[0]);
return (0);
}
if (argc < 1) {
if (!dump_opt['e'] && dump_opt['C']) {
dump_cachefile(spa_config_path);
return (0);
}
usage();
}
if (dump_opt['l'])
return (dump_label(argv[0]));
if (dump_opt['O']) {
if (argc != 2)
usage();
dump_opt['v'] = verbose + 3;
return (dump_path(argv[0], argv[1], NULL));
}
if (dump_opt['r']) {
target_is_spa = B_FALSE;
if (argc != 3)
usage();
dump_opt['v'] = verbose;
error = dump_path(argv[0], argv[1], &object);
if (error != 0)
fatal("internal error: %s", strerror(error));
}
if (dump_opt['X'] || dump_opt['F'])
rewind = ZPOOL_DO_REWIND |
(dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
/* -N implies -d */
if (dump_opt['N'] && dump_opt['d'] == 0)
dump_opt['d'] = dump_opt['N'];
if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
fatal("internal error: %s", strerror(ENOMEM));
error = 0;
target = argv[0];
if (strpbrk(target, "/@") != NULL) {
size_t targetlen;
target_pool = strdup(target);
*strpbrk(target_pool, "/@") = '\0';
target_is_spa = B_FALSE;
targetlen = strlen(target);
if (targetlen && target[targetlen - 1] == '/')
target[targetlen - 1] = '\0';
/*
* See if an objset ID was supplied (-d <pool>/<objset ID>).
* To disambiguate tank/100, consider the 100 as objsetID
* if -N was given, otherwise 100 is an objsetID iff
* tank/100 as a named dataset fails on lookup.
*/
objset_str = strchr(target, '/');
if (objset_str && strlen(objset_str) > 1 &&
zdb_numeric(objset_str + 1)) {
char *endptr;
errno = 0;
objset_str++;
objset_id = strtoull(objset_str, &endptr, 0);
/* dataset 0 is the same as opening the pool */
if (errno == 0 && endptr != objset_str &&
objset_id != 0) {
if (dump_opt['N'])
dataset_lookup = B_TRUE;
}
/* normal dataset name not an objset ID */
if (endptr == objset_str) {
objset_id = -1;
}
} else if (objset_str && !zdb_numeric(objset_str + 1) &&
dump_opt['N']) {
printf("Supply a numeric objset ID with -N\n");
exit(1);
}
} else {
target_pool = target;
}
if (dump_opt['e']) {
importargs_t args = { 0 };
args.paths = nsearch;
args.path = searchdirs;
args.can_be_active = B_TRUE;
libpc_handle_t lpch = {
.lpc_lib_handle = NULL,
.lpc_ops = &libzpool_config_ops,
.lpc_printerr = B_TRUE
};
error = zpool_find_config(&lpch, target_pool, &cfg, &args);
if (error == 0) {
if (nvlist_add_nvlist(cfg,
ZPOOL_LOAD_POLICY, policy) != 0) {
fatal("can't open '%s': %s",
target, strerror(ENOMEM));
}
if (dump_opt['C'] > 1) {
(void) printf("\nConfiguration for import:\n");
dump_nvlist(cfg, 8);
}
/*
* Disable the activity check to allow examination of
* active pools.
*/
error = spa_import(target_pool, cfg, NULL,
flags | ZFS_IMPORT_SKIP_MMP);
}
}
if (searchdirs != NULL) {
umem_free(searchdirs, nsearch * sizeof (char *));
searchdirs = NULL;
}
/*
* import_checkpointed_state makes the assumption that the
* target pool that we pass it is already part of the spa
* namespace. Because of that we need to make sure to call
* it always after the -e option has been processed, which
* imports the pool to the namespace if it's not in the
* cachefile.
*/
char *checkpoint_pool = NULL;
char *checkpoint_target = NULL;
if (dump_opt['k']) {
checkpoint_pool = import_checkpointed_state(target, cfg,
&checkpoint_target);
if (checkpoint_target != NULL)
target = checkpoint_target;
}
if (cfg != NULL) {
nvlist_free(cfg);
cfg = NULL;
}
if (target_pool != target)
free(target_pool);
if (error == 0) {
if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
ASSERT(checkpoint_pool != NULL);
ASSERT(checkpoint_target == NULL);
error = spa_open(checkpoint_pool, &spa, FTAG);
if (error != 0) {
fatal("Tried to open pool \"%s\" but "
"spa_open() failed with error %d\n",
checkpoint_pool, error);
}
} else if (target_is_spa || dump_opt['R'] || objset_id == 0) {
zdb_set_skip_mmp(target);
error = spa_open_rewind(target, &spa, FTAG, policy,
NULL);
if (error) {
/*
* If we're missing the log device then
* try opening the pool after clearing the
* log state.
*/
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(target)) != NULL &&
spa->spa_log_state == SPA_LOG_MISSING) {
spa->spa_log_state = SPA_LOG_CLEAR;
error = 0;
}
mutex_exit(&spa_namespace_lock);
if (!error) {
error = spa_open_rewind(target, &spa,
FTAG, policy, NULL);
}
}
} else if (strpbrk(target, "#") != NULL) {
dsl_pool_t *dp;
error = dsl_pool_hold(target, FTAG, &dp);
if (error != 0) {
fatal("can't dump '%s': %s", target,
strerror(error));
}
error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
dsl_pool_rele(dp, FTAG);
if (error != 0) {
fatal("can't dump '%s': %s", target,
strerror(error));
}
return (error);
} else {
target_pool = strdup(target);
if (strpbrk(target, "/@") != NULL)
*strpbrk(target_pool, "/@") = '\0';
zdb_set_skip_mmp(target);
/*
* If -N was supplied, the user has indicated that
* zdb -d <pool>/<objsetID> is in effect. Otherwise
* we first assume that the dataset string is the
* dataset name. If dmu_objset_hold fails with the
* dataset string, and we have an objset_id, retry the
* lookup with the objsetID.
*/
boolean_t retry = B_TRUE;
retry_lookup:
if (dataset_lookup == B_TRUE) {
/*
* Use the supplied id to get the name
* for open_objset.
*/
error = spa_open(target_pool, &spa, FTAG);
if (error == 0) {
error = name_from_objset_id(spa,
objset_id, dsname);
spa_close(spa, FTAG);
if (error == 0)
target = dsname;
}
}
if (error == 0) {
if (objset_id > 0 && retry) {
int err = dmu_objset_hold(target, FTAG,
&os);
if (err) {
dataset_lookup = B_TRUE;
retry = B_FALSE;
goto retry_lookup;
} else {
dmu_objset_rele(os, FTAG);
}
}
error = open_objset(target, FTAG, &os);
}
if (error == 0)
spa = dmu_objset_spa(os);
free(target_pool);
}
}
nvlist_free(policy);
if (error)
fatal("can't open '%s': %s", target, strerror(error));
/*
* Set the pool failure mode to panic in order to prevent the pool
* from suspending. A suspended I/O will have no way to resume and
* can prevent the zdb(8) command from terminating as expected.
*/
if (spa != NULL)
spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
argv++;
argc--;
if (dump_opt['r']) {
error = zdb_copy_object(os, object, argv[1]);
} else if (!dump_opt['R']) {
flagbits['d'] = ZOR_FLAG_DIRECTORY;
flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
flagbits['m'] = ZOR_FLAG_SPACE_MAP;
flagbits['z'] = ZOR_FLAG_ZAP;
flagbits['A'] = ZOR_FLAG_ALL_TYPES;
if (argc > 0 && dump_opt['d']) {
zopt_object_args = argc;
zopt_object_ranges = calloc(zopt_object_args,
sizeof (zopt_object_range_t));
for (unsigned i = 0; i < zopt_object_args; i++) {
int err;
const char *msg = NULL;
err = parse_object_range(argv[i],
&zopt_object_ranges[i], &msg);
if (err != 0)
fatal("Bad object or range: '%s': %s\n",
argv[i], msg ?: "");
}
} else if (argc > 0 && dump_opt['m']) {
zopt_metaslab_args = argc;
zopt_metaslab = calloc(zopt_metaslab_args,
sizeof (uint64_t));
for (unsigned i = 0; i < zopt_metaslab_args; i++) {
errno = 0;
zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
if (zopt_metaslab[i] == 0 && errno != 0)
fatal("bad number %s: %s", argv[i],
strerror(errno));
}
}
if (os != NULL) {
dump_objset(os);
} else if (zopt_object_args > 0 && !dump_opt['m']) {
dump_objset(spa->spa_meta_objset);
} else {
dump_zpool(spa);
}
} else {
flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
flagbits['c'] = ZDB_FLAG_CHECKSUM;
flagbits['d'] = ZDB_FLAG_DECOMPRESS;
flagbits['e'] = ZDB_FLAG_BSWAP;
flagbits['g'] = ZDB_FLAG_GBH;
flagbits['i'] = ZDB_FLAG_INDIRECT;
flagbits['r'] = ZDB_FLAG_RAW;
flagbits['v'] = ZDB_FLAG_VERBOSE;
for (int i = 0; i < argc; i++)
zdb_read_block(argv[i], spa);
}
if (dump_opt['k']) {
free(checkpoint_pool);
if (!target_is_spa)
free(checkpoint_target);
}
if (os != NULL) {
close_objset(os, FTAG);
} else {
spa_close(spa, FTAG);
}
fuid_table_destroy();
dump_debug_buffer();
kernel_fini();
return (error);
}