mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 04:30:33 +03:00
77a797a382
`l2arc_mfuonly` was added to avoid wasting L2 ARC on read-once MRU data and metadata. However it can be useful to cache as much metadata as possible while, at the same time, restricting data cache to MFU buffers only. This patch allow for such behavior by setting `l2arc_mfuonly` to 2 (or higher). The list of possible values is the following: 0: cache both MRU and MFU for both data and metadata; 1: cache only MFU for both data and metadata; 2: cache both MRU and MFU for metadata, but only MFU for data. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Gionatan Danti <g.danti@assyoma.it> Closes #16343 Closes #16402
2813 lines
111 KiB
Groff
2813 lines
111 KiB
Groff
.\"
|
|
.\" Copyright (c) 2013 by Turbo Fredriksson <turbo@bayour.com>. All rights reserved.
|
|
.\" Copyright (c) 2019, 2021 by Delphix. All rights reserved.
|
|
.\" Copyright (c) 2019 Datto Inc.
|
|
.\" Copyright (c) 2023, 2024 Klara, Inc.
|
|
.\" The contents of this file are subject to the terms of the Common Development
|
|
.\" and Distribution License (the "License"). You may not use this file except
|
|
.\" in compliance with the License. You can obtain a copy of the license at
|
|
.\" usr/src/OPENSOLARIS.LICENSE or https://opensource.org/licenses/CDDL-1.0.
|
|
.\"
|
|
.\" See the License for the specific language governing permissions and
|
|
.\" limitations under the License. When distributing Covered Code, include this
|
|
.\" CDDL HEADER in each file and include the License file at
|
|
.\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this
|
|
.\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your
|
|
.\" own identifying information:
|
|
.\" Portions Copyright [yyyy] [name of copyright owner]
|
|
.\"
|
|
.Dd June 27, 2024
|
|
.Dt ZFS 4
|
|
.Os
|
|
.
|
|
.Sh NAME
|
|
.Nm zfs
|
|
.Nd tuning of the ZFS kernel module
|
|
.
|
|
.Sh DESCRIPTION
|
|
The ZFS module supports these parameters:
|
|
.Bl -tag -width Ds
|
|
.It Sy dbuf_cache_max_bytes Ns = Ns Sy UINT64_MAX Ns B Pq u64
|
|
Maximum size in bytes of the dbuf cache.
|
|
The target size is determined by the MIN versus
|
|
.No 1/2^ Ns Sy dbuf_cache_shift Pq 1/32nd
|
|
of the target ARC size.
|
|
The behavior of the dbuf cache and its associated settings
|
|
can be observed via the
|
|
.Pa /proc/spl/kstat/zfs/dbufstats
|
|
kstat.
|
|
.
|
|
.It Sy dbuf_metadata_cache_max_bytes Ns = Ns Sy UINT64_MAX Ns B Pq u64
|
|
Maximum size in bytes of the metadata dbuf cache.
|
|
The target size is determined by the MIN versus
|
|
.No 1/2^ Ns Sy dbuf_metadata_cache_shift Pq 1/64th
|
|
of the target ARC size.
|
|
The behavior of the metadata dbuf cache and its associated settings
|
|
can be observed via the
|
|
.Pa /proc/spl/kstat/zfs/dbufstats
|
|
kstat.
|
|
.
|
|
.It Sy dbuf_cache_hiwater_pct Ns = Ns Sy 10 Ns % Pq uint
|
|
The percentage over
|
|
.Sy dbuf_cache_max_bytes
|
|
when dbufs must be evicted directly.
|
|
.
|
|
.It Sy dbuf_cache_lowater_pct Ns = Ns Sy 10 Ns % Pq uint
|
|
The percentage below
|
|
.Sy dbuf_cache_max_bytes
|
|
when the evict thread stops evicting dbufs.
|
|
.
|
|
.It Sy dbuf_cache_shift Ns = Ns Sy 5 Pq uint
|
|
Set the size of the dbuf cache
|
|
.Pq Sy dbuf_cache_max_bytes
|
|
to a log2 fraction of the target ARC size.
|
|
.
|
|
.It Sy dbuf_metadata_cache_shift Ns = Ns Sy 6 Pq uint
|
|
Set the size of the dbuf metadata cache
|
|
.Pq Sy dbuf_metadata_cache_max_bytes
|
|
to a log2 fraction of the target ARC size.
|
|
.
|
|
.It Sy dbuf_mutex_cache_shift Ns = Ns Sy 0 Pq uint
|
|
Set the size of the mutex array for the dbuf cache.
|
|
When set to
|
|
.Sy 0
|
|
the array is dynamically sized based on total system memory.
|
|
.
|
|
.It Sy dmu_object_alloc_chunk_shift Ns = Ns Sy 7 Po 128 Pc Pq uint
|
|
dnode slots allocated in a single operation as a power of 2.
|
|
The default value minimizes lock contention for the bulk operation performed.
|
|
.
|
|
.It Sy dmu_ddt_copies Ns = Ns Sy 3 Pq uint
|
|
Controls the number of copies stored for DeDup Table
|
|
.Pq DDT
|
|
objects.
|
|
Reducing the number of copies to 1 from the previous default of 3
|
|
can reduce the write inflation caused by deduplication.
|
|
This assumes redundancy for this data is provided by the vdev layer.
|
|
If the DDT is damaged, space may be leaked
|
|
.Pq not freed
|
|
when the DDT can not report the correct reference count.
|
|
.
|
|
.It Sy dmu_prefetch_max Ns = Ns Sy 134217728 Ns B Po 128 MiB Pc Pq uint
|
|
Limit the amount we can prefetch with one call to this amount in bytes.
|
|
This helps to limit the amount of memory that can be used by prefetching.
|
|
.
|
|
.It Sy ignore_hole_birth Pq int
|
|
Alias for
|
|
.Sy send_holes_without_birth_time .
|
|
.
|
|
.It Sy l2arc_feed_again Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Turbo L2ARC warm-up.
|
|
When the L2ARC is cold the fill interval will be set as fast as possible.
|
|
.
|
|
.It Sy l2arc_feed_min_ms Ns = Ns Sy 200 Pq u64
|
|
Min feed interval in milliseconds.
|
|
Requires
|
|
.Sy l2arc_feed_again Ns = Ns Ar 1
|
|
and only applicable in related situations.
|
|
.
|
|
.It Sy l2arc_feed_secs Ns = Ns Sy 1 Pq u64
|
|
Seconds between L2ARC writing.
|
|
.
|
|
.It Sy l2arc_headroom Ns = Ns Sy 8 Pq u64
|
|
How far through the ARC lists to search for L2ARC cacheable content,
|
|
expressed as a multiplier of
|
|
.Sy l2arc_write_max .
|
|
ARC persistence across reboots can be achieved with persistent L2ARC
|
|
by setting this parameter to
|
|
.Sy 0 ,
|
|
allowing the full length of ARC lists to be searched for cacheable content.
|
|
.
|
|
.It Sy l2arc_headroom_boost Ns = Ns Sy 200 Ns % Pq u64
|
|
Scales
|
|
.Sy l2arc_headroom
|
|
by this percentage when L2ARC contents are being successfully compressed
|
|
before writing.
|
|
A value of
|
|
.Sy 100
|
|
disables this feature.
|
|
.
|
|
.It Sy l2arc_exclude_special Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Controls whether buffers present on special vdevs are eligible for caching
|
|
into L2ARC.
|
|
If set to 1, exclude dbufs on special vdevs from being cached to L2ARC.
|
|
.
|
|
.It Sy l2arc_mfuonly Ns = Ns Sy 0 Ns | Ns 1 Ns | Ns 2 Pq int
|
|
Controls whether only MFU metadata and data are cached from ARC into L2ARC.
|
|
This may be desired to avoid wasting space on L2ARC when reading/writing large
|
|
amounts of data that are not expected to be accessed more than once.
|
|
.Pp
|
|
The default is 0,
|
|
meaning both MRU and MFU data and metadata are cached.
|
|
When turning off this feature (setting it to 0), some MRU buffers will
|
|
still be present in ARC and eventually cached on L2ARC.
|
|
.No If Sy l2arc_noprefetch Ns = Ns Sy 0 ,
|
|
some prefetched buffers will be cached to L2ARC, and those might later
|
|
transition to MRU, in which case the
|
|
.Sy l2arc_mru_asize No arcstat will not be Sy 0 .
|
|
.Pp
|
|
Setting it to 1 means to L2 cache only MFU data and metadata.
|
|
.Pp
|
|
Setting it to 2 means to L2 cache all metadata (MRU+MFU) but
|
|
only MFU data (ie: MRU data are not cached). This can be the right setting
|
|
to cache as much metadata as possible even when having high data turnover.
|
|
.Pp
|
|
Regardless of
|
|
.Sy l2arc_noprefetch ,
|
|
some MFU buffers might be evicted from ARC,
|
|
accessed later on as prefetches and transition to MRU as prefetches.
|
|
If accessed again they are counted as MRU and the
|
|
.Sy l2arc_mru_asize No arcstat will not be Sy 0 .
|
|
.Pp
|
|
The ARC status of L2ARC buffers when they were first cached in
|
|
L2ARC can be seen in the
|
|
.Sy l2arc_mru_asize , Sy l2arc_mfu_asize , No and Sy l2arc_prefetch_asize
|
|
arcstats when importing the pool or onlining a cache
|
|
device if persistent L2ARC is enabled.
|
|
.Pp
|
|
The
|
|
.Sy evict_l2_eligible_mru
|
|
arcstat does not take into account if this option is enabled as the information
|
|
provided by the
|
|
.Sy evict_l2_eligible_m[rf]u
|
|
arcstats can be used to decide if toggling this option is appropriate
|
|
for the current workload.
|
|
.
|
|
.It Sy l2arc_meta_percent Ns = Ns Sy 33 Ns % Pq uint
|
|
Percent of ARC size allowed for L2ARC-only headers.
|
|
Since L2ARC buffers are not evicted on memory pressure,
|
|
too many headers on a system with an irrationally large L2ARC
|
|
can render it slow or unusable.
|
|
This parameter limits L2ARC writes and rebuilds to achieve the target.
|
|
.
|
|
.It Sy l2arc_trim_ahead Ns = Ns Sy 0 Ns % Pq u64
|
|
Trims ahead of the current write size
|
|
.Pq Sy l2arc_write_max
|
|
on L2ARC devices by this percentage of write size if we have filled the device.
|
|
If set to
|
|
.Sy 100
|
|
we TRIM twice the space required to accommodate upcoming writes.
|
|
A minimum of
|
|
.Sy 64 MiB
|
|
will be trimmed.
|
|
It also enables TRIM of the whole L2ARC device upon creation
|
|
or addition to an existing pool or if the header of the device is
|
|
invalid upon importing a pool or onlining a cache device.
|
|
A value of
|
|
.Sy 0
|
|
disables TRIM on L2ARC altogether and is the default as it can put significant
|
|
stress on the underlying storage devices.
|
|
This will vary depending of how well the specific device handles these commands.
|
|
.
|
|
.It Sy l2arc_noprefetch Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Do not write buffers to L2ARC if they were prefetched but not used by
|
|
applications.
|
|
In case there are prefetched buffers in L2ARC and this option
|
|
is later set, we do not read the prefetched buffers from L2ARC.
|
|
Unsetting this option is useful for caching sequential reads from the
|
|
disks to L2ARC and serve those reads from L2ARC later on.
|
|
This may be beneficial in case the L2ARC device is significantly faster
|
|
in sequential reads than the disks of the pool.
|
|
.Pp
|
|
Use
|
|
.Sy 1
|
|
to disable and
|
|
.Sy 0
|
|
to enable caching/reading prefetches to/from L2ARC.
|
|
.
|
|
.It Sy l2arc_norw Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
No reads during writes.
|
|
.
|
|
.It Sy l2arc_write_boost Ns = Ns Sy 33554432 Ns B Po 32 MiB Pc Pq u64
|
|
Cold L2ARC devices will have
|
|
.Sy l2arc_write_max
|
|
increased by this amount while they remain cold.
|
|
.
|
|
.It Sy l2arc_write_max Ns = Ns Sy 33554432 Ns B Po 32 MiB Pc Pq u64
|
|
Max write bytes per interval.
|
|
.
|
|
.It Sy l2arc_rebuild_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Rebuild the L2ARC when importing a pool (persistent L2ARC).
|
|
This can be disabled if there are problems importing a pool
|
|
or attaching an L2ARC device (e.g. the L2ARC device is slow
|
|
in reading stored log metadata, or the metadata
|
|
has become somehow fragmented/unusable).
|
|
.
|
|
.It Sy l2arc_rebuild_blocks_min_l2size Ns = Ns Sy 1073741824 Ns B Po 1 GiB Pc Pq u64
|
|
Mininum size of an L2ARC device required in order to write log blocks in it.
|
|
The log blocks are used upon importing the pool to rebuild the persistent L2ARC.
|
|
.Pp
|
|
For L2ARC devices less than 1 GiB, the amount of data
|
|
.Fn l2arc_evict
|
|
evicts is significant compared to the amount of restored L2ARC data.
|
|
In this case, do not write log blocks in L2ARC in order not to waste space.
|
|
.
|
|
.It Sy metaslab_aliquot Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64
|
|
Metaslab granularity, in bytes.
|
|
This is roughly similar to what would be referred to as the "stripe size"
|
|
in traditional RAID arrays.
|
|
In normal operation, ZFS will try to write this amount of data to each disk
|
|
before moving on to the next top-level vdev.
|
|
.
|
|
.It Sy metaslab_bias_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Enable metaslab group biasing based on their vdevs' over- or under-utilization
|
|
relative to the pool.
|
|
.
|
|
.It Sy metaslab_force_ganging Ns = Ns Sy 16777217 Ns B Po 16 MiB + 1 B Pc Pq u64
|
|
Make some blocks above a certain size be gang blocks.
|
|
This option is used by the test suite to facilitate testing.
|
|
.
|
|
.It Sy metaslab_force_ganging_pct Ns = Ns Sy 3 Ns % Pq uint
|
|
For blocks that could be forced to be a gang block (due to
|
|
.Sy metaslab_force_ganging ) ,
|
|
force this many of them to be gang blocks.
|
|
.
|
|
.It Sy brt_zap_prefetch Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Controls prefetching BRT records for blocks which are going to be cloned.
|
|
.
|
|
.It Sy brt_zap_default_bs Ns = Ns Sy 12 Po 4 KiB Pc Pq int
|
|
Default BRT ZAP data block size as a power of 2. Note that changing this after
|
|
creating a BRT on the pool will not affect existing BRTs, only newly created
|
|
ones.
|
|
.
|
|
.It Sy brt_zap_default_ibs Ns = Ns Sy 12 Po 4 KiB Pc Pq int
|
|
Default BRT ZAP indirect block size as a power of 2. Note that changing this
|
|
after creating a BRT on the pool will not affect existing BRTs, only newly
|
|
created ones.
|
|
.
|
|
.It Sy ddt_zap_default_bs Ns = Ns Sy 15 Po 32 KiB Pc Pq int
|
|
Default DDT ZAP data block size as a power of 2. Note that changing this after
|
|
creating a DDT on the pool will not affect existing DDTs, only newly created
|
|
ones.
|
|
.
|
|
.It Sy ddt_zap_default_ibs Ns = Ns Sy 15 Po 32 KiB Pc Pq int
|
|
Default DDT ZAP indirect block size as a power of 2. Note that changing this
|
|
after creating a DDT on the pool will not affect existing DDTs, only newly
|
|
created ones.
|
|
.
|
|
.It Sy zfs_default_bs Ns = Ns Sy 9 Po 512 B Pc Pq int
|
|
Default dnode block size as a power of 2.
|
|
.
|
|
.It Sy zfs_default_ibs Ns = Ns Sy 17 Po 128 KiB Pc Pq int
|
|
Default dnode indirect block size as a power of 2.
|
|
.
|
|
.It Sy zfs_history_output_max Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64
|
|
When attempting to log an output nvlist of an ioctl in the on-disk history,
|
|
the output will not be stored if it is larger than this size (in bytes).
|
|
This must be less than
|
|
.Sy DMU_MAX_ACCESS Pq 64 MiB .
|
|
This applies primarily to
|
|
.Fn zfs_ioc_channel_program Pq cf. Xr zfs-program 8 .
|
|
.
|
|
.It Sy zfs_keep_log_spacemaps_at_export Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Prevent log spacemaps from being destroyed during pool exports and destroys.
|
|
.
|
|
.It Sy zfs_metaslab_segment_weight_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Enable/disable segment-based metaslab selection.
|
|
.
|
|
.It Sy zfs_metaslab_switch_threshold Ns = Ns Sy 2 Pq int
|
|
When using segment-based metaslab selection, continue allocating
|
|
from the active metaslab until this option's
|
|
worth of buckets have been exhausted.
|
|
.
|
|
.It Sy metaslab_debug_load Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Load all metaslabs during pool import.
|
|
.
|
|
.It Sy metaslab_debug_unload Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Prevent metaslabs from being unloaded.
|
|
.
|
|
.It Sy metaslab_fragmentation_factor_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Enable use of the fragmentation metric in computing metaslab weights.
|
|
.
|
|
.It Sy metaslab_df_max_search Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq uint
|
|
Maximum distance to search forward from the last offset.
|
|
Without this limit, fragmented pools can see
|
|
.Em >100`000
|
|
iterations and
|
|
.Fn metaslab_block_picker
|
|
becomes the performance limiting factor on high-performance storage.
|
|
.Pp
|
|
With the default setting of
|
|
.Sy 16 MiB ,
|
|
we typically see less than
|
|
.Em 500
|
|
iterations, even with very fragmented
|
|
.Sy ashift Ns = Ns Sy 9
|
|
pools.
|
|
The maximum number of iterations possible is
|
|
.Sy metaslab_df_max_search / 2^(ashift+1) .
|
|
With the default setting of
|
|
.Sy 16 MiB
|
|
this is
|
|
.Em 16*1024 Pq with Sy ashift Ns = Ns Sy 9
|
|
or
|
|
.Em 2*1024 Pq with Sy ashift Ns = Ns Sy 12 .
|
|
.
|
|
.It Sy metaslab_df_use_largest_segment Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
If not searching forward (due to
|
|
.Sy metaslab_df_max_search , metaslab_df_free_pct ,
|
|
.No or Sy metaslab_df_alloc_threshold ) ,
|
|
this tunable controls which segment is used.
|
|
If set, we will use the largest free segment.
|
|
If unset, we will use a segment of at least the requested size.
|
|
.
|
|
.It Sy zfs_metaslab_max_size_cache_sec Ns = Ns Sy 3600 Ns s Po 1 hour Pc Pq u64
|
|
When we unload a metaslab, we cache the size of the largest free chunk.
|
|
We use that cached size to determine whether or not to load a metaslab
|
|
for a given allocation.
|
|
As more frees accumulate in that metaslab while it's unloaded,
|
|
the cached max size becomes less and less accurate.
|
|
After a number of seconds controlled by this tunable,
|
|
we stop considering the cached max size and start
|
|
considering only the histogram instead.
|
|
.
|
|
.It Sy zfs_metaslab_mem_limit Ns = Ns Sy 25 Ns % Pq uint
|
|
When we are loading a new metaslab, we check the amount of memory being used
|
|
to store metaslab range trees.
|
|
If it is over a threshold, we attempt to unload the least recently used metaslab
|
|
to prevent the system from clogging all of its memory with range trees.
|
|
This tunable sets the percentage of total system memory that is the threshold.
|
|
.
|
|
.It Sy zfs_metaslab_try_hard_before_gang Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
.Bl -item -compact
|
|
.It
|
|
If unset, we will first try normal allocation.
|
|
.It
|
|
If that fails then we will do a gang allocation.
|
|
.It
|
|
If that fails then we will do a "try hard" gang allocation.
|
|
.It
|
|
If that fails then we will have a multi-layer gang block.
|
|
.El
|
|
.Pp
|
|
.Bl -item -compact
|
|
.It
|
|
If set, we will first try normal allocation.
|
|
.It
|
|
If that fails then we will do a "try hard" allocation.
|
|
.It
|
|
If that fails we will do a gang allocation.
|
|
.It
|
|
If that fails we will do a "try hard" gang allocation.
|
|
.It
|
|
If that fails then we will have a multi-layer gang block.
|
|
.El
|
|
.
|
|
.It Sy zfs_metaslab_find_max_tries Ns = Ns Sy 100 Pq uint
|
|
When not trying hard, we only consider this number of the best metaslabs.
|
|
This improves performance, especially when there are many metaslabs per vdev
|
|
and the allocation can't actually be satisfied
|
|
(so we would otherwise iterate all metaslabs).
|
|
.
|
|
.It Sy zfs_vdev_default_ms_count Ns = Ns Sy 200 Pq uint
|
|
When a vdev is added, target this number of metaslabs per top-level vdev.
|
|
.
|
|
.It Sy zfs_vdev_default_ms_shift Ns = Ns Sy 29 Po 512 MiB Pc Pq uint
|
|
Default lower limit for metaslab size.
|
|
.
|
|
.It Sy zfs_vdev_max_ms_shift Ns = Ns Sy 34 Po 16 GiB Pc Pq uint
|
|
Default upper limit for metaslab size.
|
|
.
|
|
.It Sy zfs_vdev_max_auto_ashift Ns = Ns Sy 14 Pq uint
|
|
Maximum ashift used when optimizing for logical \[->] physical sector size on
|
|
new
|
|
top-level vdevs.
|
|
May be increased up to
|
|
.Sy ASHIFT_MAX Po 16 Pc ,
|
|
but this may negatively impact pool space efficiency.
|
|
.
|
|
.It Sy zfs_vdev_min_auto_ashift Ns = Ns Sy ASHIFT_MIN Po 9 Pc Pq uint
|
|
Minimum ashift used when creating new top-level vdevs.
|
|
.
|
|
.It Sy zfs_vdev_min_ms_count Ns = Ns Sy 16 Pq uint
|
|
Minimum number of metaslabs to create in a top-level vdev.
|
|
.
|
|
.It Sy vdev_validate_skip Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Skip label validation steps during pool import.
|
|
Changing is not recommended unless you know what you're doing
|
|
and are recovering a damaged label.
|
|
.
|
|
.It Sy zfs_vdev_ms_count_limit Ns = Ns Sy 131072 Po 128k Pc Pq uint
|
|
Practical upper limit of total metaslabs per top-level vdev.
|
|
.
|
|
.It Sy metaslab_preload_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Enable metaslab group preloading.
|
|
.
|
|
.It Sy metaslab_preload_limit Ns = Ns Sy 10 Pq uint
|
|
Maximum number of metaslabs per group to preload
|
|
.
|
|
.It Sy metaslab_preload_pct Ns = Ns Sy 50 Pq uint
|
|
Percentage of CPUs to run a metaslab preload taskq
|
|
.
|
|
.It Sy metaslab_lba_weighting_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Give more weight to metaslabs with lower LBAs,
|
|
assuming they have greater bandwidth,
|
|
as is typically the case on a modern constant angular velocity disk drive.
|
|
.
|
|
.It Sy metaslab_unload_delay Ns = Ns Sy 32 Pq uint
|
|
After a metaslab is used, we keep it loaded for this many TXGs, to attempt to
|
|
reduce unnecessary reloading.
|
|
Note that both this many TXGs and
|
|
.Sy metaslab_unload_delay_ms
|
|
milliseconds must pass before unloading will occur.
|
|
.
|
|
.It Sy metaslab_unload_delay_ms Ns = Ns Sy 600000 Ns ms Po 10 min Pc Pq uint
|
|
After a metaslab is used, we keep it loaded for this many milliseconds,
|
|
to attempt to reduce unnecessary reloading.
|
|
Note, that both this many milliseconds and
|
|
.Sy metaslab_unload_delay
|
|
TXGs must pass before unloading will occur.
|
|
.
|
|
.It Sy reference_history Ns = Ns Sy 3 Pq uint
|
|
Maximum reference holders being tracked when reference_tracking_enable is
|
|
active.
|
|
.It Sy raidz_expand_max_copy_bytes Ns = Ns Sy 160MB Pq ulong
|
|
Max amount of memory to use for RAID-Z expansion I/O.
|
|
This limits how much I/O can be outstanding at once.
|
|
.
|
|
.It Sy raidz_expand_max_reflow_bytes Ns = Ns Sy 0 Pq ulong
|
|
For testing, pause RAID-Z expansion when reflow amount reaches this value.
|
|
.
|
|
.It Sy raidz_io_aggregate_rows Ns = Ns Sy 4 Pq ulong
|
|
For expanded RAID-Z, aggregate reads that have more rows than this.
|
|
.
|
|
.It Sy reference_history Ns = Ns Sy 3 Pq int
|
|
Maximum reference holders being tracked when reference_tracking_enable is
|
|
active.
|
|
.
|
|
.It Sy reference_tracking_enable Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Track reference holders to
|
|
.Sy refcount_t
|
|
objects (debug builds only).
|
|
.
|
|
.It Sy send_holes_without_birth_time Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
When set, the
|
|
.Sy hole_birth
|
|
optimization will not be used, and all holes will always be sent during a
|
|
.Nm zfs Cm send .
|
|
This is useful if you suspect your datasets are affected by a bug in
|
|
.Sy hole_birth .
|
|
.
|
|
.It Sy spa_config_path Ns = Ns Pa /etc/zfs/zpool.cache Pq charp
|
|
SPA config file.
|
|
.
|
|
.It Sy spa_asize_inflation Ns = Ns Sy 24 Pq uint
|
|
Multiplication factor used to estimate actual disk consumption from the
|
|
size of data being written.
|
|
The default value is a worst case estimate,
|
|
but lower values may be valid for a given pool depending on its configuration.
|
|
Pool administrators who understand the factors involved
|
|
may wish to specify a more realistic inflation factor,
|
|
particularly if they operate close to quota or capacity limits.
|
|
.
|
|
.It Sy spa_load_print_vdev_tree Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Whether to print the vdev tree in the debugging message buffer during pool
|
|
import.
|
|
.
|
|
.It Sy spa_load_verify_data Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Whether to traverse data blocks during an "extreme rewind"
|
|
.Pq Fl X
|
|
import.
|
|
.Pp
|
|
An extreme rewind import normally performs a full traversal of all
|
|
blocks in the pool for verification.
|
|
If this parameter is unset, the traversal skips non-metadata blocks.
|
|
It can be toggled once the
|
|
import has started to stop or start the traversal of non-metadata blocks.
|
|
.
|
|
.It Sy spa_load_verify_metadata Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Whether to traverse blocks during an "extreme rewind"
|
|
.Pq Fl X
|
|
pool import.
|
|
.Pp
|
|
An extreme rewind import normally performs a full traversal of all
|
|
blocks in the pool for verification.
|
|
If this parameter is unset, the traversal is not performed.
|
|
It can be toggled once the import has started to stop or start the traversal.
|
|
.
|
|
.It Sy spa_load_verify_shift Ns = Ns Sy 4 Po 1/16th Pc Pq uint
|
|
Sets the maximum number of bytes to consume during pool import to the log2
|
|
fraction of the target ARC size.
|
|
.
|
|
.It Sy spa_slop_shift Ns = Ns Sy 5 Po 1/32nd Pc Pq int
|
|
Normally, we don't allow the last
|
|
.Sy 3.2% Pq Sy 1/2^spa_slop_shift
|
|
of space in the pool to be consumed.
|
|
This ensures that we don't run the pool completely out of space,
|
|
due to unaccounted changes (e.g. to the MOS).
|
|
It also limits the worst-case time to allocate space.
|
|
If we have less than this amount of free space,
|
|
most ZPL operations (e.g. write, create) will return
|
|
.Sy ENOSPC .
|
|
.
|
|
.It Sy spa_num_allocators Ns = Ns Sy 4 Pq int
|
|
Determines the number of block alloctators to use per spa instance.
|
|
Capped by the number of actual CPUs in the system via
|
|
.Sy spa_cpus_per_allocator .
|
|
.Pp
|
|
Note that setting this value too high could result in performance
|
|
degredation and/or excess fragmentation.
|
|
Set value only applies to pools imported/created after that.
|
|
.
|
|
.It Sy spa_cpus_per_allocator Ns = Ns Sy 4 Pq int
|
|
Determines the minimum number of CPUs in a system for block alloctator
|
|
per spa instance.
|
|
Set value only applies to pools imported/created after that.
|
|
.
|
|
.It Sy spa_upgrade_errlog_limit Ns = Ns Sy 0 Pq uint
|
|
Limits the number of on-disk error log entries that will be converted to the
|
|
new format when enabling the
|
|
.Sy head_errlog
|
|
feature.
|
|
The default is to convert all log entries.
|
|
.
|
|
.It Sy vdev_removal_max_span Ns = Ns Sy 32768 Ns B Po 32 KiB Pc Pq uint
|
|
During top-level vdev removal, chunks of data are copied from the vdev
|
|
which may include free space in order to trade bandwidth for IOPS.
|
|
This parameter determines the maximum span of free space, in bytes,
|
|
which will be included as "unnecessary" data in a chunk of copied data.
|
|
.Pp
|
|
The default value here was chosen to align with
|
|
.Sy zfs_vdev_read_gap_limit ,
|
|
which is a similar concept when doing
|
|
regular reads (but there's no reason it has to be the same).
|
|
.
|
|
.It Sy vdev_file_logical_ashift Ns = Ns Sy 9 Po 512 B Pc Pq u64
|
|
Logical ashift for file-based devices.
|
|
.
|
|
.It Sy vdev_file_physical_ashift Ns = Ns Sy 9 Po 512 B Pc Pq u64
|
|
Physical ashift for file-based devices.
|
|
.
|
|
.It Sy zap_iterate_prefetch Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
If set, when we start iterating over a ZAP object,
|
|
prefetch the entire object (all leaf blocks).
|
|
However, this is limited by
|
|
.Sy dmu_prefetch_max .
|
|
.
|
|
.It Sy zap_micro_max_size Ns = Ns Sy 131072 Ns B Po 128 KiB Pc Pq int
|
|
Maximum micro ZAP size.
|
|
A micro ZAP is upgraded to a fat ZAP, once it grows beyond the specified size.
|
|
.
|
|
.It Sy zap_shrink_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
If set, adjacent empty ZAP blocks will be collapsed, reducing disk space.
|
|
.
|
|
.It Sy zfetch_min_distance Ns = Ns Sy 4194304 Ns B Po 4 MiB Pc Pq uint
|
|
Min bytes to prefetch per stream.
|
|
Prefetch distance starts from the demand access size and quickly grows to
|
|
this value, doubling on each hit.
|
|
After that it may grow further by 1/8 per hit, but only if some prefetch
|
|
since last time haven't completed in time to satisfy demand request, i.e.
|
|
prefetch depth didn't cover the read latency or the pool got saturated.
|
|
.
|
|
.It Sy zfetch_max_distance Ns = Ns Sy 67108864 Ns B Po 64 MiB Pc Pq uint
|
|
Max bytes to prefetch per stream.
|
|
.
|
|
.It Sy zfetch_max_idistance Ns = Ns Sy 67108864 Ns B Po 64 MiB Pc Pq uint
|
|
Max bytes to prefetch indirects for per stream.
|
|
.
|
|
.It Sy zfetch_max_reorder Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq uint
|
|
Requests within this byte distance from the current prefetch stream position
|
|
are considered parts of the stream, reordered due to parallel processing.
|
|
Such requests do not advance the stream position immediately unless
|
|
.Sy zfetch_hole_shift
|
|
fill threshold is reached, but saved to fill holes in the stream later.
|
|
.
|
|
.It Sy zfetch_max_streams Ns = Ns Sy 8 Pq uint
|
|
Max number of streams per zfetch (prefetch streams per file).
|
|
.
|
|
.It Sy zfetch_min_sec_reap Ns = Ns Sy 1 Pq uint
|
|
Min time before inactive prefetch stream can be reclaimed
|
|
.
|
|
.It Sy zfetch_max_sec_reap Ns = Ns Sy 2 Pq uint
|
|
Max time before inactive prefetch stream can be deleted
|
|
.
|
|
.It Sy zfs_abd_scatter_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Enables ARC from using scatter/gather lists and forces all allocations to be
|
|
linear in kernel memory.
|
|
Disabling can improve performance in some code paths
|
|
at the expense of fragmented kernel memory.
|
|
.
|
|
.It Sy zfs_abd_scatter_max_order Ns = Ns Sy MAX_ORDER\-1 Pq uint
|
|
Maximum number of consecutive memory pages allocated in a single block for
|
|
scatter/gather lists.
|
|
.Pp
|
|
The value of
|
|
.Sy MAX_ORDER
|
|
depends on kernel configuration.
|
|
.
|
|
.It Sy zfs_abd_scatter_min_size Ns = Ns Sy 1536 Ns B Po 1.5 KiB Pc Pq uint
|
|
This is the minimum allocation size that will use scatter (page-based) ABDs.
|
|
Smaller allocations will use linear ABDs.
|
|
.
|
|
.It Sy zfs_arc_dnode_limit Ns = Ns Sy 0 Ns B Pq u64
|
|
When the number of bytes consumed by dnodes in the ARC exceeds this number of
|
|
bytes, try to unpin some of it in response to demand for non-metadata.
|
|
This value acts as a ceiling to the amount of dnode metadata, and defaults to
|
|
.Sy 0 ,
|
|
which indicates that a percent which is based on
|
|
.Sy zfs_arc_dnode_limit_percent
|
|
of the ARC meta buffers that may be used for dnodes.
|
|
.It Sy zfs_arc_dnode_limit_percent Ns = Ns Sy 10 Ns % Pq u64
|
|
Percentage that can be consumed by dnodes of ARC meta buffers.
|
|
.Pp
|
|
See also
|
|
.Sy zfs_arc_dnode_limit ,
|
|
which serves a similar purpose but has a higher priority if nonzero.
|
|
.
|
|
.It Sy zfs_arc_dnode_reduce_percent Ns = Ns Sy 10 Ns % Pq u64
|
|
Percentage of ARC dnodes to try to scan in response to demand for non-metadata
|
|
when the number of bytes consumed by dnodes exceeds
|
|
.Sy zfs_arc_dnode_limit .
|
|
.
|
|
.It Sy zfs_arc_average_blocksize Ns = Ns Sy 8192 Ns B Po 8 KiB Pc Pq uint
|
|
The ARC's buffer hash table is sized based on the assumption of an average
|
|
block size of this value.
|
|
This works out to roughly 1 MiB of hash table per 1 GiB of physical memory
|
|
with 8-byte pointers.
|
|
For configurations with a known larger average block size,
|
|
this value can be increased to reduce the memory footprint.
|
|
.
|
|
.It Sy zfs_arc_eviction_pct Ns = Ns Sy 200 Ns % Pq uint
|
|
When
|
|
.Fn arc_is_overflowing ,
|
|
.Fn arc_get_data_impl
|
|
waits for this percent of the requested amount of data to be evicted.
|
|
For example, by default, for every
|
|
.Em 2 KiB
|
|
that's evicted,
|
|
.Em 1 KiB
|
|
of it may be "reused" by a new allocation.
|
|
Since this is above
|
|
.Sy 100 Ns % ,
|
|
it ensures that progress is made towards getting
|
|
.Sy arc_size No under Sy arc_c .
|
|
Since this is finite, it ensures that allocations can still happen,
|
|
even during the potentially long time that
|
|
.Sy arc_size No is more than Sy arc_c .
|
|
.
|
|
.It Sy zfs_arc_evict_batch_limit Ns = Ns Sy 10 Pq uint
|
|
Number ARC headers to evict per sub-list before proceeding to another sub-list.
|
|
This batch-style operation prevents entire sub-lists from being evicted at once
|
|
but comes at a cost of additional unlocking and locking.
|
|
.
|
|
.It Sy zfs_arc_grow_retry Ns = Ns Sy 0 Ns s Pq uint
|
|
If set to a non zero value, it will replace the
|
|
.Sy arc_grow_retry
|
|
value with this value.
|
|
The
|
|
.Sy arc_grow_retry
|
|
.No value Pq default Sy 5 Ns s
|
|
is the number of seconds the ARC will wait before
|
|
trying to resume growth after a memory pressure event.
|
|
.
|
|
.It Sy zfs_arc_lotsfree_percent Ns = Ns Sy 10 Ns % Pq int
|
|
Throttle I/O when free system memory drops below this percentage of total
|
|
system memory.
|
|
Setting this value to
|
|
.Sy 0
|
|
will disable the throttle.
|
|
.
|
|
.It Sy zfs_arc_max Ns = Ns Sy 0 Ns B Pq u64
|
|
Max size of ARC in bytes.
|
|
If
|
|
.Sy 0 ,
|
|
then the max size of ARC is determined by the amount of system memory installed.
|
|
The larger of
|
|
.Sy all_system_memory No \- Sy 1 GiB
|
|
and
|
|
.Sy 5/8 No \(mu Sy all_system_memory
|
|
will be used as the limit.
|
|
This value must be at least
|
|
.Sy 67108864 Ns B Pq 64 MiB .
|
|
.Pp
|
|
This value can be changed dynamically, with some caveats.
|
|
It cannot be set back to
|
|
.Sy 0
|
|
while running, and reducing it below the current ARC size will not cause
|
|
the ARC to shrink without memory pressure to induce shrinking.
|
|
.
|
|
.It Sy zfs_arc_meta_balance Ns = Ns Sy 500 Pq uint
|
|
Balance between metadata and data on ghost hits.
|
|
Values above 100 increase metadata caching by proportionally reducing effect
|
|
of ghost data hits on target data/metadata rate.
|
|
.
|
|
.It Sy zfs_arc_min Ns = Ns Sy 0 Ns B Pq u64
|
|
Min size of ARC in bytes.
|
|
.No If set to Sy 0 , arc_c_min
|
|
will default to consuming the larger of
|
|
.Sy 32 MiB
|
|
and
|
|
.Sy all_system_memory No / Sy 32 .
|
|
.
|
|
.It Sy zfs_arc_min_prefetch_ms Ns = Ns Sy 0 Ns ms Ns Po Ns ≡ Ns 1s Pc Pq uint
|
|
Minimum time prefetched blocks are locked in the ARC.
|
|
.
|
|
.It Sy zfs_arc_min_prescient_prefetch_ms Ns = Ns Sy 0 Ns ms Ns Po Ns ≡ Ns 6s Pc Pq uint
|
|
Minimum time "prescient prefetched" blocks are locked in the ARC.
|
|
These blocks are meant to be prefetched fairly aggressively ahead of
|
|
the code that may use them.
|
|
.
|
|
.It Sy zfs_arc_prune_task_threads Ns = Ns Sy 1 Pq int
|
|
Number of arc_prune threads.
|
|
.Fx
|
|
does not need more than one.
|
|
Linux may theoretically use one per mount point up to number of CPUs,
|
|
but that was not proven to be useful.
|
|
.
|
|
.It Sy zfs_max_missing_tvds Ns = Ns Sy 0 Pq int
|
|
Number of missing top-level vdevs which will be allowed during
|
|
pool import (only in read-only mode).
|
|
.
|
|
.It Sy zfs_max_nvlist_src_size Ns = Sy 0 Pq u64
|
|
Maximum size in bytes allowed to be passed as
|
|
.Sy zc_nvlist_src_size
|
|
for ioctls on
|
|
.Pa /dev/zfs .
|
|
This prevents a user from causing the kernel to allocate
|
|
an excessive amount of memory.
|
|
When the limit is exceeded, the ioctl fails with
|
|
.Sy EINVAL
|
|
and a description of the error is sent to the
|
|
.Pa zfs-dbgmsg
|
|
log.
|
|
This parameter should not need to be touched under normal circumstances.
|
|
If
|
|
.Sy 0 ,
|
|
equivalent to a quarter of the user-wired memory limit under
|
|
.Fx
|
|
and to
|
|
.Sy 134217728 Ns B Pq 128 MiB
|
|
under Linux.
|
|
.
|
|
.It Sy zfs_multilist_num_sublists Ns = Ns Sy 0 Pq uint
|
|
To allow more fine-grained locking, each ARC state contains a series
|
|
of lists for both data and metadata objects.
|
|
Locking is performed at the level of these "sub-lists".
|
|
This parameters controls the number of sub-lists per ARC state,
|
|
and also applies to other uses of the multilist data structure.
|
|
.Pp
|
|
If
|
|
.Sy 0 ,
|
|
equivalent to the greater of the number of online CPUs and
|
|
.Sy 4 .
|
|
.
|
|
.It Sy zfs_arc_overflow_shift Ns = Ns Sy 8 Pq int
|
|
The ARC size is considered to be overflowing if it exceeds the current
|
|
ARC target size
|
|
.Pq Sy arc_c
|
|
by thresholds determined by this parameter.
|
|
Exceeding by
|
|
.Sy ( arc_c No >> Sy zfs_arc_overflow_shift ) No / Sy 2
|
|
starts ARC reclamation process.
|
|
If that appears insufficient, exceeding by
|
|
.Sy ( arc_c No >> Sy zfs_arc_overflow_shift ) No \(mu Sy 1.5
|
|
blocks new buffer allocation until the reclaim thread catches up.
|
|
Started reclamation process continues till ARC size returns below the
|
|
target size.
|
|
.Pp
|
|
The default value of
|
|
.Sy 8
|
|
causes the ARC to start reclamation if it exceeds the target size by
|
|
.Em 0.2%
|
|
of the target size, and block allocations by
|
|
.Em 0.6% .
|
|
.
|
|
.It Sy zfs_arc_shrink_shift Ns = Ns Sy 0 Pq uint
|
|
If nonzero, this will update
|
|
.Sy arc_shrink_shift Pq default Sy 7
|
|
with the new value.
|
|
.
|
|
.It Sy zfs_arc_pc_percent Ns = Ns Sy 0 Ns % Po off Pc Pq uint
|
|
Percent of pagecache to reclaim ARC to.
|
|
.Pp
|
|
This tunable allows the ZFS ARC to play more nicely
|
|
with the kernel's LRU pagecache.
|
|
It can guarantee that the ARC size won't collapse under scanning
|
|
pressure on the pagecache, yet still allows the ARC to be reclaimed down to
|
|
.Sy zfs_arc_min
|
|
if necessary.
|
|
This value is specified as percent of pagecache size (as measured by
|
|
.Sy NR_FILE_PAGES ) ,
|
|
where that percent may exceed
|
|
.Sy 100 .
|
|
This
|
|
only operates during memory pressure/reclaim.
|
|
.
|
|
.It Sy zfs_arc_shrinker_limit Ns = Ns Sy 10000 Pq int
|
|
This is a limit on how many pages the ARC shrinker makes available for
|
|
eviction in response to one page allocation attempt.
|
|
Note that in practice, the kernel's shrinker can ask us to evict
|
|
up to about four times this for one allocation attempt.
|
|
.Pp
|
|
The default limit of
|
|
.Sy 10000 Pq in practice, Em 160 MiB No per allocation attempt with 4 KiB pages
|
|
limits the amount of time spent attempting to reclaim ARC memory to
|
|
less than 100 ms per allocation attempt,
|
|
even with a small average compressed block size of ~8 KiB.
|
|
.Pp
|
|
The parameter can be set to 0 (zero) to disable the limit,
|
|
and only applies on Linux.
|
|
.
|
|
.It Sy zfs_arc_shrinker_seeks Ns = Ns Sy 2 Pq int
|
|
Relative cost of ARC eviction on Linux, AKA number of seeks needed to
|
|
restore evicted page.
|
|
Bigger values make ARC more precious and evictions smaller, comparing to
|
|
other kernel subsystems.
|
|
Value of 4 means parity with page cache.
|
|
.
|
|
.It Sy zfs_arc_sys_free Ns = Ns Sy 0 Ns B Pq u64
|
|
The target number of bytes the ARC should leave as free memory on the system.
|
|
If zero, equivalent to the bigger of
|
|
.Sy 512 KiB No and Sy all_system_memory/64 .
|
|
.
|
|
.It Sy zfs_autoimport_disable Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Disable pool import at module load by ignoring the cache file
|
|
.Pq Sy spa_config_path .
|
|
.
|
|
.It Sy zfs_checksum_events_per_second Ns = Ns Sy 20 Ns /s Pq uint
|
|
Rate limit checksum events to this many per second.
|
|
Note that this should not be set below the ZED thresholds
|
|
(currently 10 checksums over 10 seconds)
|
|
or else the daemon may not trigger any action.
|
|
.
|
|
.It Sy zfs_commit_timeout_pct Ns = Ns Sy 10 Ns % Pq uint
|
|
This controls the amount of time that a ZIL block (lwb) will remain "open"
|
|
when it isn't "full", and it has a thread waiting for it to be committed to
|
|
stable storage.
|
|
The timeout is scaled based on a percentage of the last lwb
|
|
latency to avoid significantly impacting the latency of each individual
|
|
transaction record (itx).
|
|
.
|
|
.It Sy zfs_condense_indirect_commit_entry_delay_ms Ns = Ns Sy 0 Ns ms Pq int
|
|
Vdev indirection layer (used for device removal) sleeps for this many
|
|
milliseconds during mapping generation.
|
|
Intended for use with the test suite to throttle vdev removal speed.
|
|
.
|
|
.It Sy zfs_condense_indirect_obsolete_pct Ns = Ns Sy 25 Ns % Pq uint
|
|
Minimum percent of obsolete bytes in vdev mapping required to attempt to
|
|
condense
|
|
.Pq see Sy zfs_condense_indirect_vdevs_enable .
|
|
Intended for use with the test suite
|
|
to facilitate triggering condensing as needed.
|
|
.
|
|
.It Sy zfs_condense_indirect_vdevs_enable Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Enable condensing indirect vdev mappings.
|
|
When set, attempt to condense indirect vdev mappings
|
|
if the mapping uses more than
|
|
.Sy zfs_condense_min_mapping_bytes
|
|
bytes of memory and if the obsolete space map object uses more than
|
|
.Sy zfs_condense_max_obsolete_bytes
|
|
bytes on-disk.
|
|
The condensing process is an attempt to save memory by removing obsolete
|
|
mappings.
|
|
.
|
|
.It Sy zfs_condense_max_obsolete_bytes Ns = Ns Sy 1073741824 Ns B Po 1 GiB Pc Pq u64
|
|
Only attempt to condense indirect vdev mappings if the on-disk size
|
|
of the obsolete space map object is greater than this number of bytes
|
|
.Pq see Sy zfs_condense_indirect_vdevs_enable .
|
|
.
|
|
.It Sy zfs_condense_min_mapping_bytes Ns = Ns Sy 131072 Ns B Po 128 KiB Pc Pq u64
|
|
Minimum size vdev mapping to attempt to condense
|
|
.Pq see Sy zfs_condense_indirect_vdevs_enable .
|
|
.
|
|
.It Sy zfs_dbgmsg_enable Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Internally ZFS keeps a small log to facilitate debugging.
|
|
The log is enabled by default, and can be disabled by unsetting this option.
|
|
The contents of the log can be accessed by reading
|
|
.Pa /proc/spl/kstat/zfs/dbgmsg .
|
|
Writing
|
|
.Sy 0
|
|
to the file clears the log.
|
|
.Pp
|
|
This setting does not influence debug prints due to
|
|
.Sy zfs_flags .
|
|
.
|
|
.It Sy zfs_dbgmsg_maxsize Ns = Ns Sy 4194304 Ns B Po 4 MiB Pc Pq uint
|
|
Maximum size of the internal ZFS debug log.
|
|
.
|
|
.It Sy zfs_dbuf_state_index Ns = Ns Sy 0 Pq int
|
|
Historically used for controlling what reporting was available under
|
|
.Pa /proc/spl/kstat/zfs .
|
|
No effect.
|
|
.
|
|
.It Sy zfs_deadman_checktime_ms Ns = Ns Sy 60000 Ns ms Po 1 min Pc Pq u64
|
|
Check time in milliseconds.
|
|
This defines the frequency at which we check for hung I/O requests
|
|
and potentially invoke the
|
|
.Sy zfs_deadman_failmode
|
|
behavior.
|
|
.
|
|
.It Sy zfs_deadman_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
When a pool sync operation takes longer than
|
|
.Sy zfs_deadman_synctime_ms ,
|
|
or when an individual I/O operation takes longer than
|
|
.Sy zfs_deadman_ziotime_ms ,
|
|
then the operation is considered to be "hung".
|
|
If
|
|
.Sy zfs_deadman_enabled
|
|
is set, then the deadman behavior is invoked as described by
|
|
.Sy zfs_deadman_failmode .
|
|
By default, the deadman is enabled and set to
|
|
.Sy wait
|
|
which results in "hung" I/O operations only being logged.
|
|
The deadman is automatically disabled when a pool gets suspended.
|
|
.
|
|
.It Sy zfs_deadman_events_per_second Ns = Ns Sy 1 Ns /s Pq int
|
|
Rate limit deadman zevents (which report hung I/O operations) to this many per
|
|
second.
|
|
.
|
|
.It Sy zfs_deadman_failmode Ns = Ns Sy wait Pq charp
|
|
Controls the failure behavior when the deadman detects a "hung" I/O operation.
|
|
Valid values are:
|
|
.Bl -tag -compact -offset 4n -width "continue"
|
|
.It Sy wait
|
|
Wait for a "hung" operation to complete.
|
|
For each "hung" operation a "deadman" event will be posted
|
|
describing that operation.
|
|
.It Sy continue
|
|
Attempt to recover from a "hung" operation by re-dispatching it
|
|
to the I/O pipeline if possible.
|
|
.It Sy panic
|
|
Panic the system.
|
|
This can be used to facilitate automatic fail-over
|
|
to a properly configured fail-over partner.
|
|
.El
|
|
.
|
|
.It Sy zfs_deadman_synctime_ms Ns = Ns Sy 600000 Ns ms Po 10 min Pc Pq u64
|
|
Interval in milliseconds after which the deadman is triggered and also
|
|
the interval after which a pool sync operation is considered to be "hung".
|
|
Once this limit is exceeded the deadman will be invoked every
|
|
.Sy zfs_deadman_checktime_ms
|
|
milliseconds until the pool sync completes.
|
|
.
|
|
.It Sy zfs_deadman_ziotime_ms Ns = Ns Sy 300000 Ns ms Po 5 min Pc Pq u64
|
|
Interval in milliseconds after which the deadman is triggered and an
|
|
individual I/O operation is considered to be "hung".
|
|
As long as the operation remains "hung",
|
|
the deadman will be invoked every
|
|
.Sy zfs_deadman_checktime_ms
|
|
milliseconds until the operation completes.
|
|
.
|
|
.It Sy zfs_dedup_prefetch Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Enable prefetching dedup-ed blocks which are going to be freed.
|
|
.
|
|
.It Sy zfs_dedup_log_flush_passes_max Ns = Ns Sy 8 Ns Pq uint
|
|
Maximum number of dedup log flush passes (iterations) each transaction.
|
|
.Pp
|
|
At the start of each transaction, OpenZFS will estimate how many entries it
|
|
needs to flush out to keep up with the change rate, taking the amount and time
|
|
taken to flush on previous txgs into account (see
|
|
.Sy zfs_dedup_log_flush_flow_rate_txgs ) .
|
|
It will spread this amount into a number of passes.
|
|
At each pass, it will use the amount already flushed and the total time taken
|
|
by flushing and by other IO to recompute how much it should do for the remainder
|
|
of the txg.
|
|
.Pp
|
|
Reducing the max number of passes will make flushing more aggressive, flushing
|
|
out more entries on each pass.
|
|
This can be faster, but also more likely to compete with other IO.
|
|
Increasing the max number of passes will put fewer entries onto each pass,
|
|
keeping the overhead of dedup changes to a minimum but possibly causing a large
|
|
number of changes to be dumped on the last pass, which can blow out the txg
|
|
sync time beyond
|
|
.Sy zfs_txg_timeout .
|
|
.
|
|
.It Sy zfs_dedup_log_flush_min_time_ms Ns = Ns Sy 1000 Ns Pq uint
|
|
Minimum time to spend on dedup log flush each transaction.
|
|
.Pp
|
|
At least this long will be spent flushing dedup log entries each transaction,
|
|
up to
|
|
.Sy zfs_txg_timeout .
|
|
This occurs even if doing so would delay the transaction, that is, other IO
|
|
completes under this time.
|
|
.
|
|
.It Sy zfs_dedup_log_flush_entries_min Ns = Ns Sy 1000 Ns Pq uint
|
|
Flush at least this many entries each transaction.
|
|
.Pp
|
|
OpenZFS will estimate how many entries it needs to flush each transaction to
|
|
keep up with the ingest rate (see
|
|
.Sy zfs_dedup_log_flush_flow_rate_txgs ) .
|
|
This sets the minimum for that estimate.
|
|
Raising it can force OpenZFS to flush more aggressively, keeping the log small
|
|
and so reducing pool import times, but can make it less able to back off if
|
|
log flushing would compete with other IO too much.
|
|
.
|
|
.It Sy zfs_dedup_log_flush_flow_rate_txgs Ns = Ns Sy 10 Ns Pq uint
|
|
Number of transactions to use to compute the flow rate.
|
|
.Pp
|
|
OpenZFS will estimate how many entries it needs to flush each transaction by
|
|
monitoring the number of entries changed (ingest rate), number of entries
|
|
flushed (flush rate) and time spent flushing (flush time rate) and combining
|
|
these into an overall "flow rate".
|
|
It will use an exponential weighted moving average over some number of recent
|
|
transactions to compute these rates.
|
|
This sets the number of transactions to compute these averages over.
|
|
Setting it higher can help to smooth out the flow rate in the face of spiky
|
|
workloads, but will take longer for the flow rate to adjust to a sustained
|
|
change in the ingress rate.
|
|
.
|
|
.It Sy zfs_dedup_log_txg_max Ns = Ns Sy 8 Ns Pq uint
|
|
Max transactions to before starting to flush dedup logs.
|
|
.Pp
|
|
OpenZFS maintains two dedup logs, one receiving new changes, one flushing.
|
|
If there is nothing to flush, it will accumulate changes for no more than this
|
|
many transactions before switching the logs and starting to flush entries out.
|
|
.
|
|
.It Sy zfs_dedup_log_mem_max Ns = Ns Sy 0 Ns Pq u64
|
|
Max memory to use for dedup logs.
|
|
.Pp
|
|
OpenZFS will spend no more than this much memory on maintaining the in-memory
|
|
dedup log.
|
|
Flushing will begin when around half this amount is being spent on logs.
|
|
The default value of
|
|
.Sy 0
|
|
will cause it to be set by
|
|
.Sy zfs_dedup_log_mem_max_percent
|
|
instead.
|
|
.
|
|
.It Sy zfs_dedup_log_mem_max_percent Ns = Ns Sy 1 Ns % Pq uint
|
|
Max memory to use for dedup logs, as a percentage of total memory.
|
|
.Pp
|
|
If
|
|
.Sy zfs_dedup_log_mem_max
|
|
is not set, it will be initialised as a percentage of the total memory in the
|
|
system.
|
|
.
|
|
.It Sy zfs_delay_min_dirty_percent Ns = Ns Sy 60 Ns % Pq uint
|
|
Start to delay each transaction once there is this amount of dirty data,
|
|
expressed as a percentage of
|
|
.Sy zfs_dirty_data_max .
|
|
This value should be at least
|
|
.Sy zfs_vdev_async_write_active_max_dirty_percent .
|
|
.No See Sx ZFS TRANSACTION DELAY .
|
|
.
|
|
.It Sy zfs_delay_scale Ns = Ns Sy 500000 Pq int
|
|
This controls how quickly the transaction delay approaches infinity.
|
|
Larger values cause longer delays for a given amount of dirty data.
|
|
.Pp
|
|
For the smoothest delay, this value should be about 1 billion divided
|
|
by the maximum number of operations per second.
|
|
This will smoothly handle between ten times and a tenth of this number.
|
|
.No See Sx ZFS TRANSACTION DELAY .
|
|
.Pp
|
|
.Sy zfs_delay_scale No \(mu Sy zfs_dirty_data_max Em must No be smaller than Sy 2^64 .
|
|
.
|
|
.It Sy zfs_disable_ivset_guid_check Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Disables requirement for IVset GUIDs to be present and match when doing a raw
|
|
receive of encrypted datasets.
|
|
Intended for users whose pools were created with
|
|
OpenZFS pre-release versions and now have compatibility issues.
|
|
.
|
|
.It Sy zfs_key_max_salt_uses Ns = Ns Sy 400000000 Po 4*10^8 Pc Pq ulong
|
|
Maximum number of uses of a single salt value before generating a new one for
|
|
encrypted datasets.
|
|
The default value is also the maximum.
|
|
.
|
|
.It Sy zfs_object_mutex_size Ns = Ns Sy 64 Pq uint
|
|
Size of the znode hashtable used for holds.
|
|
.Pp
|
|
Due to the need to hold locks on objects that may not exist yet, kernel mutexes
|
|
are not created per-object and instead a hashtable is used where collisions
|
|
will result in objects waiting when there is not actually contention on the
|
|
same object.
|
|
.
|
|
.It Sy zfs_slow_io_events_per_second Ns = Ns Sy 20 Ns /s Pq int
|
|
Rate limit delay zevents (which report slow I/O operations) to this many per
|
|
second.
|
|
.
|
|
.It Sy zfs_unflushed_max_mem_amt Ns = Ns Sy 1073741824 Ns B Po 1 GiB Pc Pq u64
|
|
Upper-bound limit for unflushed metadata changes to be held by the
|
|
log spacemap in memory, in bytes.
|
|
.
|
|
.It Sy zfs_unflushed_max_mem_ppm Ns = Ns Sy 1000 Ns ppm Po 0.1% Pc Pq u64
|
|
Part of overall system memory that ZFS allows to be used
|
|
for unflushed metadata changes by the log spacemap, in millionths.
|
|
.
|
|
.It Sy zfs_unflushed_log_block_max Ns = Ns Sy 131072 Po 128k Pc Pq u64
|
|
Describes the maximum number of log spacemap blocks allowed for each pool.
|
|
The default value means that the space in all the log spacemaps
|
|
can add up to no more than
|
|
.Sy 131072
|
|
blocks (which means
|
|
.Em 16 GiB
|
|
of logical space before compression and ditto blocks,
|
|
assuming that blocksize is
|
|
.Em 128 KiB ) .
|
|
.Pp
|
|
This tunable is important because it involves a trade-off between import
|
|
time after an unclean export and the frequency of flushing metaslabs.
|
|
The higher this number is, the more log blocks we allow when the pool is
|
|
active which means that we flush metaslabs less often and thus decrease
|
|
the number of I/O operations for spacemap updates per TXG.
|
|
At the same time though, that means that in the event of an unclean export,
|
|
there will be more log spacemap blocks for us to read, inducing overhead
|
|
in the import time of the pool.
|
|
The lower the number, the amount of flushing increases, destroying log
|
|
blocks quicker as they become obsolete faster, which leaves less blocks
|
|
to be read during import time after a crash.
|
|
.Pp
|
|
Each log spacemap block existing during pool import leads to approximately
|
|
one extra logical I/O issued.
|
|
This is the reason why this tunable is exposed in terms of blocks rather
|
|
than space used.
|
|
.
|
|
.It Sy zfs_unflushed_log_block_min Ns = Ns Sy 1000 Pq u64
|
|
If the number of metaslabs is small and our incoming rate is high,
|
|
we could get into a situation that we are flushing all our metaslabs every TXG.
|
|
Thus we always allow at least this many log blocks.
|
|
.
|
|
.It Sy zfs_unflushed_log_block_pct Ns = Ns Sy 400 Ns % Pq u64
|
|
Tunable used to determine the number of blocks that can be used for
|
|
the spacemap log, expressed as a percentage of the total number of
|
|
unflushed metaslabs in the pool.
|
|
.
|
|
.It Sy zfs_unflushed_log_txg_max Ns = Ns Sy 1000 Pq u64
|
|
Tunable limiting maximum time in TXGs any metaslab may remain unflushed.
|
|
It effectively limits maximum number of unflushed per-TXG spacemap logs
|
|
that need to be read after unclean pool export.
|
|
.
|
|
.It Sy zfs_unlink_suspend_progress Ns = Ns Sy 0 Ns | Ns 1 Pq uint
|
|
When enabled, files will not be asynchronously removed from the list of pending
|
|
unlinks and the space they consume will be leaked.
|
|
Once this option has been disabled and the dataset is remounted,
|
|
the pending unlinks will be processed and the freed space returned to the pool.
|
|
This option is used by the test suite.
|
|
.
|
|
.It Sy zfs_delete_blocks Ns = Ns Sy 20480 Pq ulong
|
|
This is the used to define a large file for the purposes of deletion.
|
|
Files containing more than
|
|
.Sy zfs_delete_blocks
|
|
will be deleted asynchronously, while smaller files are deleted synchronously.
|
|
Decreasing this value will reduce the time spent in an
|
|
.Xr unlink 2
|
|
system call, at the expense of a longer delay before the freed space is
|
|
available.
|
|
This only applies on Linux.
|
|
.
|
|
.It Sy zfs_dirty_data_max Ns = Pq int
|
|
Determines the dirty space limit in bytes.
|
|
Once this limit is exceeded, new writes are halted until space frees up.
|
|
This parameter takes precedence over
|
|
.Sy zfs_dirty_data_max_percent .
|
|
.No See Sx ZFS TRANSACTION DELAY .
|
|
.Pp
|
|
Defaults to
|
|
.Sy physical_ram/10 ,
|
|
capped at
|
|
.Sy zfs_dirty_data_max_max .
|
|
.
|
|
.It Sy zfs_dirty_data_max_max Ns = Pq int
|
|
Maximum allowable value of
|
|
.Sy zfs_dirty_data_max ,
|
|
expressed in bytes.
|
|
This limit is only enforced at module load time, and will be ignored if
|
|
.Sy zfs_dirty_data_max
|
|
is later changed.
|
|
This parameter takes precedence over
|
|
.Sy zfs_dirty_data_max_max_percent .
|
|
.No See Sx ZFS TRANSACTION DELAY .
|
|
.Pp
|
|
Defaults to
|
|
.Sy min(physical_ram/4, 4GiB) ,
|
|
or
|
|
.Sy min(physical_ram/4, 1GiB)
|
|
for 32-bit systems.
|
|
.
|
|
.It Sy zfs_dirty_data_max_max_percent Ns = Ns Sy 25 Ns % Pq uint
|
|
Maximum allowable value of
|
|
.Sy zfs_dirty_data_max ,
|
|
expressed as a percentage of physical RAM.
|
|
This limit is only enforced at module load time, and will be ignored if
|
|
.Sy zfs_dirty_data_max
|
|
is later changed.
|
|
The parameter
|
|
.Sy zfs_dirty_data_max_max
|
|
takes precedence over this one.
|
|
.No See Sx ZFS TRANSACTION DELAY .
|
|
.
|
|
.It Sy zfs_dirty_data_max_percent Ns = Ns Sy 10 Ns % Pq uint
|
|
Determines the dirty space limit, expressed as a percentage of all memory.
|
|
Once this limit is exceeded, new writes are halted until space frees up.
|
|
The parameter
|
|
.Sy zfs_dirty_data_max
|
|
takes precedence over this one.
|
|
.No See Sx ZFS TRANSACTION DELAY .
|
|
.Pp
|
|
Subject to
|
|
.Sy zfs_dirty_data_max_max .
|
|
.
|
|
.It Sy zfs_dirty_data_sync_percent Ns = Ns Sy 20 Ns % Pq uint
|
|
Start syncing out a transaction group if there's at least this much dirty data
|
|
.Pq as a percentage of Sy zfs_dirty_data_max .
|
|
This should be less than
|
|
.Sy zfs_vdev_async_write_active_min_dirty_percent .
|
|
.
|
|
.It Sy zfs_wrlog_data_max Ns = Pq int
|
|
The upper limit of write-transaction zil log data size in bytes.
|
|
Write operations are throttled when approaching the limit until log data is
|
|
cleared out after transaction group sync.
|
|
Because of some overhead, it should be set at least 2 times the size of
|
|
.Sy zfs_dirty_data_max
|
|
.No to prevent harming normal write throughput .
|
|
It also should be smaller than the size of the slog device if slog is present.
|
|
.Pp
|
|
Defaults to
|
|
.Sy zfs_dirty_data_max*2
|
|
.
|
|
.It Sy zfs_fallocate_reserve_percent Ns = Ns Sy 110 Ns % Pq uint
|
|
Since ZFS is a copy-on-write filesystem with snapshots, blocks cannot be
|
|
preallocated for a file in order to guarantee that later writes will not
|
|
run out of space.
|
|
Instead,
|
|
.Xr fallocate 2
|
|
space preallocation only checks that sufficient space is currently available
|
|
in the pool or the user's project quota allocation,
|
|
and then creates a sparse file of the requested size.
|
|
The requested space is multiplied by
|
|
.Sy zfs_fallocate_reserve_percent
|
|
to allow additional space for indirect blocks and other internal metadata.
|
|
Setting this to
|
|
.Sy 0
|
|
disables support for
|
|
.Xr fallocate 2
|
|
and causes it to return
|
|
.Sy EOPNOTSUPP .
|
|
.
|
|
.It Sy zfs_fletcher_4_impl Ns = Ns Sy fastest Pq string
|
|
Select a fletcher 4 implementation.
|
|
.Pp
|
|
Supported selectors are:
|
|
.Sy fastest , scalar , sse2 , ssse3 , avx2 , avx512f , avx512bw ,
|
|
.No and Sy aarch64_neon .
|
|
All except
|
|
.Sy fastest No and Sy scalar
|
|
require instruction set extensions to be available,
|
|
and will only appear if ZFS detects that they are present at runtime.
|
|
If multiple implementations of fletcher 4 are available, the
|
|
.Sy fastest
|
|
will be chosen using a micro benchmark.
|
|
Selecting
|
|
.Sy scalar
|
|
results in the original CPU-based calculation being used.
|
|
Selecting any option other than
|
|
.Sy fastest No or Sy scalar
|
|
results in vector instructions
|
|
from the respective CPU instruction set being used.
|
|
.
|
|
.It Sy zfs_bclone_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Enable the experimental block cloning feature.
|
|
If this setting is 0, then even if feature@block_cloning is enabled,
|
|
attempts to clone blocks will act as though the feature is disabled.
|
|
.
|
|
.It Sy zfs_bclone_wait_dirty Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
When set to 1 the FICLONE and FICLONERANGE ioctls wait for dirty data to be
|
|
written to disk.
|
|
This allows the clone operation to reliably succeed when a file is
|
|
modified and then immediately cloned.
|
|
For small files this may be slower than making a copy of the file.
|
|
Therefore, this setting defaults to 0 which causes a clone operation to
|
|
immediately fail when encountering a dirty block.
|
|
.
|
|
.It Sy zfs_blake3_impl Ns = Ns Sy fastest Pq string
|
|
Select a BLAKE3 implementation.
|
|
.Pp
|
|
Supported selectors are:
|
|
.Sy cycle , fastest , generic , sse2 , sse41 , avx2 , avx512 .
|
|
All except
|
|
.Sy cycle , fastest No and Sy generic
|
|
require instruction set extensions to be available,
|
|
and will only appear if ZFS detects that they are present at runtime.
|
|
If multiple implementations of BLAKE3 are available, the
|
|
.Sy fastest will be chosen using a micro benchmark. You can see the
|
|
benchmark results by reading this kstat file:
|
|
.Pa /proc/spl/kstat/zfs/chksum_bench .
|
|
.
|
|
.It Sy zfs_free_bpobj_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Enable/disable the processing of the free_bpobj object.
|
|
.
|
|
.It Sy zfs_async_block_max_blocks Ns = Ns Sy UINT64_MAX Po unlimited Pc Pq u64
|
|
Maximum number of blocks freed in a single TXG.
|
|
.
|
|
.It Sy zfs_max_async_dedup_frees Ns = Ns Sy 100000 Po 10^5 Pc Pq u64
|
|
Maximum number of dedup blocks freed in a single TXG.
|
|
.
|
|
.It Sy zfs_vdev_async_read_max_active Ns = Ns Sy 3 Pq uint
|
|
Maximum asynchronous read I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_async_read_min_active Ns = Ns Sy 1 Pq uint
|
|
Minimum asynchronous read I/O operation active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_async_write_active_max_dirty_percent Ns = Ns Sy 60 Ns % Pq uint
|
|
When the pool has more than this much dirty data, use
|
|
.Sy zfs_vdev_async_write_max_active
|
|
to limit active async writes.
|
|
If the dirty data is between the minimum and maximum,
|
|
the active I/O limit is linearly interpolated.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_async_write_active_min_dirty_percent Ns = Ns Sy 30 Ns % Pq uint
|
|
When the pool has less than this much dirty data, use
|
|
.Sy zfs_vdev_async_write_min_active
|
|
to limit active async writes.
|
|
If the dirty data is between the minimum and maximum,
|
|
the active I/O limit is linearly
|
|
interpolated.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_async_write_max_active Ns = Ns Sy 10 Pq uint
|
|
Maximum asynchronous write I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_async_write_min_active Ns = Ns Sy 2 Pq uint
|
|
Minimum asynchronous write I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.Pp
|
|
Lower values are associated with better latency on rotational media but poorer
|
|
resilver performance.
|
|
The default value of
|
|
.Sy 2
|
|
was chosen as a compromise.
|
|
A value of
|
|
.Sy 3
|
|
has been shown to improve resilver performance further at a cost of
|
|
further increasing latency.
|
|
.
|
|
.It Sy zfs_vdev_initializing_max_active Ns = Ns Sy 1 Pq uint
|
|
Maximum initializing I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_initializing_min_active Ns = Ns Sy 1 Pq uint
|
|
Minimum initializing I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_max_active Ns = Ns Sy 1000 Pq uint
|
|
The maximum number of I/O operations active to each device.
|
|
Ideally, this will be at least the sum of each queue's
|
|
.Sy max_active .
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_open_timeout_ms Ns = Ns Sy 1000 Pq uint
|
|
Timeout value to wait before determining a device is missing
|
|
during import.
|
|
This is helpful for transient missing paths due
|
|
to links being briefly removed and recreated in response to
|
|
udev events.
|
|
.
|
|
.It Sy zfs_vdev_rebuild_max_active Ns = Ns Sy 3 Pq uint
|
|
Maximum sequential resilver I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_rebuild_min_active Ns = Ns Sy 1 Pq uint
|
|
Minimum sequential resilver I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_removal_max_active Ns = Ns Sy 2 Pq uint
|
|
Maximum removal I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_removal_min_active Ns = Ns Sy 1 Pq uint
|
|
Minimum removal I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_scrub_max_active Ns = Ns Sy 2 Pq uint
|
|
Maximum scrub I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_scrub_min_active Ns = Ns Sy 1 Pq uint
|
|
Minimum scrub I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_sync_read_max_active Ns = Ns Sy 10 Pq uint
|
|
Maximum synchronous read I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_sync_read_min_active Ns = Ns Sy 10 Pq uint
|
|
Minimum synchronous read I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_sync_write_max_active Ns = Ns Sy 10 Pq uint
|
|
Maximum synchronous write I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_sync_write_min_active Ns = Ns Sy 10 Pq uint
|
|
Minimum synchronous write I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_trim_max_active Ns = Ns Sy 2 Pq uint
|
|
Maximum trim/discard I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_trim_min_active Ns = Ns Sy 1 Pq uint
|
|
Minimum trim/discard I/O operations active to each device.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_nia_delay Ns = Ns Sy 5 Pq uint
|
|
For non-interactive I/O (scrub, resilver, removal, initialize and rebuild),
|
|
the number of concurrently-active I/O operations is limited to
|
|
.Sy zfs_*_min_active ,
|
|
unless the vdev is "idle".
|
|
When there are no interactive I/O operations active (synchronous or otherwise),
|
|
and
|
|
.Sy zfs_vdev_nia_delay
|
|
operations have completed since the last interactive operation,
|
|
then the vdev is considered to be "idle",
|
|
and the number of concurrently-active non-interactive operations is increased to
|
|
.Sy zfs_*_max_active .
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_nia_credit Ns = Ns Sy 5 Pq uint
|
|
Some HDDs tend to prioritize sequential I/O so strongly, that concurrent
|
|
random I/O latency reaches several seconds.
|
|
On some HDDs this happens even if sequential I/O operations
|
|
are submitted one at a time, and so setting
|
|
.Sy zfs_*_max_active Ns = Sy 1
|
|
does not help.
|
|
To prevent non-interactive I/O, like scrub,
|
|
from monopolizing the device, no more than
|
|
.Sy zfs_vdev_nia_credit operations can be sent
|
|
while there are outstanding incomplete interactive operations.
|
|
This enforced wait ensures the HDD services the interactive I/O
|
|
within a reasonable amount of time.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_queue_depth_pct Ns = Ns Sy 1000 Ns % Pq uint
|
|
Maximum number of queued allocations per top-level vdev expressed as
|
|
a percentage of
|
|
.Sy zfs_vdev_async_write_max_active ,
|
|
which allows the system to detect devices that are more capable
|
|
of handling allocations and to allocate more blocks to those devices.
|
|
This allows for dynamic allocation distribution when devices are imbalanced,
|
|
as fuller devices will tend to be slower than empty devices.
|
|
.Pp
|
|
Also see
|
|
.Sy zio_dva_throttle_enabled .
|
|
.
|
|
.It Sy zfs_vdev_def_queue_depth Ns = Ns Sy 32 Pq uint
|
|
Default queue depth for each vdev IO allocator.
|
|
Higher values allow for better coalescing of sequential writes before sending
|
|
them to the disk, but can increase transaction commit times.
|
|
.
|
|
.It Sy zfs_vdev_failfast_mask Ns = Ns Sy 1 Pq uint
|
|
Defines if the driver should retire on a given error type.
|
|
The following options may be bitwise-ored together:
|
|
.TS
|
|
box;
|
|
lbz r l l .
|
|
Value Name Description
|
|
_
|
|
1 Device No driver retries on device errors
|
|
2 Transport No driver retries on transport errors.
|
|
4 Driver No driver retries on driver errors.
|
|
.TE
|
|
.
|
|
.It Sy zfs_vdev_disk_max_segs Ns = Ns Sy 0 Pq uint
|
|
Maximum number of segments to add to a BIO (min 4).
|
|
If this is higher than the maximum allowed by the device queue or the kernel
|
|
itself, it will be clamped.
|
|
Setting it to zero will cause the kernel's ideal size to be used.
|
|
This parameter only applies on Linux.
|
|
This parameter is ignored if
|
|
.Sy zfs_vdev_disk_classic Ns = Ns Sy 1 .
|
|
.
|
|
.It Sy zfs_vdev_disk_classic Ns = Ns Sy 0 Ns | Ns 1 Pq uint
|
|
If set to 1, OpenZFS will submit IO to Linux using the method it used in 2.2
|
|
and earlier.
|
|
This "classic" method has known issues with highly fragmented IO requests and
|
|
is slower on many workloads, but it has been in use for many years and is known
|
|
to be very stable.
|
|
If you set this parameter, please also open a bug report why you did so,
|
|
including the workload involved and any error messages.
|
|
.Pp
|
|
This parameter and the classic submission method will be removed once we have
|
|
total confidence in the new method.
|
|
.Pp
|
|
This parameter only applies on Linux, and can only be set at module load time.
|
|
.
|
|
.It Sy zfs_expire_snapshot Ns = Ns Sy 300 Ns s Pq int
|
|
Time before expiring
|
|
.Pa .zfs/snapshot .
|
|
.
|
|
.It Sy zfs_admin_snapshot Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Allow the creation, removal, or renaming of entries in the
|
|
.Sy .zfs/snapshot
|
|
directory to cause the creation, destruction, or renaming of snapshots.
|
|
When enabled, this functionality works both locally and over NFS exports
|
|
which have the
|
|
.Em no_root_squash
|
|
option set.
|
|
.
|
|
.It Sy zfs_flags Ns = Ns Sy 0 Pq int
|
|
Set additional debugging flags.
|
|
The following flags may be bitwise-ored together:
|
|
.TS
|
|
box;
|
|
lbz r l l .
|
|
Value Name Description
|
|
_
|
|
1 ZFS_DEBUG_DPRINTF Enable dprintf entries in the debug log.
|
|
* 2 ZFS_DEBUG_DBUF_VERIFY Enable extra dbuf verifications.
|
|
* 4 ZFS_DEBUG_DNODE_VERIFY Enable extra dnode verifications.
|
|
8 ZFS_DEBUG_SNAPNAMES Enable snapshot name verification.
|
|
* 16 ZFS_DEBUG_MODIFY Check for illegally modified ARC buffers.
|
|
64 ZFS_DEBUG_ZIO_FREE Enable verification of block frees.
|
|
128 ZFS_DEBUG_HISTOGRAM_VERIFY Enable extra spacemap histogram verifications.
|
|
256 ZFS_DEBUG_METASLAB_VERIFY Verify space accounting on disk matches in-memory \fBrange_trees\fP.
|
|
512 ZFS_DEBUG_SET_ERROR Enable \fBSET_ERROR\fP and dprintf entries in the debug log.
|
|
1024 ZFS_DEBUG_INDIRECT_REMAP Verify split blocks created by device removal.
|
|
2048 ZFS_DEBUG_TRIM Verify TRIM ranges are always within the allocatable range tree.
|
|
4096 ZFS_DEBUG_LOG_SPACEMAP Verify that the log summary is consistent with the spacemap log
|
|
and enable \fBzfs_dbgmsgs\fP for metaslab loading and flushing.
|
|
.TE
|
|
.Sy \& * No Requires debug build .
|
|
.
|
|
.It Sy zfs_btree_verify_intensity Ns = Ns Sy 0 Pq uint
|
|
Enables btree verification.
|
|
The following settings are culminative:
|
|
.TS
|
|
box;
|
|
lbz r l l .
|
|
Value Description
|
|
|
|
1 Verify height.
|
|
2 Verify pointers from children to parent.
|
|
3 Verify element counts.
|
|
4 Verify element order. (expensive)
|
|
* 5 Verify unused memory is poisoned. (expensive)
|
|
.TE
|
|
.Sy \& * No Requires debug build .
|
|
.
|
|
.It Sy zfs_free_leak_on_eio Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
If destroy encounters an
|
|
.Sy EIO
|
|
while reading metadata (e.g. indirect blocks),
|
|
space referenced by the missing metadata can not be freed.
|
|
Normally this causes the background destroy to become "stalled",
|
|
as it is unable to make forward progress.
|
|
While in this stalled state, all remaining space to free
|
|
from the error-encountering filesystem is "temporarily leaked".
|
|
Set this flag to cause it to ignore the
|
|
.Sy EIO ,
|
|
permanently leak the space from indirect blocks that can not be read,
|
|
and continue to free everything else that it can.
|
|
.Pp
|
|
The default "stalling" behavior is useful if the storage partially
|
|
fails (i.e. some but not all I/O operations fail), and then later recovers.
|
|
In this case, we will be able to continue pool operations while it is
|
|
partially failed, and when it recovers, we can continue to free the
|
|
space, with no leaks.
|
|
Note, however, that this case is actually fairly rare.
|
|
.Pp
|
|
Typically pools either
|
|
.Bl -enum -compact -offset 4n -width "1."
|
|
.It
|
|
fail completely (but perhaps temporarily,
|
|
e.g. due to a top-level vdev going offline), or
|
|
.It
|
|
have localized, permanent errors (e.g. disk returns the wrong data
|
|
due to bit flip or firmware bug).
|
|
.El
|
|
In the former case, this setting does not matter because the
|
|
pool will be suspended and the sync thread will not be able to make
|
|
forward progress regardless.
|
|
In the latter, because the error is permanent, the best we can do
|
|
is leak the minimum amount of space,
|
|
which is what setting this flag will do.
|
|
It is therefore reasonable for this flag to normally be set,
|
|
but we chose the more conservative approach of not setting it,
|
|
so that there is no possibility of
|
|
leaking space in the "partial temporary" failure case.
|
|
.
|
|
.It Sy zfs_free_min_time_ms Ns = Ns Sy 1000 Ns ms Po 1s Pc Pq uint
|
|
During a
|
|
.Nm zfs Cm destroy
|
|
operation using the
|
|
.Sy async_destroy
|
|
feature,
|
|
a minimum of this much time will be spent working on freeing blocks per TXG.
|
|
.
|
|
.It Sy zfs_obsolete_min_time_ms Ns = Ns Sy 500 Ns ms Pq uint
|
|
Similar to
|
|
.Sy zfs_free_min_time_ms ,
|
|
but for cleanup of old indirection records for removed vdevs.
|
|
.
|
|
.It Sy zfs_immediate_write_sz Ns = Ns Sy 32768 Ns B Po 32 KiB Pc Pq s64
|
|
Largest data block to write to the ZIL.
|
|
Larger blocks will be treated as if the dataset being written to had the
|
|
.Sy logbias Ns = Ns Sy throughput
|
|
property set.
|
|
.
|
|
.It Sy zfs_initialize_value Ns = Ns Sy 16045690984833335022 Po 0xDEADBEEFDEADBEEE Pc Pq u64
|
|
Pattern written to vdev free space by
|
|
.Xr zpool-initialize 8 .
|
|
.
|
|
.It Sy zfs_initialize_chunk_size Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64
|
|
Size of writes used by
|
|
.Xr zpool-initialize 8 .
|
|
This option is used by the test suite.
|
|
.
|
|
.It Sy zfs_livelist_max_entries Ns = Ns Sy 500000 Po 5*10^5 Pc Pq u64
|
|
The threshold size (in block pointers) at which we create a new sub-livelist.
|
|
Larger sublists are more costly from a memory perspective but the fewer
|
|
sublists there are, the lower the cost of insertion.
|
|
.
|
|
.It Sy zfs_livelist_min_percent_shared Ns = Ns Sy 75 Ns % Pq int
|
|
If the amount of shared space between a snapshot and its clone drops below
|
|
this threshold, the clone turns off the livelist and reverts to the old
|
|
deletion method.
|
|
This is in place because livelists no long give us a benefit
|
|
once a clone has been overwritten enough.
|
|
.
|
|
.It Sy zfs_livelist_condense_new_alloc Ns = Ns Sy 0 Pq int
|
|
Incremented each time an extra ALLOC blkptr is added to a livelist entry while
|
|
it is being condensed.
|
|
This option is used by the test suite to track race conditions.
|
|
.
|
|
.It Sy zfs_livelist_condense_sync_cancel Ns = Ns Sy 0 Pq int
|
|
Incremented each time livelist condensing is canceled while in
|
|
.Fn spa_livelist_condense_sync .
|
|
This option is used by the test suite to track race conditions.
|
|
.
|
|
.It Sy zfs_livelist_condense_sync_pause Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
When set, the livelist condense process pauses indefinitely before
|
|
executing the synctask \(em
|
|
.Fn spa_livelist_condense_sync .
|
|
This option is used by the test suite to trigger race conditions.
|
|
.
|
|
.It Sy zfs_livelist_condense_zthr_cancel Ns = Ns Sy 0 Pq int
|
|
Incremented each time livelist condensing is canceled while in
|
|
.Fn spa_livelist_condense_cb .
|
|
This option is used by the test suite to track race conditions.
|
|
.
|
|
.It Sy zfs_livelist_condense_zthr_pause Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
When set, the livelist condense process pauses indefinitely before
|
|
executing the open context condensing work in
|
|
.Fn spa_livelist_condense_cb .
|
|
This option is used by the test suite to trigger race conditions.
|
|
.
|
|
.It Sy zfs_lua_max_instrlimit Ns = Ns Sy 100000000 Po 10^8 Pc Pq u64
|
|
The maximum execution time limit that can be set for a ZFS channel program,
|
|
specified as a number of Lua instructions.
|
|
.
|
|
.It Sy zfs_lua_max_memlimit Ns = Ns Sy 104857600 Po 100 MiB Pc Pq u64
|
|
The maximum memory limit that can be set for a ZFS channel program, specified
|
|
in bytes.
|
|
.
|
|
.It Sy zfs_max_dataset_nesting Ns = Ns Sy 50 Pq int
|
|
The maximum depth of nested datasets.
|
|
This value can be tuned temporarily to
|
|
fix existing datasets that exceed the predefined limit.
|
|
.
|
|
.It Sy zfs_max_log_walking Ns = Ns Sy 5 Pq u64
|
|
The number of past TXGs that the flushing algorithm of the log spacemap
|
|
feature uses to estimate incoming log blocks.
|
|
.
|
|
.It Sy zfs_max_logsm_summary_length Ns = Ns Sy 10 Pq u64
|
|
Maximum number of rows allowed in the summary of the spacemap log.
|
|
.
|
|
.It Sy zfs_max_recordsize Ns = Ns Sy 16777216 Po 16 MiB Pc Pq uint
|
|
We currently support block sizes from
|
|
.Em 512 Po 512 B Pc No to Em 16777216 Po 16 MiB Pc .
|
|
The benefits of larger blocks, and thus larger I/O,
|
|
need to be weighed against the cost of COWing a giant block to modify one byte.
|
|
Additionally, very large blocks can have an impact on I/O latency,
|
|
and also potentially on the memory allocator.
|
|
Therefore, we formerly forbade creating blocks larger than 1M.
|
|
Larger blocks could be created by changing it,
|
|
and pools with larger blocks can always be imported and used,
|
|
regardless of this setting.
|
|
.
|
|
.It Sy zfs_allow_redacted_dataset_mount Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Allow datasets received with redacted send/receive to be mounted.
|
|
Normally disabled because these datasets may be missing key data.
|
|
.
|
|
.It Sy zfs_min_metaslabs_to_flush Ns = Ns Sy 1 Pq u64
|
|
Minimum number of metaslabs to flush per dirty TXG.
|
|
.
|
|
.It Sy zfs_metaslab_fragmentation_threshold Ns = Ns Sy 70 Ns % Pq uint
|
|
Allow metaslabs to keep their active state as long as their fragmentation
|
|
percentage is no more than this value.
|
|
An active metaslab that exceeds this threshold
|
|
will no longer keep its active status allowing better metaslabs to be selected.
|
|
.
|
|
.It Sy zfs_mg_fragmentation_threshold Ns = Ns Sy 95 Ns % Pq uint
|
|
Metaslab groups are considered eligible for allocations if their
|
|
fragmentation metric (measured as a percentage) is less than or equal to
|
|
this value.
|
|
If a metaslab group exceeds this threshold then it will be
|
|
skipped unless all metaslab groups within the metaslab class have also
|
|
crossed this threshold.
|
|
.
|
|
.It Sy zfs_mg_noalloc_threshold Ns = Ns Sy 0 Ns % Pq uint
|
|
Defines a threshold at which metaslab groups should be eligible for allocations.
|
|
The value is expressed as a percentage of free space
|
|
beyond which a metaslab group is always eligible for allocations.
|
|
If a metaslab group's free space is less than or equal to the
|
|
threshold, the allocator will avoid allocating to that group
|
|
unless all groups in the pool have reached the threshold.
|
|
Once all groups have reached the threshold, all groups are allowed to accept
|
|
allocations.
|
|
The default value of
|
|
.Sy 0
|
|
disables the feature and causes all metaslab groups to be eligible for
|
|
allocations.
|
|
.Pp
|
|
This parameter allows one to deal with pools having heavily imbalanced
|
|
vdevs such as would be the case when a new vdev has been added.
|
|
Setting the threshold to a non-zero percentage will stop allocations
|
|
from being made to vdevs that aren't filled to the specified percentage
|
|
and allow lesser filled vdevs to acquire more allocations than they
|
|
otherwise would under the old
|
|
.Sy zfs_mg_alloc_failures
|
|
facility.
|
|
.
|
|
.It Sy zfs_ddt_data_is_special Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
If enabled, ZFS will place DDT data into the special allocation class.
|
|
.
|
|
.It Sy zfs_user_indirect_is_special Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
If enabled, ZFS will place user data indirect blocks
|
|
into the special allocation class.
|
|
.
|
|
.It Sy zfs_multihost_history Ns = Ns Sy 0 Pq uint
|
|
Historical statistics for this many latest multihost updates will be available
|
|
in
|
|
.Pa /proc/spl/kstat/zfs/ Ns Ao Ar pool Ac Ns Pa /multihost .
|
|
.
|
|
.It Sy zfs_multihost_interval Ns = Ns Sy 1000 Ns ms Po 1 s Pc Pq u64
|
|
Used to control the frequency of multihost writes which are performed when the
|
|
.Sy multihost
|
|
pool property is on.
|
|
This is one of the factors used to determine the
|
|
length of the activity check during import.
|
|
.Pp
|
|
The multihost write period is
|
|
.Sy zfs_multihost_interval No / Sy leaf-vdevs .
|
|
On average a multihost write will be issued for each leaf vdev
|
|
every
|
|
.Sy zfs_multihost_interval
|
|
milliseconds.
|
|
In practice, the observed period can vary with the I/O load
|
|
and this observed value is the delay which is stored in the uberblock.
|
|
.
|
|
.It Sy zfs_multihost_import_intervals Ns = Ns Sy 20 Pq uint
|
|
Used to control the duration of the activity test on import.
|
|
Smaller values of
|
|
.Sy zfs_multihost_import_intervals
|
|
will reduce the import time but increase
|
|
the risk of failing to detect an active pool.
|
|
The total activity check time is never allowed to drop below one second.
|
|
.Pp
|
|
On import the activity check waits a minimum amount of time determined by
|
|
.Sy zfs_multihost_interval No \(mu Sy zfs_multihost_import_intervals ,
|
|
or the same product computed on the host which last had the pool imported,
|
|
whichever is greater.
|
|
The activity check time may be further extended if the value of MMP
|
|
delay found in the best uberblock indicates actual multihost updates happened
|
|
at longer intervals than
|
|
.Sy zfs_multihost_interval .
|
|
A minimum of
|
|
.Em 100 ms
|
|
is enforced.
|
|
.Pp
|
|
.Sy 0 No is equivalent to Sy 1 .
|
|
.
|
|
.It Sy zfs_multihost_fail_intervals Ns = Ns Sy 10 Pq uint
|
|
Controls the behavior of the pool when multihost write failures or delays are
|
|
detected.
|
|
.Pp
|
|
When
|
|
.Sy 0 ,
|
|
multihost write failures or delays are ignored.
|
|
The failures will still be reported to the ZED which depending on
|
|
its configuration may take action such as suspending the pool or offlining a
|
|
device.
|
|
.Pp
|
|
Otherwise, the pool will be suspended if
|
|
.Sy zfs_multihost_fail_intervals No \(mu Sy zfs_multihost_interval
|
|
milliseconds pass without a successful MMP write.
|
|
This guarantees the activity test will see MMP writes if the pool is imported.
|
|
.Sy 1 No is equivalent to Sy 2 ;
|
|
this is necessary to prevent the pool from being suspended
|
|
due to normal, small I/O latency variations.
|
|
.
|
|
.It Sy zfs_no_scrub_io Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Set to disable scrub I/O.
|
|
This results in scrubs not actually scrubbing data and
|
|
simply doing a metadata crawl of the pool instead.
|
|
.
|
|
.It Sy zfs_no_scrub_prefetch Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Set to disable block prefetching for scrubs.
|
|
.
|
|
.It Sy zfs_nocacheflush Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Disable cache flush operations on disks when writing.
|
|
Setting this will cause pool corruption on power loss
|
|
if a volatile out-of-order write cache is enabled.
|
|
.
|
|
.It Sy zfs_nopwrite_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Allow no-operation writes.
|
|
The occurrence of nopwrites will further depend on other pool properties
|
|
.Pq i.a. the checksumming and compression algorithms .
|
|
.
|
|
.It Sy zfs_dmu_offset_next_sync Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Enable forcing TXG sync to find holes.
|
|
When enabled forces ZFS to sync data when
|
|
.Sy SEEK_HOLE No or Sy SEEK_DATA
|
|
flags are used allowing holes in a file to be accurately reported.
|
|
When disabled holes will not be reported in recently dirtied files.
|
|
.
|
|
.It Sy zfs_pd_bytes_max Ns = Ns Sy 52428800 Ns B Po 50 MiB Pc Pq int
|
|
The number of bytes which should be prefetched during a pool traversal, like
|
|
.Nm zfs Cm send
|
|
or other data crawling operations.
|
|
.
|
|
.It Sy zfs_traverse_indirect_prefetch_limit Ns = Ns Sy 32 Pq uint
|
|
The number of blocks pointed by indirect (non-L0) block which should be
|
|
prefetched during a pool traversal, like
|
|
.Nm zfs Cm send
|
|
or other data crawling operations.
|
|
.
|
|
.It Sy zfs_per_txg_dirty_frees_percent Ns = Ns Sy 30 Ns % Pq u64
|
|
Control percentage of dirtied indirect blocks from frees allowed into one TXG.
|
|
After this threshold is crossed, additional frees will wait until the next TXG.
|
|
.Sy 0 No disables this throttle .
|
|
.
|
|
.It Sy zfs_prefetch_disable Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Disable predictive prefetch.
|
|
Note that it leaves "prescient" prefetch
|
|
.Pq for, e.g., Nm zfs Cm send
|
|
intact.
|
|
Unlike predictive prefetch, prescient prefetch never issues I/O
|
|
that ends up not being needed, so it can't hurt performance.
|
|
.
|
|
.It Sy zfs_qat_checksum_disable Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Disable QAT hardware acceleration for SHA256 checksums.
|
|
May be unset after the ZFS modules have been loaded to initialize the QAT
|
|
hardware as long as support is compiled in and the QAT driver is present.
|
|
.
|
|
.It Sy zfs_qat_compress_disable Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Disable QAT hardware acceleration for gzip compression.
|
|
May be unset after the ZFS modules have been loaded to initialize the QAT
|
|
hardware as long as support is compiled in and the QAT driver is present.
|
|
.
|
|
.It Sy zfs_qat_encrypt_disable Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Disable QAT hardware acceleration for AES-GCM encryption.
|
|
May be unset after the ZFS modules have been loaded to initialize the QAT
|
|
hardware as long as support is compiled in and the QAT driver is present.
|
|
.
|
|
.It Sy zfs_vnops_read_chunk_size Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64
|
|
Bytes to read per chunk.
|
|
.
|
|
.It Sy zfs_read_history Ns = Ns Sy 0 Pq uint
|
|
Historical statistics for this many latest reads will be available in
|
|
.Pa /proc/spl/kstat/zfs/ Ns Ao Ar pool Ac Ns Pa /reads .
|
|
.
|
|
.It Sy zfs_read_history_hits Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Include cache hits in read history
|
|
.
|
|
.It Sy zfs_rebuild_max_segment Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq u64
|
|
Maximum read segment size to issue when sequentially resilvering a
|
|
top-level vdev.
|
|
.
|
|
.It Sy zfs_rebuild_scrub_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Automatically start a pool scrub when the last active sequential resilver
|
|
completes in order to verify the checksums of all blocks which have been
|
|
resilvered.
|
|
This is enabled by default and strongly recommended.
|
|
.
|
|
.It Sy zfs_rebuild_vdev_limit Ns = Ns Sy 67108864 Ns B Po 64 MiB Pc Pq u64
|
|
Maximum amount of I/O that can be concurrently issued for a sequential
|
|
resilver per leaf device, given in bytes.
|
|
.
|
|
.It Sy zfs_reconstruct_indirect_combinations_max Ns = Ns Sy 4096 Pq int
|
|
If an indirect split block contains more than this many possible unique
|
|
combinations when being reconstructed, consider it too computationally
|
|
expensive to check them all.
|
|
Instead, try at most this many randomly selected
|
|
combinations each time the block is accessed.
|
|
This allows all segment copies to participate fairly
|
|
in the reconstruction when all combinations
|
|
cannot be checked and prevents repeated use of one bad copy.
|
|
.
|
|
.It Sy zfs_recover Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Set to attempt to recover from fatal errors.
|
|
This should only be used as a last resort,
|
|
as it typically results in leaked space, or worse.
|
|
.
|
|
.It Sy zfs_removal_ignore_errors Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Ignore hard I/O errors during device removal.
|
|
When set, if a device encounters a hard I/O error during the removal process
|
|
the removal will not be cancelled.
|
|
This can result in a normally recoverable block becoming permanently damaged
|
|
and is hence not recommended.
|
|
This should only be used as a last resort when the
|
|
pool cannot be returned to a healthy state prior to removing the device.
|
|
.
|
|
.It Sy zfs_removal_suspend_progress Ns = Ns Sy 0 Ns | Ns 1 Pq uint
|
|
This is used by the test suite so that it can ensure that certain actions
|
|
happen while in the middle of a removal.
|
|
.
|
|
.It Sy zfs_remove_max_segment Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq uint
|
|
The largest contiguous segment that we will attempt to allocate when removing
|
|
a device.
|
|
If there is a performance problem with attempting to allocate large blocks,
|
|
consider decreasing this.
|
|
The default value is also the maximum.
|
|
.
|
|
.It Sy zfs_resilver_disable_defer Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Ignore the
|
|
.Sy resilver_defer
|
|
feature, causing an operation that would start a resilver to
|
|
immediately restart the one in progress.
|
|
.
|
|
.It Sy zfs_resilver_min_time_ms Ns = Ns Sy 3000 Ns ms Po 3 s Pc Pq uint
|
|
Resilvers are processed by the sync thread.
|
|
While resilvering, it will spend at least this much time
|
|
working on a resilver between TXG flushes.
|
|
.
|
|
.It Sy zfs_scan_ignore_errors Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
If set, remove the DTL (dirty time list) upon completion of a pool scan (scrub),
|
|
even if there were unrepairable errors.
|
|
Intended to be used during pool repair or recovery to
|
|
stop resilvering when the pool is next imported.
|
|
.
|
|
.It Sy zfs_scrub_after_expand Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Automatically start a pool scrub after a RAIDZ expansion completes
|
|
in order to verify the checksums of all blocks which have been
|
|
copied during the expansion.
|
|
This is enabled by default and strongly recommended.
|
|
.
|
|
.It Sy zfs_scrub_min_time_ms Ns = Ns Sy 1000 Ns ms Po 1 s Pc Pq uint
|
|
Scrubs are processed by the sync thread.
|
|
While scrubbing, it will spend at least this much time
|
|
working on a scrub between TXG flushes.
|
|
.
|
|
.It Sy zfs_scrub_error_blocks_per_txg Ns = Ns Sy 4096 Pq uint
|
|
Error blocks to be scrubbed in one txg.
|
|
.
|
|
.It Sy zfs_scan_checkpoint_intval Ns = Ns Sy 7200 Ns s Po 2 hour Pc Pq uint
|
|
To preserve progress across reboots, the sequential scan algorithm periodically
|
|
needs to stop metadata scanning and issue all the verification I/O to disk.
|
|
The frequency of this flushing is determined by this tunable.
|
|
.
|
|
.It Sy zfs_scan_fill_weight Ns = Ns Sy 3 Pq uint
|
|
This tunable affects how scrub and resilver I/O segments are ordered.
|
|
A higher number indicates that we care more about how filled in a segment is,
|
|
while a lower number indicates we care more about the size of the extent without
|
|
considering the gaps within a segment.
|
|
This value is only tunable upon module insertion.
|
|
Changing the value afterwards will have no effect on scrub or resilver
|
|
performance.
|
|
.
|
|
.It Sy zfs_scan_issue_strategy Ns = Ns Sy 0 Pq uint
|
|
Determines the order that data will be verified while scrubbing or resilvering:
|
|
.Bl -tag -compact -offset 4n -width "a"
|
|
.It Sy 1
|
|
Data will be verified as sequentially as possible, given the
|
|
amount of memory reserved for scrubbing
|
|
.Pq see Sy zfs_scan_mem_lim_fact .
|
|
This may improve scrub performance if the pool's data is very fragmented.
|
|
.It Sy 2
|
|
The largest mostly-contiguous chunk of found data will be verified first.
|
|
By deferring scrubbing of small segments, we may later find adjacent data
|
|
to coalesce and increase the segment size.
|
|
.It Sy 0
|
|
.No Use strategy Sy 1 No during normal verification
|
|
.No and strategy Sy 2 No while taking a checkpoint .
|
|
.El
|
|
.
|
|
.It Sy zfs_scan_legacy Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
If unset, indicates that scrubs and resilvers will gather metadata in
|
|
memory before issuing sequential I/O.
|
|
Otherwise indicates that the legacy algorithm will be used,
|
|
where I/O is initiated as soon as it is discovered.
|
|
Unsetting will not affect scrubs or resilvers that are already in progress.
|
|
.
|
|
.It Sy zfs_scan_max_ext_gap Ns = Ns Sy 2097152 Ns B Po 2 MiB Pc Pq int
|
|
Sets the largest gap in bytes between scrub/resilver I/O operations
|
|
that will still be considered sequential for sorting purposes.
|
|
Changing this value will not
|
|
affect scrubs or resilvers that are already in progress.
|
|
.
|
|
.It Sy zfs_scan_mem_lim_fact Ns = Ns Sy 20 Ns ^-1 Pq uint
|
|
Maximum fraction of RAM used for I/O sorting by sequential scan algorithm.
|
|
This tunable determines the hard limit for I/O sorting memory usage.
|
|
When the hard limit is reached we stop scanning metadata and start issuing
|
|
data verification I/O.
|
|
This is done until we get below the soft limit.
|
|
.
|
|
.It Sy zfs_scan_mem_lim_soft_fact Ns = Ns Sy 20 Ns ^-1 Pq uint
|
|
The fraction of the hard limit used to determined the soft limit for I/O sorting
|
|
by the sequential scan algorithm.
|
|
When we cross this limit from below no action is taken.
|
|
When we cross this limit from above it is because we are issuing verification
|
|
I/O.
|
|
In this case (unless the metadata scan is done) we stop issuing verification I/O
|
|
and start scanning metadata again until we get to the hard limit.
|
|
.
|
|
.It Sy zfs_scan_report_txgs Ns = Ns Sy 0 Ns | Ns 1 Pq uint
|
|
When reporting resilver throughput and estimated completion time use the
|
|
performance observed over roughly the last
|
|
.Sy zfs_scan_report_txgs
|
|
TXGs.
|
|
When set to zero performance is calculated over the time between checkpoints.
|
|
.
|
|
.It Sy zfs_scan_strict_mem_lim Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Enforce tight memory limits on pool scans when a sequential scan is in progress.
|
|
When disabled, the memory limit may be exceeded by fast disks.
|
|
.
|
|
.It Sy zfs_scan_suspend_progress Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Freezes a scrub/resilver in progress without actually pausing it.
|
|
Intended for testing/debugging.
|
|
.
|
|
.It Sy zfs_scan_vdev_limit Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq int
|
|
Maximum amount of data that can be concurrently issued at once for scrubs and
|
|
resilvers per leaf device, given in bytes.
|
|
.
|
|
.It Sy zfs_send_corrupt_data Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Allow sending of corrupt data (ignore read/checksum errors when sending).
|
|
.
|
|
.It Sy zfs_send_unmodified_spill_blocks Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Include unmodified spill blocks in the send stream.
|
|
Under certain circumstances, previous versions of ZFS could incorrectly
|
|
remove the spill block from an existing object.
|
|
Including unmodified copies of the spill blocks creates a backwards-compatible
|
|
stream which will recreate a spill block if it was incorrectly removed.
|
|
.
|
|
.It Sy zfs_send_no_prefetch_queue_ff Ns = Ns Sy 20 Ns ^\-1 Pq uint
|
|
The fill fraction of the
|
|
.Nm zfs Cm send
|
|
internal queues.
|
|
The fill fraction controls the timing with which internal threads are woken up.
|
|
.
|
|
.It Sy zfs_send_no_prefetch_queue_length Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq uint
|
|
The maximum number of bytes allowed in
|
|
.Nm zfs Cm send Ns 's
|
|
internal queues.
|
|
.
|
|
.It Sy zfs_send_queue_ff Ns = Ns Sy 20 Ns ^\-1 Pq uint
|
|
The fill fraction of the
|
|
.Nm zfs Cm send
|
|
prefetch queue.
|
|
The fill fraction controls the timing with which internal threads are woken up.
|
|
.
|
|
.It Sy zfs_send_queue_length Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq uint
|
|
The maximum number of bytes allowed that will be prefetched by
|
|
.Nm zfs Cm send .
|
|
This value must be at least twice the maximum block size in use.
|
|
.
|
|
.It Sy zfs_recv_queue_ff Ns = Ns Sy 20 Ns ^\-1 Pq uint
|
|
The fill fraction of the
|
|
.Nm zfs Cm receive
|
|
queue.
|
|
The fill fraction controls the timing with which internal threads are woken up.
|
|
.
|
|
.It Sy zfs_recv_queue_length Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq uint
|
|
The maximum number of bytes allowed in the
|
|
.Nm zfs Cm receive
|
|
queue.
|
|
This value must be at least twice the maximum block size in use.
|
|
.
|
|
.It Sy zfs_recv_write_batch_size Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq uint
|
|
The maximum amount of data, in bytes, that
|
|
.Nm zfs Cm receive
|
|
will write in one DMU transaction.
|
|
This is the uncompressed size, even when receiving a compressed send stream.
|
|
This setting will not reduce the write size below a single block.
|
|
Capped at a maximum of
|
|
.Sy 32 MiB .
|
|
.
|
|
.It Sy zfs_recv_best_effort_corrective Ns = Ns Sy 0 Pq int
|
|
When this variable is set to non-zero a corrective receive:
|
|
.Bl -enum -compact -offset 4n -width "1."
|
|
.It
|
|
Does not enforce the restriction of source & destination snapshot GUIDs
|
|
matching.
|
|
.It
|
|
If there is an error during healing, the healing receive is not
|
|
terminated instead it moves on to the next record.
|
|
.El
|
|
.
|
|
.It Sy zfs_override_estimate_recordsize Ns = Ns Sy 0 Ns | Ns 1 Pq uint
|
|
Setting this variable overrides the default logic for estimating block
|
|
sizes when doing a
|
|
.Nm zfs Cm send .
|
|
The default heuristic is that the average block size
|
|
will be the current recordsize.
|
|
Override this value if most data in your dataset is not of that size
|
|
and you require accurate zfs send size estimates.
|
|
.
|
|
.It Sy zfs_sync_pass_deferred_free Ns = Ns Sy 2 Pq uint
|
|
Flushing of data to disk is done in passes.
|
|
Defer frees starting in this pass.
|
|
.
|
|
.It Sy zfs_spa_discard_memory_limit Ns = Ns Sy 16777216 Ns B Po 16 MiB Pc Pq int
|
|
Maximum memory used for prefetching a checkpoint's space map on each
|
|
vdev while discarding the checkpoint.
|
|
.
|
|
.It Sy zfs_special_class_metadata_reserve_pct Ns = Ns Sy 25 Ns % Pq uint
|
|
Only allow small data blocks to be allocated on the special and dedup vdev
|
|
types when the available free space percentage on these vdevs exceeds this
|
|
value.
|
|
This ensures reserved space is available for pool metadata as the
|
|
special vdevs approach capacity.
|
|
.
|
|
.It Sy zfs_sync_pass_dont_compress Ns = Ns Sy 8 Pq uint
|
|
Starting in this sync pass, disable compression (including of metadata).
|
|
With the default setting, in practice, we don't have this many sync passes,
|
|
so this has no effect.
|
|
.Pp
|
|
The original intent was that disabling compression would help the sync passes
|
|
to converge.
|
|
However, in practice, disabling compression increases
|
|
the average number of sync passes; because when we turn compression off,
|
|
many blocks' size will change, and thus we have to re-allocate
|
|
(not overwrite) them.
|
|
It also increases the number of
|
|
.Em 128 KiB
|
|
allocations (e.g. for indirect blocks and spacemaps)
|
|
because these will not be compressed.
|
|
The
|
|
.Em 128 KiB
|
|
allocations are especially detrimental to performance
|
|
on highly fragmented systems, which may have very few free segments of this
|
|
size,
|
|
and may need to load new metaslabs to satisfy these allocations.
|
|
.
|
|
.It Sy zfs_sync_pass_rewrite Ns = Ns Sy 2 Pq uint
|
|
Rewrite new block pointers starting in this pass.
|
|
.
|
|
.It Sy zfs_trim_extent_bytes_max Ns = Ns Sy 134217728 Ns B Po 128 MiB Pc Pq uint
|
|
Maximum size of TRIM command.
|
|
Larger ranges will be split into chunks no larger than this value before
|
|
issuing.
|
|
.
|
|
.It Sy zfs_trim_extent_bytes_min Ns = Ns Sy 32768 Ns B Po 32 KiB Pc Pq uint
|
|
Minimum size of TRIM commands.
|
|
TRIM ranges smaller than this will be skipped,
|
|
unless they're part of a larger range which was chunked.
|
|
This is done because it's common for these small TRIMs
|
|
to negatively impact overall performance.
|
|
.
|
|
.It Sy zfs_trim_metaslab_skip Ns = Ns Sy 0 Ns | Ns 1 Pq uint
|
|
Skip uninitialized metaslabs during the TRIM process.
|
|
This option is useful for pools constructed from large thinly-provisioned
|
|
devices
|
|
where TRIM operations are slow.
|
|
As a pool ages, an increasing fraction of the pool's metaslabs
|
|
will be initialized, progressively degrading the usefulness of this option.
|
|
This setting is stored when starting a manual TRIM and will
|
|
persist for the duration of the requested TRIM.
|
|
.
|
|
.It Sy zfs_trim_queue_limit Ns = Ns Sy 10 Pq uint
|
|
Maximum number of queued TRIMs outstanding per leaf vdev.
|
|
The number of concurrent TRIM commands issued to the device is controlled by
|
|
.Sy zfs_vdev_trim_min_active No and Sy zfs_vdev_trim_max_active .
|
|
.
|
|
.It Sy zfs_trim_txg_batch Ns = Ns Sy 32 Pq uint
|
|
The number of transaction groups' worth of frees which should be aggregated
|
|
before TRIM operations are issued to the device.
|
|
This setting represents a trade-off between issuing larger,
|
|
more efficient TRIM operations and the delay
|
|
before the recently trimmed space is available for use by the device.
|
|
.Pp
|
|
Increasing this value will allow frees to be aggregated for a longer time.
|
|
This will result is larger TRIM operations and potentially increased memory
|
|
usage.
|
|
Decreasing this value will have the opposite effect.
|
|
The default of
|
|
.Sy 32
|
|
was determined to be a reasonable compromise.
|
|
.
|
|
.It Sy zfs_txg_history Ns = Ns Sy 100 Pq uint
|
|
Historical statistics for this many latest TXGs will be available in
|
|
.Pa /proc/spl/kstat/zfs/ Ns Ao Ar pool Ac Ns Pa /TXGs .
|
|
.
|
|
.It Sy zfs_txg_timeout Ns = Ns Sy 5 Ns s Pq uint
|
|
Flush dirty data to disk at least every this many seconds (maximum TXG
|
|
duration).
|
|
.
|
|
.It Sy zfs_vdev_aggregation_limit Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq uint
|
|
Max vdev I/O aggregation size.
|
|
.
|
|
.It Sy zfs_vdev_aggregation_limit_non_rotating Ns = Ns Sy 131072 Ns B Po 128 KiB Pc Pq uint
|
|
Max vdev I/O aggregation size for non-rotating media.
|
|
.
|
|
.It Sy zfs_vdev_mirror_rotating_inc Ns = Ns Sy 0 Pq int
|
|
A number by which the balancing algorithm increments the load calculation for
|
|
the purpose of selecting the least busy mirror member when an I/O operation
|
|
immediately follows its predecessor on rotational vdevs
|
|
for the purpose of making decisions based on load.
|
|
.
|
|
.It Sy zfs_vdev_mirror_rotating_seek_inc Ns = Ns Sy 5 Pq int
|
|
A number by which the balancing algorithm increments the load calculation for
|
|
the purpose of selecting the least busy mirror member when an I/O operation
|
|
lacks locality as defined by
|
|
.Sy zfs_vdev_mirror_rotating_seek_offset .
|
|
Operations within this that are not immediately following the previous operation
|
|
are incremented by half.
|
|
.
|
|
.It Sy zfs_vdev_mirror_rotating_seek_offset Ns = Ns Sy 1048576 Ns B Po 1 MiB Pc Pq int
|
|
The maximum distance for the last queued I/O operation in which
|
|
the balancing algorithm considers an operation to have locality.
|
|
.No See Sx ZFS I/O SCHEDULER .
|
|
.
|
|
.It Sy zfs_vdev_mirror_non_rotating_inc Ns = Ns Sy 0 Pq int
|
|
A number by which the balancing algorithm increments the load calculation for
|
|
the purpose of selecting the least busy mirror member on non-rotational vdevs
|
|
when I/O operations do not immediately follow one another.
|
|
.
|
|
.It Sy zfs_vdev_mirror_non_rotating_seek_inc Ns = Ns Sy 1 Pq int
|
|
A number by which the balancing algorithm increments the load calculation for
|
|
the purpose of selecting the least busy mirror member when an I/O operation
|
|
lacks
|
|
locality as defined by the
|
|
.Sy zfs_vdev_mirror_rotating_seek_offset .
|
|
Operations within this that are not immediately following the previous operation
|
|
are incremented by half.
|
|
.
|
|
.It Sy zfs_vdev_read_gap_limit Ns = Ns Sy 32768 Ns B Po 32 KiB Pc Pq uint
|
|
Aggregate read I/O operations if the on-disk gap between them is within this
|
|
threshold.
|
|
.
|
|
.It Sy zfs_vdev_write_gap_limit Ns = Ns Sy 4096 Ns B Po 4 KiB Pc Pq uint
|
|
Aggregate write I/O operations if the on-disk gap between them is within this
|
|
threshold.
|
|
.
|
|
.It Sy zfs_vdev_raidz_impl Ns = Ns Sy fastest Pq string
|
|
Select the raidz parity implementation to use.
|
|
.Pp
|
|
Variants that don't depend on CPU-specific features
|
|
may be selected on module load, as they are supported on all systems.
|
|
The remaining options may only be set after the module is loaded,
|
|
as they are available only if the implementations are compiled in
|
|
and supported on the running system.
|
|
.Pp
|
|
Once the module is loaded,
|
|
.Pa /sys/module/zfs/parameters/zfs_vdev_raidz_impl
|
|
will show the available options,
|
|
with the currently selected one enclosed in square brackets.
|
|
.Pp
|
|
.TS
|
|
lb l l .
|
|
fastest selected by built-in benchmark
|
|
original original implementation
|
|
scalar scalar implementation
|
|
sse2 SSE2 instruction set 64-bit x86
|
|
ssse3 SSSE3 instruction set 64-bit x86
|
|
avx2 AVX2 instruction set 64-bit x86
|
|
avx512f AVX512F instruction set 64-bit x86
|
|
avx512bw AVX512F & AVX512BW instruction sets 64-bit x86
|
|
aarch64_neon NEON Aarch64/64-bit ARMv8
|
|
aarch64_neonx2 NEON with more unrolling Aarch64/64-bit ARMv8
|
|
powerpc_altivec Altivec PowerPC
|
|
.TE
|
|
.
|
|
.It Sy zfs_vdev_scheduler Pq charp
|
|
.Sy DEPRECATED .
|
|
Prints warning to kernel log for compatibility.
|
|
.
|
|
.It Sy zfs_zevent_len_max Ns = Ns Sy 512 Pq uint
|
|
Max event queue length.
|
|
Events in the queue can be viewed with
|
|
.Xr zpool-events 8 .
|
|
.
|
|
.It Sy zfs_zevent_retain_max Ns = Ns Sy 2000 Pq int
|
|
Maximum recent zevent records to retain for duplicate checking.
|
|
Setting this to
|
|
.Sy 0
|
|
disables duplicate detection.
|
|
.
|
|
.It Sy zfs_zevent_retain_expire_secs Ns = Ns Sy 900 Ns s Po 15 min Pc Pq int
|
|
Lifespan for a recent ereport that was retained for duplicate checking.
|
|
.
|
|
.It Sy zfs_zil_clean_taskq_maxalloc Ns = Ns Sy 1048576 Pq int
|
|
The maximum number of taskq entries that are allowed to be cached.
|
|
When this limit is exceeded transaction records (itxs)
|
|
will be cleaned synchronously.
|
|
.
|
|
.It Sy zfs_zil_clean_taskq_minalloc Ns = Ns Sy 1024 Pq int
|
|
The number of taskq entries that are pre-populated when the taskq is first
|
|
created and are immediately available for use.
|
|
.
|
|
.It Sy zfs_zil_clean_taskq_nthr_pct Ns = Ns Sy 100 Ns % Pq int
|
|
This controls the number of threads used by
|
|
.Sy dp_zil_clean_taskq .
|
|
The default value of
|
|
.Sy 100%
|
|
will create a maximum of one thread per cpu.
|
|
.
|
|
.It Sy zil_maxblocksize Ns = Ns Sy 131072 Ns B Po 128 KiB Pc Pq uint
|
|
This sets the maximum block size used by the ZIL.
|
|
On very fragmented pools, lowering this
|
|
.Pq typically to Sy 36 KiB
|
|
can improve performance.
|
|
.
|
|
.It Sy zil_maxcopied Ns = Ns Sy 7680 Ns B Po 7.5 KiB Pc Pq uint
|
|
This sets the maximum number of write bytes logged via WR_COPIED.
|
|
It tunes a tradeoff between additional memory copy and possibly worse log
|
|
space efficiency vs additional range lock/unlock.
|
|
.
|
|
.It Sy zil_nocacheflush Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Disable the cache flush commands that are normally sent to disk by
|
|
the ZIL after an LWB write has completed.
|
|
Setting this will cause ZIL corruption on power loss
|
|
if a volatile out-of-order write cache is enabled.
|
|
.
|
|
.It Sy zil_replay_disable Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Disable intent logging replay.
|
|
Can be disabled for recovery from corrupted ZIL.
|
|
.
|
|
.It Sy zil_slog_bulk Ns = Ns Sy 67108864 Ns B Po 64 MiB Pc Pq u64
|
|
Limit SLOG write size per commit executed with synchronous priority.
|
|
Any writes above that will be executed with lower (asynchronous) priority
|
|
to limit potential SLOG device abuse by single active ZIL writer.
|
|
.
|
|
.It Sy zfs_zil_saxattr Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Setting this tunable to zero disables ZIL logging of new
|
|
.Sy xattr Ns = Ns Sy sa
|
|
records if the
|
|
.Sy org.openzfs:zilsaxattr
|
|
feature is enabled on the pool.
|
|
This would only be necessary to work around bugs in the ZIL logging or replay
|
|
code for this record type.
|
|
The tunable has no effect if the feature is disabled.
|
|
.
|
|
.It Sy zfs_embedded_slog_min_ms Ns = Ns Sy 64 Pq uint
|
|
Usually, one metaslab from each normal-class vdev is dedicated for use by
|
|
the ZIL to log synchronous writes.
|
|
However, if there are fewer than
|
|
.Sy zfs_embedded_slog_min_ms
|
|
metaslabs in the vdev, this functionality is disabled.
|
|
This ensures that we don't set aside an unreasonable amount of space for the
|
|
ZIL.
|
|
.
|
|
.It Sy zstd_earlyabort_pass Ns = Ns Sy 1 Pq uint
|
|
Whether heuristic for detection of incompressible data with zstd levels >= 3
|
|
using LZ4 and zstd-1 passes is enabled.
|
|
.
|
|
.It Sy zstd_abort_size Ns = Ns Sy 131072 Pq uint
|
|
Minimal uncompressed size (inclusive) of a record before the early abort
|
|
heuristic will be attempted.
|
|
.
|
|
.It Sy zio_deadman_log_all Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
If non-zero, the zio deadman will produce debugging messages
|
|
.Pq see Sy zfs_dbgmsg_enable
|
|
for all zios, rather than only for leaf zios possessing a vdev.
|
|
This is meant to be used by developers to gain
|
|
diagnostic information for hang conditions which don't involve a mutex
|
|
or other locking primitive: typically conditions in which a thread in
|
|
the zio pipeline is looping indefinitely.
|
|
.
|
|
.It Sy zio_slow_io_ms Ns = Ns Sy 30000 Ns ms Po 30 s Pc Pq int
|
|
When an I/O operation takes more than this much time to complete,
|
|
it's marked as slow.
|
|
Each slow operation causes a delay zevent.
|
|
Slow I/O counters can be seen with
|
|
.Nm zpool Cm status Fl s .
|
|
.
|
|
.It Sy zio_dva_throttle_enabled Ns = Ns Sy 1 Ns | Ns 0 Pq int
|
|
Throttle block allocations in the I/O pipeline.
|
|
This allows for dynamic allocation distribution when devices are imbalanced.
|
|
When enabled, the maximum number of pending allocations per top-level vdev
|
|
is limited by
|
|
.Sy zfs_vdev_queue_depth_pct .
|
|
.
|
|
.It Sy zfs_xattr_compat Ns = Ns 0 Ns | Ns 1 Pq int
|
|
Control the naming scheme used when setting new xattrs in the user namespace.
|
|
If
|
|
.Sy 0
|
|
.Pq the default on Linux ,
|
|
user namespace xattr names are prefixed with the namespace, to be backwards
|
|
compatible with previous versions of ZFS on Linux.
|
|
If
|
|
.Sy 1
|
|
.Pq the default on Fx ,
|
|
user namespace xattr names are not prefixed, to be backwards compatible with
|
|
previous versions of ZFS on illumos and
|
|
.Fx .
|
|
.Pp
|
|
Either naming scheme can be read on this and future versions of ZFS, regardless
|
|
of this tunable, but legacy ZFS on illumos or
|
|
.Fx
|
|
are unable to read user namespace xattrs written in the Linux format, and
|
|
legacy versions of ZFS on Linux are unable to read user namespace xattrs written
|
|
in the legacy ZFS format.
|
|
.Pp
|
|
An existing xattr with the alternate naming scheme is removed when overwriting
|
|
the xattr so as to not accumulate duplicates.
|
|
.
|
|
.It Sy zio_requeue_io_start_cut_in_line Ns = Ns Sy 0 Ns | Ns 1 Pq int
|
|
Prioritize requeued I/O.
|
|
.
|
|
.It Sy zio_taskq_batch_pct Ns = Ns Sy 80 Ns % Pq uint
|
|
Percentage of online CPUs which will run a worker thread for I/O.
|
|
These workers are responsible for I/O work such as compression, encryption,
|
|
checksum and parity calculations.
|
|
Fractional number of CPUs will be rounded down.
|
|
.Pp
|
|
The default value of
|
|
.Sy 80%
|
|
was chosen to avoid using all CPUs which can result in
|
|
latency issues and inconsistent application performance,
|
|
especially when slower compression and/or checksumming is enabled.
|
|
Set value only applies to pools imported/created after that.
|
|
.
|
|
.It Sy zio_taskq_batch_tpq Ns = Ns Sy 0 Pq uint
|
|
Number of worker threads per taskq.
|
|
Higher values improve I/O ordering and CPU utilization,
|
|
while lower reduce lock contention.
|
|
Set value only applies to pools imported/created after that.
|
|
.Pp
|
|
If
|
|
.Sy 0 ,
|
|
generate a system-dependent value close to 6 threads per taskq.
|
|
Set value only applies to pools imported/created after that.
|
|
.
|
|
.It Sy zio_taskq_write_tpq Ns = Ns Sy 16 Pq uint
|
|
Determines the minumum number of threads per write issue taskq.
|
|
Higher values improve CPU utilization on high throughput,
|
|
while lower reduce taskq locks contention on high IOPS.
|
|
Set value only applies to pools imported/created after that.
|
|
.
|
|
.It Sy zio_taskq_read Ns = Ns Sy fixed,1,8 null scale null Pq charp
|
|
Set the queue and thread configuration for the IO read queues.
|
|
This is an advanced debugging parameter.
|
|
Don't change this unless you understand what it does.
|
|
Set values only apply to pools imported/created after that.
|
|
.
|
|
.It Sy zio_taskq_write Ns = Ns Sy sync null scale null Pq charp
|
|
Set the queue and thread configuration for the IO write queues.
|
|
This is an advanced debugging parameter.
|
|
Don't change this unless you understand what it does.
|
|
Set values only apply to pools imported/created after that.
|
|
.
|
|
.It Sy zvol_inhibit_dev Ns = Ns Sy 0 Ns | Ns 1 Pq uint
|
|
Do not create zvol device nodes.
|
|
This may slightly improve startup time on
|
|
systems with a very large number of zvols.
|
|
.
|
|
.It Sy zvol_major Ns = Ns Sy 230 Pq uint
|
|
Major number for zvol block devices.
|
|
.
|
|
.It Sy zvol_max_discard_blocks Ns = Ns Sy 16384 Pq long
|
|
Discard (TRIM) operations done on zvols will be done in batches of this
|
|
many blocks, where block size is determined by the
|
|
.Sy volblocksize
|
|
property of a zvol.
|
|
.
|
|
.It Sy zvol_prefetch_bytes Ns = Ns Sy 131072 Ns B Po 128 KiB Pc Pq uint
|
|
When adding a zvol to the system, prefetch this many bytes
|
|
from the start and end of the volume.
|
|
Prefetching these regions of the volume is desirable,
|
|
because they are likely to be accessed immediately by
|
|
.Xr blkid 8
|
|
or the kernel partitioner.
|
|
.
|
|
.It Sy zvol_request_sync Ns = Ns Sy 0 Ns | Ns 1 Pq uint
|
|
When processing I/O requests for a zvol, submit them synchronously.
|
|
This effectively limits the queue depth to
|
|
.Em 1
|
|
for each I/O submitter.
|
|
When unset, requests are handled asynchronously by a thread pool.
|
|
The number of requests which can be handled concurrently is controlled by
|
|
.Sy zvol_threads .
|
|
.Sy zvol_request_sync
|
|
is ignored when running on a kernel that supports block multiqueue
|
|
.Pq Li blk-mq .
|
|
.
|
|
.It Sy zvol_num_taskqs Ns = Ns Sy 0 Pq uint
|
|
Number of zvol taskqs.
|
|
If
|
|
.Sy 0
|
|
(the default) then scaling is done internally to prefer 6 threads per taskq.
|
|
This only applies on Linux.
|
|
.
|
|
.It Sy zvol_threads Ns = Ns Sy 0 Pq uint
|
|
The number of system wide threads to use for processing zvol block IOs.
|
|
If
|
|
.Sy 0
|
|
(the default) then internally set
|
|
.Sy zvol_threads
|
|
to the number of CPUs present or 32 (whichever is greater).
|
|
.
|
|
.It Sy zvol_blk_mq_threads Ns = Ns Sy 0 Pq uint
|
|
The number of threads per zvol to use for queuing IO requests.
|
|
This parameter will only appear if your kernel supports
|
|
.Li blk-mq
|
|
and is only read and assigned to a zvol at zvol load time.
|
|
If
|
|
.Sy 0
|
|
(the default) then internally set
|
|
.Sy zvol_blk_mq_threads
|
|
to the number of CPUs present.
|
|
.
|
|
.It Sy zvol_use_blk_mq Ns = Ns Sy 0 Ns | Ns 1 Pq uint
|
|
Set to
|
|
.Sy 1
|
|
to use the
|
|
.Li blk-mq
|
|
API for zvols.
|
|
Set to
|
|
.Sy 0
|
|
(the default) to use the legacy zvol APIs.
|
|
This setting can give better or worse zvol performance depending on
|
|
the workload.
|
|
This parameter will only appear if your kernel supports
|
|
.Li blk-mq
|
|
and is only read and assigned to a zvol at zvol load time.
|
|
.
|
|
.It Sy zvol_blk_mq_blocks_per_thread Ns = Ns Sy 8 Pq uint
|
|
If
|
|
.Sy zvol_use_blk_mq
|
|
is enabled, then process this number of
|
|
.Sy volblocksize Ns -sized blocks per zvol thread.
|
|
This tunable can be use to favor better performance for zvol reads (lower
|
|
values) or writes (higher values).
|
|
If set to
|
|
.Sy 0 ,
|
|
then the zvol layer will process the maximum number of blocks
|
|
per thread that it can.
|
|
This parameter will only appear if your kernel supports
|
|
.Li blk-mq
|
|
and is only applied at each zvol's load time.
|
|
.
|
|
.It Sy zvol_blk_mq_queue_depth Ns = Ns Sy 0 Pq uint
|
|
The queue_depth value for the zvol
|
|
.Li blk-mq
|
|
interface.
|
|
This parameter will only appear if your kernel supports
|
|
.Li blk-mq
|
|
and is only applied at each zvol's load time.
|
|
If
|
|
.Sy 0
|
|
(the default) then use the kernel's default queue depth.
|
|
Values are clamped to the kernel's
|
|
.Dv BLKDEV_MIN_RQ
|
|
and
|
|
.Dv BLKDEV_MAX_RQ Ns / Ns Dv BLKDEV_DEFAULT_RQ
|
|
limits.
|
|
.
|
|
.It Sy zvol_volmode Ns = Ns Sy 1 Pq uint
|
|
Defines zvol block devices behaviour when
|
|
.Sy volmode Ns = Ns Sy default :
|
|
.Bl -tag -compact -offset 4n -width "a"
|
|
.It Sy 1
|
|
.No equivalent to Sy full
|
|
.It Sy 2
|
|
.No equivalent to Sy dev
|
|
.It Sy 3
|
|
.No equivalent to Sy none
|
|
.El
|
|
.
|
|
.It Sy zvol_enforce_quotas Ns = Ns Sy 0 Ns | Ns 1 Pq uint
|
|
Enable strict ZVOL quota enforcement.
|
|
The strict quota enforcement may have a performance impact.
|
|
.El
|
|
.
|
|
.Sh ZFS I/O SCHEDULER
|
|
ZFS issues I/O operations to leaf vdevs to satisfy and complete I/O operations.
|
|
The scheduler determines when and in what order those operations are issued.
|
|
The scheduler divides operations into five I/O classes,
|
|
prioritized in the following order: sync read, sync write, async read,
|
|
async write, and scrub/resilver.
|
|
Each queue defines the minimum and maximum number of concurrent operations
|
|
that may be issued to the device.
|
|
In addition, the device has an aggregate maximum,
|
|
.Sy zfs_vdev_max_active .
|
|
Note that the sum of the per-queue minima must not exceed the aggregate maximum.
|
|
If the sum of the per-queue maxima exceeds the aggregate maximum,
|
|
then the number of active operations may reach
|
|
.Sy zfs_vdev_max_active ,
|
|
in which case no further operations will be issued,
|
|
regardless of whether all per-queue minima have been met.
|
|
.Pp
|
|
For many physical devices, throughput increases with the number of
|
|
concurrent operations, but latency typically suffers.
|
|
Furthermore, physical devices typically have a limit
|
|
at which more concurrent operations have no
|
|
effect on throughput or can actually cause it to decrease.
|
|
.Pp
|
|
The scheduler selects the next operation to issue by first looking for an
|
|
I/O class whose minimum has not been satisfied.
|
|
Once all are satisfied and the aggregate maximum has not been hit,
|
|
the scheduler looks for classes whose maximum has not been satisfied.
|
|
Iteration through the I/O classes is done in the order specified above.
|
|
No further operations are issued
|
|
if the aggregate maximum number of concurrent operations has been hit,
|
|
or if there are no operations queued for an I/O class that has not hit its
|
|
maximum.
|
|
Every time an I/O operation is queued or an operation completes,
|
|
the scheduler looks for new operations to issue.
|
|
.Pp
|
|
In general, smaller
|
|
.Sy max_active Ns s
|
|
will lead to lower latency of synchronous operations.
|
|
Larger
|
|
.Sy max_active Ns s
|
|
may lead to higher overall throughput, depending on underlying storage.
|
|
.Pp
|
|
The ratio of the queues'
|
|
.Sy max_active Ns s
|
|
determines the balance of performance between reads, writes, and scrubs.
|
|
For example, increasing
|
|
.Sy zfs_vdev_scrub_max_active
|
|
will cause the scrub or resilver to complete more quickly,
|
|
but reads and writes to have higher latency and lower throughput.
|
|
.Pp
|
|
All I/O classes have a fixed maximum number of outstanding operations,
|
|
except for the async write class.
|
|
Asynchronous writes represent the data that is committed to stable storage
|
|
during the syncing stage for transaction groups.
|
|
Transaction groups enter the syncing state periodically,
|
|
so the number of queued async writes will quickly burst up
|
|
and then bleed down to zero.
|
|
Rather than servicing them as quickly as possible,
|
|
the I/O scheduler changes the maximum number of active async write operations
|
|
according to the amount of dirty data in the pool.
|
|
Since both throughput and latency typically increase with the number of
|
|
concurrent operations issued to physical devices, reducing the
|
|
burstiness in the number of simultaneous operations also stabilizes the
|
|
response time of operations from other queues, in particular synchronous ones.
|
|
In broad strokes, the I/O scheduler will issue more concurrent operations
|
|
from the async write queue as there is more dirty data in the pool.
|
|
.
|
|
.Ss Async Writes
|
|
The number of concurrent operations issued for the async write I/O class
|
|
follows a piece-wise linear function defined by a few adjustable points:
|
|
.Bd -literal
|
|
| o---------| <-- \fBzfs_vdev_async_write_max_active\fP
|
|
^ | /^ |
|
|
| | / | |
|
|
active | / | |
|
|
I/O | / | |
|
|
count | / | |
|
|
| / | |
|
|
|-------o | | <-- \fBzfs_vdev_async_write_min_active\fP
|
|
0|_______^______|_________|
|
|
0% | | 100% of \fBzfs_dirty_data_max\fP
|
|
| |
|
|
| `-- \fBzfs_vdev_async_write_active_max_dirty_percent\fP
|
|
`--------- \fBzfs_vdev_async_write_active_min_dirty_percent\fP
|
|
.Ed
|
|
.Pp
|
|
Until the amount of dirty data exceeds a minimum percentage of the dirty
|
|
data allowed in the pool, the I/O scheduler will limit the number of
|
|
concurrent operations to the minimum.
|
|
As that threshold is crossed, the number of concurrent operations issued
|
|
increases linearly to the maximum at the specified maximum percentage
|
|
of the dirty data allowed in the pool.
|
|
.Pp
|
|
Ideally, the amount of dirty data on a busy pool will stay in the sloped
|
|
part of the function between
|
|
.Sy zfs_vdev_async_write_active_min_dirty_percent
|
|
and
|
|
.Sy zfs_vdev_async_write_active_max_dirty_percent .
|
|
If it exceeds the maximum percentage,
|
|
this indicates that the rate of incoming data is
|
|
greater than the rate that the backend storage can handle.
|
|
In this case, we must further throttle incoming writes,
|
|
as described in the next section.
|
|
.
|
|
.Sh ZFS TRANSACTION DELAY
|
|
We delay transactions when we've determined that the backend storage
|
|
isn't able to accommodate the rate of incoming writes.
|
|
.Pp
|
|
If there is already a transaction waiting, we delay relative to when
|
|
that transaction will finish waiting.
|
|
This way the calculated delay time
|
|
is independent of the number of threads concurrently executing transactions.
|
|
.Pp
|
|
If we are the only waiter, wait relative to when the transaction started,
|
|
rather than the current time.
|
|
This credits the transaction for "time already served",
|
|
e.g. reading indirect blocks.
|
|
.Pp
|
|
The minimum time for a transaction to take is calculated as
|
|
.D1 min_time = min( Ns Sy zfs_delay_scale No \(mu Po Sy dirty No \- Sy min Pc / Po Sy max No \- Sy dirty Pc , 100ms)
|
|
.Pp
|
|
The delay has two degrees of freedom that can be adjusted via tunables.
|
|
The percentage of dirty data at which we start to delay is defined by
|
|
.Sy zfs_delay_min_dirty_percent .
|
|
This should typically be at or above
|
|
.Sy zfs_vdev_async_write_active_max_dirty_percent ,
|
|
so that we only start to delay after writing at full speed
|
|
has failed to keep up with the incoming write rate.
|
|
The scale of the curve is defined by
|
|
.Sy zfs_delay_scale .
|
|
Roughly speaking, this variable determines the amount of delay at the midpoint
|
|
of the curve.
|
|
.Bd -literal
|
|
delay
|
|
10ms +-------------------------------------------------------------*+
|
|
| *|
|
|
9ms + *+
|
|
| *|
|
|
8ms + *+
|
|
| * |
|
|
7ms + * +
|
|
| * |
|
|
6ms + * +
|
|
| * |
|
|
5ms + * +
|
|
| * |
|
|
4ms + * +
|
|
| * |
|
|
3ms + * +
|
|
| * |
|
|
2ms + (midpoint) * +
|
|
| | ** |
|
|
1ms + v *** +
|
|
| \fBzfs_delay_scale\fP ----------> ******** |
|
|
0 +-------------------------------------*********----------------+
|
|
0% <- \fBzfs_dirty_data_max\fP -> 100%
|
|
.Ed
|
|
.Pp
|
|
Note, that since the delay is added to the outstanding time remaining on the
|
|
most recent transaction it's effectively the inverse of IOPS.
|
|
Here, the midpoint of
|
|
.Em 500 us
|
|
translates to
|
|
.Em 2000 IOPS .
|
|
The shape of the curve
|
|
was chosen such that small changes in the amount of accumulated dirty data
|
|
in the first three quarters of the curve yield relatively small differences
|
|
in the amount of delay.
|
|
.Pp
|
|
The effects can be easier to understand when the amount of delay is
|
|
represented on a logarithmic scale:
|
|
.Bd -literal
|
|
delay
|
|
100ms +-------------------------------------------------------------++
|
|
+ +
|
|
| |
|
|
+ *+
|
|
10ms + *+
|
|
+ ** +
|
|
| (midpoint) ** |
|
|
+ | ** +
|
|
1ms + v **** +
|
|
+ \fBzfs_delay_scale\fP ----------> ***** +
|
|
| **** |
|
|
+ **** +
|
|
100us + ** +
|
|
+ * +
|
|
| * |
|
|
+ * +
|
|
10us + * +
|
|
+ +
|
|
| |
|
|
+ +
|
|
+--------------------------------------------------------------+
|
|
0% <- \fBzfs_dirty_data_max\fP -> 100%
|
|
.Ed
|
|
.Pp
|
|
Note here that only as the amount of dirty data approaches its limit does
|
|
the delay start to increase rapidly.
|
|
The goal of a properly tuned system should be to keep the amount of dirty data
|
|
out of that range by first ensuring that the appropriate limits are set
|
|
for the I/O scheduler to reach optimal throughput on the back-end storage,
|
|
and then by changing the value of
|
|
.Sy zfs_delay_scale
|
|
to increase the steepness of the curve.
|