mirror_zfs/module/zfs/vdev.c
jwpoduska 1be3cba381 Prevent unnecessary resilver restarts
If a device is participating in an active resilver, then it will have a
non-empty DTL. Operations like vdev_{open,reopen,probe}() can cause the
resilver to be restarted (or deferred to be restarted later), which is
unnecessary if the DTL is still covered by the current scan range. This
is similar to the logic in vdev_dtl_should_excise() where the DTL can
only be excised if it's max txg is in the resilvered range.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: John Gallagher <john.gallagher@delphix.com>
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Signed-off-by: John Poduska <jpoduska@datto.com>
Issue #840
Closes #9155
Closes #9378
Closes #9551
Closes #9588
2020-01-22 13:49:07 -08:00

4814 lines
132 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
* Copyright 2017 Nexenta Systems, Inc.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2016 Toomas Soome <tsoome@me.com>
* Copyright 2017 Joyent, Inc.
* Copyright (c) 2017, Intel Corporation.
* Copyright (c) 2019, Datto Inc. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/fm/fs/zfs.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/bpobj.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/dsl_dir.h>
#include <sys/vdev_impl.h>
#include <sys/uberblock_impl.h>
#include <sys/metaslab.h>
#include <sys/metaslab_impl.h>
#include <sys/space_map.h>
#include <sys/space_reftree.h>
#include <sys/zio.h>
#include <sys/zap.h>
#include <sys/fs/zfs.h>
#include <sys/arc.h>
#include <sys/zil.h>
#include <sys/dsl_scan.h>
#include <sys/abd.h>
#include <sys/vdev_initialize.h>
#include <sys/vdev_trim.h>
#include <sys/zvol.h>
#include <sys/zfs_ratelimit.h>
/* default target for number of metaslabs per top-level vdev */
int zfs_vdev_default_ms_count = 200;
/* minimum number of metaslabs per top-level vdev */
int zfs_vdev_min_ms_count = 16;
/* practical upper limit of total metaslabs per top-level vdev */
int zfs_vdev_ms_count_limit = 1ULL << 17;
/* lower limit for metaslab size (512M) */
int zfs_vdev_default_ms_shift = 29;
/* upper limit for metaslab size (16G) */
int zfs_vdev_max_ms_shift = 34;
int vdev_validate_skip = B_FALSE;
/*
* Since the DTL space map of a vdev is not expected to have a lot of
* entries, we default its block size to 4K.
*/
int vdev_dtl_sm_blksz = (1 << 12);
/*
* Rate limit slow IO (delay) events to this many per second.
*/
unsigned int zfs_slow_io_events_per_second = 20;
/*
* Rate limit checksum events after this many checksum errors per second.
*/
unsigned int zfs_checksum_events_per_second = 20;
/*
* Ignore errors during scrub/resilver. Allows to work around resilver
* upon import when there are pool errors.
*/
int zfs_scan_ignore_errors = 0;
/*
* vdev-wide space maps that have lots of entries written to them at
* the end of each transaction can benefit from a higher I/O bandwidth
* (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
*/
int vdev_standard_sm_blksz = (1 << 17);
/*
* Tunable parameter for debugging or performance analysis. Setting this
* will cause pool corruption on power loss if a volatile out-of-order
* write cache is enabled.
*/
int zfs_nocacheflush = 0;
/*PRINTFLIKE2*/
void
vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
{
va_list adx;
char buf[256];
va_start(adx, fmt);
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
va_end(adx);
if (vd->vdev_path != NULL) {
zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
vd->vdev_path, buf);
} else {
zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
vd->vdev_ops->vdev_op_type,
(u_longlong_t)vd->vdev_id,
(u_longlong_t)vd->vdev_guid, buf);
}
}
void
vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
{
char state[20];
if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
vd->vdev_ops->vdev_op_type);
return;
}
switch (vd->vdev_state) {
case VDEV_STATE_UNKNOWN:
(void) snprintf(state, sizeof (state), "unknown");
break;
case VDEV_STATE_CLOSED:
(void) snprintf(state, sizeof (state), "closed");
break;
case VDEV_STATE_OFFLINE:
(void) snprintf(state, sizeof (state), "offline");
break;
case VDEV_STATE_REMOVED:
(void) snprintf(state, sizeof (state), "removed");
break;
case VDEV_STATE_CANT_OPEN:
(void) snprintf(state, sizeof (state), "can't open");
break;
case VDEV_STATE_FAULTED:
(void) snprintf(state, sizeof (state), "faulted");
break;
case VDEV_STATE_DEGRADED:
(void) snprintf(state, sizeof (state), "degraded");
break;
case VDEV_STATE_HEALTHY:
(void) snprintf(state, sizeof (state), "healthy");
break;
default:
(void) snprintf(state, sizeof (state), "<state %u>",
(uint_t)vd->vdev_state);
}
zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
"", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
vd->vdev_islog ? " (log)" : "",
(u_longlong_t)vd->vdev_guid,
vd->vdev_path ? vd->vdev_path : "N/A", state);
for (uint64_t i = 0; i < vd->vdev_children; i++)
vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
}
/*
* Virtual device management.
*/
static vdev_ops_t *vdev_ops_table[] = {
&vdev_root_ops,
&vdev_raidz_ops,
&vdev_mirror_ops,
&vdev_replacing_ops,
&vdev_spare_ops,
&vdev_disk_ops,
&vdev_file_ops,
&vdev_missing_ops,
&vdev_hole_ops,
&vdev_indirect_ops,
NULL
};
/*
* Given a vdev type, return the appropriate ops vector.
*/
static vdev_ops_t *
vdev_getops(const char *type)
{
vdev_ops_t *ops, **opspp;
for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
if (strcmp(ops->vdev_op_type, type) == 0)
break;
return (ops);
}
/* ARGSUSED */
void
vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
{
res->rs_start = in->rs_start;
res->rs_end = in->rs_end;
}
/*
* Derive the enumerated allocation bias from string input.
* String origin is either the per-vdev zap or zpool(1M).
*/
static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char *bias)
{
vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
alloc_bias = VDEV_BIAS_LOG;
else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
alloc_bias = VDEV_BIAS_SPECIAL;
else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
alloc_bias = VDEV_BIAS_DEDUP;
return (alloc_bias);
}
/*
* Default asize function: return the MAX of psize with the asize of
* all children. This is what's used by anything other than RAID-Z.
*/
uint64_t
vdev_default_asize(vdev_t *vd, uint64_t psize)
{
uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
uint64_t csize;
for (int c = 0; c < vd->vdev_children; c++) {
csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
asize = MAX(asize, csize);
}
return (asize);
}
/*
* Get the minimum allocatable size. We define the allocatable size as
* the vdev's asize rounded to the nearest metaslab. This allows us to
* replace or attach devices which don't have the same physical size but
* can still satisfy the same number of allocations.
*/
uint64_t
vdev_get_min_asize(vdev_t *vd)
{
vdev_t *pvd = vd->vdev_parent;
/*
* If our parent is NULL (inactive spare or cache) or is the root,
* just return our own asize.
*/
if (pvd == NULL)
return (vd->vdev_asize);
/*
* The top-level vdev just returns the allocatable size rounded
* to the nearest metaslab.
*/
if (vd == vd->vdev_top)
return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
/*
* The allocatable space for a raidz vdev is N * sizeof(smallest child),
* so each child must provide at least 1/Nth of its asize.
*/
if (pvd->vdev_ops == &vdev_raidz_ops)
return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
pvd->vdev_children);
return (pvd->vdev_min_asize);
}
void
vdev_set_min_asize(vdev_t *vd)
{
vd->vdev_min_asize = vdev_get_min_asize(vd);
for (int c = 0; c < vd->vdev_children; c++)
vdev_set_min_asize(vd->vdev_child[c]);
}
vdev_t *
vdev_lookup_top(spa_t *spa, uint64_t vdev)
{
vdev_t *rvd = spa->spa_root_vdev;
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
if (vdev < rvd->vdev_children) {
ASSERT(rvd->vdev_child[vdev] != NULL);
return (rvd->vdev_child[vdev]);
}
return (NULL);
}
vdev_t *
vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
{
vdev_t *mvd;
if (vd->vdev_guid == guid)
return (vd);
for (int c = 0; c < vd->vdev_children; c++)
if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
NULL)
return (mvd);
return (NULL);
}
static int
vdev_count_leaves_impl(vdev_t *vd)
{
int n = 0;
if (vd->vdev_ops->vdev_op_leaf)
return (1);
for (int c = 0; c < vd->vdev_children; c++)
n += vdev_count_leaves_impl(vd->vdev_child[c]);
return (n);
}
int
vdev_count_leaves(spa_t *spa)
{
int rc;
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
rc = vdev_count_leaves_impl(spa->spa_root_vdev);
spa_config_exit(spa, SCL_VDEV, FTAG);
return (rc);
}
void
vdev_add_child(vdev_t *pvd, vdev_t *cvd)
{
size_t oldsize, newsize;
uint64_t id = cvd->vdev_id;
vdev_t **newchild;
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
ASSERT(cvd->vdev_parent == NULL);
cvd->vdev_parent = pvd;
if (pvd == NULL)
return;
ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
oldsize = pvd->vdev_children * sizeof (vdev_t *);
pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
newsize = pvd->vdev_children * sizeof (vdev_t *);
newchild = kmem_alloc(newsize, KM_SLEEP);
if (pvd->vdev_child != NULL) {
bcopy(pvd->vdev_child, newchild, oldsize);
kmem_free(pvd->vdev_child, oldsize);
}
pvd->vdev_child = newchild;
pvd->vdev_child[id] = cvd;
cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
/*
* Walk up all ancestors to update guid sum.
*/
for (; pvd != NULL; pvd = pvd->vdev_parent)
pvd->vdev_guid_sum += cvd->vdev_guid_sum;
if (cvd->vdev_ops->vdev_op_leaf) {
list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
cvd->vdev_spa->spa_leaf_list_gen++;
}
}
void
vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
{
int c;
uint_t id = cvd->vdev_id;
ASSERT(cvd->vdev_parent == pvd);
if (pvd == NULL)
return;
ASSERT(id < pvd->vdev_children);
ASSERT(pvd->vdev_child[id] == cvd);
pvd->vdev_child[id] = NULL;
cvd->vdev_parent = NULL;
for (c = 0; c < pvd->vdev_children; c++)
if (pvd->vdev_child[c])
break;
if (c == pvd->vdev_children) {
kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
pvd->vdev_child = NULL;
pvd->vdev_children = 0;
}
if (cvd->vdev_ops->vdev_op_leaf) {
spa_t *spa = cvd->vdev_spa;
list_remove(&spa->spa_leaf_list, cvd);
spa->spa_leaf_list_gen++;
}
/*
* Walk up all ancestors to update guid sum.
*/
for (; pvd != NULL; pvd = pvd->vdev_parent)
pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
}
/*
* Remove any holes in the child array.
*/
void
vdev_compact_children(vdev_t *pvd)
{
vdev_t **newchild, *cvd;
int oldc = pvd->vdev_children;
int newc;
ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
if (oldc == 0)
return;
for (int c = newc = 0; c < oldc; c++)
if (pvd->vdev_child[c])
newc++;
if (newc > 0) {
newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
for (int c = newc = 0; c < oldc; c++) {
if ((cvd = pvd->vdev_child[c]) != NULL) {
newchild[newc] = cvd;
cvd->vdev_id = newc++;
}
}
} else {
newchild = NULL;
}
kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
pvd->vdev_child = newchild;
pvd->vdev_children = newc;
}
/*
* Allocate and minimally initialize a vdev_t.
*/
vdev_t *
vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
{
vdev_t *vd;
vdev_indirect_config_t *vic;
vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
vic = &vd->vdev_indirect_config;
if (spa->spa_root_vdev == NULL) {
ASSERT(ops == &vdev_root_ops);
spa->spa_root_vdev = vd;
spa->spa_load_guid = spa_generate_guid(NULL);
}
if (guid == 0 && ops != &vdev_hole_ops) {
if (spa->spa_root_vdev == vd) {
/*
* The root vdev's guid will also be the pool guid,
* which must be unique among all pools.
*/
guid = spa_generate_guid(NULL);
} else {
/*
* Any other vdev's guid must be unique within the pool.
*/
guid = spa_generate_guid(spa);
}
ASSERT(!spa_guid_exists(spa_guid(spa), guid));
}
vd->vdev_spa = spa;
vd->vdev_id = id;
vd->vdev_guid = guid;
vd->vdev_guid_sum = guid;
vd->vdev_ops = ops;
vd->vdev_state = VDEV_STATE_CLOSED;
vd->vdev_ishole = (ops == &vdev_hole_ops);
vic->vic_prev_indirect_vdev = UINT64_MAX;
rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
/*
* Initialize rate limit structs for events. We rate limit ZIO delay
* and checksum events so that we don't overwhelm ZED with thousands
* of events when a disk is acting up.
*/
zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
1);
zfs_ratelimit_init(&vd->vdev_checksum_rl,
&zfs_checksum_events_per_second, 1);
list_link_init(&vd->vdev_config_dirty_node);
list_link_init(&vd->vdev_state_dirty_node);
list_link_init(&vd->vdev_initialize_node);
list_link_init(&vd->vdev_leaf_node);
list_link_init(&vd->vdev_trim_node);
mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
for (int t = 0; t < DTL_TYPES; t++) {
vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
}
txg_list_create(&vd->vdev_ms_list, spa,
offsetof(struct metaslab, ms_txg_node));
txg_list_create(&vd->vdev_dtl_list, spa,
offsetof(struct vdev, vdev_dtl_node));
vd->vdev_stat.vs_timestamp = gethrtime();
vdev_queue_init(vd);
vdev_cache_init(vd);
return (vd);
}
/*
* Allocate a new vdev. The 'alloctype' is used to control whether we are
* creating a new vdev or loading an existing one - the behavior is slightly
* different for each case.
*/
int
vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
int alloctype)
{
vdev_ops_t *ops;
char *type;
uint64_t guid = 0, islog, nparity;
vdev_t *vd;
vdev_indirect_config_t *vic;
char *tmp = NULL;
int rc;
vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
boolean_t top_level = (parent && !parent->vdev_parent);
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
return (SET_ERROR(EINVAL));
if ((ops = vdev_getops(type)) == NULL)
return (SET_ERROR(EINVAL));
/*
* If this is a load, get the vdev guid from the nvlist.
* Otherwise, vdev_alloc_common() will generate one for us.
*/
if (alloctype == VDEV_ALLOC_LOAD) {
uint64_t label_id;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
label_id != id)
return (SET_ERROR(EINVAL));
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (SET_ERROR(EINVAL));
} else if (alloctype == VDEV_ALLOC_SPARE) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (SET_ERROR(EINVAL));
} else if (alloctype == VDEV_ALLOC_L2CACHE) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (SET_ERROR(EINVAL));
} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (SET_ERROR(EINVAL));
}
/*
* The first allocated vdev must be of type 'root'.
*/
if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
return (SET_ERROR(EINVAL));
/*
* Determine whether we're a log vdev.
*/
islog = 0;
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
return (SET_ERROR(ENOTSUP));
if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
return (SET_ERROR(ENOTSUP));
/*
* Set the nparity property for RAID-Z vdevs.
*/
nparity = -1ULL;
if (ops == &vdev_raidz_ops) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
&nparity) == 0) {
if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
return (SET_ERROR(EINVAL));
/*
* Previous versions could only support 1 or 2 parity
* device.
*/
if (nparity > 1 &&
spa_version(spa) < SPA_VERSION_RAIDZ2)
return (SET_ERROR(ENOTSUP));
if (nparity > 2 &&
spa_version(spa) < SPA_VERSION_RAIDZ3)
return (SET_ERROR(ENOTSUP));
} else {
/*
* We require the parity to be specified for SPAs that
* support multiple parity levels.
*/
if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
return (SET_ERROR(EINVAL));
/*
* Otherwise, we default to 1 parity device for RAID-Z.
*/
nparity = 1;
}
} else {
nparity = 0;
}
ASSERT(nparity != -1ULL);
/*
* If creating a top-level vdev, check for allocation classes input
*/
if (top_level && alloctype == VDEV_ALLOC_ADD) {
char *bias;
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
&bias) == 0) {
alloc_bias = vdev_derive_alloc_bias(bias);
/* spa_vdev_add() expects feature to be enabled */
if (spa->spa_load_state != SPA_LOAD_CREATE &&
!spa_feature_is_enabled(spa,
SPA_FEATURE_ALLOCATION_CLASSES)) {
return (SET_ERROR(ENOTSUP));
}
}
}
vd = vdev_alloc_common(spa, id, guid, ops);
vic = &vd->vdev_indirect_config;
vd->vdev_islog = islog;
vd->vdev_nparity = nparity;
if (top_level && alloc_bias != VDEV_BIAS_NONE)
vd->vdev_alloc_bias = alloc_bias;
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
vd->vdev_path = spa_strdup(vd->vdev_path);
/*
* ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
* fault on a vdev and want it to persist across imports (like with
* zpool offline -f).
*/
rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
vd->vdev_faulted = 1;
vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
}
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
vd->vdev_devid = spa_strdup(vd->vdev_devid);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
&vd->vdev_physpath) == 0)
vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
&vd->vdev_enc_sysfs_path) == 0)
vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
vd->vdev_fru = spa_strdup(vd->vdev_fru);
/*
* Set the whole_disk property. If it's not specified, leave the value
* as -1.
*/
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
&vd->vdev_wholedisk) != 0)
vd->vdev_wholedisk = -1ULL;
ASSERT0(vic->vic_mapping_object);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
&vic->vic_mapping_object);
ASSERT0(vic->vic_births_object);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
&vic->vic_births_object);
ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
&vic->vic_prev_indirect_vdev);
/*
* Look for the 'not present' flag. This will only be set if the device
* was not present at the time of import.
*/
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
&vd->vdev_not_present);
/*
* Get the alignment requirement.
*/
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
/*
* Retrieve the vdev creation time.
*/
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
&vd->vdev_crtxg);
/*
* If we're a top-level vdev, try to load the allocation parameters.
*/
if (top_level &&
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
&vd->vdev_ms_array);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
&vd->vdev_ms_shift);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
&vd->vdev_asize);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
&vd->vdev_removing);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
&vd->vdev_top_zap);
} else {
ASSERT0(vd->vdev_top_zap);
}
if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
ASSERT(alloctype == VDEV_ALLOC_LOAD ||
alloctype == VDEV_ALLOC_ADD ||
alloctype == VDEV_ALLOC_SPLIT ||
alloctype == VDEV_ALLOC_ROOTPOOL);
/* Note: metaslab_group_create() is now deferred */
}
if (vd->vdev_ops->vdev_op_leaf &&
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
(void) nvlist_lookup_uint64(nv,
ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
} else {
ASSERT0(vd->vdev_leaf_zap);
}
/*
* If we're a leaf vdev, try to load the DTL object and other state.
*/
if (vd->vdev_ops->vdev_op_leaf &&
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
alloctype == VDEV_ALLOC_ROOTPOOL)) {
if (alloctype == VDEV_ALLOC_LOAD) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
&vd->vdev_dtl_object);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
&vd->vdev_unspare);
}
if (alloctype == VDEV_ALLOC_ROOTPOOL) {
uint64_t spare = 0;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
&spare) == 0 && spare)
spa_spare_add(vd);
}
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
&vd->vdev_offline);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
&vd->vdev_resilver_txg);
if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
vdev_defer_resilver(vd);
/*
* In general, when importing a pool we want to ignore the
* persistent fault state, as the diagnosis made on another
* system may not be valid in the current context. The only
* exception is if we forced a vdev to a persistently faulted
* state with 'zpool offline -f'. The persistent fault will
* remain across imports until cleared.
*
* Local vdevs will remain in the faulted state.
*/
if (spa_load_state(spa) == SPA_LOAD_OPEN ||
spa_load_state(spa) == SPA_LOAD_IMPORT) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
&vd->vdev_faulted);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
&vd->vdev_degraded);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
&vd->vdev_removed);
if (vd->vdev_faulted || vd->vdev_degraded) {
char *aux;
vd->vdev_label_aux =
VDEV_AUX_ERR_EXCEEDED;
if (nvlist_lookup_string(nv,
ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
strcmp(aux, "external") == 0)
vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
else
vd->vdev_faulted = 0ULL;
}
}
}
/*
* Add ourselves to the parent's list of children.
*/
vdev_add_child(parent, vd);
*vdp = vd;
return (0);
}
void
vdev_free(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
ASSERT3P(vd->vdev_trim_thread, ==, NULL);
ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
/*
* Scan queues are normally destroyed at the end of a scan. If the
* queue exists here, that implies the vdev is being removed while
* the scan is still running.
*/
if (vd->vdev_scan_io_queue != NULL) {
mutex_enter(&vd->vdev_scan_io_queue_lock);
dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
vd->vdev_scan_io_queue = NULL;
mutex_exit(&vd->vdev_scan_io_queue_lock);
}
/*
* vdev_free() implies closing the vdev first. This is simpler than
* trying to ensure complicated semantics for all callers.
*/
vdev_close(vd);
ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
/*
* Free all children.
*/
for (int c = 0; c < vd->vdev_children; c++)
vdev_free(vd->vdev_child[c]);
ASSERT(vd->vdev_child == NULL);
ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
/*
* Discard allocation state.
*/
if (vd->vdev_mg != NULL) {
vdev_metaslab_fini(vd);
metaslab_group_destroy(vd->vdev_mg);
}
ASSERT0(vd->vdev_stat.vs_space);
ASSERT0(vd->vdev_stat.vs_dspace);
ASSERT0(vd->vdev_stat.vs_alloc);
/*
* Remove this vdev from its parent's child list.
*/
vdev_remove_child(vd->vdev_parent, vd);
ASSERT(vd->vdev_parent == NULL);
ASSERT(!list_link_active(&vd->vdev_leaf_node));
/*
* Clean up vdev structure.
*/
vdev_queue_fini(vd);
vdev_cache_fini(vd);
if (vd->vdev_path)
spa_strfree(vd->vdev_path);
if (vd->vdev_devid)
spa_strfree(vd->vdev_devid);
if (vd->vdev_physpath)
spa_strfree(vd->vdev_physpath);
if (vd->vdev_enc_sysfs_path)
spa_strfree(vd->vdev_enc_sysfs_path);
if (vd->vdev_fru)
spa_strfree(vd->vdev_fru);
if (vd->vdev_isspare)
spa_spare_remove(vd);
if (vd->vdev_isl2cache)
spa_l2cache_remove(vd);
txg_list_destroy(&vd->vdev_ms_list);
txg_list_destroy(&vd->vdev_dtl_list);
mutex_enter(&vd->vdev_dtl_lock);
space_map_close(vd->vdev_dtl_sm);
for (int t = 0; t < DTL_TYPES; t++) {
range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
range_tree_destroy(vd->vdev_dtl[t]);
}
mutex_exit(&vd->vdev_dtl_lock);
EQUIV(vd->vdev_indirect_births != NULL,
vd->vdev_indirect_mapping != NULL);
if (vd->vdev_indirect_births != NULL) {
vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
vdev_indirect_births_close(vd->vdev_indirect_births);
}
if (vd->vdev_obsolete_sm != NULL) {
ASSERT(vd->vdev_removing ||
vd->vdev_ops == &vdev_indirect_ops);
space_map_close(vd->vdev_obsolete_sm);
vd->vdev_obsolete_sm = NULL;
}
range_tree_destroy(vd->vdev_obsolete_segments);
rw_destroy(&vd->vdev_indirect_rwlock);
mutex_destroy(&vd->vdev_obsolete_lock);
mutex_destroy(&vd->vdev_dtl_lock);
mutex_destroy(&vd->vdev_stat_lock);
mutex_destroy(&vd->vdev_probe_lock);
mutex_destroy(&vd->vdev_scan_io_queue_lock);
mutex_destroy(&vd->vdev_initialize_lock);
mutex_destroy(&vd->vdev_initialize_io_lock);
cv_destroy(&vd->vdev_initialize_io_cv);
cv_destroy(&vd->vdev_initialize_cv);
mutex_destroy(&vd->vdev_trim_lock);
mutex_destroy(&vd->vdev_autotrim_lock);
mutex_destroy(&vd->vdev_trim_io_lock);
cv_destroy(&vd->vdev_trim_cv);
cv_destroy(&vd->vdev_autotrim_cv);
cv_destroy(&vd->vdev_trim_io_cv);
zfs_ratelimit_fini(&vd->vdev_delay_rl);
zfs_ratelimit_fini(&vd->vdev_checksum_rl);
if (vd == spa->spa_root_vdev)
spa->spa_root_vdev = NULL;
kmem_free(vd, sizeof (vdev_t));
}
/*
* Transfer top-level vdev state from svd to tvd.
*/
static void
vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
{
spa_t *spa = svd->vdev_spa;
metaslab_t *msp;
vdev_t *vd;
int t;
ASSERT(tvd == tvd->vdev_top);
tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
tvd->vdev_ms_array = svd->vdev_ms_array;
tvd->vdev_ms_shift = svd->vdev_ms_shift;
tvd->vdev_ms_count = svd->vdev_ms_count;
tvd->vdev_top_zap = svd->vdev_top_zap;
svd->vdev_ms_array = 0;
svd->vdev_ms_shift = 0;
svd->vdev_ms_count = 0;
svd->vdev_top_zap = 0;
if (tvd->vdev_mg)
ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
tvd->vdev_mg = svd->vdev_mg;
tvd->vdev_ms = svd->vdev_ms;
svd->vdev_mg = NULL;
svd->vdev_ms = NULL;
if (tvd->vdev_mg != NULL)
tvd->vdev_mg->mg_vd = tvd;
tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
svd->vdev_checkpoint_sm = NULL;
tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
svd->vdev_alloc_bias = VDEV_BIAS_NONE;
tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
svd->vdev_stat.vs_alloc = 0;
svd->vdev_stat.vs_space = 0;
svd->vdev_stat.vs_dspace = 0;
/*
* State which may be set on a top-level vdev that's in the
* process of being removed.
*/
ASSERT0(tvd->vdev_indirect_config.vic_births_object);
ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
ASSERT0(tvd->vdev_removing);
tvd->vdev_removing = svd->vdev_removing;
tvd->vdev_indirect_config = svd->vdev_indirect_config;
tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
tvd->vdev_indirect_births = svd->vdev_indirect_births;
range_tree_swap(&svd->vdev_obsolete_segments,
&tvd->vdev_obsolete_segments);
tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
svd->vdev_indirect_config.vic_mapping_object = 0;
svd->vdev_indirect_config.vic_births_object = 0;
svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
svd->vdev_indirect_mapping = NULL;
svd->vdev_indirect_births = NULL;
svd->vdev_obsolete_sm = NULL;
svd->vdev_removing = 0;
for (t = 0; t < TXG_SIZE; t++) {
while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
}
if (list_link_active(&svd->vdev_config_dirty_node)) {
vdev_config_clean(svd);
vdev_config_dirty(tvd);
}
if (list_link_active(&svd->vdev_state_dirty_node)) {
vdev_state_clean(svd);
vdev_state_dirty(tvd);
}
tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
svd->vdev_deflate_ratio = 0;
tvd->vdev_islog = svd->vdev_islog;
svd->vdev_islog = 0;
dsl_scan_io_queue_vdev_xfer(svd, tvd);
}
static void
vdev_top_update(vdev_t *tvd, vdev_t *vd)
{
if (vd == NULL)
return;
vd->vdev_top = tvd;
for (int c = 0; c < vd->vdev_children; c++)
vdev_top_update(tvd, vd->vdev_child[c]);
}
/*
* Add a mirror/replacing vdev above an existing vdev.
*/
vdev_t *
vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
{
spa_t *spa = cvd->vdev_spa;
vdev_t *pvd = cvd->vdev_parent;
vdev_t *mvd;
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
mvd->vdev_asize = cvd->vdev_asize;
mvd->vdev_min_asize = cvd->vdev_min_asize;
mvd->vdev_max_asize = cvd->vdev_max_asize;
mvd->vdev_psize = cvd->vdev_psize;
mvd->vdev_ashift = cvd->vdev_ashift;
mvd->vdev_state = cvd->vdev_state;
mvd->vdev_crtxg = cvd->vdev_crtxg;
vdev_remove_child(pvd, cvd);
vdev_add_child(pvd, mvd);
cvd->vdev_id = mvd->vdev_children;
vdev_add_child(mvd, cvd);
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
if (mvd == mvd->vdev_top)
vdev_top_transfer(cvd, mvd);
return (mvd);
}
/*
* Remove a 1-way mirror/replacing vdev from the tree.
*/
void
vdev_remove_parent(vdev_t *cvd)
{
vdev_t *mvd = cvd->vdev_parent;
vdev_t *pvd = mvd->vdev_parent;
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
ASSERT(mvd->vdev_children == 1);
ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
mvd->vdev_ops == &vdev_replacing_ops ||
mvd->vdev_ops == &vdev_spare_ops);
cvd->vdev_ashift = mvd->vdev_ashift;
vdev_remove_child(mvd, cvd);
vdev_remove_child(pvd, mvd);
/*
* If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
* Otherwise, we could have detached an offline device, and when we
* go to import the pool we'll think we have two top-level vdevs,
* instead of a different version of the same top-level vdev.
*/
if (mvd->vdev_top == mvd) {
uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
cvd->vdev_orig_guid = cvd->vdev_guid;
cvd->vdev_guid += guid_delta;
cvd->vdev_guid_sum += guid_delta;
/*
* If pool not set for autoexpand, we need to also preserve
* mvd's asize to prevent automatic expansion of cvd.
* Otherwise if we are adjusting the mirror by attaching and
* detaching children of non-uniform sizes, the mirror could
* autoexpand, unexpectedly requiring larger devices to
* re-establish the mirror.
*/
if (!cvd->vdev_spa->spa_autoexpand)
cvd->vdev_asize = mvd->vdev_asize;
}
cvd->vdev_id = mvd->vdev_id;
vdev_add_child(pvd, cvd);
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
if (cvd == cvd->vdev_top)
vdev_top_transfer(mvd, cvd);
ASSERT(mvd->vdev_children == 0);
vdev_free(mvd);
}
static void
vdev_metaslab_group_create(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
/*
* metaslab_group_create was delayed until allocation bias was available
*/
if (vd->vdev_mg == NULL) {
metaslab_class_t *mc;
if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
vd->vdev_alloc_bias = VDEV_BIAS_LOG;
ASSERT3U(vd->vdev_islog, ==,
(vd->vdev_alloc_bias == VDEV_BIAS_LOG));
switch (vd->vdev_alloc_bias) {
case VDEV_BIAS_LOG:
mc = spa_log_class(spa);
break;
case VDEV_BIAS_SPECIAL:
mc = spa_special_class(spa);
break;
case VDEV_BIAS_DEDUP:
mc = spa_dedup_class(spa);
break;
default:
mc = spa_normal_class(spa);
}
vd->vdev_mg = metaslab_group_create(mc, vd,
spa->spa_alloc_count);
/*
* The spa ashift values currently only reflect the
* general vdev classes. Class destination is late
* binding so ashift checking had to wait until now
*/
if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
if (vd->vdev_ashift > spa->spa_max_ashift)
spa->spa_max_ashift = vd->vdev_ashift;
if (vd->vdev_ashift < spa->spa_min_ashift)
spa->spa_min_ashift = vd->vdev_ashift;
}
}
}
int
vdev_metaslab_init(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
objset_t *mos = spa->spa_meta_objset;
uint64_t m;
uint64_t oldc = vd->vdev_ms_count;
uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
metaslab_t **mspp;
int error;
boolean_t expanding = (oldc != 0);
ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
/*
* This vdev is not being allocated from yet or is a hole.
*/
if (vd->vdev_ms_shift == 0)
return (0);
ASSERT(!vd->vdev_ishole);
ASSERT(oldc <= newc);
mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
if (expanding) {
bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
}
vd->vdev_ms = mspp;
vd->vdev_ms_count = newc;
for (m = oldc; m < newc; m++) {
uint64_t object = 0;
/*
* vdev_ms_array may be 0 if we are creating the "fake"
* metaslabs for an indirect vdev for zdb's leak detection.
* See zdb_leak_init().
*/
if (txg == 0 && vd->vdev_ms_array != 0) {
error = dmu_read(mos, vd->vdev_ms_array,
m * sizeof (uint64_t), sizeof (uint64_t), &object,
DMU_READ_PREFETCH);
if (error != 0) {
vdev_dbgmsg(vd, "unable to read the metaslab "
"array [error=%d]", error);
return (error);
}
}
#ifndef _KERNEL
/*
* To accommodate zdb_leak_init() fake indirect
* metaslabs, we allocate a metaslab group for
* indirect vdevs which normally don't have one.
*/
if (vd->vdev_mg == NULL) {
ASSERT0(vdev_is_concrete(vd));
vdev_metaslab_group_create(vd);
}
#endif
error = metaslab_init(vd->vdev_mg, m, object, txg,
&(vd->vdev_ms[m]));
if (error != 0) {
vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
error);
return (error);
}
}
if (txg == 0)
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
/*
* If the vdev is being removed we don't activate
* the metaslabs since we want to ensure that no new
* allocations are performed on this device.
*/
if (!expanding && !vd->vdev_removing) {
metaslab_group_activate(vd->vdev_mg);
}
if (txg == 0)
spa_config_exit(spa, SCL_ALLOC, FTAG);
return (0);
}
void
vdev_metaslab_fini(vdev_t *vd)
{
if (vd->vdev_checkpoint_sm != NULL) {
ASSERT(spa_feature_is_active(vd->vdev_spa,
SPA_FEATURE_POOL_CHECKPOINT));
space_map_close(vd->vdev_checkpoint_sm);
/*
* Even though we close the space map, we need to set its
* pointer to NULL. The reason is that vdev_metaslab_fini()
* may be called multiple times for certain operations
* (i.e. when destroying a pool) so we need to ensure that
* this clause never executes twice. This logic is similar
* to the one used for the vdev_ms clause below.
*/
vd->vdev_checkpoint_sm = NULL;
}
if (vd->vdev_ms != NULL) {
metaslab_group_t *mg = vd->vdev_mg;
metaslab_group_passivate(mg);
uint64_t count = vd->vdev_ms_count;
for (uint64_t m = 0; m < count; m++) {
metaslab_t *msp = vd->vdev_ms[m];
if (msp != NULL)
metaslab_fini(msp);
}
vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
vd->vdev_ms = NULL;
vd->vdev_ms_count = 0;
for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
ASSERT0(mg->mg_histogram[i]);
}
ASSERT0(vd->vdev_ms_count);
ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
}
typedef struct vdev_probe_stats {
boolean_t vps_readable;
boolean_t vps_writeable;
int vps_flags;
} vdev_probe_stats_t;
static void
vdev_probe_done(zio_t *zio)
{
spa_t *spa = zio->io_spa;
vdev_t *vd = zio->io_vd;
vdev_probe_stats_t *vps = zio->io_private;
ASSERT(vd->vdev_probe_zio != NULL);
if (zio->io_type == ZIO_TYPE_READ) {
if (zio->io_error == 0)
vps->vps_readable = 1;
if (zio->io_error == 0 && spa_writeable(spa)) {
zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
zio->io_offset, zio->io_size, zio->io_abd,
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
} else {
abd_free(zio->io_abd);
}
} else if (zio->io_type == ZIO_TYPE_WRITE) {
if (zio->io_error == 0)
vps->vps_writeable = 1;
abd_free(zio->io_abd);
} else if (zio->io_type == ZIO_TYPE_NULL) {
zio_t *pio;
zio_link_t *zl;
vd->vdev_cant_read |= !vps->vps_readable;
vd->vdev_cant_write |= !vps->vps_writeable;
if (vdev_readable(vd) &&
(vdev_writeable(vd) || !spa_writeable(spa))) {
zio->io_error = 0;
} else {
ASSERT(zio->io_error != 0);
vdev_dbgmsg(vd, "failed probe");
zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
spa, vd, NULL, NULL, 0, 0);
zio->io_error = SET_ERROR(ENXIO);
}
mutex_enter(&vd->vdev_probe_lock);
ASSERT(vd->vdev_probe_zio == zio);
vd->vdev_probe_zio = NULL;
mutex_exit(&vd->vdev_probe_lock);
zl = NULL;
while ((pio = zio_walk_parents(zio, &zl)) != NULL)
if (!vdev_accessible(vd, pio))
pio->io_error = SET_ERROR(ENXIO);
kmem_free(vps, sizeof (*vps));
}
}
/*
* Determine whether this device is accessible.
*
* Read and write to several known locations: the pad regions of each
* vdev label but the first, which we leave alone in case it contains
* a VTOC.
*/
zio_t *
vdev_probe(vdev_t *vd, zio_t *zio)
{
spa_t *spa = vd->vdev_spa;
vdev_probe_stats_t *vps = NULL;
zio_t *pio;
ASSERT(vd->vdev_ops->vdev_op_leaf);
/*
* Don't probe the probe.
*/
if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
return (NULL);
/*
* To prevent 'probe storms' when a device fails, we create
* just one probe i/o at a time. All zios that want to probe
* this vdev will become parents of the probe io.
*/
mutex_enter(&vd->vdev_probe_lock);
if ((pio = vd->vdev_probe_zio) == NULL) {
vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
ZIO_FLAG_TRYHARD;
if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
/*
* vdev_cant_read and vdev_cant_write can only
* transition from TRUE to FALSE when we have the
* SCL_ZIO lock as writer; otherwise they can only
* transition from FALSE to TRUE. This ensures that
* any zio looking at these values can assume that
* failures persist for the life of the I/O. That's
* important because when a device has intermittent
* connectivity problems, we want to ensure that
* they're ascribed to the device (ENXIO) and not
* the zio (EIO).
*
* Since we hold SCL_ZIO as writer here, clear both
* values so the probe can reevaluate from first
* principles.
*/
vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
vd->vdev_cant_read = B_FALSE;
vd->vdev_cant_write = B_FALSE;
}
vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
vdev_probe_done, vps,
vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
/*
* We can't change the vdev state in this context, so we
* kick off an async task to do it on our behalf.
*/
if (zio != NULL) {
vd->vdev_probe_wanted = B_TRUE;
spa_async_request(spa, SPA_ASYNC_PROBE);
}
}
if (zio != NULL)
zio_add_child(zio, pio);
mutex_exit(&vd->vdev_probe_lock);
if (vps == NULL) {
ASSERT(zio != NULL);
return (NULL);
}
for (int l = 1; l < VDEV_LABELS; l++) {
zio_nowait(zio_read_phys(pio, vd,
vdev_label_offset(vd->vdev_psize, l,
offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
}
if (zio == NULL)
return (pio);
zio_nowait(pio);
return (NULL);
}
static void
vdev_open_child(void *arg)
{
vdev_t *vd = arg;
vd->vdev_open_thread = curthread;
vd->vdev_open_error = vdev_open(vd);
vd->vdev_open_thread = NULL;
}
static boolean_t
vdev_uses_zvols(vdev_t *vd)
{
#ifdef _KERNEL
if (zvol_is_zvol(vd->vdev_path))
return (B_TRUE);
#endif
for (int c = 0; c < vd->vdev_children; c++)
if (vdev_uses_zvols(vd->vdev_child[c]))
return (B_TRUE);
return (B_FALSE);
}
void
vdev_open_children(vdev_t *vd)
{
taskq_t *tq;
int children = vd->vdev_children;
/*
* in order to handle pools on top of zvols, do the opens
* in a single thread so that the same thread holds the
* spa_namespace_lock
*/
if (vdev_uses_zvols(vd)) {
retry_sync:
for (int c = 0; c < children; c++)
vd->vdev_child[c]->vdev_open_error =
vdev_open(vd->vdev_child[c]);
} else {
tq = taskq_create("vdev_open", children, minclsyspri,
children, children, TASKQ_PREPOPULATE);
if (tq == NULL)
goto retry_sync;
for (int c = 0; c < children; c++)
VERIFY(taskq_dispatch(tq, vdev_open_child,
vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
taskq_destroy(tq);
}
vd->vdev_nonrot = B_TRUE;
for (int c = 0; c < children; c++)
vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
}
/*
* Compute the raidz-deflation ratio. Note, we hard-code
* in 128k (1 << 17) because it is the "typical" blocksize.
* Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
* otherwise it would inconsistently account for existing bp's.
*/
static void
vdev_set_deflate_ratio(vdev_t *vd)
{
if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
vd->vdev_deflate_ratio = (1 << 17) /
(vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
}
}
/*
* Prepare a virtual device for access.
*/
int
vdev_open(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
int error;
uint64_t osize = 0;
uint64_t max_osize = 0;
uint64_t asize, max_asize, psize;
uint64_t ashift = 0;
ASSERT(vd->vdev_open_thread == curthread ||
spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
vd->vdev_state == VDEV_STATE_CANT_OPEN ||
vd->vdev_state == VDEV_STATE_OFFLINE);
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
vd->vdev_cant_read = B_FALSE;
vd->vdev_cant_write = B_FALSE;
vd->vdev_min_asize = vdev_get_min_asize(vd);
/*
* If this vdev is not removed, check its fault status. If it's
* faulted, bail out of the open.
*/
if (!vd->vdev_removed && vd->vdev_faulted) {
ASSERT(vd->vdev_children == 0);
ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
vd->vdev_label_aux);
return (SET_ERROR(ENXIO));
} else if (vd->vdev_offline) {
ASSERT(vd->vdev_children == 0);
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
return (SET_ERROR(ENXIO));
}
error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
/*
* Physical volume size should never be larger than its max size, unless
* the disk has shrunk while we were reading it or the device is buggy
* or damaged: either way it's not safe for use, bail out of the open.
*/
if (osize > max_osize) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_OPEN_FAILED);
return (SET_ERROR(ENXIO));
}
/*
* Reset the vdev_reopening flag so that we actually close
* the vdev on error.
*/
vd->vdev_reopening = B_FALSE;
if (zio_injection_enabled && error == 0)
error = zio_handle_device_injection(vd, NULL, ENXIO);
if (error) {
if (vd->vdev_removed &&
vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
vd->vdev_removed = B_FALSE;
if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
vd->vdev_stat.vs_aux);
} else {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
vd->vdev_stat.vs_aux);
}
return (error);
}
vd->vdev_removed = B_FALSE;
/*
* Recheck the faulted flag now that we have confirmed that
* the vdev is accessible. If we're faulted, bail.
*/
if (vd->vdev_faulted) {
ASSERT(vd->vdev_children == 0);
ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
vd->vdev_label_aux);
return (SET_ERROR(ENXIO));
}
if (vd->vdev_degraded) {
ASSERT(vd->vdev_children == 0);
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
VDEV_AUX_ERR_EXCEEDED);
} else {
vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
}
/*
* For hole or missing vdevs we just return success.
*/
if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
return (0);
for (int c = 0; c < vd->vdev_children; c++) {
if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
VDEV_AUX_NONE);
break;
}
}
osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
if (vd->vdev_children == 0) {
if (osize < SPA_MINDEVSIZE) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_TOO_SMALL);
return (SET_ERROR(EOVERFLOW));
}
psize = osize;
asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
max_asize = max_osize - (VDEV_LABEL_START_SIZE +
VDEV_LABEL_END_SIZE);
} else {
if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
(VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_TOO_SMALL);
return (SET_ERROR(EOVERFLOW));
}
psize = 0;
asize = osize;
max_asize = max_osize;
}
/*
* If the vdev was expanded, record this so that we can re-create the
* uberblock rings in labels {2,3}, during the next sync.
*/
if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
vd->vdev_copy_uberblocks = B_TRUE;
vd->vdev_psize = psize;
/*
* Make sure the allocatable size hasn't shrunk too much.
*/
if (asize < vd->vdev_min_asize) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_LABEL);
return (SET_ERROR(EINVAL));
}
if (vd->vdev_asize == 0) {
/*
* This is the first-ever open, so use the computed values.
* For compatibility, a different ashift can be requested.
*/
vd->vdev_asize = asize;
vd->vdev_max_asize = max_asize;
if (vd->vdev_ashift == 0) {
vd->vdev_ashift = ashift; /* use detected value */
}
if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
vd->vdev_ashift > ASHIFT_MAX)) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_ASHIFT);
return (SET_ERROR(EDOM));
}
} else {
/*
* Detect if the alignment requirement has increased.
* We don't want to make the pool unavailable, just
* post an event instead.
*/
if (ashift > vd->vdev_top->vdev_ashift &&
vd->vdev_ops->vdev_op_leaf) {
zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
spa, vd, NULL, NULL, 0, 0);
}
vd->vdev_max_asize = max_asize;
}
/*
* If all children are healthy we update asize if either:
* The asize has increased, due to a device expansion caused by dynamic
* LUN growth or vdev replacement, and automatic expansion is enabled;
* making the additional space available.
*
* The asize has decreased, due to a device shrink usually caused by a
* vdev replace with a smaller device. This ensures that calculations
* based of max_asize and asize e.g. esize are always valid. It's safe
* to do this as we've already validated that asize is greater than
* vdev_min_asize.
*/
if (vd->vdev_state == VDEV_STATE_HEALTHY &&
((asize > vd->vdev_asize &&
(vd->vdev_expanding || spa->spa_autoexpand)) ||
(asize < vd->vdev_asize)))
vd->vdev_asize = asize;
vdev_set_min_asize(vd);
/*
* Ensure we can issue some IO before declaring the
* vdev open for business.
*/
if (vd->vdev_ops->vdev_op_leaf &&
(error = zio_wait(vdev_probe(vd, NULL))) != 0) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
VDEV_AUX_ERR_EXCEEDED);
return (error);
}
/*
* Track the min and max ashift values for normal data devices.
*/
if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
if (vd->vdev_ashift > spa->spa_max_ashift)
spa->spa_max_ashift = vd->vdev_ashift;
if (vd->vdev_ashift < spa->spa_min_ashift)
spa->spa_min_ashift = vd->vdev_ashift;
}
/*
* If this is a leaf vdev, assess whether a resilver is needed.
* But don't do this if we are doing a reopen for a scrub, since
* this would just restart the scrub we are already doing.
*/
if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
return (0);
}
/*
* Called once the vdevs are all opened, this routine validates the label
* contents. This needs to be done before vdev_load() so that we don't
* inadvertently do repair I/Os to the wrong device.
*
* This function will only return failure if one of the vdevs indicates that it
* has since been destroyed or exported. This is only possible if
* /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
* will be updated but the function will return 0.
*/
int
vdev_validate(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
nvlist_t *label;
uint64_t guid = 0, aux_guid = 0, top_guid;
uint64_t state;
nvlist_t *nvl;
uint64_t txg;
if (vdev_validate_skip)
return (0);
for (uint64_t c = 0; c < vd->vdev_children; c++)
if (vdev_validate(vd->vdev_child[c]) != 0)
return (SET_ERROR(EBADF));
/*
* If the device has already failed, or was marked offline, don't do
* any further validation. Otherwise, label I/O will fail and we will
* overwrite the previous state.
*/
if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
return (0);
/*
* If we are performing an extreme rewind, we allow for a label that
* was modified at a point after the current txg.
* If config lock is not held do not check for the txg. spa_sync could
* be updating the vdev's label before updating spa_last_synced_txg.
*/
if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
txg = UINT64_MAX;
else
txg = spa_last_synced_txg(spa);
if ((label = vdev_label_read_config(vd, txg)) == NULL) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_LABEL);
vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
"txg %llu", (u_longlong_t)txg);
return (0);
}
/*
* Determine if this vdev has been split off into another
* pool. If so, then refuse to open it.
*/
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
&aux_guid) == 0 && aux_guid == spa_guid(spa)) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_SPLIT_POOL);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
return (0);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
ZPOOL_CONFIG_POOL_GUID);
return (0);
}
/*
* If config is not trusted then ignore the spa guid check. This is
* necessary because if the machine crashed during a re-guid the new
* guid might have been written to all of the vdev labels, but not the
* cached config. The check will be performed again once we have the
* trusted config from the MOS.
*/
if (spa->spa_trust_config && guid != spa_guid(spa)) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
"match config (%llu != %llu)", (u_longlong_t)guid,
(u_longlong_t)spa_guid(spa));
return (0);
}
if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
!= 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
&aux_guid) != 0)
aux_guid = 0;
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
ZPOOL_CONFIG_GUID);
return (0);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
!= 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
ZPOOL_CONFIG_TOP_GUID);
return (0);
}
/*
* If this vdev just became a top-level vdev because its sibling was
* detached, it will have adopted the parent's vdev guid -- but the
* label may or may not be on disk yet. Fortunately, either version
* of the label will have the same top guid, so if we're a top-level
* vdev, we can safely compare to that instead.
* However, if the config comes from a cachefile that failed to update
* after the detach, a top-level vdev will appear as a non top-level
* vdev in the config. Also relax the constraints if we perform an
* extreme rewind.
*
* If we split this vdev off instead, then we also check the
* original pool's guid. We don't want to consider the vdev
* corrupt if it is partway through a split operation.
*/
if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
boolean_t mismatch = B_FALSE;
if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
mismatch = B_TRUE;
} else {
if (vd->vdev_guid != top_guid &&
vd->vdev_top->vdev_guid != guid)
mismatch = B_TRUE;
}
if (mismatch) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: config guid "
"doesn't match label guid");
vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
(u_longlong_t)vd->vdev_guid,
(u_longlong_t)vd->vdev_top->vdev_guid);
vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
"aux_guid %llu", (u_longlong_t)guid,
(u_longlong_t)top_guid, (u_longlong_t)aux_guid);
return (0);
}
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
&state) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
ZPOOL_CONFIG_POOL_STATE);
return (0);
}
nvlist_free(label);
/*
* If this is a verbatim import, no need to check the
* state of the pool.
*/
if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
spa_load_state(spa) == SPA_LOAD_OPEN &&
state != POOL_STATE_ACTIVE) {
vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
"for spa %s", (u_longlong_t)state, spa->spa_name);
return (SET_ERROR(EBADF));
}
/*
* If we were able to open and validate a vdev that was
* previously marked permanently unavailable, clear that state
* now.
*/
if (vd->vdev_not_present)
vd->vdev_not_present = 0;
return (0);
}
static void
vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
{
if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
"from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
dvd->vdev_path, svd->vdev_path);
spa_strfree(dvd->vdev_path);
dvd->vdev_path = spa_strdup(svd->vdev_path);
}
} else if (svd->vdev_path != NULL) {
dvd->vdev_path = spa_strdup(svd->vdev_path);
zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
(u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
}
}
/*
* Recursively copy vdev paths from one vdev to another. Source and destination
* vdev trees must have same geometry otherwise return error. Intended to copy
* paths from userland config into MOS config.
*/
int
vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
{
if ((svd->vdev_ops == &vdev_missing_ops) ||
(svd->vdev_ishole && dvd->vdev_ishole) ||
(dvd->vdev_ops == &vdev_indirect_ops))
return (0);
if (svd->vdev_ops != dvd->vdev_ops) {
vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
return (SET_ERROR(EINVAL));
}
if (svd->vdev_guid != dvd->vdev_guid) {
vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
"%llu)", (u_longlong_t)svd->vdev_guid,
(u_longlong_t)dvd->vdev_guid);
return (SET_ERROR(EINVAL));
}
if (svd->vdev_children != dvd->vdev_children) {
vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
"%llu != %llu", (u_longlong_t)svd->vdev_children,
(u_longlong_t)dvd->vdev_children);
return (SET_ERROR(EINVAL));
}
for (uint64_t i = 0; i < svd->vdev_children; i++) {
int error = vdev_copy_path_strict(svd->vdev_child[i],
dvd->vdev_child[i]);
if (error != 0)
return (error);
}
if (svd->vdev_ops->vdev_op_leaf)
vdev_copy_path_impl(svd, dvd);
return (0);
}
static void
vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
{
ASSERT(stvd->vdev_top == stvd);
ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
for (uint64_t i = 0; i < dvd->vdev_children; i++) {
vdev_copy_path_search(stvd, dvd->vdev_child[i]);
}
if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
return;
/*
* The idea here is that while a vdev can shift positions within
* a top vdev (when replacing, attaching mirror, etc.) it cannot
* step outside of it.
*/
vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
return;
ASSERT(vd->vdev_ops->vdev_op_leaf);
vdev_copy_path_impl(vd, dvd);
}
/*
* Recursively copy vdev paths from one root vdev to another. Source and
* destination vdev trees may differ in geometry. For each destination leaf
* vdev, search a vdev with the same guid and top vdev id in the source.
* Intended to copy paths from userland config into MOS config.
*/
void
vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
{
uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
ASSERT(srvd->vdev_ops == &vdev_root_ops);
ASSERT(drvd->vdev_ops == &vdev_root_ops);
for (uint64_t i = 0; i < children; i++) {
vdev_copy_path_search(srvd->vdev_child[i],
drvd->vdev_child[i]);
}
}
/*
* Close a virtual device.
*/
void
vdev_close(vdev_t *vd)
{
vdev_t *pvd = vd->vdev_parent;
ASSERTV(spa_t *spa = vd->vdev_spa);
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
/*
* If our parent is reopening, then we are as well, unless we are
* going offline.
*/
if (pvd != NULL && pvd->vdev_reopening)
vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
vd->vdev_ops->vdev_op_close(vd);
vdev_cache_purge(vd);
/*
* We record the previous state before we close it, so that if we are
* doing a reopen(), we don't generate FMA ereports if we notice that
* it's still faulted.
*/
vd->vdev_prevstate = vd->vdev_state;
if (vd->vdev_offline)
vd->vdev_state = VDEV_STATE_OFFLINE;
else
vd->vdev_state = VDEV_STATE_CLOSED;
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
}
void
vdev_hold(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_is_root(spa));
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
return;
for (int c = 0; c < vd->vdev_children; c++)
vdev_hold(vd->vdev_child[c]);
if (vd->vdev_ops->vdev_op_leaf)
vd->vdev_ops->vdev_op_hold(vd);
}
void
vdev_rele(vdev_t *vd)
{
ASSERT(spa_is_root(vd->vdev_spa));
for (int c = 0; c < vd->vdev_children; c++)
vdev_rele(vd->vdev_child[c]);
if (vd->vdev_ops->vdev_op_leaf)
vd->vdev_ops->vdev_op_rele(vd);
}
/*
* Reopen all interior vdevs and any unopened leaves. We don't actually
* reopen leaf vdevs which had previously been opened as they might deadlock
* on the spa_config_lock. Instead we only obtain the leaf's physical size.
* If the leaf has never been opened then open it, as usual.
*/
void
vdev_reopen(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
/* set the reopening flag unless we're taking the vdev offline */
vd->vdev_reopening = !vd->vdev_offline;
vdev_close(vd);
(void) vdev_open(vd);
/*
* Call vdev_validate() here to make sure we have the same device.
* Otherwise, a device with an invalid label could be successfully
* opened in response to vdev_reopen().
*/
if (vd->vdev_aux) {
(void) vdev_validate_aux(vd);
if (vdev_readable(vd) && vdev_writeable(vd) &&
vd->vdev_aux == &spa->spa_l2cache &&
!l2arc_vdev_present(vd))
l2arc_add_vdev(spa, vd);
} else {
(void) vdev_validate(vd);
}
/*
* Reassess parent vdev's health.
*/
vdev_propagate_state(vd);
}
int
vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
{
int error;
/*
* Normally, partial opens (e.g. of a mirror) are allowed.
* For a create, however, we want to fail the request if
* there are any components we can't open.
*/
error = vdev_open(vd);
if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
vdev_close(vd);
return (error ? error : ENXIO);
}
/*
* Recursively load DTLs and initialize all labels.
*/
if ((error = vdev_dtl_load(vd)) != 0 ||
(error = vdev_label_init(vd, txg, isreplacing ?
VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
vdev_close(vd);
return (error);
}
return (0);
}
void
vdev_metaslab_set_size(vdev_t *vd)
{
uint64_t asize = vd->vdev_asize;
uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
uint64_t ms_shift;
/*
* There are two dimensions to the metaslab sizing calculation:
* the size of the metaslab and the count of metaslabs per vdev.
*
* The default values used below are a good balance between memory
* usage (larger metaslab size means more memory needed for loaded
* metaslabs; more metaslabs means more memory needed for the
* metaslab_t structs), metaslab load time (larger metaslabs take
* longer to load), and metaslab sync time (more metaslabs means
* more time spent syncing all of them).
*
* In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
* The range of the dimensions are as follows:
*
* 2^29 <= ms_size <= 2^34
* 16 <= ms_count <= 131,072
*
* On the lower end of vdev sizes, we aim for metaslabs sizes of
* at least 512MB (2^29) to minimize fragmentation effects when
* testing with smaller devices. However, the count constraint
* of at least 16 metaslabs will override this minimum size goal.
*
* On the upper end of vdev sizes, we aim for a maximum metaslab
* size of 16GB. However, we will cap the total count to 2^17
* metaslabs to keep our memory footprint in check and let the
* metaslab size grow from there if that limit is hit.
*
* The net effect of applying above constrains is summarized below.
*
* vdev size metaslab count
* --------------|-----------------
* < 8GB ~16
* 8GB - 100GB one per 512MB
* 100GB - 3TB ~200
* 3TB - 2PB one per 16GB
* > 2PB ~131,072
* --------------------------------
*
* Finally, note that all of the above calculate the initial
* number of metaslabs. Expanding a top-level vdev will result
* in additional metaslabs being allocated making it possible
* to exceed the zfs_vdev_ms_count_limit.
*/
if (ms_count < zfs_vdev_min_ms_count)
ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
else if (ms_count > zfs_vdev_default_ms_count)
ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
else
ms_shift = zfs_vdev_default_ms_shift;
if (ms_shift < SPA_MAXBLOCKSHIFT) {
ms_shift = SPA_MAXBLOCKSHIFT;
} else if (ms_shift > zfs_vdev_max_ms_shift) {
ms_shift = zfs_vdev_max_ms_shift;
/* cap the total count to constrain memory footprint */
if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
}
vd->vdev_ms_shift = ms_shift;
ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
}
void
vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
{
ASSERT(vd == vd->vdev_top);
/* indirect vdevs don't have metaslabs or dtls */
ASSERT(vdev_is_concrete(vd) || flags == 0);
ASSERT(ISP2(flags));
ASSERT(spa_writeable(vd->vdev_spa));
if (flags & VDD_METASLAB)
(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
if (flags & VDD_DTL)
(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
}
void
vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
{
for (int c = 0; c < vd->vdev_children; c++)
vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
if (vd->vdev_ops->vdev_op_leaf)
vdev_dirty(vd->vdev_top, flags, vd, txg);
}
/*
* DTLs.
*
* A vdev's DTL (dirty time log) is the set of transaction groups for which
* the vdev has less than perfect replication. There are four kinds of DTL:
*
* DTL_MISSING: txgs for which the vdev has no valid copies of the data
*
* DTL_PARTIAL: txgs for which data is available, but not fully replicated
*
* DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
* scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
* txgs that was scrubbed.
*
* DTL_OUTAGE: txgs which cannot currently be read, whether due to
* persistent errors or just some device being offline.
* Unlike the other three, the DTL_OUTAGE map is not generally
* maintained; it's only computed when needed, typically to
* determine whether a device can be detached.
*
* For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
* either has the data or it doesn't.
*
* For interior vdevs such as mirror and RAID-Z the picture is more complex.
* A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
* if any child is less than fully replicated, then so is its parent.
* A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
* comprising only those txgs which appear in 'maxfaults' or more children;
* those are the txgs we don't have enough replication to read. For example,
* double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
* thus, its DTL_MISSING consists of the set of txgs that appear in more than
* two child DTL_MISSING maps.
*
* It should be clear from the above that to compute the DTLs and outage maps
* for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
* Therefore, that is all we keep on disk. When loading the pool, or after
* a configuration change, we generate all other DTLs from first principles.
*/
void
vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
{
range_tree_t *rt = vd->vdev_dtl[t];
ASSERT(t < DTL_TYPES);
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
ASSERT(spa_writeable(vd->vdev_spa));
mutex_enter(&vd->vdev_dtl_lock);
if (!range_tree_contains(rt, txg, size))
range_tree_add(rt, txg, size);
mutex_exit(&vd->vdev_dtl_lock);
}
boolean_t
vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
{
range_tree_t *rt = vd->vdev_dtl[t];
boolean_t dirty = B_FALSE;
ASSERT(t < DTL_TYPES);
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
/*
* While we are loading the pool, the DTLs have not been loaded yet.
* Ignore the DTLs and try all devices. This avoids a recursive
* mutex enter on the vdev_dtl_lock, and also makes us try hard
* when loading the pool (relying on the checksum to ensure that
* we get the right data -- note that we while loading, we are
* only reading the MOS, which is always checksummed).
*/
if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
return (B_FALSE);
mutex_enter(&vd->vdev_dtl_lock);
if (!range_tree_is_empty(rt))
dirty = range_tree_contains(rt, txg, size);
mutex_exit(&vd->vdev_dtl_lock);
return (dirty);
}
boolean_t
vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
{
range_tree_t *rt = vd->vdev_dtl[t];
boolean_t empty;
mutex_enter(&vd->vdev_dtl_lock);
empty = range_tree_is_empty(rt);
mutex_exit(&vd->vdev_dtl_lock);
return (empty);
}
/*
* Returns B_TRUE if vdev determines offset needs to be resilvered.
*/
boolean_t
vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
{
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
vd->vdev_ops->vdev_op_leaf)
return (B_TRUE);
return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
}
/*
* Returns the lowest txg in the DTL range.
*/
static uint64_t
vdev_dtl_min(vdev_t *vd)
{
range_seg_t *rs;
ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
ASSERT0(vd->vdev_children);
rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
return (rs->rs_start - 1);
}
/*
* Returns the highest txg in the DTL.
*/
static uint64_t
vdev_dtl_max(vdev_t *vd)
{
range_seg_t *rs;
ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
ASSERT0(vd->vdev_children);
rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
return (rs->rs_end);
}
/*
* Determine if a resilvering vdev should remove any DTL entries from
* its range. If the vdev was resilvering for the entire duration of the
* scan then it should excise that range from its DTLs. Otherwise, this
* vdev is considered partially resilvered and should leave its DTL
* entries intact. The comment in vdev_dtl_reassess() describes how we
* excise the DTLs.
*/
static boolean_t
vdev_dtl_should_excise(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
ASSERT0(scn->scn_phys.scn_errors);
ASSERT0(vd->vdev_children);
if (vd->vdev_state < VDEV_STATE_DEGRADED)
return (B_FALSE);
if (vd->vdev_resilver_deferred)
return (B_FALSE);
if (vd->vdev_resilver_txg == 0 ||
range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
return (B_TRUE);
/*
* When a resilver is initiated the scan will assign the scn_max_txg
* value to the highest txg value that exists in all DTLs. If this
* device's max DTL is not part of this scan (i.e. it is not in
* the range (scn_min_txg, scn_max_txg] then it is not eligible
* for excision.
*/
if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Reassess DTLs after a config change or scrub completion. If txg == 0 no
* write operations will be issued to the pool.
*/
void
vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
{
spa_t *spa = vd->vdev_spa;
avl_tree_t reftree;
int minref;
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
for (int c = 0; c < vd->vdev_children; c++)
vdev_dtl_reassess(vd->vdev_child[c], txg,
scrub_txg, scrub_done);
if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
return;
if (vd->vdev_ops->vdev_op_leaf) {
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
mutex_enter(&vd->vdev_dtl_lock);
/*
* If requested, pretend the scan completed cleanly.
*/
if (zfs_scan_ignore_errors && scn)
scn->scn_phys.scn_errors = 0;
/*
* If we've completed a scan cleanly then determine
* if this vdev should remove any DTLs. We only want to
* excise regions on vdevs that were available during
* the entire duration of this scan.
*/
if (scrub_txg != 0 &&
(spa->spa_scrub_started ||
(scn != NULL && scn->scn_phys.scn_errors == 0)) &&
vdev_dtl_should_excise(vd)) {
/*
* We completed a scrub up to scrub_txg. If we
* did it without rebooting, then the scrub dtl
* will be valid, so excise the old region and
* fold in the scrub dtl. Otherwise, leave the
* dtl as-is if there was an error.
*
* There's little trick here: to excise the beginning
* of the DTL_MISSING map, we put it into a reference
* tree and then add a segment with refcnt -1 that
* covers the range [0, scrub_txg). This means
* that each txg in that range has refcnt -1 or 0.
* We then add DTL_SCRUB with a refcnt of 2, so that
* entries in the range [0, scrub_txg) will have a
* positive refcnt -- either 1 or 2. We then convert
* the reference tree into the new DTL_MISSING map.
*/
space_reftree_create(&reftree);
space_reftree_add_map(&reftree,
vd->vdev_dtl[DTL_MISSING], 1);
space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
space_reftree_add_map(&reftree,
vd->vdev_dtl[DTL_SCRUB], 2);
space_reftree_generate_map(&reftree,
vd->vdev_dtl[DTL_MISSING], 1);
space_reftree_destroy(&reftree);
}
range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
range_tree_walk(vd->vdev_dtl[DTL_MISSING],
range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
if (scrub_done)
range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
if (!vdev_readable(vd))
range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
else
range_tree_walk(vd->vdev_dtl[DTL_MISSING],
range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
/*
* If the vdev was resilvering and no longer has any
* DTLs then reset its resilvering flag and dirty
* the top level so that we persist the change.
*/
if (txg != 0 && vd->vdev_resilver_txg != 0 &&
range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
vd->vdev_resilver_txg = 0;
vdev_config_dirty(vd->vdev_top);
}
mutex_exit(&vd->vdev_dtl_lock);
if (txg != 0)
vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
return;
}
mutex_enter(&vd->vdev_dtl_lock);
for (int t = 0; t < DTL_TYPES; t++) {
/* account for child's outage in parent's missing map */
int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
if (t == DTL_SCRUB)
continue; /* leaf vdevs only */
if (t == DTL_PARTIAL)
minref = 1; /* i.e. non-zero */
else if (vd->vdev_nparity != 0)
minref = vd->vdev_nparity + 1; /* RAID-Z */
else
minref = vd->vdev_children; /* any kind of mirror */
space_reftree_create(&reftree);
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
mutex_enter(&cvd->vdev_dtl_lock);
space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
mutex_exit(&cvd->vdev_dtl_lock);
}
space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
space_reftree_destroy(&reftree);
}
mutex_exit(&vd->vdev_dtl_lock);
}
int
vdev_dtl_load(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
objset_t *mos = spa->spa_meta_objset;
int error = 0;
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
ASSERT(vdev_is_concrete(vd));
error = space_map_open(&vd->vdev_dtl_sm, mos,
vd->vdev_dtl_object, 0, -1ULL, 0);
if (error)
return (error);
ASSERT(vd->vdev_dtl_sm != NULL);
mutex_enter(&vd->vdev_dtl_lock);
error = space_map_load(vd->vdev_dtl_sm,
vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
mutex_exit(&vd->vdev_dtl_lock);
return (error);
}
for (int c = 0; c < vd->vdev_children; c++) {
error = vdev_dtl_load(vd->vdev_child[c]);
if (error != 0)
break;
}
return (error);
}
static void
vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
{
spa_t *spa = vd->vdev_spa;
objset_t *mos = spa->spa_meta_objset;
vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
const char *string;
ASSERT(alloc_bias != VDEV_BIAS_NONE);
string =
(alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
(alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
(alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
ASSERT(string != NULL);
VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
1, strlen(string) + 1, string, tx));
if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
spa_activate_allocation_classes(spa, tx);
}
}
void
vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
{
spa_t *spa = vd->vdev_spa;
VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
zapobj, tx));
}
uint64_t
vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
{
spa_t *spa = vd->vdev_spa;
uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
DMU_OT_NONE, 0, tx);
ASSERT(zap != 0);
VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
zap, tx));
return (zap);
}
void
vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
{
if (vd->vdev_ops != &vdev_hole_ops &&
vd->vdev_ops != &vdev_missing_ops &&
vd->vdev_ops != &vdev_root_ops &&
!vd->vdev_top->vdev_removing) {
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
}
if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
vdev_zap_allocation_data(vd, tx);
}
}
for (uint64_t i = 0; i < vd->vdev_children; i++) {
vdev_construct_zaps(vd->vdev_child[i], tx);
}
}
void
vdev_dtl_sync(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
objset_t *mos = spa->spa_meta_objset;
range_tree_t *rtsync;
dmu_tx_t *tx;
uint64_t object = space_map_object(vd->vdev_dtl_sm);
ASSERT(vdev_is_concrete(vd));
ASSERT(vd->vdev_ops->vdev_op_leaf);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
mutex_enter(&vd->vdev_dtl_lock);
space_map_free(vd->vdev_dtl_sm, tx);
space_map_close(vd->vdev_dtl_sm);
vd->vdev_dtl_sm = NULL;
mutex_exit(&vd->vdev_dtl_lock);
/*
* We only destroy the leaf ZAP for detached leaves or for
* removed log devices. Removed data devices handle leaf ZAP
* cleanup later, once cancellation is no longer possible.
*/
if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
vd->vdev_top->vdev_islog)) {
vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
vd->vdev_leaf_zap = 0;
}
dmu_tx_commit(tx);
return;
}
if (vd->vdev_dtl_sm == NULL) {
uint64_t new_object;
new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
VERIFY3U(new_object, !=, 0);
VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
0, -1ULL, 0));
ASSERT(vd->vdev_dtl_sm != NULL);
}
rtsync = range_tree_create(NULL, NULL);
mutex_enter(&vd->vdev_dtl_lock);
range_tree_walk(rt, range_tree_add, rtsync);
mutex_exit(&vd->vdev_dtl_lock);
space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
range_tree_vacate(rtsync, NULL, NULL);
range_tree_destroy(rtsync);
/*
* If the object for the space map has changed then dirty
* the top level so that we update the config.
*/
if (object != space_map_object(vd->vdev_dtl_sm)) {
vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
"new object %llu", (u_longlong_t)txg, spa_name(spa),
(u_longlong_t)object,
(u_longlong_t)space_map_object(vd->vdev_dtl_sm));
vdev_config_dirty(vd->vdev_top);
}
dmu_tx_commit(tx);
}
/*
* Determine whether the specified vdev can be offlined/detached/removed
* without losing data.
*/
boolean_t
vdev_dtl_required(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
vdev_t *tvd = vd->vdev_top;
uint8_t cant_read = vd->vdev_cant_read;
boolean_t required;
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
if (vd == spa->spa_root_vdev || vd == tvd)
return (B_TRUE);
/*
* Temporarily mark the device as unreadable, and then determine
* whether this results in any DTL outages in the top-level vdev.
* If not, we can safely offline/detach/remove the device.
*/
vd->vdev_cant_read = B_TRUE;
vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
vd->vdev_cant_read = cant_read;
vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
if (!required && zio_injection_enabled)
required = !!zio_handle_device_injection(vd, NULL, ECHILD);
return (required);
}
/*
* Determine if resilver is needed, and if so the txg range.
*/
boolean_t
vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
{
boolean_t needed = B_FALSE;
uint64_t thismin = UINT64_MAX;
uint64_t thismax = 0;
if (vd->vdev_children == 0) {
mutex_enter(&vd->vdev_dtl_lock);
if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
vdev_writeable(vd)) {
thismin = vdev_dtl_min(vd);
thismax = vdev_dtl_max(vd);
needed = B_TRUE;
}
mutex_exit(&vd->vdev_dtl_lock);
} else {
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
uint64_t cmin, cmax;
if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
thismin = MIN(thismin, cmin);
thismax = MAX(thismax, cmax);
needed = B_TRUE;
}
}
}
if (needed && minp) {
*minp = thismin;
*maxp = thismax;
}
return (needed);
}
/*
* Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
* will contain either the checkpoint spacemap object or zero if none exists.
* All other errors are returned to the caller.
*/
int
vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
{
ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
if (vd->vdev_top_zap == 0) {
*sm_obj = 0;
return (0);
}
int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
if (error == ENOENT) {
*sm_obj = 0;
error = 0;
}
return (error);
}
int
vdev_load(vdev_t *vd)
{
int error = 0;
/*
* Recursively load all children.
*/
for (int c = 0; c < vd->vdev_children; c++) {
error = vdev_load(vd->vdev_child[c]);
if (error != 0) {
return (error);
}
}
vdev_set_deflate_ratio(vd);
/*
* On spa_load path, grab the allocation bias from our zap
*/
if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
spa_t *spa = vd->vdev_spa;
char bias_str[64];
if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
bias_str) == 0) {
ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
}
}
/*
* If this is a top-level vdev, initialize its metaslabs.
*/
if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
vdev_metaslab_group_create(vd);
if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
"asize=%llu", (u_longlong_t)vd->vdev_ashift,
(u_longlong_t)vd->vdev_asize);
return (SET_ERROR(ENXIO));
}
error = vdev_metaslab_init(vd, 0);
if (error != 0) {
vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
"[error=%d]", error);
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
return (error);
}
uint64_t checkpoint_sm_obj;
error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
if (error == 0 && checkpoint_sm_obj != 0) {
objset_t *mos = spa_meta_objset(vd->vdev_spa);
ASSERT(vd->vdev_asize != 0);
ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
error = space_map_open(&vd->vdev_checkpoint_sm,
mos, checkpoint_sm_obj, 0, vd->vdev_asize,
vd->vdev_ashift);
if (error != 0) {
vdev_dbgmsg(vd, "vdev_load: space_map_open "
"failed for checkpoint spacemap (obj %llu) "
"[error=%d]",
(u_longlong_t)checkpoint_sm_obj, error);
return (error);
}
ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
/*
* Since the checkpoint_sm contains free entries
* exclusively we can use space_map_allocated() to
* indicate the cumulative checkpointed space that
* has been freed.
*/
vd->vdev_stat.vs_checkpoint_space =
-space_map_allocated(vd->vdev_checkpoint_sm);
vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
vd->vdev_stat.vs_checkpoint_space;
} else if (error != 0) {
vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
"checkpoint space map object from vdev ZAP "
"[error=%d]", error);
return (error);
}
}
/*
* If this is a leaf vdev, load its DTL.
*/
if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
"[error=%d]", error);
return (error);
}
uint64_t obsolete_sm_object;
error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
if (error == 0 && obsolete_sm_object != 0) {
objset_t *mos = vd->vdev_spa->spa_meta_objset;
ASSERT(vd->vdev_asize != 0);
ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
obsolete_sm_object, 0, vd->vdev_asize, 0))) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
"obsolete spacemap (obj %llu) [error=%d]",
(u_longlong_t)obsolete_sm_object, error);
return (error);
}
} else if (error != 0) {
vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
"space map object from vdev ZAP [error=%d]", error);
return (error);
}
return (0);
}
/*
* The special vdev case is used for hot spares and l2cache devices. Its
* sole purpose it to set the vdev state for the associated vdev. To do this,
* we make sure that we can open the underlying device, then try to read the
* label, and make sure that the label is sane and that it hasn't been
* repurposed to another pool.
*/
int
vdev_validate_aux(vdev_t *vd)
{
nvlist_t *label;
uint64_t guid, version;
uint64_t state;
if (!vdev_readable(vd))
return (0);
if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
return (-1);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
!SPA_VERSION_IS_SUPPORTED(version) ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
guid != vd->vdev_guid ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
return (-1);
}
/*
* We don't actually check the pool state here. If it's in fact in
* use by another pool, we update this fact on the fly when requested.
*/
nvlist_free(label);
return (0);
}
/*
* Free the objects used to store this vdev's spacemaps, and the array
* that points to them.
*/
void
vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
{
if (vd->vdev_ms_array == 0)
return;
objset_t *mos = vd->vdev_spa->spa_meta_objset;
uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
size_t array_bytes = array_count * sizeof (uint64_t);
uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
array_bytes, smobj_array, 0));
for (uint64_t i = 0; i < array_count; i++) {
uint64_t smobj = smobj_array[i];
if (smobj == 0)
continue;
space_map_free_obj(mos, smobj, tx);
}
kmem_free(smobj_array, array_bytes);
VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
vd->vdev_ms_array = 0;
}
static void
vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
ASSERT(vd->vdev_islog);
ASSERT(vd == vd->vdev_top);
ASSERT3U(txg, ==, spa_syncing_txg(spa));
dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
vdev_destroy_spacemaps(vd, tx);
if (vd->vdev_top_zap != 0) {
vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
vd->vdev_top_zap = 0;
}
dmu_tx_commit(tx);
}
void
vdev_sync_done(vdev_t *vd, uint64_t txg)
{
metaslab_t *msp;
boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
ASSERT(vdev_is_concrete(vd));
while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
!= NULL)
metaslab_sync_done(msp, txg);
/*
* Because this function is only called on dirty vdevs, it's possible
* we won't consider all metaslabs for unloading on every
* txg. However, unless the system is largely idle it is likely that
* we will dirty all vdevs within a few txgs.
*/
for (int i = 0; i < vd->vdev_ms_count; i++) {
msp = vd->vdev_ms[i];
mutex_enter(&msp->ms_lock);
if (msp->ms_sm != NULL)
metaslab_potentially_unload(msp, txg);
mutex_exit(&msp->ms_lock);
}
if (reassess)
metaslab_sync_reassess(vd->vdev_mg);
}
void
vdev_sync(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
vdev_t *lvd;
metaslab_t *msp;
ASSERT3U(txg, ==, spa->spa_syncing_txg);
dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
ASSERT(vd->vdev_removing ||
vd->vdev_ops == &vdev_indirect_ops);
vdev_indirect_sync_obsolete(vd, tx);
/*
* If the vdev is indirect, it can't have dirty
* metaslabs or DTLs.
*/
if (vd->vdev_ops == &vdev_indirect_ops) {
ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
dmu_tx_commit(tx);
return;
}
}
ASSERT(vdev_is_concrete(vd));
if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
!vd->vdev_removing) {
ASSERT(vd == vd->vdev_top);
ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
ASSERT(vd->vdev_ms_array != 0);
vdev_config_dirty(vd);
}
while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
metaslab_sync(msp, txg);
(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
}
while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
vdev_dtl_sync(lvd, txg);
/*
* If this is an empty log device being removed, destroy the
* metadata associated with it.
*/
if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
vdev_remove_empty_log(vd, txg);
(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
dmu_tx_commit(tx);
}
uint64_t
vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
{
return (vd->vdev_ops->vdev_op_asize(vd, psize));
}
/*
* Mark the given vdev faulted. A faulted vdev behaves as if the device could
* not be opened, and no I/O is attempted.
*/
int
vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
{
vdev_t *vd, *tvd;
spa_vdev_state_enter(spa, SCL_NONE);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
tvd = vd->vdev_top;
/*
* If user did a 'zpool offline -f' then make the fault persist across
* reboots.
*/
if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
/*
* There are two kinds of forced faults: temporary and
* persistent. Temporary faults go away at pool import, while
* persistent faults stay set. Both types of faults can be
* cleared with a zpool clear.
*
* We tell if a vdev is persistently faulted by looking at the
* ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
* import then it's a persistent fault. Otherwise, it's
* temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
* by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
* tells vdev_config_generate() (which gets run later) to set
* ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
*/
vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
vd->vdev_tmpoffline = B_FALSE;
aux = VDEV_AUX_EXTERNAL;
} else {
vd->vdev_tmpoffline = B_TRUE;
}
/*
* We don't directly use the aux state here, but if we do a
* vdev_reopen(), we need this value to be present to remember why we
* were faulted.
*/
vd->vdev_label_aux = aux;
/*
* Faulted state takes precedence over degraded.
*/
vd->vdev_delayed_close = B_FALSE;
vd->vdev_faulted = 1ULL;
vd->vdev_degraded = 0ULL;
vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
/*
* If this device has the only valid copy of the data, then
* back off and simply mark the vdev as degraded instead.
*/
if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
vd->vdev_degraded = 1ULL;
vd->vdev_faulted = 0ULL;
/*
* If we reopen the device and it's not dead, only then do we
* mark it degraded.
*/
vdev_reopen(tvd);
if (vdev_readable(vd))
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
}
return (spa_vdev_state_exit(spa, vd, 0));
}
/*
* Mark the given vdev degraded. A degraded vdev is purely an indication to the
* user that something is wrong. The vdev continues to operate as normal as far
* as I/O is concerned.
*/
int
vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
{
vdev_t *vd;
spa_vdev_state_enter(spa, SCL_NONE);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
/*
* If the vdev is already faulted, then don't do anything.
*/
if (vd->vdev_faulted || vd->vdev_degraded)
return (spa_vdev_state_exit(spa, NULL, 0));
vd->vdev_degraded = 1ULL;
if (!vdev_is_dead(vd))
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
aux);
return (spa_vdev_state_exit(spa, vd, 0));
}
/*
* Online the given vdev.
*
* If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
* spare device should be detached when the device finishes resilvering.
* Second, the online should be treated like a 'test' online case, so no FMA
* events are generated if the device fails to open.
*/
int
vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
{
vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
boolean_t wasoffline;
vdev_state_t oldstate;
spa_vdev_state_enter(spa, SCL_NONE);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
oldstate = vd->vdev_state;
tvd = vd->vdev_top;
vd->vdev_offline = B_FALSE;
vd->vdev_tmpoffline = B_FALSE;
vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
/* XXX - L2ARC 1.0 does not support expansion */
if (!vd->vdev_aux) {
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
spa->spa_autoexpand);
vd->vdev_expansion_time = gethrestime_sec();
}
vdev_reopen(tvd);
vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
if (!vd->vdev_aux) {
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
pvd->vdev_expanding = B_FALSE;
}
if (newstate)
*newstate = vd->vdev_state;
if ((flags & ZFS_ONLINE_UNSPARE) &&
!vdev_is_dead(vd) && vd->vdev_parent &&
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
vd->vdev_parent->vdev_child[0] == vd)
vd->vdev_unspare = B_TRUE;
if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
/* XXX - L2ARC 1.0 does not support expansion */
if (vd->vdev_aux)
return (spa_vdev_state_exit(spa, vd, ENOTSUP));
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
}
/* Restart initializing if necessary */
mutex_enter(&vd->vdev_initialize_lock);
if (vdev_writeable(vd) &&
vd->vdev_initialize_thread == NULL &&
vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
(void) vdev_initialize(vd);
}
mutex_exit(&vd->vdev_initialize_lock);
/* Restart trimming if necessary */
mutex_enter(&vd->vdev_trim_lock);
if (vdev_writeable(vd) &&
vd->vdev_trim_thread == NULL &&
vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
vd->vdev_trim_secure);
}
mutex_exit(&vd->vdev_trim_lock);
if (wasoffline ||
(oldstate < VDEV_STATE_DEGRADED &&
vd->vdev_state >= VDEV_STATE_DEGRADED))
spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
return (spa_vdev_state_exit(spa, vd, 0));
}
static int
vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
{
vdev_t *vd, *tvd;
int error = 0;
uint64_t generation;
metaslab_group_t *mg;
top:
spa_vdev_state_enter(spa, SCL_ALLOC);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
tvd = vd->vdev_top;
mg = tvd->vdev_mg;
generation = spa->spa_config_generation + 1;
/*
* If the device isn't already offline, try to offline it.
*/
if (!vd->vdev_offline) {
/*
* If this device has the only valid copy of some data,
* don't allow it to be offlined. Log devices are always
* expendable.
*/
if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
vdev_dtl_required(vd))
return (spa_vdev_state_exit(spa, NULL, EBUSY));
/*
* If the top-level is a slog and it has had allocations
* then proceed. We check that the vdev's metaslab group
* is not NULL since it's possible that we may have just
* added this vdev but not yet initialized its metaslabs.
*/
if (tvd->vdev_islog && mg != NULL) {
/*
* Prevent any future allocations.
*/
metaslab_group_passivate(mg);
(void) spa_vdev_state_exit(spa, vd, 0);
error = spa_reset_logs(spa);
/*
* If the log device was successfully reset but has
* checkpointed data, do not offline it.
*/
if (error == 0 &&
tvd->vdev_checkpoint_sm != NULL) {
ASSERT3U(space_map_allocated(
tvd->vdev_checkpoint_sm), !=, 0);
error = ZFS_ERR_CHECKPOINT_EXISTS;
}
spa_vdev_state_enter(spa, SCL_ALLOC);
/*
* Check to see if the config has changed.
*/
if (error || generation != spa->spa_config_generation) {
metaslab_group_activate(mg);
if (error)
return (spa_vdev_state_exit(spa,
vd, error));
(void) spa_vdev_state_exit(spa, vd, 0);
goto top;
}
ASSERT0(tvd->vdev_stat.vs_alloc);
}
/*
* Offline this device and reopen its top-level vdev.
* If the top-level vdev is a log device then just offline
* it. Otherwise, if this action results in the top-level
* vdev becoming unusable, undo it and fail the request.
*/
vd->vdev_offline = B_TRUE;
vdev_reopen(tvd);
if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
vdev_is_dead(tvd)) {
vd->vdev_offline = B_FALSE;
vdev_reopen(tvd);
return (spa_vdev_state_exit(spa, NULL, EBUSY));
}
/*
* Add the device back into the metaslab rotor so that
* once we online the device it's open for business.
*/
if (tvd->vdev_islog && mg != NULL)
metaslab_group_activate(mg);
}
vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
return (spa_vdev_state_exit(spa, vd, 0));
}
int
vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
{
int error;
mutex_enter(&spa->spa_vdev_top_lock);
error = vdev_offline_locked(spa, guid, flags);
mutex_exit(&spa->spa_vdev_top_lock);
return (error);
}
/*
* Clear the error counts associated with this vdev. Unlike vdev_online() and
* vdev_offline(), we assume the spa config is locked. We also clear all
* children. If 'vd' is NULL, then the user wants to clear all vdevs.
*/
void
vdev_clear(spa_t *spa, vdev_t *vd)
{
vdev_t *rvd = spa->spa_root_vdev;
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
if (vd == NULL)
vd = rvd;
vd->vdev_stat.vs_read_errors = 0;
vd->vdev_stat.vs_write_errors = 0;
vd->vdev_stat.vs_checksum_errors = 0;
vd->vdev_stat.vs_slow_ios = 0;
for (int c = 0; c < vd->vdev_children; c++)
vdev_clear(spa, vd->vdev_child[c]);
/*
* It makes no sense to "clear" an indirect vdev.
*/
if (!vdev_is_concrete(vd))
return;
/*
* If we're in the FAULTED state or have experienced failed I/O, then
* clear the persistent state and attempt to reopen the device. We
* also mark the vdev config dirty, so that the new faulted state is
* written out to disk.
*/
if (vd->vdev_faulted || vd->vdev_degraded ||
!vdev_readable(vd) || !vdev_writeable(vd)) {
/*
* When reopening in response to a clear event, it may be due to
* a fmadm repair request. In this case, if the device is
* still broken, we want to still post the ereport again.
*/
vd->vdev_forcefault = B_TRUE;
vd->vdev_faulted = vd->vdev_degraded = 0ULL;
vd->vdev_cant_read = B_FALSE;
vd->vdev_cant_write = B_FALSE;
vd->vdev_stat.vs_aux = 0;
vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
vd->vdev_forcefault = B_FALSE;
if (vd != rvd && vdev_writeable(vd->vdev_top))
vdev_state_dirty(vd->vdev_top);
/* If a resilver isn't required, check if vdevs can be culled */
if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
!dsl_scan_resilvering(spa->spa_dsl_pool) &&
!dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
}
/*
* When clearing a FMA-diagnosed fault, we always want to
* unspare the device, as we assume that the original spare was
* done in response to the FMA fault.
*/
if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
vd->vdev_parent->vdev_child[0] == vd)
vd->vdev_unspare = B_TRUE;
}
boolean_t
vdev_is_dead(vdev_t *vd)
{
/*
* Holes and missing devices are always considered "dead".
* This simplifies the code since we don't have to check for
* these types of devices in the various code paths.
* Instead we rely on the fact that we skip over dead devices
* before issuing I/O to them.
*/
return (vd->vdev_state < VDEV_STATE_DEGRADED ||
vd->vdev_ops == &vdev_hole_ops ||
vd->vdev_ops == &vdev_missing_ops);
}
boolean_t
vdev_readable(vdev_t *vd)
{
return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
}
boolean_t
vdev_writeable(vdev_t *vd)
{
return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
vdev_is_concrete(vd));
}
boolean_t
vdev_allocatable(vdev_t *vd)
{
uint64_t state = vd->vdev_state;
/*
* We currently allow allocations from vdevs which may be in the
* process of reopening (i.e. VDEV_STATE_CLOSED). If the device
* fails to reopen then we'll catch it later when we're holding
* the proper locks. Note that we have to get the vdev state
* in a local variable because although it changes atomically,
* we're asking two separate questions about it.
*/
return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
!vd->vdev_cant_write && vdev_is_concrete(vd) &&
vd->vdev_mg->mg_initialized);
}
boolean_t
vdev_accessible(vdev_t *vd, zio_t *zio)
{
ASSERT(zio->io_vd == vd);
if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
return (B_FALSE);
if (zio->io_type == ZIO_TYPE_READ)
return (!vd->vdev_cant_read);
if (zio->io_type == ZIO_TYPE_WRITE)
return (!vd->vdev_cant_write);
return (B_TRUE);
}
static void
vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
{
for (int t = 0; t < VS_ZIO_TYPES; t++) {
vs->vs_ops[t] += cvs->vs_ops[t];
vs->vs_bytes[t] += cvs->vs_bytes[t];
}
cvs->vs_scan_removing = cvd->vdev_removing;
}
/*
* Get extended stats
*/
static void
vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
{
int t, b;
for (t = 0; t < ZIO_TYPES; t++) {
for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
vsx->vsx_total_histo[t][b] +=
cvsx->vsx_total_histo[t][b];
}
}
for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
vsx->vsx_queue_histo[t][b] +=
cvsx->vsx_queue_histo[t][b];
}
vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
}
}
boolean_t
vdev_is_spacemap_addressable(vdev_t *vd)
{
if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
return (B_TRUE);
/*
* If double-word space map entries are not enabled we assume
* 47 bits of the space map entry are dedicated to the entry's
* offset (see SM_OFFSET_BITS in space_map.h). We then use that
* to calculate the maximum address that can be described by a
* space map entry for the given device.
*/
uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
if (shift >= 63) /* detect potential overflow */
return (B_TRUE);
return (vd->vdev_asize < (1ULL << shift));
}
/*
* Get statistics for the given vdev.
*/
static void
vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
{
int t;
/*
* If we're getting stats on the root vdev, aggregate the I/O counts
* over all top-level vdevs (i.e. the direct children of the root).
*/
if (!vd->vdev_ops->vdev_op_leaf) {
if (vs) {
memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
}
if (vsx)
memset(vsx, 0, sizeof (*vsx));
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
vdev_stat_t *cvs = &cvd->vdev_stat;
vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
vdev_get_stats_ex_impl(cvd, cvs, cvsx);
if (vs)
vdev_get_child_stat(cvd, vs, cvs);
if (vsx)
vdev_get_child_stat_ex(cvd, vsx, cvsx);
}
} else {
/*
* We're a leaf. Just copy our ZIO active queue stats in. The
* other leaf stats are updated in vdev_stat_update().
*/
if (!vsx)
return;
memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
vsx->vsx_active_queue[t] =
vd->vdev_queue.vq_class[t].vqc_active;
vsx->vsx_pend_queue[t] = avl_numnodes(
&vd->vdev_queue.vq_class[t].vqc_queued_tree);
}
}
}
void
vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
{
vdev_t *tvd = vd->vdev_top;
mutex_enter(&vd->vdev_stat_lock);
if (vs) {
bcopy(&vd->vdev_stat, vs, sizeof (*vs));
vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
vs->vs_state = vd->vdev_state;
vs->vs_rsize = vdev_get_min_asize(vd);
if (vd->vdev_ops->vdev_op_leaf) {
vs->vs_rsize += VDEV_LABEL_START_SIZE +
VDEV_LABEL_END_SIZE;
/*
* Report initializing progress. Since we don't
* have the initializing locks held, this is only
* an estimate (although a fairly accurate one).
*/
vs->vs_initialize_bytes_done =
vd->vdev_initialize_bytes_done;
vs->vs_initialize_bytes_est =
vd->vdev_initialize_bytes_est;
vs->vs_initialize_state = vd->vdev_initialize_state;
vs->vs_initialize_action_time =
vd->vdev_initialize_action_time;
/*
* Report manual TRIM progress. Since we don't have
* the manual TRIM locks held, this is only an
* estimate (although fairly accurate one).
*/
vs->vs_trim_notsup = !vd->vdev_has_trim;
vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
vs->vs_trim_state = vd->vdev_trim_state;
vs->vs_trim_action_time = vd->vdev_trim_action_time;
}
/*
* Report expandable space on top-level, non-auxiliary devices
* only. The expandable space is reported in terms of metaslab
* sized units since that determines how much space the pool
* can expand.
*/
if (vd->vdev_aux == NULL && tvd != NULL) {
vs->vs_esize = P2ALIGN(
vd->vdev_max_asize - vd->vdev_asize,
1ULL << tvd->vdev_ms_shift);
}
if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
vdev_is_concrete(vd)) {
vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
vd->vdev_mg->mg_fragmentation : 0;
}
if (vd->vdev_ops->vdev_op_leaf)
vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
}
vdev_get_stats_ex_impl(vd, vs, vsx);
mutex_exit(&vd->vdev_stat_lock);
}
void
vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
{
return (vdev_get_stats_ex(vd, vs, NULL));
}
void
vdev_clear_stats(vdev_t *vd)
{
mutex_enter(&vd->vdev_stat_lock);
vd->vdev_stat.vs_space = 0;
vd->vdev_stat.vs_dspace = 0;
vd->vdev_stat.vs_alloc = 0;
mutex_exit(&vd->vdev_stat_lock);
}
void
vdev_scan_stat_init(vdev_t *vd)
{
vdev_stat_t *vs = &vd->vdev_stat;
for (int c = 0; c < vd->vdev_children; c++)
vdev_scan_stat_init(vd->vdev_child[c]);
mutex_enter(&vd->vdev_stat_lock);
vs->vs_scan_processed = 0;
mutex_exit(&vd->vdev_stat_lock);
}
void
vdev_stat_update(zio_t *zio, uint64_t psize)
{
spa_t *spa = zio->io_spa;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
vdev_t *pvd;
uint64_t txg = zio->io_txg;
vdev_stat_t *vs = &vd->vdev_stat;
vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
zio_type_t type = zio->io_type;
int flags = zio->io_flags;
/*
* If this i/o is a gang leader, it didn't do any actual work.
*/
if (zio->io_gang_tree)
return;
if (zio->io_error == 0) {
/*
* If this is a root i/o, don't count it -- we've already
* counted the top-level vdevs, and vdev_get_stats() will
* aggregate them when asked. This reduces contention on
* the root vdev_stat_lock and implicitly handles blocks
* that compress away to holes, for which there is no i/o.
* (Holes never create vdev children, so all the counters
* remain zero, which is what we want.)
*
* Note: this only applies to successful i/o (io_error == 0)
* because unlike i/o counts, errors are not additive.
* When reading a ditto block, for example, failure of
* one top-level vdev does not imply a root-level error.
*/
if (vd == rvd)
return;
ASSERT(vd == zio->io_vd);
if (flags & ZIO_FLAG_IO_BYPASS)
return;
mutex_enter(&vd->vdev_stat_lock);
if (flags & ZIO_FLAG_IO_REPAIR) {
if (flags & ZIO_FLAG_SCAN_THREAD) {
dsl_scan_phys_t *scn_phys =
&spa->spa_dsl_pool->dp_scan->scn_phys;
uint64_t *processed = &scn_phys->scn_processed;
/* XXX cleanup? */
if (vd->vdev_ops->vdev_op_leaf)
atomic_add_64(processed, psize);
vs->vs_scan_processed += psize;
}
if (flags & ZIO_FLAG_SELF_HEAL)
vs->vs_self_healed += psize;
}
/*
* The bytes/ops/histograms are recorded at the leaf level and
* aggregated into the higher level vdevs in vdev_get_stats().
*/
if (vd->vdev_ops->vdev_op_leaf &&
(zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
zio_type_t vs_type = type;
/*
* TRIM ops and bytes are reported to user space as
* ZIO_TYPE_IOCTL. This is done to preserve the
* vdev_stat_t structure layout for user space.
*/
if (type == ZIO_TYPE_TRIM)
vs_type = ZIO_TYPE_IOCTL;
vs->vs_ops[vs_type]++;
vs->vs_bytes[vs_type] += psize;
if (flags & ZIO_FLAG_DELEGATED) {
vsx->vsx_agg_histo[zio->io_priority]
[RQ_HISTO(zio->io_size)]++;
} else {
vsx->vsx_ind_histo[zio->io_priority]
[RQ_HISTO(zio->io_size)]++;
}
if (zio->io_delta && zio->io_delay) {
vsx->vsx_queue_histo[zio->io_priority]
[L_HISTO(zio->io_delta - zio->io_delay)]++;
vsx->vsx_disk_histo[type]
[L_HISTO(zio->io_delay)]++;
vsx->vsx_total_histo[type]
[L_HISTO(zio->io_delta)]++;
}
}
mutex_exit(&vd->vdev_stat_lock);
return;
}
if (flags & ZIO_FLAG_SPECULATIVE)
return;
/*
* If this is an I/O error that is going to be retried, then ignore the
* error. Otherwise, the user may interpret B_FAILFAST I/O errors as
* hard errors, when in reality they can happen for any number of
* innocuous reasons (bus resets, MPxIO link failure, etc).
*/
if (zio->io_error == EIO &&
!(zio->io_flags & ZIO_FLAG_IO_RETRY))
return;
/*
* Intent logs writes won't propagate their error to the root
* I/O so don't mark these types of failures as pool-level
* errors.
*/
if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
return;
if (spa->spa_load_state == SPA_LOAD_NONE &&
type == ZIO_TYPE_WRITE && txg != 0 &&
(!(flags & ZIO_FLAG_IO_REPAIR) ||
(flags & ZIO_FLAG_SCAN_THREAD) ||
spa->spa_claiming)) {
/*
* This is either a normal write (not a repair), or it's
* a repair induced by the scrub thread, or it's a repair
* made by zil_claim() during spa_load() in the first txg.
* In the normal case, we commit the DTL change in the same
* txg as the block was born. In the scrub-induced repair
* case, we know that scrubs run in first-pass syncing context,
* so we commit the DTL change in spa_syncing_txg(spa).
* In the zil_claim() case, we commit in spa_first_txg(spa).
*
* We currently do not make DTL entries for failed spontaneous
* self-healing writes triggered by normal (non-scrubbing)
* reads, because we have no transactional context in which to
* do so -- and it's not clear that it'd be desirable anyway.
*/
if (vd->vdev_ops->vdev_op_leaf) {
uint64_t commit_txg = txg;
if (flags & ZIO_FLAG_SCAN_THREAD) {
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
ASSERT(spa_sync_pass(spa) == 1);
vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
commit_txg = spa_syncing_txg(spa);
} else if (spa->spa_claiming) {
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
commit_txg = spa_first_txg(spa);
}
ASSERT(commit_txg >= spa_syncing_txg(spa));
if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
return;
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
}
if (vd != rvd)
vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
}
}
int64_t
vdev_deflated_space(vdev_t *vd, int64_t space)
{
ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
}
/*
* Update the in-core space usage stats for this vdev, its metaslab class,
* and the root vdev.
*/
void
vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
int64_t space_delta)
{
int64_t dspace_delta;
spa_t *spa = vd->vdev_spa;
vdev_t *rvd = spa->spa_root_vdev;
ASSERT(vd == vd->vdev_top);
/*
* Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
* factor. We must calculate this here and not at the root vdev
* because the root vdev's psize-to-asize is simply the max of its
* children's, thus not accurate enough for us.
*/
dspace_delta = vdev_deflated_space(vd, space_delta);
mutex_enter(&vd->vdev_stat_lock);
/* ensure we won't underflow */
if (alloc_delta < 0) {
ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
}
vd->vdev_stat.vs_alloc += alloc_delta;
vd->vdev_stat.vs_space += space_delta;
vd->vdev_stat.vs_dspace += dspace_delta;
mutex_exit(&vd->vdev_stat_lock);
/* every class but log contributes to root space stats */
if (vd->vdev_mg != NULL && !vd->vdev_islog) {
ASSERT(!vd->vdev_isl2cache);
mutex_enter(&rvd->vdev_stat_lock);
rvd->vdev_stat.vs_alloc += alloc_delta;
rvd->vdev_stat.vs_space += space_delta;
rvd->vdev_stat.vs_dspace += dspace_delta;
mutex_exit(&rvd->vdev_stat_lock);
}
/* Note: metaslab_class_space_update moved to metaslab_space_update */
}
/*
* Mark a top-level vdev's config as dirty, placing it on the dirty list
* so that it will be written out next time the vdev configuration is synced.
* If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
*/
void
vdev_config_dirty(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
vdev_t *rvd = spa->spa_root_vdev;
int c;
ASSERT(spa_writeable(spa));
/*
* If this is an aux vdev (as with l2cache and spare devices), then we
* update the vdev config manually and set the sync flag.
*/
if (vd->vdev_aux != NULL) {
spa_aux_vdev_t *sav = vd->vdev_aux;
nvlist_t **aux;
uint_t naux;
for (c = 0; c < sav->sav_count; c++) {
if (sav->sav_vdevs[c] == vd)
break;
}
if (c == sav->sav_count) {
/*
* We're being removed. There's nothing more to do.
*/
ASSERT(sav->sav_sync == B_TRUE);
return;
}
sav->sav_sync = B_TRUE;
if (nvlist_lookup_nvlist_array(sav->sav_config,
ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
}
ASSERT(c < naux);
/*
* Setting the nvlist in the middle if the array is a little
* sketchy, but it will work.
*/
nvlist_free(aux[c]);
aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
return;
}
/*
* The dirty list is protected by the SCL_CONFIG lock. The caller
* must either hold SCL_CONFIG as writer, or must be the sync thread
* (which holds SCL_CONFIG as reader). There's only one sync thread,
* so this is sufficient to ensure mutual exclusion.
*/
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_CONFIG, RW_READER)));
if (vd == rvd) {
for (c = 0; c < rvd->vdev_children; c++)
vdev_config_dirty(rvd->vdev_child[c]);
} else {
ASSERT(vd == vd->vdev_top);
if (!list_link_active(&vd->vdev_config_dirty_node) &&
vdev_is_concrete(vd)) {
list_insert_head(&spa->spa_config_dirty_list, vd);
}
}
}
void
vdev_config_clean(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_CONFIG, RW_READER)));
ASSERT(list_link_active(&vd->vdev_config_dirty_node));
list_remove(&spa->spa_config_dirty_list, vd);
}
/*
* Mark a top-level vdev's state as dirty, so that the next pass of
* spa_sync() can convert this into vdev_config_dirty(). We distinguish
* the state changes from larger config changes because they require
* much less locking, and are often needed for administrative actions.
*/
void
vdev_state_dirty(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_writeable(spa));
ASSERT(vd == vd->vdev_top);
/*
* The state list is protected by the SCL_STATE lock. The caller
* must either hold SCL_STATE as writer, or must be the sync thread
* (which holds SCL_STATE as reader). There's only one sync thread,
* so this is sufficient to ensure mutual exclusion.
*/
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_STATE, RW_READER)));
if (!list_link_active(&vd->vdev_state_dirty_node) &&
vdev_is_concrete(vd))
list_insert_head(&spa->spa_state_dirty_list, vd);
}
void
vdev_state_clean(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_STATE, RW_READER)));
ASSERT(list_link_active(&vd->vdev_state_dirty_node));
list_remove(&spa->spa_state_dirty_list, vd);
}
/*
* Propagate vdev state up from children to parent.
*/
void
vdev_propagate_state(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
vdev_t *rvd = spa->spa_root_vdev;
int degraded = 0, faulted = 0;
int corrupted = 0;
vdev_t *child;
if (vd->vdev_children > 0) {
for (int c = 0; c < vd->vdev_children; c++) {
child = vd->vdev_child[c];
/*
* Don't factor holes or indirect vdevs into the
* decision.
*/
if (!vdev_is_concrete(child))
continue;
if (!vdev_readable(child) ||
(!vdev_writeable(child) && spa_writeable(spa))) {
/*
* Root special: if there is a top-level log
* device, treat the root vdev as if it were
* degraded.
*/
if (child->vdev_islog && vd == rvd)
degraded++;
else
faulted++;
} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
degraded++;
}
if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
corrupted++;
}
vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
/*
* Root special: if there is a top-level vdev that cannot be
* opened due to corrupted metadata, then propagate the root
* vdev's aux state as 'corrupt' rather than 'insufficient
* replicas'.
*/
if (corrupted && vd == rvd &&
rvd->vdev_state == VDEV_STATE_CANT_OPEN)
vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
}
if (vd->vdev_parent)
vdev_propagate_state(vd->vdev_parent);
}
/*
* Set a vdev's state. If this is during an open, we don't update the parent
* state, because we're in the process of opening children depth-first.
* Otherwise, we propagate the change to the parent.
*
* If this routine places a device in a faulted state, an appropriate ereport is
* generated.
*/
void
vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
{
uint64_t save_state;
spa_t *spa = vd->vdev_spa;
if (state == vd->vdev_state) {
/*
* Since vdev_offline() code path is already in an offline
* state we can miss a statechange event to OFFLINE. Check
* the previous state to catch this condition.
*/
if (vd->vdev_ops->vdev_op_leaf &&
(state == VDEV_STATE_OFFLINE) &&
(vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
/* post an offline state change */
zfs_post_state_change(spa, vd, vd->vdev_prevstate);
}
vd->vdev_stat.vs_aux = aux;
return;
}
save_state = vd->vdev_state;
vd->vdev_state = state;
vd->vdev_stat.vs_aux = aux;
/*
* If we are setting the vdev state to anything but an open state, then
* always close the underlying device unless the device has requested
* a delayed close (i.e. we're about to remove or fault the device).
* Otherwise, we keep accessible but invalid devices open forever.
* We don't call vdev_close() itself, because that implies some extra
* checks (offline, etc) that we don't want here. This is limited to
* leaf devices, because otherwise closing the device will affect other
* children.
*/
if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
vd->vdev_ops->vdev_op_leaf)
vd->vdev_ops->vdev_op_close(vd);
if (vd->vdev_removed &&
state == VDEV_STATE_CANT_OPEN &&
(aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
/*
* If the previous state is set to VDEV_STATE_REMOVED, then this
* device was previously marked removed and someone attempted to
* reopen it. If this failed due to a nonexistent device, then
* keep the device in the REMOVED state. We also let this be if
* it is one of our special test online cases, which is only
* attempting to online the device and shouldn't generate an FMA
* fault.
*/
vd->vdev_state = VDEV_STATE_REMOVED;
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
} else if (state == VDEV_STATE_REMOVED) {
vd->vdev_removed = B_TRUE;
} else if (state == VDEV_STATE_CANT_OPEN) {
/*
* If we fail to open a vdev during an import or recovery, we
* mark it as "not available", which signifies that it was
* never there to begin with. Failure to open such a device
* is not considered an error.
*/
if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
spa_load_state(spa) == SPA_LOAD_RECOVER) &&
vd->vdev_ops->vdev_op_leaf)
vd->vdev_not_present = 1;
/*
* Post the appropriate ereport. If the 'prevstate' field is
* set to something other than VDEV_STATE_UNKNOWN, it indicates
* that this is part of a vdev_reopen(). In this case, we don't
* want to post the ereport if the device was already in the
* CANT_OPEN state beforehand.
*
* If the 'checkremove' flag is set, then this is an attempt to
* online the device in response to an insertion event. If we
* hit this case, then we have detected an insertion event for a
* faulted or offline device that wasn't in the removed state.
* In this scenario, we don't post an ereport because we are
* about to replace the device, or attempt an online with
* vdev_forcefault, which will generate the fault for us.
*/
if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
!vd->vdev_not_present && !vd->vdev_checkremove &&
vd != spa->spa_root_vdev) {
const char *class;
switch (aux) {
case VDEV_AUX_OPEN_FAILED:
class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
break;
case VDEV_AUX_CORRUPT_DATA:
class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
break;
case VDEV_AUX_NO_REPLICAS:
class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
break;
case VDEV_AUX_BAD_GUID_SUM:
class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
break;
case VDEV_AUX_TOO_SMALL:
class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
break;
case VDEV_AUX_BAD_LABEL:
class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
break;
case VDEV_AUX_BAD_ASHIFT:
class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
break;
default:
class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
}
zfs_ereport_post(class, spa, vd, NULL, NULL,
save_state, 0);
}
/* Erase any notion of persistent removed state */
vd->vdev_removed = B_FALSE;
} else {
vd->vdev_removed = B_FALSE;
}
/*
* Notify ZED of any significant state-change on a leaf vdev.
*
*/
if (vd->vdev_ops->vdev_op_leaf) {
/* preserve original state from a vdev_reopen() */
if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
(vd->vdev_prevstate != vd->vdev_state) &&
(save_state <= VDEV_STATE_CLOSED))
save_state = vd->vdev_prevstate;
/* filter out state change due to initial vdev_open */
if (save_state > VDEV_STATE_CLOSED)
zfs_post_state_change(spa, vd, save_state);
}
if (!isopen && vd->vdev_parent)
vdev_propagate_state(vd->vdev_parent);
}
boolean_t
vdev_children_are_offline(vdev_t *vd)
{
ASSERT(!vd->vdev_ops->vdev_op_leaf);
for (uint64_t i = 0; i < vd->vdev_children; i++) {
if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Check the vdev configuration to ensure that it's capable of supporting
* a root pool. We do not support partial configuration.
*/
boolean_t
vdev_is_bootable(vdev_t *vd)
{
if (!vd->vdev_ops->vdev_op_leaf) {
const char *vdev_type = vd->vdev_ops->vdev_op_type;
if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
return (B_FALSE);
}
}
for (int c = 0; c < vd->vdev_children; c++) {
if (!vdev_is_bootable(vd->vdev_child[c]))
return (B_FALSE);
}
return (B_TRUE);
}
boolean_t
vdev_is_concrete(vdev_t *vd)
{
vdev_ops_t *ops = vd->vdev_ops;
if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
ops == &vdev_missing_ops || ops == &vdev_root_ops) {
return (B_FALSE);
} else {
return (B_TRUE);
}
}
/*
* Determine if a log device has valid content. If the vdev was
* removed or faulted in the MOS config then we know that
* the content on the log device has already been written to the pool.
*/
boolean_t
vdev_log_state_valid(vdev_t *vd)
{
if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
!vd->vdev_removed)
return (B_TRUE);
for (int c = 0; c < vd->vdev_children; c++)
if (vdev_log_state_valid(vd->vdev_child[c]))
return (B_TRUE);
return (B_FALSE);
}
/*
* Expand a vdev if possible.
*/
void
vdev_expand(vdev_t *vd, uint64_t txg)
{
ASSERT(vd->vdev_top == vd);
ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
ASSERT(vdev_is_concrete(vd));
vdev_set_deflate_ratio(vd);
if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
vdev_is_concrete(vd)) {
vdev_metaslab_group_create(vd);
VERIFY(vdev_metaslab_init(vd, txg) == 0);
vdev_config_dirty(vd);
}
}
/*
* Split a vdev.
*/
void
vdev_split(vdev_t *vd)
{
vdev_t *cvd, *pvd = vd->vdev_parent;
vdev_remove_child(pvd, vd);
vdev_compact_children(pvd);
cvd = pvd->vdev_child[0];
if (pvd->vdev_children == 1) {
vdev_remove_parent(cvd);
cvd->vdev_splitting = B_TRUE;
}
vdev_propagate_state(cvd);
}
void
vdev_deadman(vdev_t *vd, char *tag)
{
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
vdev_deadman(cvd, tag);
}
if (vd->vdev_ops->vdev_op_leaf) {
vdev_queue_t *vq = &vd->vdev_queue;
mutex_enter(&vq->vq_lock);
if (avl_numnodes(&vq->vq_active_tree) > 0) {
spa_t *spa = vd->vdev_spa;
zio_t *fio;
uint64_t delta;
zfs_dbgmsg("slow vdev: %s has %d active IOs",
vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
/*
* Look at the head of all the pending queues,
* if any I/O has been outstanding for longer than
* the spa_deadman_synctime invoke the deadman logic.
*/
fio = avl_first(&vq->vq_active_tree);
delta = gethrtime() - fio->io_timestamp;
if (delta > spa_deadman_synctime(spa))
zio_deadman(fio, tag);
}
mutex_exit(&vq->vq_lock);
}
}
void
vdev_defer_resilver(vdev_t *vd)
{
ASSERT(vd->vdev_ops->vdev_op_leaf);
vd->vdev_resilver_deferred = B_TRUE;
vd->vdev_spa->spa_resilver_deferred = B_TRUE;
}
/*
* Clears the resilver deferred flag on all leaf devs under vd. Returns
* B_TRUE if we have devices that need to be resilvered and are available to
* accept resilver I/Os.
*/
boolean_t
vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
{
boolean_t resilver_needed = B_FALSE;
spa_t *spa = vd->vdev_spa;
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
}
if (vd == spa->spa_root_vdev &&
spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
vdev_config_dirty(vd);
spa->spa_resilver_deferred = B_FALSE;
return (resilver_needed);
}
if (!vdev_is_concrete(vd) || vd->vdev_aux ||
!vd->vdev_ops->vdev_op_leaf)
return (resilver_needed);
vd->vdev_resilver_deferred = B_FALSE;
return (!vdev_is_dead(vd) && !vd->vdev_offline &&
vdev_resilver_needed(vd, NULL, NULL));
}
/*
* Translate a logical range to the physical range for the specified vdev_t.
* This function is initially called with a leaf vdev and will walk each
* parent vdev until it reaches a top-level vdev. Once the top-level is
* reached the physical range is initialized and the recursive function
* begins to unwind. As it unwinds it calls the parent's vdev specific
* translation function to do the real conversion.
*/
void
vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
{
/*
* Walk up the vdev tree
*/
if (vd != vd->vdev_top) {
vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
} else {
/*
* We've reached the top-level vdev, initialize the
* physical range to the logical range and start to
* unwind.
*/
physical_rs->rs_start = logical_rs->rs_start;
physical_rs->rs_end = logical_rs->rs_end;
return;
}
vdev_t *pvd = vd->vdev_parent;
ASSERT3P(pvd, !=, NULL);
ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
/*
* As this recursive function unwinds, translate the logical
* range into its physical components by calling the
* vdev specific translate function.
*/
range_seg_t intermediate = { { { 0, 0 } } };
pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
physical_rs->rs_start = intermediate.rs_start;
physical_rs->rs_end = intermediate.rs_end;
}
#if defined(_KERNEL)
EXPORT_SYMBOL(vdev_fault);
EXPORT_SYMBOL(vdev_degrade);
EXPORT_SYMBOL(vdev_online);
EXPORT_SYMBOL(vdev_offline);
EXPORT_SYMBOL(vdev_clear);
/* BEGIN CSTYLED */
module_param(zfs_vdev_default_ms_count, int, 0644);
MODULE_PARM_DESC(zfs_vdev_default_ms_count,
"Target number of metaslabs per top-level vdev");
module_param(zfs_vdev_min_ms_count, int, 0644);
MODULE_PARM_DESC(zfs_vdev_min_ms_count,
"Minimum number of metaslabs per top-level vdev");
module_param(zfs_vdev_ms_count_limit, int, 0644);
MODULE_PARM_DESC(zfs_vdev_ms_count_limit,
"Practical upper limit of total metaslabs per top-level vdev");
module_param(zfs_slow_io_events_per_second, uint, 0644);
MODULE_PARM_DESC(zfs_slow_io_events_per_second,
"Rate limit slow IO (delay) events to this many per second");
module_param(zfs_checksum_events_per_second, uint, 0644);
MODULE_PARM_DESC(zfs_checksum_events_per_second, "Rate limit checksum events "
"to this many checksum errors per second (do not set below zed"
"threshold).");
module_param(zfs_scan_ignore_errors, int, 0644);
MODULE_PARM_DESC(zfs_scan_ignore_errors,
"Ignore errors during resilver/scrub");
module_param(vdev_validate_skip, int, 0644);
MODULE_PARM_DESC(vdev_validate_skip,
"Bypass vdev_validate()");
module_param(zfs_nocacheflush, int, 0644);
MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
/* END CSTYLED */
#endif