1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-19 22:46:35 +03:00
mirror_zfs/include/sys/dmu_traverse.h
Tom Caputi b525630342 Native Encryption for ZFS on Linux
This change incorporates three major pieces:

The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.

The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.

The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.

Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes  
Closes 
2017-08-14 10:36:48 -07:00

79 lines
2.6 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
*/
#ifndef _SYS_DMU_TRAVERSE_H
#define _SYS_DMU_TRAVERSE_H
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/zio.h>
#ifdef __cplusplus
extern "C" {
#endif
struct dnode_phys;
struct dsl_dataset;
struct zilog;
struct arc_buf;
typedef int (blkptr_cb_t)(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg);
#define TRAVERSE_PRE (1<<0)
#define TRAVERSE_POST (1<<1)
#define TRAVERSE_PREFETCH_METADATA (1<<2)
#define TRAVERSE_PREFETCH_DATA (1<<3)
#define TRAVERSE_PREFETCH (TRAVERSE_PREFETCH_METADATA | TRAVERSE_PREFETCH_DATA)
#define TRAVERSE_HARD (1<<4)
/*
* Encrypted dnode blocks have encrypted bonus buffers while the rest
* of the dnode is left unencrypted. Callers can specify the
* TRAVERSE_NO_DECRYPT flag to indicate to the traversal code that
* they wish to receive the raw encrypted dnodes instead of attempting
* to read the logical data.
*/
#define TRAVERSE_NO_DECRYPT (1<<5)
/* Special traverse error return value to indicate skipping of children */
#define TRAVERSE_VISIT_NO_CHILDREN -1
int traverse_dataset(struct dsl_dataset *ds,
uint64_t txg_start, int flags, blkptr_cb_t func, void *arg);
int traverse_dataset_resume(struct dsl_dataset *ds, uint64_t txg_start,
zbookmark_phys_t *resume, int flags, blkptr_cb_t func, void *arg);
int traverse_dataset_destroyed(spa_t *spa, blkptr_t *blkptr,
uint64_t txg_start, zbookmark_phys_t *resume, int flags,
blkptr_cb_t func, void *arg);
int traverse_pool(spa_t *spa,
uint64_t txg_start, int flags, blkptr_cb_t func, void *arg);
#ifdef __cplusplus
}
#endif
#endif /* _SYS_DMU_TRAVERSE_H */