mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-28 03:49:38 +03:00
e5db313494
Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS, and 5.0 and newer kernels. This is accomplished by leveraging the fact that by definition dedicated kernel threads never need to concern themselves with saving and restoring the user FPU state. Therefore, they may use the FPU as long as we can guarantee user tasks always restore their FPU state before context switching back to user space. For the 5.0 and 5.1 kernels disabling preemption and local interrupts is sufficient to allow the FPU to be used. All non-kernel threads will restore the preserved user FPU state. For 5.2 and latter kernels the user FPU state restoration will be skipped if the kernel determines the registers have not changed. Therefore, for these kernels we need to perform the additional step of saving and restoring the FPU registers. Invalidating the per-cpu global tracking the FPU state would force a restore but that functionality is private to the core x86 FPU implementation and unavailable. In practice, restricting SIMD to kernel threads is not a major restriction for ZFS. The vast majority of SIMD operations are already performed by the IO pipeline. The remaining cases are relatively infrequent and can be handled by the generic code without significant impact. The two most noteworthy cases are: 1) Decrypting the wrapping key for an encrypted dataset, i.e. `zfs load-key`. All other encryption and decryption operations will use the SIMD optimized implementations. 2) Generating the payload checksums for a `zfs send` stream. In order to avoid making any changes to the higher layers of ZFS all of the `*_get_ops()` functions were updated to take in to consideration the calling context. This allows for the fastest implementation to be used as appropriate (see kfpu_allowed()). The only other notable instance of SIMD operations being used outside a kernel thread was at module load time. This code was moved in to a taskq in order to accommodate the new kernel thread restriction. Finally, a few other modifications were made in order to further harden this code and facilitate testing. They include updating each implementations operations structure to be declared as a constant. And allowing "cycle" to be set when selecting the preferred ops in the kernel as well as user space. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8754 Closes #8793 Closes #8965
371 lines
9.8 KiB
C
371 lines
9.8 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2016 Gvozden Nešković. All rights reserved.
|
|
*/
|
|
|
|
#ifndef _VDEV_RAIDZ_H
|
|
#define _VDEV_RAIDZ_H
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/debug.h>
|
|
#include <sys/kstat.h>
|
|
#include <sys/abd.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define CODE_P (0U)
|
|
#define CODE_Q (1U)
|
|
#define CODE_R (2U)
|
|
|
|
#define PARITY_P (1U)
|
|
#define PARITY_PQ (2U)
|
|
#define PARITY_PQR (3U)
|
|
|
|
#define TARGET_X (0U)
|
|
#define TARGET_Y (1U)
|
|
#define TARGET_Z (2U)
|
|
|
|
/*
|
|
* Parity generation methods indexes
|
|
*/
|
|
enum raidz_math_gen_op {
|
|
RAIDZ_GEN_P = 0,
|
|
RAIDZ_GEN_PQ,
|
|
RAIDZ_GEN_PQR,
|
|
RAIDZ_GEN_NUM = 3
|
|
};
|
|
/*
|
|
* Data reconstruction methods indexes
|
|
*/
|
|
enum raidz_rec_op {
|
|
RAIDZ_REC_P = 0,
|
|
RAIDZ_REC_Q,
|
|
RAIDZ_REC_R,
|
|
RAIDZ_REC_PQ,
|
|
RAIDZ_REC_PR,
|
|
RAIDZ_REC_QR,
|
|
RAIDZ_REC_PQR,
|
|
RAIDZ_REC_NUM = 7
|
|
};
|
|
|
|
extern const char *raidz_gen_name[RAIDZ_GEN_NUM];
|
|
extern const char *raidz_rec_name[RAIDZ_REC_NUM];
|
|
|
|
/*
|
|
* Methods used to define raidz implementation
|
|
*
|
|
* @raidz_gen_f Parity generation function
|
|
* @par1 pointer to raidz_map
|
|
* @raidz_rec_f Data reconstruction function
|
|
* @par1 pointer to raidz_map
|
|
* @par2 array of reconstruction targets
|
|
* @will_work_f Function returns TRUE if impl. is supported on the system
|
|
* @init_impl_f Function is called once on init
|
|
* @fini_impl_f Function is called once on fini
|
|
*/
|
|
typedef void (*raidz_gen_f)(void *);
|
|
typedef int (*raidz_rec_f)(void *, const int *);
|
|
typedef boolean_t (*will_work_f)(void);
|
|
typedef void (*init_impl_f)(void);
|
|
typedef void (*fini_impl_f)(void);
|
|
|
|
#define RAIDZ_IMPL_NAME_MAX (16)
|
|
|
|
typedef struct raidz_impl_ops {
|
|
init_impl_f init;
|
|
fini_impl_f fini;
|
|
raidz_gen_f gen[RAIDZ_GEN_NUM]; /* Parity generate functions */
|
|
raidz_rec_f rec[RAIDZ_REC_NUM]; /* Data reconstruction functions */
|
|
will_work_f is_supported; /* Support check function */
|
|
char name[RAIDZ_IMPL_NAME_MAX]; /* Name of the implementation */
|
|
} raidz_impl_ops_t;
|
|
|
|
typedef struct raidz_col {
|
|
uint64_t rc_devidx; /* child device index for I/O */
|
|
uint64_t rc_offset; /* device offset */
|
|
uint64_t rc_size; /* I/O size */
|
|
abd_t *rc_abd; /* I/O data */
|
|
void *rc_gdata; /* used to store the "good" version */
|
|
int rc_error; /* I/O error for this device */
|
|
uint8_t rc_tried; /* Did we attempt this I/O column? */
|
|
uint8_t rc_skipped; /* Did we skip this I/O column? */
|
|
} raidz_col_t;
|
|
|
|
typedef struct raidz_map {
|
|
uint64_t rm_cols; /* Regular column count */
|
|
uint64_t rm_scols; /* Count including skipped columns */
|
|
uint64_t rm_bigcols; /* Number of oversized columns */
|
|
uint64_t rm_asize; /* Actual total I/O size */
|
|
uint64_t rm_missingdata; /* Count of missing data devices */
|
|
uint64_t rm_missingparity; /* Count of missing parity devices */
|
|
uint64_t rm_firstdatacol; /* First data column/parity count */
|
|
uint64_t rm_nskip; /* Skipped sectors for padding */
|
|
uint64_t rm_skipstart; /* Column index of padding start */
|
|
abd_t *rm_abd_copy; /* rm_asize-buffer of copied data */
|
|
uintptr_t rm_reports; /* # of referencing checksum reports */
|
|
uint8_t rm_freed; /* map no longer has referencing ZIO */
|
|
uint8_t rm_ecksuminjected; /* checksum error was injected */
|
|
const raidz_impl_ops_t *rm_ops; /* RAIDZ math operations */
|
|
raidz_col_t rm_col[1]; /* Flexible array of I/O columns */
|
|
} raidz_map_t;
|
|
|
|
#define RAIDZ_ORIGINAL_IMPL (INT_MAX)
|
|
|
|
extern const raidz_impl_ops_t vdev_raidz_scalar_impl;
|
|
#if defined(__x86_64) && defined(HAVE_SSE2) /* only x86_64 for now */
|
|
extern const raidz_impl_ops_t vdev_raidz_sse2_impl;
|
|
#endif
|
|
#if defined(__x86_64) && defined(HAVE_SSSE3) /* only x86_64 for now */
|
|
extern const raidz_impl_ops_t vdev_raidz_ssse3_impl;
|
|
#endif
|
|
#if defined(__x86_64) && defined(HAVE_AVX2) /* only x86_64 for now */
|
|
extern const raidz_impl_ops_t vdev_raidz_avx2_impl;
|
|
#endif
|
|
#if defined(__x86_64) && defined(HAVE_AVX512F) /* only x86_64 for now */
|
|
extern const raidz_impl_ops_t vdev_raidz_avx512f_impl;
|
|
#endif
|
|
#if defined(__x86_64) && defined(HAVE_AVX512BW) /* only x86_64 for now */
|
|
extern const raidz_impl_ops_t vdev_raidz_avx512bw_impl;
|
|
#endif
|
|
#if defined(__aarch64__)
|
|
extern const raidz_impl_ops_t vdev_raidz_aarch64_neon_impl;
|
|
extern const raidz_impl_ops_t vdev_raidz_aarch64_neonx2_impl;
|
|
#endif
|
|
|
|
/*
|
|
* Commonly used raidz_map helpers
|
|
*
|
|
* raidz_parity Returns parity of the RAIDZ block
|
|
* raidz_ncols Returns number of columns the block spans
|
|
* raidz_nbigcols Returns number of big columns columns
|
|
* raidz_col_p Returns pointer to a column
|
|
* raidz_col_size Returns size of a column
|
|
* raidz_big_size Returns size of big columns
|
|
* raidz_short_size Returns size of short columns
|
|
*/
|
|
#define raidz_parity(rm) ((rm)->rm_firstdatacol)
|
|
#define raidz_ncols(rm) ((rm)->rm_cols)
|
|
#define raidz_nbigcols(rm) ((rm)->rm_bigcols)
|
|
#define raidz_col_p(rm, c) ((rm)->rm_col + (c))
|
|
#define raidz_col_size(rm, c) ((rm)->rm_col[c].rc_size)
|
|
#define raidz_big_size(rm) (raidz_col_size(rm, CODE_P))
|
|
#define raidz_short_size(rm) (raidz_col_size(rm, raidz_ncols(rm)-1))
|
|
|
|
/*
|
|
* Macro defines an RAIDZ parity generation method
|
|
*
|
|
* @code parity the function produce
|
|
* @impl name of the implementation
|
|
*/
|
|
#define _RAIDZ_GEN_WRAP(code, impl) \
|
|
static void \
|
|
impl ## _gen_ ## code(void *rmp) \
|
|
{ \
|
|
raidz_map_t *rm = (raidz_map_t *)rmp; \
|
|
raidz_generate_## code ## _impl(rm); \
|
|
}
|
|
|
|
/*
|
|
* Macro defines an RAIDZ data reconstruction method
|
|
*
|
|
* @code parity the function produce
|
|
* @impl name of the implementation
|
|
*/
|
|
#define _RAIDZ_REC_WRAP(code, impl) \
|
|
static int \
|
|
impl ## _rec_ ## code(void *rmp, const int *tgtidx) \
|
|
{ \
|
|
raidz_map_t *rm = (raidz_map_t *)rmp; \
|
|
return (raidz_reconstruct_## code ## _impl(rm, tgtidx)); \
|
|
}
|
|
|
|
/*
|
|
* Define all gen methods for an implementation
|
|
*
|
|
* @impl name of the implementation
|
|
*/
|
|
#define DEFINE_GEN_METHODS(impl) \
|
|
_RAIDZ_GEN_WRAP(p, impl); \
|
|
_RAIDZ_GEN_WRAP(pq, impl); \
|
|
_RAIDZ_GEN_WRAP(pqr, impl)
|
|
|
|
/*
|
|
* Define all rec functions for an implementation
|
|
*
|
|
* @impl name of the implementation
|
|
*/
|
|
#define DEFINE_REC_METHODS(impl) \
|
|
_RAIDZ_REC_WRAP(p, impl); \
|
|
_RAIDZ_REC_WRAP(q, impl); \
|
|
_RAIDZ_REC_WRAP(r, impl); \
|
|
_RAIDZ_REC_WRAP(pq, impl); \
|
|
_RAIDZ_REC_WRAP(pr, impl); \
|
|
_RAIDZ_REC_WRAP(qr, impl); \
|
|
_RAIDZ_REC_WRAP(pqr, impl)
|
|
|
|
#define RAIDZ_GEN_METHODS(impl) \
|
|
{ \
|
|
[RAIDZ_GEN_P] = & impl ## _gen_p, \
|
|
[RAIDZ_GEN_PQ] = & impl ## _gen_pq, \
|
|
[RAIDZ_GEN_PQR] = & impl ## _gen_pqr \
|
|
}
|
|
|
|
#define RAIDZ_REC_METHODS(impl) \
|
|
{ \
|
|
[RAIDZ_REC_P] = & impl ## _rec_p, \
|
|
[RAIDZ_REC_Q] = & impl ## _rec_q, \
|
|
[RAIDZ_REC_R] = & impl ## _rec_r, \
|
|
[RAIDZ_REC_PQ] = & impl ## _rec_pq, \
|
|
[RAIDZ_REC_PR] = & impl ## _rec_pr, \
|
|
[RAIDZ_REC_QR] = & impl ## _rec_qr, \
|
|
[RAIDZ_REC_PQR] = & impl ## _rec_pqr \
|
|
}
|
|
|
|
|
|
typedef struct raidz_impl_kstat {
|
|
uint64_t gen[RAIDZ_GEN_NUM]; /* gen method speed B/s */
|
|
uint64_t rec[RAIDZ_REC_NUM]; /* rec method speed B/s */
|
|
} raidz_impl_kstat_t;
|
|
|
|
/*
|
|
* Enumerate various multiplication constants
|
|
* used in reconstruction methods
|
|
*/
|
|
typedef enum raidz_mul_info {
|
|
/* Reconstruct Q */
|
|
MUL_Q_X = 0,
|
|
/* Reconstruct R */
|
|
MUL_R_X = 0,
|
|
/* Reconstruct PQ */
|
|
MUL_PQ_X = 0,
|
|
MUL_PQ_Y = 1,
|
|
/* Reconstruct PR */
|
|
MUL_PR_X = 0,
|
|
MUL_PR_Y = 1,
|
|
/* Reconstruct QR */
|
|
MUL_QR_XQ = 0,
|
|
MUL_QR_X = 1,
|
|
MUL_QR_YQ = 2,
|
|
MUL_QR_Y = 3,
|
|
/* Reconstruct PQR */
|
|
MUL_PQR_XP = 0,
|
|
MUL_PQR_XQ = 1,
|
|
MUL_PQR_XR = 2,
|
|
MUL_PQR_YU = 3,
|
|
MUL_PQR_YP = 4,
|
|
MUL_PQR_YQ = 5,
|
|
|
|
MUL_CNT = 6
|
|
} raidz_mul_info_t;
|
|
|
|
/*
|
|
* Powers of 2 in the Galois field.
|
|
*/
|
|
extern const uint8_t vdev_raidz_pow2[256] __attribute__((aligned(256)));
|
|
/* Logs of 2 in the Galois field defined above. */
|
|
extern const uint8_t vdev_raidz_log2[256] __attribute__((aligned(256)));
|
|
|
|
/*
|
|
* Multiply a given number by 2 raised to the given power.
|
|
*/
|
|
static inline uint8_t
|
|
vdev_raidz_exp2(const uint8_t a, const unsigned exp)
|
|
{
|
|
if (a == 0)
|
|
return (0);
|
|
|
|
return (vdev_raidz_pow2[(exp + (unsigned)vdev_raidz_log2[a]) % 255]);
|
|
}
|
|
|
|
/*
|
|
* Galois Field operations.
|
|
*
|
|
* gf_exp2 - computes 2 raised to the given power
|
|
* gf_exp2 - computes 4 raised to the given power
|
|
* gf_mul - multiplication
|
|
* gf_div - division
|
|
* gf_inv - multiplicative inverse
|
|
*/
|
|
typedef unsigned gf_t;
|
|
typedef unsigned gf_log_t;
|
|
|
|
static inline gf_t
|
|
gf_mul(const gf_t a, const gf_t b)
|
|
{
|
|
gf_log_t logsum;
|
|
|
|
if (a == 0 || b == 0)
|
|
return (0);
|
|
|
|
logsum = (gf_log_t)vdev_raidz_log2[a] + (gf_log_t)vdev_raidz_log2[b];
|
|
|
|
return ((gf_t)vdev_raidz_pow2[logsum % 255]);
|
|
}
|
|
|
|
static inline gf_t
|
|
gf_div(const gf_t a, const gf_t b)
|
|
{
|
|
gf_log_t logsum;
|
|
|
|
ASSERT3U(b, >, 0);
|
|
if (a == 0)
|
|
return (0);
|
|
|
|
logsum = (gf_log_t)255 + (gf_log_t)vdev_raidz_log2[a] -
|
|
(gf_log_t)vdev_raidz_log2[b];
|
|
|
|
return ((gf_t)vdev_raidz_pow2[logsum % 255]);
|
|
}
|
|
|
|
static inline gf_t
|
|
gf_inv(const gf_t a)
|
|
{
|
|
gf_log_t logsum;
|
|
|
|
ASSERT3U(a, >, 0);
|
|
|
|
logsum = (gf_log_t)255 - (gf_log_t)vdev_raidz_log2[a];
|
|
|
|
return ((gf_t)vdev_raidz_pow2[logsum]);
|
|
}
|
|
|
|
static inline gf_t
|
|
gf_exp2(gf_log_t exp)
|
|
{
|
|
return (vdev_raidz_pow2[exp % 255]);
|
|
}
|
|
|
|
static inline gf_t
|
|
gf_exp4(gf_log_t exp)
|
|
{
|
|
ASSERT3U(exp, <=, 255);
|
|
return ((gf_t)vdev_raidz_pow2[(2 * exp) % 255]);
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _VDEV_RAIDZ_H */
|