985c33b132
This commit adds BLAKE3 checksums to OpenZFS, it has similar performance to Edon-R, but without the caveats around the latter. Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3 Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3 Short description of Wikipedia: BLAKE3 is a cryptographic hash function based on Bao and BLAKE2, created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real World Crypto. BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given enough input. The official Rust and C implementations are dual-licensed as public domain (CC0) and the Apache License. Along with adding the BLAKE3 hash into the OpenZFS infrastructure a new benchmarking file called chksum_bench was introduced. When read it reports the speed of the available checksum functions. On Linux: cat /proc/spl/kstat/zfs/chksum_bench On FreeBSD: sysctl kstat.zfs.misc.chksum_bench This is an example output of an i3-1005G1 test system with Debian 11: implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1196 1602 1761 1749 1762 1759 1751 skein-generic 546 591 608 615 619 612 616 sha256-generic 240 300 316 314 304 285 276 sha512-generic 353 441 467 476 472 467 426 blake3-generic 308 313 313 313 312 313 312 blake3-sse2 402 1289 1423 1446 1432 1458 1413 blake3-sse41 427 1470 1625 1704 1679 1607 1629 blake3-avx2 428 1920 3095 3343 3356 3318 3204 blake3-avx512 473 2687 4905 5836 5844 5643 5374 Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1840 2458 2665 2719 2711 2723 2693 skein-generic 870 966 996 992 1003 1005 1009 sha256-generic 415 442 453 455 457 457 457 sha512-generic 608 690 711 718 719 720 721 blake3-generic 301 313 311 309 309 310 310 blake3-sse2 343 1865 2124 2188 2180 2181 2186 blake3-sse41 364 2091 2396 2509 2463 2482 2488 blake3-avx2 365 2590 4399 4971 4915 4802 4764 Output on Debian 5.10.0-9-powerpc64le system: (POWER 9) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1213 1703 1889 1918 1957 1902 1907 skein-generic 434 492 520 522 511 525 525 sha256-generic 167 183 187 188 188 187 188 sha512-generic 186 216 222 221 225 224 224 blake3-generic 153 152 154 153 151 153 153 blake3-sse2 391 1170 1366 1406 1428 1426 1414 blake3-sse41 352 1049 1212 1174 1262 1258 1259 Output on Debian 5.10.0-11-arm64 system: (Pi400) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 487 603 629 639 643 641 641 skein-generic 271 299 303 308 309 309 307 sha256-generic 117 127 128 130 130 129 130 sha512-generic 145 165 170 172 173 174 175 blake3-generic 81 29 71 89 89 89 89 blake3-sse2 112 323 368 379 380 371 374 blake3-sse41 101 315 357 368 369 364 360 Structurally, the new code is mainly split into these parts: - 1x cross platform generic c variant: blake3_generic.c - 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512) - 2x assembly for ARMv8 (NEON converted from SSE2) - 2x assembly for PPC64-LE (POWER8 converted from SSE2) - one file for switching between the implementations Note the PPC64 assembly requires the VSX instruction set and the kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly. Reviewed-by: Felix Dörre <felix@dogcraft.de> Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Co-authored-by: Rich Ercolani <rincebrain@gmail.com> Closes #10058 Closes #12918 |
||
---|---|---|
.. | ||
runfiles | ||
test-runner | ||
zfs-tests | ||
Makefile.am | ||
README.md |
ZFS Test Suite README
1) Building and installing the ZFS Test Suite
The ZFS Test Suite runs under the test-runner framework. This framework is built along side the standard ZFS utilities and is included as part of zfs-test package. The zfs-test package can be built from source as follows:
$ ./configure
$ make pkg-utils
The resulting packages can be installed using the rpm or dpkg command as appropriate for your distributions. Alternately, if you have installed ZFS from a distributions repository (not from source) the zfs-test package may be provided for your distribution.
- Installed from source
$ rpm -ivh ./zfs-test*.rpm, or
$ dpkg -i ./zfs-test*.deb,
- Installed from package repository
$ yum install zfs-test
$ apt-get install zfs-test
2) Running the ZFS Test Suite
The pre-requisites for running the ZFS Test Suite are:
- Three scratch disks
- Specify the disks you wish to use in the $DISKS variable, as a space delimited list like this: DISKS='vdb vdc vdd'. By default the zfs-tests.sh script will construct three loopback devices to be used for testing: DISKS='loop0 loop1 loop2'.
- A non-root user with a full set of basic privileges and the ability to sudo(8) to root without a password to run the test.
- Specify any pools you wish to preserve as a space delimited list in the $KEEP variable. All pools detected at the start of testing are added automatically.
- The ZFS Test Suite will add users and groups to test machine to verify functionality. Therefore it is strongly advised that a dedicated test machine, which can be a VM, be used for testing.
- On FreeBSD, mountd(8) must use
/etc/zfs/exports
as one of its export files – by default this can be done by settingzfs_enable=yes
in/etc/rc.conf
.
Once the pre-requisites are satisfied simply run the zfs-tests.sh script:
$ /usr/share/zfs/zfs-tests.sh
Alternately, the zfs-tests.sh script can be run from the source tree to allow developers to rapidly validate their work. In this mode the ZFS utilities and modules from the source tree will be used (rather than those installed on the system). In order to avoid certain types of failures you will need to ensure the ZFS udev rules are installed. This can be done manually or by ensuring some version of ZFS is installed on the system.
$ ./scripts/zfs-tests.sh
The following zfs-tests.sh options are supported:
-v Verbose zfs-tests.sh output When specified additional
information describing the test environment will be logged
prior to invoking test-runner. This includes the runfile
being used, the DISKS targeted, pools to keep, etc.
-q Quiet test-runner output. When specified it is passed to
test-runner(1) which causes output to be written to the
console only for tests that do not pass and the results
summary.
-x Remove all testpools, dm, lo, and files (unsafe). When
specified the script will attempt to remove any leftover
configuration from a previous test run. This includes
destroying any pools named testpool, unused DM devices,
and loopback devices backed by file-vdevs. This operation
can be DANGEROUS because it is possible that the script
will mistakenly remove a resource not related to the testing.
-k Disable cleanup after test failure. When specified the
zfs-tests.sh script will not perform any additional cleanup
when test-runner exists. This is useful when the results of
a specific test need to be preserved for further analysis.
-f Use sparse files directly instead of loopback devices for
the testing. When running in this mode certain tests will
be skipped which depend on real block devices.
-c Only create and populate constrained path
-I NUM Number of iterations
-d DIR Create sparse files for vdevs in the DIR directory. By
default these files are created under /var/tmp/.
This directory must be world-writable.
-s SIZE Use vdevs of SIZE (default: 4G)
-r RUNFILES Run tests in RUNFILES (default: common.run,linux.run)
-t PATH Run single test at PATH relative to test suite
-T TAGS Comma separated list of tags (default: 'functional')
-u USER Run single test as USER (default: root)
The ZFS Test Suite allows the user to specify a subset of the tests via a runfile or list of tags.
The format of the runfile is explained in test-runner(1), and the files that zfs-tests.sh uses are available for reference under /usr/share/zfs/runfiles. To specify a custom runfile, use the -r option:
$ /usr/share/zfs/zfs-tests.sh -r my_tests.run
Otherwise user can set needed tags to run only specific tests.
3) Test results
While the ZFS Test Suite is running, one informational line is printed at the
end of each test, and a results summary is printed at the end of the run. The
results summary includes the location of the complete logs, which is logged in
the form /var/tmp/test_results/[ISO 8601 date]
. A normal test run launched
with the zfs-tests.sh
wrapper script will look something like this:
$ /usr/share/zfs/zfs-tests.sh -v -d /tmp/test
--- Configuration ---
Runfile: /usr/share/zfs/runfiles/linux.run
STF_TOOLS: /usr/share/zfs/test-runner
STF_SUITE: /usr/share/zfs/zfs-tests
STF_PATH: /var/tmp/constrained_path.G0Sf
FILEDIR: /tmp/test
FILES: /tmp/test/file-vdev0 /tmp/test/file-vdev1 /tmp/test/file-vdev2
LOOPBACKS: /dev/loop0 /dev/loop1 /dev/loop2
DISKS: loop0 loop1 loop2
NUM_DISKS: 3
FILESIZE: 4G
ITERATIONS: 1
TAGS: functional
Keep pool(s): rpool
/usr/share/zfs/test-runner/bin/test-runner.py -c /usr/share/zfs/runfiles/linux.run \
-T functional -i /usr/share/zfs/zfs-tests -I 1
Test: /usr/share/zfs/zfs-tests/tests/functional/arc/setup (run as root) [00:00] [PASS]
...more than 1100 additional tests...
Test: /usr/share/zfs/zfs-tests/tests/functional/zvol/zvol_swap/cleanup (run as root) [00:00] [PASS]
Results Summary
SKIP 52
PASS 1129
Running Time: 02:35:33
Percent passed: 95.6%
Log directory: /var/tmp/test_results/20180515T054509
4) Example of adding and running test-case (zpool_example)
This broadly boils down to 5 steps
- Create/Set password-less sudo for user running test case.
- Edit configure.ac, Makefile.am appropriately
- Create/Modify .run files
- Create actual test-scripts
- Run Test case
Will look at each of them in depth.
-
Set password-less sudo for 'Test' user as test script cannot be run as root
-
Edit file configure.ac and include line under AC_CONFIG_FILES section
tests/zfs-tests/tests/functional/cli_root/zpool_example/Makefile
-
Edit file tests/runfiles/Makefile.am and add line zpool_example.
pkgdatadir = $(datadir)/@PACKAGE@/runfiles dist_pkgdata_DATA = \ zpool_example.run \ common.run \ freebsd.run \ linux.run \ longevity.run \ perf-regression.run \ sanity.run \ sunos.run
-
Create file tests/runfiles/zpool_example.run. This defines the most common properties when run with test-runner.py or zfs-tests.sh.
[DEFAULT] timeout = 600 outputdir = /var/tmp/test_results tags = ['functional'] tests = ['zpool_example_001_pos']
If adding test-case to an already existing suite the runfile would already be present and it needs to be only updated. For example, adding zpool_example_002_pos to the above runfile only update the "tests =" section of the runfile as shown below
[DEFAULT] timeout = 600 outputdir = /var/tmp/test_results tags = ['functional'] tests = ['zpool_example_001_pos', 'zpool_example_002_pos']
-
Edit tests/zfs-tests/tests/functional/cli_root/Makefile.am and add line under SUBDIRS.
zpool_example \ (Make sure to escape the line end as there will be other folders names following)
-
Create new file tests/zfs-tests/tests/functional/cli_root/zpool_example/Makefile.am the contents of the file could be as below. What it says it that now we have a test case zpool_example_001_pos.ksh
pkgdatadir = $(datadir)/@PACKAGE@/zfs-tests/tests/functional/cli_root/zpool_example dist_pkgdata_SCRIPTS = \ zpool_example_001_pos.ksh
-
We can now create our test-case zpool_example_001_pos.ksh under tests/zfs-tests/tests/functional/cli_root/zpool_example/.
# DESCRIPTION: # zpool_example Test # # STRATEGY: # 1. Demo a very basic test case # DISKS_DEV1="/dev/loop0" DISKS_DEV2="/dev/loop1" TESTPOOL=EXAMPLE_POOL function cleanup { # Cleanup destroy_pool $TESTPOOL log_must rm -f $DISKS_DEV1 log_must rm -f $DISKS_DEV2 } log_assert "zpool_example" # Run function "cleanup" on exit log_onexit cleanup # Prep backend device log_must dd if=/dev/zero of=$DISKS_DEV1 bs=512 count=140000 log_must dd if=/dev/zero of=$DISKS_DEV2 bs=512 count=140000 # Create pool log_must zpool create $TESTPOOL $type $DISKS_DEV1 $DISKS_DEV2 log_pass "zpool_example"
-
Run Test case, which can be done in two ways. Described in detail above in section 2.
- test-runner.py (This takes run file as input. See zpool_example.run)
- zfs-tests.sh. Can execute the run file or individual tests