mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-13 03:30:34 +03:00
0b04990a5d
A port of the Illumos Crypto Framework to a Linux kernel module (found in module/icp). This is needed to do the actual encryption work. We cannot use the Linux kernel's built in crypto api because it is only exported to GPL-licensed modules. Having the ICP also means the crypto code can run on any of the other kernels under OpenZFS. I ended up porting over most of the internals of the framework, which means that porting over other API calls (if we need them) should be fairly easy. Specifically, I have ported over the API functions related to encryption, digests, macs, and crypto templates. The ICP is able to use assembly-accelerated encryption on amd64 machines and AES-NI instructions on Intel chips that support it. There are place-holder directories for similar assembly optimizations for other architectures (although they have not been written). Signed-off-by: Tom Caputi <tcaputi@datto.com> Signed-off-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #4329
306 lines
7.7 KiB
C
306 lines
7.7 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <modes/modes.h>
|
|
#include <sys/crypto/common.h>
|
|
#include <sys/crypto/impl.h>
|
|
|
|
/*
|
|
* Algorithm independent CBC functions.
|
|
*/
|
|
int
|
|
cbc_encrypt_contiguous_blocks(cbc_ctx_t *ctx, char *data, size_t length,
|
|
crypto_data_t *out, size_t block_size,
|
|
int (*encrypt)(const void *, const uint8_t *, uint8_t *),
|
|
void (*copy_block)(uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
size_t remainder = length;
|
|
size_t need = 0;
|
|
uint8_t *datap = (uint8_t *)data;
|
|
uint8_t *blockp;
|
|
uint8_t *lastp;
|
|
void *iov_or_mp;
|
|
offset_t offset;
|
|
uint8_t *out_data_1;
|
|
uint8_t *out_data_2;
|
|
size_t out_data_1_len;
|
|
|
|
if (length + ctx->cbc_remainder_len < block_size) {
|
|
/* accumulate bytes here and return */
|
|
bcopy(datap,
|
|
(uint8_t *)ctx->cbc_remainder + ctx->cbc_remainder_len,
|
|
length);
|
|
ctx->cbc_remainder_len += length;
|
|
ctx->cbc_copy_to = datap;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
lastp = (uint8_t *)ctx->cbc_iv;
|
|
if (out != NULL)
|
|
crypto_init_ptrs(out, &iov_or_mp, &offset);
|
|
|
|
do {
|
|
/* Unprocessed data from last call. */
|
|
if (ctx->cbc_remainder_len > 0) {
|
|
need = block_size - ctx->cbc_remainder_len;
|
|
|
|
if (need > remainder)
|
|
return (CRYPTO_DATA_LEN_RANGE);
|
|
|
|
bcopy(datap, &((uint8_t *)ctx->cbc_remainder)
|
|
[ctx->cbc_remainder_len], need);
|
|
|
|
blockp = (uint8_t *)ctx->cbc_remainder;
|
|
} else {
|
|
blockp = datap;
|
|
}
|
|
|
|
if (out == NULL) {
|
|
/*
|
|
* XOR the previous cipher block or IV with the
|
|
* current clear block.
|
|
*/
|
|
xor_block(lastp, blockp);
|
|
encrypt(ctx->cbc_keysched, blockp, blockp);
|
|
|
|
ctx->cbc_lastp = blockp;
|
|
lastp = blockp;
|
|
|
|
if (ctx->cbc_remainder_len > 0) {
|
|
bcopy(blockp, ctx->cbc_copy_to,
|
|
ctx->cbc_remainder_len);
|
|
bcopy(blockp + ctx->cbc_remainder_len, datap,
|
|
need);
|
|
}
|
|
} else {
|
|
/*
|
|
* XOR the previous cipher block or IV with the
|
|
* current clear block.
|
|
*/
|
|
xor_block(blockp, lastp);
|
|
encrypt(ctx->cbc_keysched, lastp, lastp);
|
|
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
|
|
&out_data_1_len, &out_data_2, block_size);
|
|
|
|
/* copy block to where it belongs */
|
|
if (out_data_1_len == block_size) {
|
|
copy_block(lastp, out_data_1);
|
|
} else {
|
|
bcopy(lastp, out_data_1, out_data_1_len);
|
|
if (out_data_2 != NULL) {
|
|
bcopy(lastp + out_data_1_len,
|
|
out_data_2,
|
|
block_size - out_data_1_len);
|
|
}
|
|
}
|
|
/* update offset */
|
|
out->cd_offset += block_size;
|
|
}
|
|
|
|
/* Update pointer to next block of data to be processed. */
|
|
if (ctx->cbc_remainder_len != 0) {
|
|
datap += need;
|
|
ctx->cbc_remainder_len = 0;
|
|
} else {
|
|
datap += block_size;
|
|
}
|
|
|
|
remainder = (size_t)&data[length] - (size_t)datap;
|
|
|
|
/* Incomplete last block. */
|
|
if (remainder > 0 && remainder < block_size) {
|
|
bcopy(datap, ctx->cbc_remainder, remainder);
|
|
ctx->cbc_remainder_len = remainder;
|
|
ctx->cbc_copy_to = datap;
|
|
goto out;
|
|
}
|
|
ctx->cbc_copy_to = NULL;
|
|
|
|
} while (remainder > 0);
|
|
|
|
out:
|
|
/*
|
|
* Save the last encrypted block in the context.
|
|
*/
|
|
if (ctx->cbc_lastp != NULL) {
|
|
copy_block((uint8_t *)ctx->cbc_lastp, (uint8_t *)ctx->cbc_iv);
|
|
ctx->cbc_lastp = (uint8_t *)ctx->cbc_iv;
|
|
}
|
|
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
#define OTHER(a, ctx) \
|
|
(((a) == (ctx)->cbc_lastblock) ? (ctx)->cbc_iv : (ctx)->cbc_lastblock)
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
cbc_decrypt_contiguous_blocks(cbc_ctx_t *ctx, char *data, size_t length,
|
|
crypto_data_t *out, size_t block_size,
|
|
int (*decrypt)(const void *, const uint8_t *, uint8_t *),
|
|
void (*copy_block)(uint8_t *, uint8_t *),
|
|
void (*xor_block)(uint8_t *, uint8_t *))
|
|
{
|
|
size_t remainder = length;
|
|
size_t need = 0;
|
|
uint8_t *datap = (uint8_t *)data;
|
|
uint8_t *blockp;
|
|
uint8_t *lastp;
|
|
void *iov_or_mp;
|
|
offset_t offset;
|
|
uint8_t *out_data_1;
|
|
uint8_t *out_data_2;
|
|
size_t out_data_1_len;
|
|
|
|
if (length + ctx->cbc_remainder_len < block_size) {
|
|
/* accumulate bytes here and return */
|
|
bcopy(datap,
|
|
(uint8_t *)ctx->cbc_remainder + ctx->cbc_remainder_len,
|
|
length);
|
|
ctx->cbc_remainder_len += length;
|
|
ctx->cbc_copy_to = datap;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
lastp = ctx->cbc_lastp;
|
|
if (out != NULL)
|
|
crypto_init_ptrs(out, &iov_or_mp, &offset);
|
|
|
|
do {
|
|
/* Unprocessed data from last call. */
|
|
if (ctx->cbc_remainder_len > 0) {
|
|
need = block_size - ctx->cbc_remainder_len;
|
|
|
|
if (need > remainder)
|
|
return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
|
|
|
|
bcopy(datap, &((uint8_t *)ctx->cbc_remainder)
|
|
[ctx->cbc_remainder_len], need);
|
|
|
|
blockp = (uint8_t *)ctx->cbc_remainder;
|
|
} else {
|
|
blockp = datap;
|
|
}
|
|
|
|
/* LINTED: pointer alignment */
|
|
copy_block(blockp, (uint8_t *)OTHER((uint64_t *)lastp, ctx));
|
|
|
|
if (out != NULL) {
|
|
decrypt(ctx->cbc_keysched, blockp,
|
|
(uint8_t *)ctx->cbc_remainder);
|
|
blockp = (uint8_t *)ctx->cbc_remainder;
|
|
} else {
|
|
decrypt(ctx->cbc_keysched, blockp, blockp);
|
|
}
|
|
|
|
/*
|
|
* XOR the previous cipher block or IV with the
|
|
* currently decrypted block.
|
|
*/
|
|
xor_block(lastp, blockp);
|
|
|
|
/* LINTED: pointer alignment */
|
|
lastp = (uint8_t *)OTHER((uint64_t *)lastp, ctx);
|
|
|
|
if (out != NULL) {
|
|
crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
|
|
&out_data_1_len, &out_data_2, block_size);
|
|
|
|
bcopy(blockp, out_data_1, out_data_1_len);
|
|
if (out_data_2 != NULL) {
|
|
bcopy(blockp + out_data_1_len, out_data_2,
|
|
block_size - out_data_1_len);
|
|
}
|
|
|
|
/* update offset */
|
|
out->cd_offset += block_size;
|
|
|
|
} else if (ctx->cbc_remainder_len > 0) {
|
|
/* copy temporary block to where it belongs */
|
|
bcopy(blockp, ctx->cbc_copy_to, ctx->cbc_remainder_len);
|
|
bcopy(blockp + ctx->cbc_remainder_len, datap, need);
|
|
}
|
|
|
|
/* Update pointer to next block of data to be processed. */
|
|
if (ctx->cbc_remainder_len != 0) {
|
|
datap += need;
|
|
ctx->cbc_remainder_len = 0;
|
|
} else {
|
|
datap += block_size;
|
|
}
|
|
|
|
remainder = (size_t)&data[length] - (size_t)datap;
|
|
|
|
/* Incomplete last block. */
|
|
if (remainder > 0 && remainder < block_size) {
|
|
bcopy(datap, ctx->cbc_remainder, remainder);
|
|
ctx->cbc_remainder_len = remainder;
|
|
ctx->cbc_lastp = lastp;
|
|
ctx->cbc_copy_to = datap;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
ctx->cbc_copy_to = NULL;
|
|
|
|
} while (remainder > 0);
|
|
|
|
ctx->cbc_lastp = lastp;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
int
|
|
cbc_init_ctx(cbc_ctx_t *cbc_ctx, char *param, size_t param_len,
|
|
size_t block_size, void (*copy_block)(uint8_t *, uint64_t *))
|
|
{
|
|
/*
|
|
* Copy IV into context.
|
|
*
|
|
* If cm_param == NULL then the IV comes from the
|
|
* cd_miscdata field in the crypto_data structure.
|
|
*/
|
|
if (param != NULL) {
|
|
ASSERT(param_len == block_size);
|
|
copy_block((uchar_t *)param, cbc_ctx->cbc_iv);
|
|
}
|
|
|
|
cbc_ctx->cbc_lastp = (uint8_t *)&cbc_ctx->cbc_iv[0];
|
|
cbc_ctx->cbc_flags |= CBC_MODE;
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void *
|
|
cbc_alloc_ctx(int kmflag)
|
|
{
|
|
cbc_ctx_t *cbc_ctx;
|
|
|
|
if ((cbc_ctx = kmem_zalloc(sizeof (cbc_ctx_t), kmflag)) == NULL)
|
|
return (NULL);
|
|
|
|
cbc_ctx->cbc_flags = CBC_MODE;
|
|
return (cbc_ctx);
|
|
}
|