mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 12:40:26 +03:00
6d974228ef
Today zfs tries to allocate blocks evenly across all devices. This means when devices are imbalanced zfs will use lots of CPU searching for space on devices which tend to be pretty full. It should instead fail quickly on the full LUNs and move onto devices which have more availability. Reviewed by: Eric Schrock <Eric.Schrock@delphix.com> Reviewed by: Matt Ahrens <Matt.Ahrens@delphix.com> Reviewed by: Adam Leventhal <Adam.Leventhal@delphix.com> Reviewed by: Albert Lee <trisk@nexenta.com> Reviewed by: Gordon Ross <gwr@nexenta.com> Approved by: Garrett D'Amore <garrett@nexenta.com> References to Illumos issue and patch: - https://www.illumos.org/issues/510 - https://github.com/illumos/illumos-gate/commit/5ead3ed965 Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #340
3043 lines
84 KiB
C
3043 lines
84 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fm/fs/zfs.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio_impl.h>
|
|
#include <sys/zio_compress.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/ddt.h>
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O priority table
|
|
* ==========================================================================
|
|
*/
|
|
uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
|
|
0, /* ZIO_PRIORITY_NOW */
|
|
0, /* ZIO_PRIORITY_SYNC_READ */
|
|
0, /* ZIO_PRIORITY_SYNC_WRITE */
|
|
0, /* ZIO_PRIORITY_LOG_WRITE */
|
|
1, /* ZIO_PRIORITY_CACHE_FILL */
|
|
1, /* ZIO_PRIORITY_AGG */
|
|
4, /* ZIO_PRIORITY_FREE */
|
|
4, /* ZIO_PRIORITY_ASYNC_WRITE */
|
|
6, /* ZIO_PRIORITY_ASYNC_READ */
|
|
10, /* ZIO_PRIORITY_RESILVER */
|
|
20, /* ZIO_PRIORITY_SCRUB */
|
|
2, /* ZIO_PRIORITY_DDT_PREFETCH */
|
|
};
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O type descriptions
|
|
* ==========================================================================
|
|
*/
|
|
char *zio_type_name[ZIO_TYPES] = {
|
|
"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
|
|
};
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O kmem caches
|
|
* ==========================================================================
|
|
*/
|
|
kmem_cache_t *zio_cache;
|
|
kmem_cache_t *zio_link_cache;
|
|
kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
|
|
kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
|
|
int zio_bulk_flags = 0;
|
|
int zio_delay_max = ZIO_DELAY_MAX;
|
|
|
|
#ifdef _KERNEL
|
|
extern vmem_t *zio_alloc_arena;
|
|
#endif
|
|
extern int zfs_mg_alloc_failures;
|
|
|
|
/*
|
|
* An allocating zio is one that either currently has the DVA allocate
|
|
* stage set or will have it later in its lifetime.
|
|
*/
|
|
#define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
|
|
|
|
int zio_requeue_io_start_cut_in_line = 1;
|
|
|
|
#ifdef ZFS_DEBUG
|
|
int zio_buf_debug_limit = 16384;
|
|
#else
|
|
int zio_buf_debug_limit = 0;
|
|
#endif
|
|
|
|
static inline void __zio_execute(zio_t *zio);
|
|
|
|
void
|
|
zio_init(void)
|
|
{
|
|
size_t c;
|
|
vmem_t *data_alloc_arena = NULL;
|
|
|
|
#ifdef _KERNEL
|
|
data_alloc_arena = zio_alloc_arena;
|
|
#endif
|
|
zio_cache = kmem_cache_create("zio_cache",
|
|
sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
zio_link_cache = kmem_cache_create("zio_link_cache",
|
|
sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
|
|
/*
|
|
* For small buffers, we want a cache for each multiple of
|
|
* SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache
|
|
* for each quarter-power of 2. For large buffers, we want
|
|
* a cache for each multiple of PAGESIZE.
|
|
*/
|
|
for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
|
|
size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
|
|
size_t p2 = size;
|
|
size_t align = 0;
|
|
|
|
while (p2 & (p2 - 1))
|
|
p2 &= p2 - 1;
|
|
|
|
if (size <= 4 * SPA_MINBLOCKSIZE) {
|
|
align = SPA_MINBLOCKSIZE;
|
|
} else if (P2PHASE(size, PAGESIZE) == 0) {
|
|
align = PAGESIZE;
|
|
} else if (P2PHASE(size, p2 >> 2) == 0) {
|
|
align = p2 >> 2;
|
|
}
|
|
|
|
if (align != 0) {
|
|
char name[36];
|
|
(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
|
|
zio_buf_cache[c] = kmem_cache_create(name, size,
|
|
align, NULL, NULL, NULL, NULL, NULL,
|
|
(size > zio_buf_debug_limit ? KMC_NODEBUG : 0) |
|
|
zio_bulk_flags);
|
|
|
|
(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
|
|
zio_data_buf_cache[c] = kmem_cache_create(name, size,
|
|
align, NULL, NULL, NULL, NULL, data_alloc_arena,
|
|
(size > zio_buf_debug_limit ? KMC_NODEBUG : 0) |
|
|
zio_bulk_flags);
|
|
}
|
|
}
|
|
|
|
while (--c != 0) {
|
|
ASSERT(zio_buf_cache[c] != NULL);
|
|
if (zio_buf_cache[c - 1] == NULL)
|
|
zio_buf_cache[c - 1] = zio_buf_cache[c];
|
|
|
|
ASSERT(zio_data_buf_cache[c] != NULL);
|
|
if (zio_data_buf_cache[c - 1] == NULL)
|
|
zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
|
|
}
|
|
|
|
/*
|
|
* The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
|
|
* to fail 3 times per txg or 8 failures, whichever is greater.
|
|
*/
|
|
zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
|
|
|
|
zio_inject_init();
|
|
}
|
|
|
|
void
|
|
zio_fini(void)
|
|
{
|
|
size_t c;
|
|
kmem_cache_t *last_cache = NULL;
|
|
kmem_cache_t *last_data_cache = NULL;
|
|
|
|
for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
|
|
if (zio_buf_cache[c] != last_cache) {
|
|
last_cache = zio_buf_cache[c];
|
|
kmem_cache_destroy(zio_buf_cache[c]);
|
|
}
|
|
zio_buf_cache[c] = NULL;
|
|
|
|
if (zio_data_buf_cache[c] != last_data_cache) {
|
|
last_data_cache = zio_data_buf_cache[c];
|
|
kmem_cache_destroy(zio_data_buf_cache[c]);
|
|
}
|
|
zio_data_buf_cache[c] = NULL;
|
|
}
|
|
|
|
kmem_cache_destroy(zio_link_cache);
|
|
kmem_cache_destroy(zio_cache);
|
|
|
|
zio_inject_fini();
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Allocate and free I/O buffers
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
|
|
* crashdump if the kernel panics, so use it judiciously. Obviously, it's
|
|
* useful to inspect ZFS metadata, but if possible, we should avoid keeping
|
|
* excess / transient data in-core during a crashdump.
|
|
*/
|
|
void *
|
|
zio_buf_alloc(size_t size)
|
|
{
|
|
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
|
|
|
|
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
|
|
|
|
return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
|
|
}
|
|
|
|
/*
|
|
* Use zio_data_buf_alloc to allocate data. The data will not appear in a
|
|
* crashdump if the kernel panics. This exists so that we will limit the amount
|
|
* of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
|
|
* of kernel heap dumped to disk when the kernel panics)
|
|
*/
|
|
void *
|
|
zio_data_buf_alloc(size_t size)
|
|
{
|
|
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
|
|
|
|
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
|
|
|
|
return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
|
|
}
|
|
|
|
void
|
|
zio_buf_free(void *buf, size_t size)
|
|
{
|
|
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
|
|
|
|
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
|
|
|
|
kmem_cache_free(zio_buf_cache[c], buf);
|
|
}
|
|
|
|
void
|
|
zio_data_buf_free(void *buf, size_t size)
|
|
{
|
|
size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
|
|
|
|
ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
|
|
|
|
kmem_cache_free(zio_data_buf_cache[c], buf);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Push and pop I/O transform buffers
|
|
* ==========================================================================
|
|
*/
|
|
static void
|
|
zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
|
|
zio_transform_func_t *transform)
|
|
{
|
|
zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_PUSHPAGE);
|
|
|
|
zt->zt_orig_data = zio->io_data;
|
|
zt->zt_orig_size = zio->io_size;
|
|
zt->zt_bufsize = bufsize;
|
|
zt->zt_transform = transform;
|
|
|
|
zt->zt_next = zio->io_transform_stack;
|
|
zio->io_transform_stack = zt;
|
|
|
|
zio->io_data = data;
|
|
zio->io_size = size;
|
|
}
|
|
|
|
static void
|
|
zio_pop_transforms(zio_t *zio)
|
|
{
|
|
zio_transform_t *zt;
|
|
|
|
while ((zt = zio->io_transform_stack) != NULL) {
|
|
if (zt->zt_transform != NULL)
|
|
zt->zt_transform(zio,
|
|
zt->zt_orig_data, zt->zt_orig_size);
|
|
|
|
if (zt->zt_bufsize != 0)
|
|
zio_buf_free(zio->io_data, zt->zt_bufsize);
|
|
|
|
zio->io_data = zt->zt_orig_data;
|
|
zio->io_size = zt->zt_orig_size;
|
|
zio->io_transform_stack = zt->zt_next;
|
|
|
|
kmem_free(zt, sizeof (zio_transform_t));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O transform callbacks for subblocks and decompression
|
|
* ==========================================================================
|
|
*/
|
|
static void
|
|
zio_subblock(zio_t *zio, void *data, uint64_t size)
|
|
{
|
|
ASSERT(zio->io_size > size);
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
bcopy(zio->io_data, data, size);
|
|
}
|
|
|
|
static void
|
|
zio_decompress(zio_t *zio, void *data, uint64_t size)
|
|
{
|
|
if (zio->io_error == 0 &&
|
|
zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
|
|
zio->io_data, data, zio->io_size, size) != 0)
|
|
zio->io_error = EIO;
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O parent/child relationships and pipeline interlocks
|
|
* ==========================================================================
|
|
*/
|
|
/*
|
|
* NOTE - Callers to zio_walk_parents() and zio_walk_children must
|
|
* continue calling these functions until they return NULL.
|
|
* Otherwise, the next caller will pick up the list walk in
|
|
* some indeterminate state. (Otherwise every caller would
|
|
* have to pass in a cookie to keep the state represented by
|
|
* io_walk_link, which gets annoying.)
|
|
*/
|
|
zio_t *
|
|
zio_walk_parents(zio_t *cio)
|
|
{
|
|
zio_link_t *zl = cio->io_walk_link;
|
|
list_t *pl = &cio->io_parent_list;
|
|
|
|
zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
|
|
cio->io_walk_link = zl;
|
|
|
|
if (zl == NULL)
|
|
return (NULL);
|
|
|
|
ASSERT(zl->zl_child == cio);
|
|
return (zl->zl_parent);
|
|
}
|
|
|
|
zio_t *
|
|
zio_walk_children(zio_t *pio)
|
|
{
|
|
zio_link_t *zl = pio->io_walk_link;
|
|
list_t *cl = &pio->io_child_list;
|
|
|
|
zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
|
|
pio->io_walk_link = zl;
|
|
|
|
if (zl == NULL)
|
|
return (NULL);
|
|
|
|
ASSERT(zl->zl_parent == pio);
|
|
return (zl->zl_child);
|
|
}
|
|
|
|
zio_t *
|
|
zio_unique_parent(zio_t *cio)
|
|
{
|
|
zio_t *pio = zio_walk_parents(cio);
|
|
|
|
VERIFY(zio_walk_parents(cio) == NULL);
|
|
return (pio);
|
|
}
|
|
|
|
void
|
|
zio_add_child(zio_t *pio, zio_t *cio)
|
|
{
|
|
zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_PUSHPAGE);
|
|
int w;
|
|
|
|
/*
|
|
* Logical I/Os can have logical, gang, or vdev children.
|
|
* Gang I/Os can have gang or vdev children.
|
|
* Vdev I/Os can only have vdev children.
|
|
* The following ASSERT captures all of these constraints.
|
|
*/
|
|
ASSERT(cio->io_child_type <= pio->io_child_type);
|
|
|
|
zl->zl_parent = pio;
|
|
zl->zl_child = cio;
|
|
|
|
mutex_enter(&cio->io_lock);
|
|
mutex_enter(&pio->io_lock);
|
|
|
|
ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
|
|
|
|
for (w = 0; w < ZIO_WAIT_TYPES; w++)
|
|
pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
|
|
|
|
list_insert_head(&pio->io_child_list, zl);
|
|
list_insert_head(&cio->io_parent_list, zl);
|
|
|
|
pio->io_child_count++;
|
|
cio->io_parent_count++;
|
|
|
|
mutex_exit(&pio->io_lock);
|
|
mutex_exit(&cio->io_lock);
|
|
}
|
|
|
|
static void
|
|
zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
|
|
{
|
|
ASSERT(zl->zl_parent == pio);
|
|
ASSERT(zl->zl_child == cio);
|
|
|
|
mutex_enter(&cio->io_lock);
|
|
mutex_enter(&pio->io_lock);
|
|
|
|
list_remove(&pio->io_child_list, zl);
|
|
list_remove(&cio->io_parent_list, zl);
|
|
|
|
pio->io_child_count--;
|
|
cio->io_parent_count--;
|
|
|
|
mutex_exit(&pio->io_lock);
|
|
mutex_exit(&cio->io_lock);
|
|
|
|
kmem_cache_free(zio_link_cache, zl);
|
|
}
|
|
|
|
static boolean_t
|
|
zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
|
|
{
|
|
uint64_t *countp = &zio->io_children[child][wait];
|
|
boolean_t waiting = B_FALSE;
|
|
|
|
mutex_enter(&zio->io_lock);
|
|
ASSERT(zio->io_stall == NULL);
|
|
if (*countp != 0) {
|
|
zio->io_stage >>= 1;
|
|
zio->io_stall = countp;
|
|
waiting = B_TRUE;
|
|
}
|
|
mutex_exit(&zio->io_lock);
|
|
|
|
return (waiting);
|
|
}
|
|
|
|
__attribute__((always_inline))
|
|
static inline void
|
|
zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
|
|
{
|
|
uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
|
|
int *errorp = &pio->io_child_error[zio->io_child_type];
|
|
|
|
mutex_enter(&pio->io_lock);
|
|
if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
|
|
*errorp = zio_worst_error(*errorp, zio->io_error);
|
|
pio->io_reexecute |= zio->io_reexecute;
|
|
ASSERT3U(*countp, >, 0);
|
|
if (--*countp == 0 && pio->io_stall == countp) {
|
|
pio->io_stall = NULL;
|
|
mutex_exit(&pio->io_lock);
|
|
__zio_execute(pio);
|
|
} else {
|
|
mutex_exit(&pio->io_lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
zio_inherit_child_errors(zio_t *zio, enum zio_child c)
|
|
{
|
|
if (zio->io_child_error[c] != 0 && zio->io_error == 0)
|
|
zio->io_error = zio->io_child_error[c];
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Create the various types of I/O (read, write, free, etc)
|
|
* ==========================================================================
|
|
*/
|
|
static zio_t *
|
|
zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
|
|
void *data, uint64_t size, zio_done_func_t *done, void *private,
|
|
zio_type_t type, int priority, enum zio_flag flags,
|
|
vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
|
|
enum zio_stage stage, enum zio_stage pipeline)
|
|
{
|
|
zio_t *zio;
|
|
|
|
ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
|
|
ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
|
|
|
|
ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
|
|
ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
|
|
ASSERT(vd || stage == ZIO_STAGE_OPEN);
|
|
|
|
zio = kmem_cache_alloc(zio_cache, KM_PUSHPAGE);
|
|
bzero(zio, sizeof (zio_t));
|
|
|
|
mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
list_create(&zio->io_parent_list, sizeof (zio_link_t),
|
|
offsetof(zio_link_t, zl_parent_node));
|
|
list_create(&zio->io_child_list, sizeof (zio_link_t),
|
|
offsetof(zio_link_t, zl_child_node));
|
|
|
|
if (vd != NULL)
|
|
zio->io_child_type = ZIO_CHILD_VDEV;
|
|
else if (flags & ZIO_FLAG_GANG_CHILD)
|
|
zio->io_child_type = ZIO_CHILD_GANG;
|
|
else if (flags & ZIO_FLAG_DDT_CHILD)
|
|
zio->io_child_type = ZIO_CHILD_DDT;
|
|
else
|
|
zio->io_child_type = ZIO_CHILD_LOGICAL;
|
|
|
|
if (bp != NULL) {
|
|
zio->io_bp = (blkptr_t *)bp;
|
|
zio->io_bp_copy = *bp;
|
|
zio->io_bp_orig = *bp;
|
|
if (type != ZIO_TYPE_WRITE ||
|
|
zio->io_child_type == ZIO_CHILD_DDT)
|
|
zio->io_bp = &zio->io_bp_copy; /* so caller can free */
|
|
if (zio->io_child_type == ZIO_CHILD_LOGICAL)
|
|
zio->io_logical = zio;
|
|
if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
|
|
pipeline |= ZIO_GANG_STAGES;
|
|
}
|
|
|
|
zio->io_spa = spa;
|
|
zio->io_txg = txg;
|
|
zio->io_done = done;
|
|
zio->io_private = private;
|
|
zio->io_type = type;
|
|
zio->io_priority = priority;
|
|
zio->io_vd = vd;
|
|
zio->io_offset = offset;
|
|
zio->io_orig_data = zio->io_data = data;
|
|
zio->io_orig_size = zio->io_size = size;
|
|
zio->io_orig_flags = zio->io_flags = flags;
|
|
zio->io_orig_stage = zio->io_stage = stage;
|
|
zio->io_orig_pipeline = zio->io_pipeline = pipeline;
|
|
|
|
zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
|
|
zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
|
|
|
|
if (zb != NULL)
|
|
zio->io_bookmark = *zb;
|
|
|
|
if (pio != NULL) {
|
|
if (zio->io_logical == NULL)
|
|
zio->io_logical = pio->io_logical;
|
|
if (zio->io_child_type == ZIO_CHILD_GANG)
|
|
zio->io_gang_leader = pio->io_gang_leader;
|
|
zio_add_child(pio, zio);
|
|
}
|
|
|
|
return (zio);
|
|
}
|
|
|
|
static void
|
|
zio_destroy(zio_t *zio)
|
|
{
|
|
list_destroy(&zio->io_parent_list);
|
|
list_destroy(&zio->io_child_list);
|
|
mutex_destroy(&zio->io_lock);
|
|
cv_destroy(&zio->io_cv);
|
|
kmem_cache_free(zio_cache, zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
|
|
void *private, enum zio_flag flags)
|
|
{
|
|
zio_t *zio;
|
|
|
|
zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
|
|
ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
|
|
ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
|
|
{
|
|
return (zio_null(NULL, spa, NULL, done, private, flags));
|
|
}
|
|
|
|
zio_t *
|
|
zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
|
|
void *data, uint64_t size, zio_done_func_t *done, void *private,
|
|
int priority, enum zio_flag flags, const zbookmark_t *zb)
|
|
{
|
|
zio_t *zio;
|
|
|
|
zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
|
|
data, size, done, private,
|
|
ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
|
|
ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
|
|
ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
|
|
void *data, uint64_t size, const zio_prop_t *zp,
|
|
zio_done_func_t *ready, zio_done_func_t *done, void *private,
|
|
int priority, enum zio_flag flags, const zbookmark_t *zb)
|
|
{
|
|
zio_t *zio;
|
|
|
|
ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
|
|
zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
|
|
zp->zp_compress >= ZIO_COMPRESS_OFF &&
|
|
zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
|
|
zp->zp_type < DMU_OT_NUMTYPES &&
|
|
zp->zp_level < 32 &&
|
|
zp->zp_copies > 0 &&
|
|
zp->zp_copies <= spa_max_replication(spa) &&
|
|
zp->zp_dedup <= 1 &&
|
|
zp->zp_dedup_verify <= 1);
|
|
|
|
zio = zio_create(pio, spa, txg, bp, data, size, done, private,
|
|
ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
|
|
ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
|
|
ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
|
|
|
|
zio->io_ready = ready;
|
|
zio->io_prop = *zp;
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
|
|
uint64_t size, zio_done_func_t *done, void *private, int priority,
|
|
enum zio_flag flags, zbookmark_t *zb)
|
|
{
|
|
zio_t *zio;
|
|
|
|
zio = zio_create(pio, spa, txg, bp, data, size, done, private,
|
|
ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
|
|
ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
|
|
|
|
return (zio);
|
|
}
|
|
|
|
void
|
|
zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
|
|
{
|
|
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
|
|
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
|
|
ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
|
|
ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
|
|
|
|
zio->io_prop.zp_copies = copies;
|
|
zio->io_bp_override = bp;
|
|
}
|
|
|
|
void
|
|
zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
|
|
{
|
|
bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
|
|
}
|
|
|
|
zio_t *
|
|
zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
|
|
enum zio_flag flags)
|
|
{
|
|
zio_t *zio;
|
|
|
|
dprintf_bp(bp, "freeing in txg %llu, pass %u",
|
|
(longlong_t)txg, spa->spa_sync_pass);
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(spa_syncing_txg(spa) == txg);
|
|
ASSERT(spa_sync_pass(spa) <= SYNC_PASS_DEFERRED_FREE);
|
|
|
|
zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
|
|
NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
|
|
NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
|
|
zio_done_func_t *done, void *private, enum zio_flag flags)
|
|
{
|
|
zio_t *zio;
|
|
|
|
/*
|
|
* A claim is an allocation of a specific block. Claims are needed
|
|
* to support immediate writes in the intent log. The issue is that
|
|
* immediate writes contain committed data, but in a txg that was
|
|
* *not* committed. Upon opening the pool after an unclean shutdown,
|
|
* the intent log claims all blocks that contain immediate write data
|
|
* so that the SPA knows they're in use.
|
|
*
|
|
* All claims *must* be resolved in the first txg -- before the SPA
|
|
* starts allocating blocks -- so that nothing is allocated twice.
|
|
* If txg == 0 we just verify that the block is claimable.
|
|
*/
|
|
ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
|
|
ASSERT(txg == spa_first_txg(spa) || txg == 0);
|
|
ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
|
|
|
|
zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
|
|
done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
|
|
NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
|
|
zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
|
|
{
|
|
zio_t *zio;
|
|
int c;
|
|
|
|
if (vd->vdev_children == 0) {
|
|
zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
|
|
ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
|
|
ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
|
|
|
|
zio->io_cmd = cmd;
|
|
} else {
|
|
zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
|
|
done, private, priority, flags));
|
|
}
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
|
|
void *data, int checksum, zio_done_func_t *done, void *private,
|
|
int priority, enum zio_flag flags, boolean_t labels)
|
|
{
|
|
zio_t *zio;
|
|
|
|
ASSERT(vd->vdev_children == 0);
|
|
ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
|
|
offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
|
|
ASSERT3U(offset + size, <=, vd->vdev_psize);
|
|
|
|
zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
|
|
ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
|
|
ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
|
|
|
|
zio->io_prop.zp_checksum = checksum;
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
|
|
void *data, int checksum, zio_done_func_t *done, void *private,
|
|
int priority, enum zio_flag flags, boolean_t labels)
|
|
{
|
|
zio_t *zio;
|
|
|
|
ASSERT(vd->vdev_children == 0);
|
|
ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
|
|
offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
|
|
ASSERT3U(offset + size, <=, vd->vdev_psize);
|
|
|
|
zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
|
|
ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
|
|
ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
|
|
|
|
zio->io_prop.zp_checksum = checksum;
|
|
|
|
if (zio_checksum_table[checksum].ci_eck) {
|
|
/*
|
|
* zec checksums are necessarily destructive -- they modify
|
|
* the end of the write buffer to hold the verifier/checksum.
|
|
* Therefore, we must make a local copy in case the data is
|
|
* being written to multiple places in parallel.
|
|
*/
|
|
void *wbuf = zio_buf_alloc(size);
|
|
bcopy(data, wbuf, size);
|
|
zio_push_transform(zio, wbuf, size, size, NULL);
|
|
}
|
|
|
|
return (zio);
|
|
}
|
|
|
|
/*
|
|
* Create a child I/O to do some work for us.
|
|
*/
|
|
zio_t *
|
|
zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
|
|
void *data, uint64_t size, int type, int priority, enum zio_flag flags,
|
|
zio_done_func_t *done, void *private)
|
|
{
|
|
enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
|
|
zio_t *zio;
|
|
|
|
ASSERT(vd->vdev_parent ==
|
|
(pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
|
|
|
|
if (type == ZIO_TYPE_READ && bp != NULL) {
|
|
/*
|
|
* If we have the bp, then the child should perform the
|
|
* checksum and the parent need not. This pushes error
|
|
* detection as close to the leaves as possible and
|
|
* eliminates redundant checksums in the interior nodes.
|
|
*/
|
|
pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
|
|
pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
|
|
}
|
|
|
|
if (vd->vdev_children == 0)
|
|
offset += VDEV_LABEL_START_SIZE;
|
|
|
|
flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
|
|
|
|
/*
|
|
* If we've decided to do a repair, the write is not speculative --
|
|
* even if the original read was.
|
|
*/
|
|
if (flags & ZIO_FLAG_IO_REPAIR)
|
|
flags &= ~ZIO_FLAG_SPECULATIVE;
|
|
|
|
zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
|
|
done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
|
|
ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
|
|
int type, int priority, enum zio_flag flags,
|
|
zio_done_func_t *done, void *private)
|
|
{
|
|
zio_t *zio;
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
|
|
data, size, done, private, type, priority,
|
|
flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
|
|
vd, offset, NULL,
|
|
ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
|
|
|
|
return (zio);
|
|
}
|
|
|
|
void
|
|
zio_flush(zio_t *zio, vdev_t *vd)
|
|
{
|
|
zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
|
|
NULL, NULL, ZIO_PRIORITY_NOW,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
|
|
}
|
|
|
|
void
|
|
zio_shrink(zio_t *zio, uint64_t size)
|
|
{
|
|
ASSERT(zio->io_executor == NULL);
|
|
ASSERT(zio->io_orig_size == zio->io_size);
|
|
ASSERT(size <= zio->io_size);
|
|
|
|
/*
|
|
* We don't shrink for raidz because of problems with the
|
|
* reconstruction when reading back less than the block size.
|
|
* Note, BP_IS_RAIDZ() assumes no compression.
|
|
*/
|
|
ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
|
|
if (!BP_IS_RAIDZ(zio->io_bp))
|
|
zio->io_orig_size = zio->io_size = size;
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Prepare to read and write logical blocks
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static int
|
|
zio_read_bp_init(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
|
|
zio->io_child_type == ZIO_CHILD_LOGICAL &&
|
|
!(zio->io_flags & ZIO_FLAG_RAW)) {
|
|
uint64_t psize = BP_GET_PSIZE(bp);
|
|
void *cbuf = zio_buf_alloc(psize);
|
|
|
|
zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
|
|
}
|
|
|
|
if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0)
|
|
zio->io_flags |= ZIO_FLAG_DONT_CACHE;
|
|
|
|
if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
|
|
zio->io_flags |= ZIO_FLAG_DONT_CACHE;
|
|
|
|
if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
|
|
zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_write_bp_init(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
zio_prop_t *zp = &zio->io_prop;
|
|
enum zio_compress compress = zp->zp_compress;
|
|
blkptr_t *bp = zio->io_bp;
|
|
uint64_t lsize = zio->io_size;
|
|
uint64_t psize = lsize;
|
|
int pass = 1;
|
|
|
|
/*
|
|
* If our children haven't all reached the ready stage,
|
|
* wait for them and then repeat this pipeline stage.
|
|
*/
|
|
if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
|
|
zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
if (!IO_IS_ALLOCATING(zio))
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
|
|
ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
|
|
|
|
if (zio->io_bp_override) {
|
|
ASSERT(bp->blk_birth != zio->io_txg);
|
|
ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
|
|
|
|
*bp = *zio->io_bp_override;
|
|
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
|
|
|
|
if (BP_IS_HOLE(bp) || !zp->zp_dedup)
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
|
|
ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
|
|
zp->zp_dedup_verify);
|
|
|
|
if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
|
|
BP_SET_DEDUP(bp, 1);
|
|
zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
zio->io_bp_override = NULL;
|
|
BP_ZERO(bp);
|
|
}
|
|
|
|
if (bp->blk_birth == zio->io_txg) {
|
|
/*
|
|
* We're rewriting an existing block, which means we're
|
|
* working on behalf of spa_sync(). For spa_sync() to
|
|
* converge, it must eventually be the case that we don't
|
|
* have to allocate new blocks. But compression changes
|
|
* the blocksize, which forces a reallocate, and makes
|
|
* convergence take longer. Therefore, after the first
|
|
* few passes, stop compressing to ensure convergence.
|
|
*/
|
|
pass = spa_sync_pass(spa);
|
|
|
|
ASSERT(zio->io_txg == spa_syncing_txg(spa));
|
|
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
|
|
ASSERT(!BP_GET_DEDUP(bp));
|
|
|
|
if (pass > SYNC_PASS_DONT_COMPRESS)
|
|
compress = ZIO_COMPRESS_OFF;
|
|
|
|
/* Make sure someone doesn't change their mind on overwrites */
|
|
ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
|
|
spa_max_replication(spa)) == BP_GET_NDVAS(bp));
|
|
}
|
|
|
|
if (compress != ZIO_COMPRESS_OFF) {
|
|
void *cbuf = zio_buf_alloc(lsize);
|
|
psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
|
|
if (psize == 0 || psize == lsize) {
|
|
compress = ZIO_COMPRESS_OFF;
|
|
zio_buf_free(cbuf, lsize);
|
|
} else {
|
|
ASSERT(psize < lsize);
|
|
zio_push_transform(zio, cbuf, psize, lsize, NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The final pass of spa_sync() must be all rewrites, but the first
|
|
* few passes offer a trade-off: allocating blocks defers convergence,
|
|
* but newly allocated blocks are sequential, so they can be written
|
|
* to disk faster. Therefore, we allow the first few passes of
|
|
* spa_sync() to allocate new blocks, but force rewrites after that.
|
|
* There should only be a handful of blocks after pass 1 in any case.
|
|
*/
|
|
if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
|
|
pass > SYNC_PASS_REWRITE) {
|
|
enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
|
|
ASSERT(psize != 0);
|
|
zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
|
|
zio->io_flags |= ZIO_FLAG_IO_REWRITE;
|
|
} else {
|
|
BP_ZERO(bp);
|
|
zio->io_pipeline = ZIO_WRITE_PIPELINE;
|
|
}
|
|
|
|
if (psize == 0) {
|
|
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
|
|
} else {
|
|
ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
|
|
BP_SET_LSIZE(bp, lsize);
|
|
BP_SET_PSIZE(bp, psize);
|
|
BP_SET_COMPRESS(bp, compress);
|
|
BP_SET_CHECKSUM(bp, zp->zp_checksum);
|
|
BP_SET_TYPE(bp, zp->zp_type);
|
|
BP_SET_LEVEL(bp, zp->zp_level);
|
|
BP_SET_DEDUP(bp, zp->zp_dedup);
|
|
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
|
|
if (zp->zp_dedup) {
|
|
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
|
|
ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
|
|
zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
|
|
}
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_free_bp_init(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
|
|
if (BP_GET_DEDUP(bp))
|
|
zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Execute the I/O pipeline
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static void
|
|
zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
zio_type_t t = zio->io_type;
|
|
int flags = TQ_NOSLEEP | (cutinline ? TQ_FRONT : 0);
|
|
|
|
/*
|
|
* If we're a config writer or a probe, the normal issue and
|
|
* interrupt threads may all be blocked waiting for the config lock.
|
|
* In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
|
|
*/
|
|
if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
|
|
t = ZIO_TYPE_NULL;
|
|
|
|
/*
|
|
* A similar issue exists for the L2ARC write thread until L2ARC 2.0.
|
|
*/
|
|
if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
|
|
t = ZIO_TYPE_NULL;
|
|
|
|
/*
|
|
* If this is a high priority I/O, then use the high priority taskq.
|
|
*/
|
|
if (zio->io_priority == ZIO_PRIORITY_NOW &&
|
|
spa->spa_zio_taskq[t][q + 1] != NULL)
|
|
q++;
|
|
|
|
ASSERT3U(q, <, ZIO_TASKQ_TYPES);
|
|
|
|
while (taskq_dispatch(spa->spa_zio_taskq[t][q],
|
|
(task_func_t *)zio_execute, zio, flags) == 0); /* do nothing */
|
|
}
|
|
|
|
static boolean_t
|
|
zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
|
|
{
|
|
kthread_t *executor = zio->io_executor;
|
|
spa_t *spa = zio->io_spa;
|
|
zio_type_t t;
|
|
|
|
for (t = 0; t < ZIO_TYPES; t++)
|
|
if (taskq_member(spa->spa_zio_taskq[t][q], executor))
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
static int
|
|
zio_issue_async(zio_t *zio)
|
|
{
|
|
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
|
|
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
void
|
|
zio_interrupt(zio_t *zio)
|
|
{
|
|
zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Execute the I/O pipeline until one of the following occurs:
|
|
* (1) the I/O completes; (2) the pipeline stalls waiting for
|
|
* dependent child I/Os; (3) the I/O issues, so we're waiting
|
|
* for an I/O completion interrupt; (4) the I/O is delegated by
|
|
* vdev-level caching or aggregation; (5) the I/O is deferred
|
|
* due to vdev-level queueing; (6) the I/O is handed off to
|
|
* another thread. In all cases, the pipeline stops whenever
|
|
* there's no CPU work; it never burns a thread in cv_wait().
|
|
*
|
|
* There's no locking on io_stage because there's no legitimate way
|
|
* for multiple threads to be attempting to process the same I/O.
|
|
*/
|
|
static zio_pipe_stage_t *zio_pipeline[];
|
|
|
|
/*
|
|
* zio_execute() is a wrapper around the static function
|
|
* __zio_execute() so that we can force __zio_execute() to be
|
|
* inlined. This reduces stack overhead which is important
|
|
* because __zio_execute() is called recursively in several zio
|
|
* code paths. zio_execute() itself cannot be inlined because
|
|
* it is externally visible.
|
|
*/
|
|
void
|
|
zio_execute(zio_t *zio)
|
|
{
|
|
__zio_execute(zio);
|
|
}
|
|
|
|
__attribute__((always_inline))
|
|
static inline void
|
|
__zio_execute(zio_t *zio)
|
|
{
|
|
zio->io_executor = curthread;
|
|
|
|
while (zio->io_stage < ZIO_STAGE_DONE) {
|
|
enum zio_stage pipeline = zio->io_pipeline;
|
|
enum zio_stage stage = zio->io_stage;
|
|
dsl_pool_t *dsl;
|
|
boolean_t cut;
|
|
int rv;
|
|
|
|
ASSERT(!MUTEX_HELD(&zio->io_lock));
|
|
ASSERT(ISP2(stage));
|
|
ASSERT(zio->io_stall == NULL);
|
|
|
|
do {
|
|
stage <<= 1;
|
|
} while ((stage & pipeline) == 0);
|
|
|
|
ASSERT(stage <= ZIO_STAGE_DONE);
|
|
|
|
dsl = spa_get_dsl(zio->io_spa);
|
|
cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
|
|
zio_requeue_io_start_cut_in_line : B_FALSE;
|
|
|
|
/*
|
|
* If we are in interrupt context and this pipeline stage
|
|
* will grab a config lock that is held across I/O,
|
|
* or may wait for an I/O that needs an interrupt thread
|
|
* to complete, issue async to avoid deadlock.
|
|
*
|
|
* If we are in the txg_sync_thread or being called
|
|
* during pool init issue async to minimize stack depth.
|
|
* Both of these call paths may be recursively called.
|
|
*
|
|
* For VDEV_IO_START, we cut in line so that the io will
|
|
* be sent to disk promptly.
|
|
*/
|
|
if (((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
|
|
zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) ||
|
|
(dsl != NULL && dsl_pool_sync_context(dsl))) {
|
|
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
|
|
return;
|
|
}
|
|
|
|
zio->io_stage = stage;
|
|
rv = zio_pipeline[highbit(stage) - 1](zio);
|
|
|
|
if (rv == ZIO_PIPELINE_STOP)
|
|
return;
|
|
|
|
ASSERT(rv == ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Initiate I/O, either sync or async
|
|
* ==========================================================================
|
|
*/
|
|
int
|
|
zio_wait(zio_t *zio)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
|
|
ASSERT(zio->io_executor == NULL);
|
|
|
|
zio->io_waiter = curthread;
|
|
|
|
__zio_execute(zio);
|
|
|
|
mutex_enter(&zio->io_lock);
|
|
while (zio->io_executor != NULL)
|
|
cv_wait(&zio->io_cv, &zio->io_lock);
|
|
mutex_exit(&zio->io_lock);
|
|
|
|
error = zio->io_error;
|
|
zio_destroy(zio);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
zio_nowait(zio_t *zio)
|
|
{
|
|
ASSERT(zio->io_executor == NULL);
|
|
|
|
if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
|
|
zio_unique_parent(zio) == NULL) {
|
|
/*
|
|
* This is a logical async I/O with no parent to wait for it.
|
|
* We add it to the spa_async_root_zio "Godfather" I/O which
|
|
* will ensure they complete prior to unloading the pool.
|
|
*/
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
zio_add_child(spa->spa_async_zio_root, zio);
|
|
}
|
|
|
|
__zio_execute(zio);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Reexecute or suspend/resume failed I/O
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static void
|
|
zio_reexecute(zio_t *pio)
|
|
{
|
|
zio_t *cio, *cio_next;
|
|
int c, w;
|
|
|
|
ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
|
|
ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
|
|
ASSERT(pio->io_gang_leader == NULL);
|
|
ASSERT(pio->io_gang_tree == NULL);
|
|
|
|
pio->io_flags = pio->io_orig_flags;
|
|
pio->io_stage = pio->io_orig_stage;
|
|
pio->io_pipeline = pio->io_orig_pipeline;
|
|
pio->io_reexecute = 0;
|
|
pio->io_error = 0;
|
|
for (w = 0; w < ZIO_WAIT_TYPES; w++)
|
|
pio->io_state[w] = 0;
|
|
for (c = 0; c < ZIO_CHILD_TYPES; c++)
|
|
pio->io_child_error[c] = 0;
|
|
|
|
if (IO_IS_ALLOCATING(pio))
|
|
BP_ZERO(pio->io_bp);
|
|
|
|
/*
|
|
* As we reexecute pio's children, new children could be created.
|
|
* New children go to the head of pio's io_child_list, however,
|
|
* so we will (correctly) not reexecute them. The key is that
|
|
* the remainder of pio's io_child_list, from 'cio_next' onward,
|
|
* cannot be affected by any side effects of reexecuting 'cio'.
|
|
*/
|
|
for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
|
|
cio_next = zio_walk_children(pio);
|
|
mutex_enter(&pio->io_lock);
|
|
for (w = 0; w < ZIO_WAIT_TYPES; w++)
|
|
pio->io_children[cio->io_child_type][w]++;
|
|
mutex_exit(&pio->io_lock);
|
|
zio_reexecute(cio);
|
|
}
|
|
|
|
/*
|
|
* Now that all children have been reexecuted, execute the parent.
|
|
* We don't reexecute "The Godfather" I/O here as it's the
|
|
* responsibility of the caller to wait on him.
|
|
*/
|
|
if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
|
|
__zio_execute(pio);
|
|
}
|
|
|
|
void
|
|
zio_suspend(spa_t *spa, zio_t *zio)
|
|
{
|
|
if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
|
|
fm_panic("Pool '%s' has encountered an uncorrectable I/O "
|
|
"failure and the failure mode property for this pool "
|
|
"is set to panic.", spa_name(spa));
|
|
|
|
zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
|
|
|
|
mutex_enter(&spa->spa_suspend_lock);
|
|
|
|
if (spa->spa_suspend_zio_root == NULL)
|
|
spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
|
|
ZIO_FLAG_GODFATHER);
|
|
|
|
spa->spa_suspended = B_TRUE;
|
|
|
|
if (zio != NULL) {
|
|
ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
|
|
ASSERT(zio != spa->spa_suspend_zio_root);
|
|
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
|
|
ASSERT(zio_unique_parent(zio) == NULL);
|
|
ASSERT(zio->io_stage == ZIO_STAGE_DONE);
|
|
zio_add_child(spa->spa_suspend_zio_root, zio);
|
|
}
|
|
|
|
mutex_exit(&spa->spa_suspend_lock);
|
|
}
|
|
|
|
int
|
|
zio_resume(spa_t *spa)
|
|
{
|
|
zio_t *pio;
|
|
|
|
/*
|
|
* Reexecute all previously suspended i/o.
|
|
*/
|
|
mutex_enter(&spa->spa_suspend_lock);
|
|
spa->spa_suspended = B_FALSE;
|
|
cv_broadcast(&spa->spa_suspend_cv);
|
|
pio = spa->spa_suspend_zio_root;
|
|
spa->spa_suspend_zio_root = NULL;
|
|
mutex_exit(&spa->spa_suspend_lock);
|
|
|
|
if (pio == NULL)
|
|
return (0);
|
|
|
|
zio_reexecute(pio);
|
|
return (zio_wait(pio));
|
|
}
|
|
|
|
void
|
|
zio_resume_wait(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_suspend_lock);
|
|
while (spa_suspended(spa))
|
|
cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
|
|
mutex_exit(&spa->spa_suspend_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Gang blocks.
|
|
*
|
|
* A gang block is a collection of small blocks that looks to the DMU
|
|
* like one large block. When zio_dva_allocate() cannot find a block
|
|
* of the requested size, due to either severe fragmentation or the pool
|
|
* being nearly full, it calls zio_write_gang_block() to construct the
|
|
* block from smaller fragments.
|
|
*
|
|
* A gang block consists of a gang header (zio_gbh_phys_t) and up to
|
|
* three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
|
|
* an indirect block: it's an array of block pointers. It consumes
|
|
* only one sector and hence is allocatable regardless of fragmentation.
|
|
* The gang header's bps point to its gang members, which hold the data.
|
|
*
|
|
* Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
|
|
* as the verifier to ensure uniqueness of the SHA256 checksum.
|
|
* Critically, the gang block bp's blk_cksum is the checksum of the data,
|
|
* not the gang header. This ensures that data block signatures (needed for
|
|
* deduplication) are independent of how the block is physically stored.
|
|
*
|
|
* Gang blocks can be nested: a gang member may itself be a gang block.
|
|
* Thus every gang block is a tree in which root and all interior nodes are
|
|
* gang headers, and the leaves are normal blocks that contain user data.
|
|
* The root of the gang tree is called the gang leader.
|
|
*
|
|
* To perform any operation (read, rewrite, free, claim) on a gang block,
|
|
* zio_gang_assemble() first assembles the gang tree (minus data leaves)
|
|
* in the io_gang_tree field of the original logical i/o by recursively
|
|
* reading the gang leader and all gang headers below it. This yields
|
|
* an in-core tree containing the contents of every gang header and the
|
|
* bps for every constituent of the gang block.
|
|
*
|
|
* With the gang tree now assembled, zio_gang_issue() just walks the gang tree
|
|
* and invokes a callback on each bp. To free a gang block, zio_gang_issue()
|
|
* calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
|
|
* zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
|
|
* zio_read_gang() is a wrapper around zio_read() that omits reading gang
|
|
* headers, since we already have those in io_gang_tree. zio_rewrite_gang()
|
|
* performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
|
|
* of the gang header plus zio_checksum_compute() of the data to update the
|
|
* gang header's blk_cksum as described above.
|
|
*
|
|
* The two-phase assemble/issue model solves the problem of partial failure --
|
|
* what if you'd freed part of a gang block but then couldn't read the
|
|
* gang header for another part? Assembling the entire gang tree first
|
|
* ensures that all the necessary gang header I/O has succeeded before
|
|
* starting the actual work of free, claim, or write. Once the gang tree
|
|
* is assembled, free and claim are in-memory operations that cannot fail.
|
|
*
|
|
* In the event that a gang write fails, zio_dva_unallocate() walks the
|
|
* gang tree to immediately free (i.e. insert back into the space map)
|
|
* everything we've allocated. This ensures that we don't get ENOSPC
|
|
* errors during repeated suspend/resume cycles due to a flaky device.
|
|
*
|
|
* Gang rewrites only happen during sync-to-convergence. If we can't assemble
|
|
* the gang tree, we won't modify the block, so we can safely defer the free
|
|
* (knowing that the block is still intact). If we *can* assemble the gang
|
|
* tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
|
|
* each constituent bp and we can allocate a new block on the next sync pass.
|
|
*
|
|
* In all cases, the gang tree allows complete recovery from partial failure.
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static zio_t *
|
|
zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
|
|
{
|
|
if (gn != NULL)
|
|
return (pio);
|
|
|
|
return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
|
|
NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
|
|
&pio->io_bookmark));
|
|
}
|
|
|
|
zio_t *
|
|
zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
|
|
{
|
|
zio_t *zio;
|
|
|
|
if (gn != NULL) {
|
|
zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
|
|
gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
|
|
ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
|
|
/*
|
|
* As we rewrite each gang header, the pipeline will compute
|
|
* a new gang block header checksum for it; but no one will
|
|
* compute a new data checksum, so we do that here. The one
|
|
* exception is the gang leader: the pipeline already computed
|
|
* its data checksum because that stage precedes gang assembly.
|
|
* (Presently, nothing actually uses interior data checksums;
|
|
* this is just good hygiene.)
|
|
*/
|
|
if (gn != pio->io_gang_leader->io_gang_tree) {
|
|
zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
|
|
data, BP_GET_PSIZE(bp));
|
|
}
|
|
/*
|
|
* If we are here to damage data for testing purposes,
|
|
* leave the GBH alone so that we can detect the damage.
|
|
*/
|
|
if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
|
|
zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
|
|
} else {
|
|
zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
|
|
data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
|
|
ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
|
|
}
|
|
|
|
return (zio);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
zio_t *
|
|
zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
|
|
{
|
|
return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
|
|
ZIO_GANG_CHILD_FLAGS(pio)));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
zio_t *
|
|
zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
|
|
{
|
|
return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
|
|
NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
|
|
}
|
|
|
|
static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
|
|
NULL,
|
|
zio_read_gang,
|
|
zio_rewrite_gang,
|
|
zio_free_gang,
|
|
zio_claim_gang,
|
|
NULL
|
|
};
|
|
|
|
static void zio_gang_tree_assemble_done(zio_t *zio);
|
|
|
|
static zio_gang_node_t *
|
|
zio_gang_node_alloc(zio_gang_node_t **gnpp)
|
|
{
|
|
zio_gang_node_t *gn;
|
|
|
|
ASSERT(*gnpp == NULL);
|
|
|
|
gn = kmem_zalloc(sizeof (*gn), KM_PUSHPAGE);
|
|
gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
|
|
*gnpp = gn;
|
|
|
|
return (gn);
|
|
}
|
|
|
|
static void
|
|
zio_gang_node_free(zio_gang_node_t **gnpp)
|
|
{
|
|
zio_gang_node_t *gn = *gnpp;
|
|
int g;
|
|
|
|
for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
|
|
ASSERT(gn->gn_child[g] == NULL);
|
|
|
|
zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
|
|
kmem_free(gn, sizeof (*gn));
|
|
*gnpp = NULL;
|
|
}
|
|
|
|
static void
|
|
zio_gang_tree_free(zio_gang_node_t **gnpp)
|
|
{
|
|
zio_gang_node_t *gn = *gnpp;
|
|
int g;
|
|
|
|
if (gn == NULL)
|
|
return;
|
|
|
|
for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
|
|
zio_gang_tree_free(&gn->gn_child[g]);
|
|
|
|
zio_gang_node_free(gnpp);
|
|
}
|
|
|
|
static void
|
|
zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
|
|
{
|
|
zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
|
|
|
|
ASSERT(gio->io_gang_leader == gio);
|
|
ASSERT(BP_IS_GANG(bp));
|
|
|
|
zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
|
|
SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
|
|
gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
|
|
}
|
|
|
|
static void
|
|
zio_gang_tree_assemble_done(zio_t *zio)
|
|
{
|
|
zio_t *gio = zio->io_gang_leader;
|
|
zio_gang_node_t *gn = zio->io_private;
|
|
blkptr_t *bp = zio->io_bp;
|
|
int g;
|
|
|
|
ASSERT(gio == zio_unique_parent(zio));
|
|
ASSERT(zio->io_child_count == 0);
|
|
|
|
if (zio->io_error)
|
|
return;
|
|
|
|
if (BP_SHOULD_BYTESWAP(bp))
|
|
byteswap_uint64_array(zio->io_data, zio->io_size);
|
|
|
|
ASSERT(zio->io_data == gn->gn_gbh);
|
|
ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
|
|
ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
|
|
|
|
for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
|
|
blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
|
|
if (!BP_IS_GANG(gbp))
|
|
continue;
|
|
zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
|
|
{
|
|
zio_t *gio = pio->io_gang_leader;
|
|
zio_t *zio;
|
|
int g;
|
|
|
|
ASSERT(BP_IS_GANG(bp) == !!gn);
|
|
ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
|
|
ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
|
|
|
|
/*
|
|
* If you're a gang header, your data is in gn->gn_gbh.
|
|
* If you're a gang member, your data is in 'data' and gn == NULL.
|
|
*/
|
|
zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
|
|
|
|
if (gn != NULL) {
|
|
ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
|
|
|
|
for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
|
|
blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
|
|
if (BP_IS_HOLE(gbp))
|
|
continue;
|
|
zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
|
|
data = (char *)data + BP_GET_PSIZE(gbp);
|
|
}
|
|
}
|
|
|
|
if (gn == gio->io_gang_tree)
|
|
ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
|
|
|
|
if (zio != pio)
|
|
zio_nowait(zio);
|
|
}
|
|
|
|
static int
|
|
zio_gang_assemble(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
|
|
ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
|
|
|
|
zio->io_gang_leader = zio;
|
|
|
|
zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_gang_issue(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
|
|
ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
|
|
|
|
if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
|
|
zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
|
|
else
|
|
zio_gang_tree_free(&zio->io_gang_tree);
|
|
|
|
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static void
|
|
zio_write_gang_member_ready(zio_t *zio)
|
|
{
|
|
zio_t *pio = zio_unique_parent(zio);
|
|
ASSERTV(zio_t *gio = zio->io_gang_leader;)
|
|
dva_t *cdva = zio->io_bp->blk_dva;
|
|
dva_t *pdva = pio->io_bp->blk_dva;
|
|
uint64_t asize;
|
|
int d;
|
|
|
|
if (BP_IS_HOLE(zio->io_bp))
|
|
return;
|
|
|
|
ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
|
|
|
|
ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
|
|
ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
|
|
ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
|
|
ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
|
|
ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
|
|
|
|
mutex_enter(&pio->io_lock);
|
|
for (d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
|
|
ASSERT(DVA_GET_GANG(&pdva[d]));
|
|
asize = DVA_GET_ASIZE(&pdva[d]);
|
|
asize += DVA_GET_ASIZE(&cdva[d]);
|
|
DVA_SET_ASIZE(&pdva[d], asize);
|
|
}
|
|
mutex_exit(&pio->io_lock);
|
|
}
|
|
|
|
static int
|
|
zio_write_gang_block(zio_t *pio)
|
|
{
|
|
spa_t *spa = pio->io_spa;
|
|
blkptr_t *bp = pio->io_bp;
|
|
zio_t *gio = pio->io_gang_leader;
|
|
zio_t *zio;
|
|
zio_gang_node_t *gn, **gnpp;
|
|
zio_gbh_phys_t *gbh;
|
|
uint64_t txg = pio->io_txg;
|
|
uint64_t resid = pio->io_size;
|
|
uint64_t lsize;
|
|
int copies = gio->io_prop.zp_copies;
|
|
int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
|
|
zio_prop_t zp;
|
|
int g, error;
|
|
|
|
error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
|
|
bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
|
|
METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
|
|
if (error) {
|
|
pio->io_error = error;
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
if (pio == gio) {
|
|
gnpp = &gio->io_gang_tree;
|
|
} else {
|
|
gnpp = pio->io_private;
|
|
ASSERT(pio->io_ready == zio_write_gang_member_ready);
|
|
}
|
|
|
|
gn = zio_gang_node_alloc(gnpp);
|
|
gbh = gn->gn_gbh;
|
|
bzero(gbh, SPA_GANGBLOCKSIZE);
|
|
|
|
/*
|
|
* Create the gang header.
|
|
*/
|
|
zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
|
|
pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
|
|
|
|
/*
|
|
* Create and nowait the gang children.
|
|
*/
|
|
for (g = 0; resid != 0; resid -= lsize, g++) {
|
|
lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
|
|
SPA_MINBLOCKSIZE);
|
|
ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
|
|
|
|
zp.zp_checksum = gio->io_prop.zp_checksum;
|
|
zp.zp_compress = ZIO_COMPRESS_OFF;
|
|
zp.zp_type = DMU_OT_NONE;
|
|
zp.zp_level = 0;
|
|
zp.zp_copies = gio->io_prop.zp_copies;
|
|
zp.zp_dedup = 0;
|
|
zp.zp_dedup_verify = 0;
|
|
|
|
zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
|
|
(char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
|
|
zio_write_gang_member_ready, NULL, &gn->gn_child[g],
|
|
pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
|
|
&pio->io_bookmark));
|
|
}
|
|
|
|
/*
|
|
* Set pio's pipeline to just wait for zio to finish.
|
|
*/
|
|
pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
|
|
|
|
zio_nowait(zio);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Dedup
|
|
* ==========================================================================
|
|
*/
|
|
static void
|
|
zio_ddt_child_read_done(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
ddt_entry_t *dde = zio->io_private;
|
|
ddt_phys_t *ddp;
|
|
zio_t *pio = zio_unique_parent(zio);
|
|
|
|
mutex_enter(&pio->io_lock);
|
|
ddp = ddt_phys_select(dde, bp);
|
|
if (zio->io_error == 0)
|
|
ddt_phys_clear(ddp); /* this ddp doesn't need repair */
|
|
if (zio->io_error == 0 && dde->dde_repair_data == NULL)
|
|
dde->dde_repair_data = zio->io_data;
|
|
else
|
|
zio_buf_free(zio->io_data, zio->io_size);
|
|
mutex_exit(&pio->io_lock);
|
|
}
|
|
|
|
static int
|
|
zio_ddt_read_start(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
int p;
|
|
|
|
ASSERT(BP_GET_DEDUP(bp));
|
|
ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
|
|
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
|
|
|
|
if (zio->io_child_error[ZIO_CHILD_DDT]) {
|
|
ddt_t *ddt = ddt_select(zio->io_spa, bp);
|
|
ddt_entry_t *dde = ddt_repair_start(ddt, bp);
|
|
ddt_phys_t *ddp = dde->dde_phys;
|
|
ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
|
|
blkptr_t blk;
|
|
|
|
ASSERT(zio->io_vsd == NULL);
|
|
zio->io_vsd = dde;
|
|
|
|
if (ddp_self == NULL)
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
|
|
for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
|
|
if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
|
|
continue;
|
|
ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
|
|
&blk);
|
|
zio_nowait(zio_read(zio, zio->io_spa, &blk,
|
|
zio_buf_alloc(zio->io_size), zio->io_size,
|
|
zio_ddt_child_read_done, dde, zio->io_priority,
|
|
ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
|
|
&zio->io_bookmark));
|
|
}
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
zio_nowait(zio_read(zio, zio->io_spa, bp,
|
|
zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
|
|
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_ddt_read_done(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
|
|
if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
ASSERT(BP_GET_DEDUP(bp));
|
|
ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
|
|
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
|
|
|
|
if (zio->io_child_error[ZIO_CHILD_DDT]) {
|
|
ddt_t *ddt = ddt_select(zio->io_spa, bp);
|
|
ddt_entry_t *dde = zio->io_vsd;
|
|
if (ddt == NULL) {
|
|
ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
if (dde == NULL) {
|
|
zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
|
|
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
if (dde->dde_repair_data != NULL) {
|
|
bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
|
|
zio->io_child_error[ZIO_CHILD_DDT] = 0;
|
|
}
|
|
ddt_repair_done(ddt, dde);
|
|
zio->io_vsd = NULL;
|
|
}
|
|
|
|
ASSERT(zio->io_vsd == NULL);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static boolean_t
|
|
zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
int p;
|
|
|
|
/*
|
|
* Note: we compare the original data, not the transformed data,
|
|
* because when zio->io_bp is an override bp, we will not have
|
|
* pushed the I/O transforms. That's an important optimization
|
|
* because otherwise we'd compress/encrypt all dmu_sync() data twice.
|
|
*/
|
|
for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
|
|
zio_t *lio = dde->dde_lead_zio[p];
|
|
|
|
if (lio != NULL) {
|
|
return (lio->io_orig_size != zio->io_orig_size ||
|
|
bcmp(zio->io_orig_data, lio->io_orig_data,
|
|
zio->io_orig_size) != 0);
|
|
}
|
|
}
|
|
|
|
for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
|
|
ddt_phys_t *ddp = &dde->dde_phys[p];
|
|
|
|
if (ddp->ddp_phys_birth != 0) {
|
|
arc_buf_t *abuf = NULL;
|
|
uint32_t aflags = ARC_WAIT;
|
|
blkptr_t blk = *zio->io_bp;
|
|
int error;
|
|
|
|
ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
|
|
|
|
ddt_exit(ddt);
|
|
|
|
error = arc_read_nolock(NULL, spa, &blk,
|
|
arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
|
|
&aflags, &zio->io_bookmark);
|
|
|
|
if (error == 0) {
|
|
if (arc_buf_size(abuf) != zio->io_orig_size ||
|
|
bcmp(abuf->b_data, zio->io_orig_data,
|
|
zio->io_orig_size) != 0)
|
|
error = EEXIST;
|
|
VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
|
|
}
|
|
|
|
ddt_enter(ddt);
|
|
return (error != 0);
|
|
}
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
static void
|
|
zio_ddt_child_write_ready(zio_t *zio)
|
|
{
|
|
int p = zio->io_prop.zp_copies;
|
|
ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
|
|
ddt_entry_t *dde = zio->io_private;
|
|
ddt_phys_t *ddp = &dde->dde_phys[p];
|
|
zio_t *pio;
|
|
|
|
if (zio->io_error)
|
|
return;
|
|
|
|
ddt_enter(ddt);
|
|
|
|
ASSERT(dde->dde_lead_zio[p] == zio);
|
|
|
|
ddt_phys_fill(ddp, zio->io_bp);
|
|
|
|
while ((pio = zio_walk_parents(zio)) != NULL)
|
|
ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
|
|
|
|
ddt_exit(ddt);
|
|
}
|
|
|
|
static void
|
|
zio_ddt_child_write_done(zio_t *zio)
|
|
{
|
|
int p = zio->io_prop.zp_copies;
|
|
ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
|
|
ddt_entry_t *dde = zio->io_private;
|
|
ddt_phys_t *ddp = &dde->dde_phys[p];
|
|
|
|
ddt_enter(ddt);
|
|
|
|
ASSERT(ddp->ddp_refcnt == 0);
|
|
ASSERT(dde->dde_lead_zio[p] == zio);
|
|
dde->dde_lead_zio[p] = NULL;
|
|
|
|
if (zio->io_error == 0) {
|
|
while (zio_walk_parents(zio) != NULL)
|
|
ddt_phys_addref(ddp);
|
|
} else {
|
|
ddt_phys_clear(ddp);
|
|
}
|
|
|
|
ddt_exit(ddt);
|
|
}
|
|
|
|
static void
|
|
zio_ddt_ditto_write_done(zio_t *zio)
|
|
{
|
|
int p = DDT_PHYS_DITTO;
|
|
blkptr_t *bp = zio->io_bp;
|
|
ddt_t *ddt = ddt_select(zio->io_spa, bp);
|
|
ddt_entry_t *dde = zio->io_private;
|
|
ddt_phys_t *ddp = &dde->dde_phys[p];
|
|
ddt_key_t *ddk = &dde->dde_key;
|
|
ASSERTV(zio_prop_t *zp = &zio->io_prop);
|
|
|
|
ddt_enter(ddt);
|
|
|
|
ASSERT(ddp->ddp_refcnt == 0);
|
|
ASSERT(dde->dde_lead_zio[p] == zio);
|
|
dde->dde_lead_zio[p] = NULL;
|
|
|
|
if (zio->io_error == 0) {
|
|
ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
|
|
ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
|
|
ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
|
|
if (ddp->ddp_phys_birth != 0)
|
|
ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
|
|
ddt_phys_fill(ddp, bp);
|
|
}
|
|
|
|
ddt_exit(ddt);
|
|
}
|
|
|
|
static int
|
|
zio_ddt_write(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
blkptr_t *bp = zio->io_bp;
|
|
uint64_t txg = zio->io_txg;
|
|
zio_prop_t *zp = &zio->io_prop;
|
|
int p = zp->zp_copies;
|
|
int ditto_copies;
|
|
zio_t *cio = NULL;
|
|
zio_t *dio = NULL;
|
|
ddt_t *ddt = ddt_select(spa, bp);
|
|
ddt_entry_t *dde;
|
|
ddt_phys_t *ddp;
|
|
|
|
ASSERT(BP_GET_DEDUP(bp));
|
|
ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
|
|
ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
|
|
|
|
ddt_enter(ddt);
|
|
dde = ddt_lookup(ddt, bp, B_TRUE);
|
|
ddp = &dde->dde_phys[p];
|
|
|
|
if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
|
|
/*
|
|
* If we're using a weak checksum, upgrade to a strong checksum
|
|
* and try again. If we're already using a strong checksum,
|
|
* we can't resolve it, so just convert to an ordinary write.
|
|
* (And automatically e-mail a paper to Nature?)
|
|
*/
|
|
if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
|
|
zp->zp_checksum = spa_dedup_checksum(spa);
|
|
zio_pop_transforms(zio);
|
|
zio->io_stage = ZIO_STAGE_OPEN;
|
|
BP_ZERO(bp);
|
|
} else {
|
|
zp->zp_dedup = 0;
|
|
}
|
|
zio->io_pipeline = ZIO_WRITE_PIPELINE;
|
|
ddt_exit(ddt);
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
|
|
ASSERT(ditto_copies < SPA_DVAS_PER_BP);
|
|
|
|
if (ditto_copies > ddt_ditto_copies_present(dde) &&
|
|
dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
|
|
zio_prop_t czp = *zp;
|
|
|
|
czp.zp_copies = ditto_copies;
|
|
|
|
/*
|
|
* If we arrived here with an override bp, we won't have run
|
|
* the transform stack, so we won't have the data we need to
|
|
* generate a child i/o. So, toss the override bp and restart.
|
|
* This is safe, because using the override bp is just an
|
|
* optimization; and it's rare, so the cost doesn't matter.
|
|
*/
|
|
if (zio->io_bp_override) {
|
|
zio_pop_transforms(zio);
|
|
zio->io_stage = ZIO_STAGE_OPEN;
|
|
zio->io_pipeline = ZIO_WRITE_PIPELINE;
|
|
zio->io_bp_override = NULL;
|
|
BP_ZERO(bp);
|
|
ddt_exit(ddt);
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
|
|
zio->io_orig_size, &czp, NULL,
|
|
zio_ddt_ditto_write_done, dde, zio->io_priority,
|
|
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
|
|
|
|
zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
|
|
dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
|
|
}
|
|
|
|
if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
|
|
if (ddp->ddp_phys_birth != 0)
|
|
ddt_bp_fill(ddp, bp, txg);
|
|
if (dde->dde_lead_zio[p] != NULL)
|
|
zio_add_child(zio, dde->dde_lead_zio[p]);
|
|
else
|
|
ddt_phys_addref(ddp);
|
|
} else if (zio->io_bp_override) {
|
|
ASSERT(bp->blk_birth == txg);
|
|
ASSERT(BP_EQUAL(bp, zio->io_bp_override));
|
|
ddt_phys_fill(ddp, bp);
|
|
ddt_phys_addref(ddp);
|
|
} else {
|
|
cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
|
|
zio->io_orig_size, zp, zio_ddt_child_write_ready,
|
|
zio_ddt_child_write_done, dde, zio->io_priority,
|
|
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
|
|
|
|
zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
|
|
dde->dde_lead_zio[p] = cio;
|
|
}
|
|
|
|
ddt_exit(ddt);
|
|
|
|
if (cio)
|
|
zio_nowait(cio);
|
|
if (dio)
|
|
zio_nowait(dio);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
ddt_entry_t *freedde; /* for debugging */
|
|
|
|
static int
|
|
zio_ddt_free(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
blkptr_t *bp = zio->io_bp;
|
|
ddt_t *ddt = ddt_select(spa, bp);
|
|
ddt_entry_t *dde;
|
|
ddt_phys_t *ddp;
|
|
|
|
ASSERT(BP_GET_DEDUP(bp));
|
|
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
|
|
|
|
ddt_enter(ddt);
|
|
freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
|
|
ddp = ddt_phys_select(dde, bp);
|
|
ddt_phys_decref(ddp);
|
|
ddt_exit(ddt);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Allocate and free blocks
|
|
* ==========================================================================
|
|
*/
|
|
static int
|
|
zio_dva_allocate(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
metaslab_class_t *mc = spa_normal_class(spa);
|
|
blkptr_t *bp = zio->io_bp;
|
|
int error;
|
|
int flags = 0;
|
|
|
|
if (zio->io_gang_leader == NULL) {
|
|
ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
|
|
zio->io_gang_leader = zio;
|
|
}
|
|
|
|
ASSERT(BP_IS_HOLE(bp));
|
|
ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
|
|
ASSERT3U(zio->io_prop.zp_copies, >, 0);
|
|
ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
|
|
ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
|
|
|
|
/*
|
|
* The dump device does not support gang blocks so allocation on
|
|
* behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
|
|
* the "fast" gang feature.
|
|
*/
|
|
flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
|
|
flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
|
|
METASLAB_GANG_CHILD : 0;
|
|
error = metaslab_alloc(spa, mc, zio->io_size, bp,
|
|
zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
|
|
|
|
if (error) {
|
|
spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
|
|
"size %llu, error %d", spa_name(spa), zio, zio->io_size,
|
|
error);
|
|
if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
|
|
return (zio_write_gang_block(zio));
|
|
zio->io_error = error;
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_dva_free(zio_t *zio)
|
|
{
|
|
metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_dva_claim(zio_t *zio)
|
|
{
|
|
int error;
|
|
|
|
error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
|
|
if (error)
|
|
zio->io_error = error;
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
/*
|
|
* Undo an allocation. This is used by zio_done() when an I/O fails
|
|
* and we want to give back the block we just allocated.
|
|
* This handles both normal blocks and gang blocks.
|
|
*/
|
|
static void
|
|
zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
|
|
{
|
|
int g;
|
|
|
|
ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
|
|
ASSERT(zio->io_bp_override == NULL);
|
|
|
|
if (!BP_IS_HOLE(bp))
|
|
metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
|
|
|
|
if (gn != NULL) {
|
|
for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
|
|
zio_dva_unallocate(zio, gn->gn_child[g],
|
|
&gn->gn_gbh->zg_blkptr[g]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to allocate an intent log block. Return 0 on success, errno on failure.
|
|
*/
|
|
int
|
|
zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
|
|
uint64_t size, boolean_t use_slog)
|
|
{
|
|
int error = 1;
|
|
|
|
ASSERT(txg > spa_syncing_txg(spa));
|
|
|
|
if (use_slog)
|
|
error = metaslab_alloc(spa, spa_log_class(spa), size,
|
|
new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
|
|
|
|
if (error)
|
|
error = metaslab_alloc(spa, spa_normal_class(spa), size,
|
|
new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
|
|
|
|
if (error == 0) {
|
|
BP_SET_LSIZE(new_bp, size);
|
|
BP_SET_PSIZE(new_bp, size);
|
|
BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
|
|
BP_SET_CHECKSUM(new_bp,
|
|
spa_version(spa) >= SPA_VERSION_SLIM_ZIL
|
|
? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
|
|
BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
|
|
BP_SET_LEVEL(new_bp, 0);
|
|
BP_SET_DEDUP(new_bp, 0);
|
|
BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Free an intent log block.
|
|
*/
|
|
void
|
|
zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
|
|
{
|
|
ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
|
|
ASSERT(!BP_IS_GANG(bp));
|
|
|
|
zio_free(spa, txg, bp);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Read and write to physical devices
|
|
* ==========================================================================
|
|
*/
|
|
static int
|
|
zio_vdev_io_start(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
uint64_t align;
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
ASSERT(zio->io_error == 0);
|
|
ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
|
|
|
|
if (vd == NULL) {
|
|
if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
|
|
spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
|
|
|
|
/*
|
|
* The mirror_ops handle multiple DVAs in a single BP.
|
|
*/
|
|
return (vdev_mirror_ops.vdev_op_io_start(zio));
|
|
}
|
|
|
|
/*
|
|
* We keep track of time-sensitive I/Os so that the scan thread
|
|
* can quickly react to certain workloads. In particular, we care
|
|
* about non-scrubbing, top-level reads and writes with the following
|
|
* characteristics:
|
|
* - synchronous writes of user data to non-slog devices
|
|
* - any reads of user data
|
|
* When these conditions are met, adjust the timestamp of spa_last_io
|
|
* which allows the scan thread to adjust its workload accordingly.
|
|
*/
|
|
if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
|
|
vd == vd->vdev_top && !vd->vdev_islog &&
|
|
zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
|
|
zio->io_txg != spa_syncing_txg(spa)) {
|
|
uint64_t old = spa->spa_last_io;
|
|
uint64_t new = ddi_get_lbolt64();
|
|
if (old != new)
|
|
(void) atomic_cas_64(&spa->spa_last_io, old, new);
|
|
}
|
|
|
|
align = 1ULL << vd->vdev_top->vdev_ashift;
|
|
|
|
if (P2PHASE(zio->io_size, align) != 0) {
|
|
uint64_t asize = P2ROUNDUP(zio->io_size, align);
|
|
char *abuf = zio_buf_alloc(asize);
|
|
ASSERT(vd == vd->vdev_top);
|
|
if (zio->io_type == ZIO_TYPE_WRITE) {
|
|
bcopy(zio->io_data, abuf, zio->io_size);
|
|
bzero(abuf + zio->io_size, asize - zio->io_size);
|
|
}
|
|
zio_push_transform(zio, abuf, asize, asize, zio_subblock);
|
|
}
|
|
|
|
ASSERT(P2PHASE(zio->io_offset, align) == 0);
|
|
ASSERT(P2PHASE(zio->io_size, align) == 0);
|
|
VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
|
|
|
|
/*
|
|
* If this is a repair I/O, and there's no self-healing involved --
|
|
* that is, we're just resilvering what we expect to resilver --
|
|
* then don't do the I/O unless zio's txg is actually in vd's DTL.
|
|
* This prevents spurious resilvering with nested replication.
|
|
* For example, given a mirror of mirrors, (A+B)+(C+D), if only
|
|
* A is out of date, we'll read from C+D, then use the data to
|
|
* resilver A+B -- but we don't actually want to resilver B, just A.
|
|
* The top-level mirror has no way to know this, so instead we just
|
|
* discard unnecessary repairs as we work our way down the vdev tree.
|
|
* The same logic applies to any form of nested replication:
|
|
* ditto + mirror, RAID-Z + replacing, etc. This covers them all.
|
|
*/
|
|
if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
|
|
!(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
|
|
zio->io_txg != 0 && /* not a delegated i/o */
|
|
!vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
|
|
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
|
|
zio_vdev_io_bypass(zio);
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
|
|
if ((zio = vdev_queue_io(zio)) == NULL)
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
if (!vdev_accessible(vd, zio)) {
|
|
zio->io_error = ENXIO;
|
|
zio_interrupt(zio);
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
}
|
|
|
|
return (vd->vdev_ops->vdev_op_io_start(zio));
|
|
}
|
|
|
|
static int
|
|
zio_vdev_io_done(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
|
|
boolean_t unexpected_error = B_FALSE;
|
|
|
|
if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
|
|
|
|
if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
|
|
|
|
vdev_queue_io_done(zio);
|
|
|
|
if (zio->io_type == ZIO_TYPE_WRITE)
|
|
vdev_cache_write(zio);
|
|
|
|
if (zio_injection_enabled && zio->io_error == 0)
|
|
zio->io_error = zio_handle_device_injection(vd,
|
|
zio, EIO);
|
|
|
|
if (zio_injection_enabled && zio->io_error == 0)
|
|
zio->io_error = zio_handle_label_injection(zio, EIO);
|
|
|
|
if (zio->io_error) {
|
|
if (!vdev_accessible(vd, zio)) {
|
|
zio->io_error = ENXIO;
|
|
} else {
|
|
unexpected_error = B_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
ops->vdev_op_io_done(zio);
|
|
|
|
if (unexpected_error)
|
|
VERIFY(vdev_probe(vd, zio) == NULL);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
/*
|
|
* For non-raidz ZIOs, we can just copy aside the bad data read from the
|
|
* disk, and use that to finish the checksum ereport later.
|
|
*/
|
|
static void
|
|
zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
|
|
const void *good_buf)
|
|
{
|
|
/* no processing needed */
|
|
zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
|
|
{
|
|
void *buf = zio_buf_alloc(zio->io_size);
|
|
|
|
bcopy(zio->io_data, buf, zio->io_size);
|
|
|
|
zcr->zcr_cbinfo = zio->io_size;
|
|
zcr->zcr_cbdata = buf;
|
|
zcr->zcr_finish = zio_vsd_default_cksum_finish;
|
|
zcr->zcr_free = zio_buf_free;
|
|
}
|
|
|
|
static int
|
|
zio_vdev_io_assess(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
|
|
if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
|
|
spa_config_exit(zio->io_spa, SCL_ZIO, zio);
|
|
|
|
if (zio->io_vsd != NULL) {
|
|
zio->io_vsd_ops->vsd_free(zio);
|
|
zio->io_vsd = NULL;
|
|
}
|
|
|
|
if (zio_injection_enabled && zio->io_error == 0)
|
|
zio->io_error = zio_handle_fault_injection(zio, EIO);
|
|
|
|
/*
|
|
* If the I/O failed, determine whether we should attempt to retry it.
|
|
*
|
|
* On retry, we cut in line in the issue queue, since we don't want
|
|
* compression/checksumming/etc. work to prevent our (cheap) IO reissue.
|
|
*/
|
|
if (zio->io_error && vd == NULL &&
|
|
!(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
|
|
ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
|
|
ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
|
|
zio->io_error = 0;
|
|
zio->io_flags |= ZIO_FLAG_IO_RETRY |
|
|
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
|
|
zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
|
|
zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
|
|
zio_requeue_io_start_cut_in_line);
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
/*
|
|
* If we got an error on a leaf device, convert it to ENXIO
|
|
* if the device is not accessible at all.
|
|
*/
|
|
if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
|
|
!vdev_accessible(vd, zio))
|
|
zio->io_error = ENXIO;
|
|
|
|
/*
|
|
* If we can't write to an interior vdev (mirror or RAID-Z),
|
|
* set vdev_cant_write so that we stop trying to allocate from it.
|
|
*/
|
|
if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
|
|
vd != NULL && !vd->vdev_ops->vdev_op_leaf)
|
|
vd->vdev_cant_write = B_TRUE;
|
|
|
|
if (zio->io_error)
|
|
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
void
|
|
zio_vdev_io_reissue(zio_t *zio)
|
|
{
|
|
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
|
|
ASSERT(zio->io_error == 0);
|
|
|
|
zio->io_stage >>= 1;
|
|
}
|
|
|
|
void
|
|
zio_vdev_io_redone(zio_t *zio)
|
|
{
|
|
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
|
|
|
|
zio->io_stage >>= 1;
|
|
}
|
|
|
|
void
|
|
zio_vdev_io_bypass(zio_t *zio)
|
|
{
|
|
ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
|
|
ASSERT(zio->io_error == 0);
|
|
|
|
zio->io_flags |= ZIO_FLAG_IO_BYPASS;
|
|
zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Generate and verify checksums
|
|
* ==========================================================================
|
|
*/
|
|
static int
|
|
zio_checksum_generate(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
enum zio_checksum checksum;
|
|
|
|
if (bp == NULL) {
|
|
/*
|
|
* This is zio_write_phys().
|
|
* We're either generating a label checksum, or none at all.
|
|
*/
|
|
checksum = zio->io_prop.zp_checksum;
|
|
|
|
if (checksum == ZIO_CHECKSUM_OFF)
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
|
|
ASSERT(checksum == ZIO_CHECKSUM_LABEL);
|
|
} else {
|
|
if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
|
|
ASSERT(!IO_IS_ALLOCATING(zio));
|
|
checksum = ZIO_CHECKSUM_GANG_HEADER;
|
|
} else {
|
|
checksum = BP_GET_CHECKSUM(bp);
|
|
}
|
|
}
|
|
|
|
zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_checksum_verify(zio_t *zio)
|
|
{
|
|
zio_bad_cksum_t info;
|
|
blkptr_t *bp = zio->io_bp;
|
|
int error;
|
|
|
|
ASSERT(zio->io_vd != NULL);
|
|
|
|
if (bp == NULL) {
|
|
/*
|
|
* This is zio_read_phys().
|
|
* We're either verifying a label checksum, or nothing at all.
|
|
*/
|
|
if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
|
|
ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
|
|
}
|
|
|
|
if ((error = zio_checksum_error(zio, &info)) != 0) {
|
|
zio->io_error = error;
|
|
if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
|
|
zfs_ereport_start_checksum(zio->io_spa,
|
|
zio->io_vd, zio, zio->io_offset,
|
|
zio->io_size, NULL, &info);
|
|
}
|
|
}
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
/*
|
|
* Called by RAID-Z to ensure we don't compute the checksum twice.
|
|
*/
|
|
void
|
|
zio_checksum_verified(zio_t *zio)
|
|
{
|
|
zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
|
|
* An error of 0 indictes success. ENXIO indicates whole-device failure,
|
|
* which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
|
|
* indicate errors that are specific to one I/O, and most likely permanent.
|
|
* Any other error is presumed to be worse because we weren't expecting it.
|
|
* ==========================================================================
|
|
*/
|
|
int
|
|
zio_worst_error(int e1, int e2)
|
|
{
|
|
static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
|
|
int r1, r2;
|
|
|
|
for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
|
|
if (e1 == zio_error_rank[r1])
|
|
break;
|
|
|
|
for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
|
|
if (e2 == zio_error_rank[r2])
|
|
break;
|
|
|
|
return (r1 > r2 ? e1 : e2);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O completion
|
|
* ==========================================================================
|
|
*/
|
|
static int
|
|
zio_ready(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
zio_t *pio, *pio_next;
|
|
|
|
if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
|
|
zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
if (zio->io_ready) {
|
|
ASSERT(IO_IS_ALLOCATING(zio));
|
|
ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
|
|
ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
|
|
|
|
zio->io_ready(zio);
|
|
}
|
|
|
|
if (bp != NULL && bp != &zio->io_bp_copy)
|
|
zio->io_bp_copy = *bp;
|
|
|
|
if (zio->io_error)
|
|
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
|
|
|
|
mutex_enter(&zio->io_lock);
|
|
zio->io_state[ZIO_WAIT_READY] = 1;
|
|
pio = zio_walk_parents(zio);
|
|
mutex_exit(&zio->io_lock);
|
|
|
|
/*
|
|
* As we notify zio's parents, new parents could be added.
|
|
* New parents go to the head of zio's io_parent_list, however,
|
|
* so we will (correctly) not notify them. The remainder of zio's
|
|
* io_parent_list, from 'pio_next' onward, cannot change because
|
|
* all parents must wait for us to be done before they can be done.
|
|
*/
|
|
for (; pio != NULL; pio = pio_next) {
|
|
pio_next = zio_walk_parents(zio);
|
|
zio_notify_parent(pio, zio, ZIO_WAIT_READY);
|
|
}
|
|
|
|
if (zio->io_flags & ZIO_FLAG_NODATA) {
|
|
if (BP_IS_GANG(bp)) {
|
|
zio->io_flags &= ~ZIO_FLAG_NODATA;
|
|
} else {
|
|
ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
|
|
zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
|
|
}
|
|
}
|
|
|
|
if (zio_injection_enabled &&
|
|
zio->io_spa->spa_syncing_txg == zio->io_txg)
|
|
zio_handle_ignored_writes(zio);
|
|
|
|
return (ZIO_PIPELINE_CONTINUE);
|
|
}
|
|
|
|
static int
|
|
zio_done(zio_t *zio)
|
|
{
|
|
zio_t *pio, *pio_next;
|
|
int c, w;
|
|
|
|
/*
|
|
* If our children haven't all completed,
|
|
* wait for them and then repeat this pipeline stage.
|
|
*/
|
|
if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
|
|
zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
|
|
zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
|
|
zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
|
|
return (ZIO_PIPELINE_STOP);
|
|
|
|
for (c = 0; c < ZIO_CHILD_TYPES; c++)
|
|
for (w = 0; w < ZIO_WAIT_TYPES; w++)
|
|
ASSERT(zio->io_children[c][w] == 0);
|
|
|
|
if (zio->io_bp != NULL) {
|
|
ASSERT(zio->io_bp->blk_pad[0] == 0);
|
|
ASSERT(zio->io_bp->blk_pad[1] == 0);
|
|
ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
|
|
(zio->io_bp == zio_unique_parent(zio)->io_bp));
|
|
if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
|
|
zio->io_bp_override == NULL &&
|
|
!(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
|
|
ASSERT(!BP_SHOULD_BYTESWAP(zio->io_bp));
|
|
ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
|
|
ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
|
|
(BP_COUNT_GANG(zio->io_bp) == BP_GET_NDVAS(zio->io_bp)));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there were child vdev/gang/ddt errors, they apply to us now.
|
|
*/
|
|
zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
|
|
zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
|
|
zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
|
|
|
|
/*
|
|
* If the I/O on the transformed data was successful, generate any
|
|
* checksum reports now while we still have the transformed data.
|
|
*/
|
|
if (zio->io_error == 0) {
|
|
while (zio->io_cksum_report != NULL) {
|
|
zio_cksum_report_t *zcr = zio->io_cksum_report;
|
|
uint64_t align = zcr->zcr_align;
|
|
uint64_t asize = P2ROUNDUP(zio->io_size, align);
|
|
char *abuf = zio->io_data;
|
|
|
|
if (asize != zio->io_size) {
|
|
abuf = zio_buf_alloc(asize);
|
|
bcopy(zio->io_data, abuf, zio->io_size);
|
|
bzero(abuf + zio->io_size, asize - zio->io_size);
|
|
}
|
|
|
|
zio->io_cksum_report = zcr->zcr_next;
|
|
zcr->zcr_next = NULL;
|
|
zcr->zcr_finish(zcr, abuf);
|
|
zfs_ereport_free_checksum(zcr);
|
|
|
|
if (asize != zio->io_size)
|
|
zio_buf_free(abuf, asize);
|
|
}
|
|
}
|
|
|
|
zio_pop_transforms(zio); /* note: may set zio->io_error */
|
|
|
|
vdev_stat_update(zio, zio->io_size);
|
|
|
|
/*
|
|
* If this I/O is attached to a particular vdev is slow, exeeding
|
|
* 30 seconds to complete, post an error described the I/O delay.
|
|
* We ignore these errors if the device is currently unavailable.
|
|
*/
|
|
if (zio->io_delay >= zio_delay_max) {
|
|
if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
|
|
zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
|
|
zio->io_vd, zio, 0, 0);
|
|
}
|
|
|
|
if (zio->io_error) {
|
|
/*
|
|
* If this I/O is attached to a particular vdev,
|
|
* generate an error message describing the I/O failure
|
|
* at the block level. We ignore these errors if the
|
|
* device is currently unavailable.
|
|
*/
|
|
if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
|
|
!vdev_is_dead(zio->io_vd))
|
|
zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
|
|
zio->io_vd, zio, 0, 0);
|
|
|
|
if ((zio->io_error == EIO || !(zio->io_flags &
|
|
(ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
|
|
zio == zio->io_logical) {
|
|
/*
|
|
* For logical I/O requests, tell the SPA to log the
|
|
* error and generate a logical data ereport.
|
|
*/
|
|
spa_log_error(zio->io_spa, zio);
|
|
zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa, NULL, zio,
|
|
0, 0);
|
|
}
|
|
}
|
|
|
|
if (zio->io_error && zio == zio->io_logical) {
|
|
/*
|
|
* Determine whether zio should be reexecuted. This will
|
|
* propagate all the way to the root via zio_notify_parent().
|
|
*/
|
|
ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
|
|
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
|
|
|
|
if (IO_IS_ALLOCATING(zio) &&
|
|
!(zio->io_flags & ZIO_FLAG_CANFAIL)) {
|
|
if (zio->io_error != ENOSPC)
|
|
zio->io_reexecute |= ZIO_REEXECUTE_NOW;
|
|
else
|
|
zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
|
|
}
|
|
|
|
if ((zio->io_type == ZIO_TYPE_READ ||
|
|
zio->io_type == ZIO_TYPE_FREE) &&
|
|
!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
|
|
zio->io_error == ENXIO &&
|
|
spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
|
|
spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
|
|
zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
|
|
|
|
if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
|
|
zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
|
|
|
|
/*
|
|
* Here is a possibly good place to attempt to do
|
|
* either combinatorial reconstruction or error correction
|
|
* based on checksums. It also might be a good place
|
|
* to send out preliminary ereports before we suspend
|
|
* processing.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* If there were logical child errors, they apply to us now.
|
|
* We defer this until now to avoid conflating logical child
|
|
* errors with errors that happened to the zio itself when
|
|
* updating vdev stats and reporting FMA events above.
|
|
*/
|
|
zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
|
|
|
|
if ((zio->io_error || zio->io_reexecute) &&
|
|
IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
|
|
!(zio->io_flags & ZIO_FLAG_IO_REWRITE))
|
|
zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
|
|
|
|
zio_gang_tree_free(&zio->io_gang_tree);
|
|
|
|
/*
|
|
* Godfather I/Os should never suspend.
|
|
*/
|
|
if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
|
|
(zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
|
|
zio->io_reexecute = 0;
|
|
|
|
if (zio->io_reexecute) {
|
|
/*
|
|
* This is a logical I/O that wants to reexecute.
|
|
*
|
|
* Reexecute is top-down. When an i/o fails, if it's not
|
|
* the root, it simply notifies its parent and sticks around.
|
|
* The parent, seeing that it still has children in zio_done(),
|
|
* does the same. This percolates all the way up to the root.
|
|
* The root i/o will reexecute or suspend the entire tree.
|
|
*
|
|
* This approach ensures that zio_reexecute() honors
|
|
* all the original i/o dependency relationships, e.g.
|
|
* parents not executing until children are ready.
|
|
*/
|
|
ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
|
|
|
|
zio->io_gang_leader = NULL;
|
|
|
|
mutex_enter(&zio->io_lock);
|
|
zio->io_state[ZIO_WAIT_DONE] = 1;
|
|
mutex_exit(&zio->io_lock);
|
|
|
|
/*
|
|
* "The Godfather" I/O monitors its children but is
|
|
* not a true parent to them. It will track them through
|
|
* the pipeline but severs its ties whenever they get into
|
|
* trouble (e.g. suspended). This allows "The Godfather"
|
|
* I/O to return status without blocking.
|
|
*/
|
|
for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
|
|
zio_link_t *zl = zio->io_walk_link;
|
|
pio_next = zio_walk_parents(zio);
|
|
|
|
if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
|
|
(zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
|
|
zio_remove_child(pio, zio, zl);
|
|
zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
|
|
}
|
|
}
|
|
|
|
if ((pio = zio_unique_parent(zio)) != NULL) {
|
|
/*
|
|
* We're not a root i/o, so there's nothing to do
|
|
* but notify our parent. Don't propagate errors
|
|
* upward since we haven't permanently failed yet.
|
|
*/
|
|
ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
|
|
zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
|
|
zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
|
|
} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
|
|
/*
|
|
* We'd fail again if we reexecuted now, so suspend
|
|
* until conditions improve (e.g. device comes online).
|
|
*/
|
|
zio_suspend(zio->io_spa, zio);
|
|
} else {
|
|
/*
|
|
* Reexecution is potentially a huge amount of work.
|
|
* Hand it off to the otherwise-unused claim taskq.
|
|
*/
|
|
(void) taskq_dispatch(
|
|
zio->io_spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
|
|
(task_func_t *)zio_reexecute, zio, TQ_SLEEP);
|
|
}
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
ASSERT(zio->io_child_count == 0);
|
|
ASSERT(zio->io_reexecute == 0);
|
|
ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
|
|
|
|
/*
|
|
* Report any checksum errors, since the I/O is complete.
|
|
*/
|
|
while (zio->io_cksum_report != NULL) {
|
|
zio_cksum_report_t *zcr = zio->io_cksum_report;
|
|
zio->io_cksum_report = zcr->zcr_next;
|
|
zcr->zcr_next = NULL;
|
|
zcr->zcr_finish(zcr, NULL);
|
|
zfs_ereport_free_checksum(zcr);
|
|
}
|
|
|
|
/*
|
|
* It is the responsibility of the done callback to ensure that this
|
|
* particular zio is no longer discoverable for adoption, and as
|
|
* such, cannot acquire any new parents.
|
|
*/
|
|
if (zio->io_done)
|
|
zio->io_done(zio);
|
|
|
|
mutex_enter(&zio->io_lock);
|
|
zio->io_state[ZIO_WAIT_DONE] = 1;
|
|
mutex_exit(&zio->io_lock);
|
|
|
|
for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
|
|
zio_link_t *zl = zio->io_walk_link;
|
|
pio_next = zio_walk_parents(zio);
|
|
zio_remove_child(pio, zio, zl);
|
|
zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
|
|
}
|
|
|
|
if (zio->io_waiter != NULL) {
|
|
mutex_enter(&zio->io_lock);
|
|
zio->io_executor = NULL;
|
|
cv_broadcast(&zio->io_cv);
|
|
mutex_exit(&zio->io_lock);
|
|
} else {
|
|
zio_destroy(zio);
|
|
}
|
|
|
|
return (ZIO_PIPELINE_STOP);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* I/O pipeline definition
|
|
* ==========================================================================
|
|
*/
|
|
static zio_pipe_stage_t *zio_pipeline[] = {
|
|
NULL,
|
|
zio_read_bp_init,
|
|
zio_free_bp_init,
|
|
zio_issue_async,
|
|
zio_write_bp_init,
|
|
zio_checksum_generate,
|
|
zio_ddt_read_start,
|
|
zio_ddt_read_done,
|
|
zio_ddt_write,
|
|
zio_ddt_free,
|
|
zio_gang_assemble,
|
|
zio_gang_issue,
|
|
zio_dva_allocate,
|
|
zio_dva_free,
|
|
zio_dva_claim,
|
|
zio_ready,
|
|
zio_vdev_io_start,
|
|
zio_vdev_io_done,
|
|
zio_vdev_io_assess,
|
|
zio_checksum_verify,
|
|
zio_done
|
|
};
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
/* Fault injection */
|
|
EXPORT_SYMBOL(zio_injection_enabled);
|
|
EXPORT_SYMBOL(zio_inject_fault);
|
|
EXPORT_SYMBOL(zio_inject_list_next);
|
|
EXPORT_SYMBOL(zio_clear_fault);
|
|
EXPORT_SYMBOL(zio_handle_fault_injection);
|
|
EXPORT_SYMBOL(zio_handle_device_injection);
|
|
EXPORT_SYMBOL(zio_handle_label_injection);
|
|
EXPORT_SYMBOL(zio_priority_table);
|
|
EXPORT_SYMBOL(zio_type_name);
|
|
|
|
module_param(zio_bulk_flags, int, 0644);
|
|
MODULE_PARM_DESC(zio_bulk_flags, "Additional flags to pass to bulk buffers");
|
|
|
|
module_param(zio_delay_max, int, 0644);
|
|
MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
|
|
|
|
module_param(zio_requeue_io_start_cut_in_line, int, 0644);
|
|
MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
|
|
#endif
|