mirror of
				https://git.proxmox.com/git/mirror_zfs.git
				synced 2025-10-26 18:05:04 +03:00 
			
		
		
		
	 9530eb64e0
			
		
	
	
		9530eb64e0
		
	
	
	
	
		
			
			Sponsored-by: https://despairlabs.com/sponsor/ Signed-off-by: Rob Norris <robn@despairlabs.com> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
		
			
				
	
	
		
			1629 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1629 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: CDDL-1.0
 | |
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
 | |
|  * Copyright (c) 2018 by Delphix. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <errno.h>
 | |
| #include <string.h>
 | |
| #include <unistd.h>
 | |
| #include <uuid/uuid.h>
 | |
| #include <zlib.h>
 | |
| #include <libintl.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/dkio.h>
 | |
| #include <sys/mhd.h>
 | |
| #include <sys/param.h>
 | |
| #include <sys/dktp/fdisk.h>
 | |
| #include <sys/efi_partition.h>
 | |
| #include <sys/byteorder.h>
 | |
| #include <sys/vdev_disk.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/blkpg.h>
 | |
| 
 | |
| static struct uuid_to_ptag {
 | |
| 	struct uuid	uuid;
 | |
| } conversion_array[] = {
 | |
| 	{ EFI_UNUSED },
 | |
| 	{ EFI_BOOT },
 | |
| 	{ EFI_ROOT },
 | |
| 	{ EFI_SWAP },
 | |
| 	{ EFI_USR },
 | |
| 	{ EFI_BACKUP },
 | |
| 	{ EFI_UNUSED },		/* STAND is never used */
 | |
| 	{ EFI_VAR },
 | |
| 	{ EFI_HOME },
 | |
| 	{ EFI_ALTSCTR },
 | |
| 	{ EFI_UNUSED },		/* CACHE (cachefs) is never used */
 | |
| 	{ EFI_RESERVED },
 | |
| 	{ EFI_SYSTEM },
 | |
| 	{ EFI_LEGACY_MBR },
 | |
| 	{ EFI_SYMC_PUB },
 | |
| 	{ EFI_SYMC_CDS },
 | |
| 	{ EFI_MSFT_RESV },
 | |
| 	{ EFI_DELL_BASIC },
 | |
| 	{ EFI_DELL_RAID },
 | |
| 	{ EFI_DELL_SWAP },
 | |
| 	{ EFI_DELL_LVM },
 | |
| 	{ EFI_DELL_RESV },
 | |
| 	{ EFI_AAPL_HFS },
 | |
| 	{ EFI_AAPL_UFS },
 | |
| 	{ EFI_FREEBSD_BOOT },
 | |
| 	{ EFI_FREEBSD_SWAP },
 | |
| 	{ EFI_FREEBSD_UFS },
 | |
| 	{ EFI_FREEBSD_VINUM },
 | |
| 	{ EFI_FREEBSD_ZFS },
 | |
| 	{ EFI_BIOS_BOOT },
 | |
| 	{ EFI_INTC_RS },
 | |
| 	{ EFI_SNE_BOOT },
 | |
| 	{ EFI_LENOVO_BOOT },
 | |
| 	{ EFI_MSFT_LDMM },
 | |
| 	{ EFI_MSFT_LDMD },
 | |
| 	{ EFI_MSFT_RE },
 | |
| 	{ EFI_IBM_GPFS },
 | |
| 	{ EFI_MSFT_STORAGESPACES },
 | |
| 	{ EFI_HPQ_DATA },
 | |
| 	{ EFI_HPQ_SVC },
 | |
| 	{ EFI_RHT_DATA },
 | |
| 	{ EFI_RHT_HOME },
 | |
| 	{ EFI_RHT_SRV },
 | |
| 	{ EFI_RHT_DMCRYPT },
 | |
| 	{ EFI_RHT_LUKS },
 | |
| 	{ EFI_FREEBSD_DISKLABEL },
 | |
| 	{ EFI_AAPL_RAID },
 | |
| 	{ EFI_AAPL_RAIDOFFLINE },
 | |
| 	{ EFI_AAPL_BOOT },
 | |
| 	{ EFI_AAPL_LABEL },
 | |
| 	{ EFI_AAPL_TVRECOVERY },
 | |
| 	{ EFI_AAPL_CORESTORAGE },
 | |
| 	{ EFI_NETBSD_SWAP },
 | |
| 	{ EFI_NETBSD_FFS },
 | |
| 	{ EFI_NETBSD_LFS },
 | |
| 	{ EFI_NETBSD_RAID },
 | |
| 	{ EFI_NETBSD_CAT },
 | |
| 	{ EFI_NETBSD_CRYPT },
 | |
| 	{ EFI_GOOG_KERN },
 | |
| 	{ EFI_GOOG_ROOT },
 | |
| 	{ EFI_GOOG_RESV },
 | |
| 	{ EFI_HAIKU_BFS },
 | |
| 	{ EFI_MIDNIGHTBSD_BOOT },
 | |
| 	{ EFI_MIDNIGHTBSD_DATA },
 | |
| 	{ EFI_MIDNIGHTBSD_SWAP },
 | |
| 	{ EFI_MIDNIGHTBSD_UFS },
 | |
| 	{ EFI_MIDNIGHTBSD_VINUM },
 | |
| 	{ EFI_MIDNIGHTBSD_ZFS },
 | |
| 	{ EFI_CEPH_JOURNAL },
 | |
| 	{ EFI_CEPH_DMCRYPTJOURNAL },
 | |
| 	{ EFI_CEPH_OSD },
 | |
| 	{ EFI_CEPH_DMCRYPTOSD },
 | |
| 	{ EFI_CEPH_CREATE },
 | |
| 	{ EFI_CEPH_DMCRYPTCREATE },
 | |
| 	{ EFI_OPENBSD_DISKLABEL },
 | |
| 	{ EFI_BBRY_QNX },
 | |
| 	{ EFI_BELL_PLAN9 },
 | |
| 	{ EFI_VMW_KCORE },
 | |
| 	{ EFI_VMW_VMFS },
 | |
| 	{ EFI_VMW_RESV },
 | |
| 	{ EFI_RHT_ROOTX86 },
 | |
| 	{ EFI_RHT_ROOTAMD64 },
 | |
| 	{ EFI_RHT_ROOTARM },
 | |
| 	{ EFI_RHT_ROOTARM64 },
 | |
| 	{ EFI_ACRONIS_SECUREZONE },
 | |
| 	{ EFI_ONIE_BOOT },
 | |
| 	{ EFI_ONIE_CONFIG },
 | |
| 	{ EFI_IBM_PPRPBOOT },
 | |
| 	{ EFI_FREEDESKTOP_BOOT }
 | |
| };
 | |
| 
 | |
| int efi_debug = 0;
 | |
| 
 | |
| static int efi_read(int, struct dk_gpt *);
 | |
| 
 | |
| /*
 | |
|  * Return a 32-bit CRC of the contents of the buffer.  Pre-and-post
 | |
|  * one's conditioning will be handled by crc32() internally.
 | |
|  */
 | |
| static uint32_t
 | |
| efi_crc32(const unsigned char *buf, unsigned int size)
 | |
| {
 | |
| 	uint32_t crc = crc32(0, Z_NULL, 0);
 | |
| 
 | |
| 	crc = crc32(crc, buf, size);
 | |
| 
 | |
| 	return (crc);
 | |
| }
 | |
| 
 | |
| static int
 | |
| read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
 | |
| {
 | |
| 	int sector_size;
 | |
| 	unsigned long long capacity_size;
 | |
| 
 | |
| 	if (ioctl(fd, BLKSSZGET, §or_size) < 0)
 | |
| 		return (-1);
 | |
| 
 | |
| 	if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
 | |
| 		return (-1);
 | |
| 
 | |
| 	*lbsize = (uint_t)sector_size;
 | |
| 	*capacity = (diskaddr_t)(capacity_size / sector_size);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return back the device name associated with the file descriptor. The
 | |
|  * caller is responsible for freeing the memory associated with the
 | |
|  * returned string.
 | |
|  */
 | |
| static char *
 | |
| efi_get_devname(int fd)
 | |
| {
 | |
| 	char path[32];
 | |
| 
 | |
| 	/*
 | |
| 	 * The libefi API only provides the open fd and not the file path.
 | |
| 	 * To handle this realpath(3) is used to resolve the block device
 | |
| 	 * name from /proc/self/fd/<fd>.
 | |
| 	 */
 | |
| 	(void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd);
 | |
| 	return (realpath(path, NULL));
 | |
| }
 | |
| 
 | |
| static int
 | |
| efi_get_info(int fd, struct dk_cinfo *dki_info)
 | |
| {
 | |
| 	char *dev_path;
 | |
| 	int rval = 0;
 | |
| 
 | |
| 	memset(dki_info, 0, sizeof (*dki_info));
 | |
| 
 | |
| 	/*
 | |
| 	 * The simplest way to get the partition number under linux is
 | |
| 	 * to parse it out of the /dev/<disk><partition> block device name.
 | |
| 	 * The kernel creates this using the partition number when it
 | |
| 	 * populates /dev/ so it may be trusted.  The tricky bit here is
 | |
| 	 * that the naming convention is based on the block device type.
 | |
| 	 * So we need to take this in to account when parsing out the
 | |
| 	 * partition information.  Aside from the partition number we collect
 | |
| 	 * some additional device info.
 | |
| 	 */
 | |
| 	dev_path = efi_get_devname(fd);
 | |
| 	if (dev_path == NULL)
 | |
| 		goto error;
 | |
| 
 | |
| 	if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
 | |
| 		strcpy(dki_info->dki_cname, "sd");
 | |
| 		dki_info->dki_ctype = DKC_SCSI_CCS;
 | |
| 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
 | |
| 		    dki_info->dki_dname,
 | |
| 		    &dki_info->dki_partition);
 | |
| 	} else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
 | |
| 		strcpy(dki_info->dki_cname, "hd");
 | |
| 		dki_info->dki_ctype = DKC_DIRECT;
 | |
| 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
 | |
| 		    dki_info->dki_dname,
 | |
| 		    &dki_info->dki_partition);
 | |
| 	} else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
 | |
| 		strcpy(dki_info->dki_cname, "pseudo");
 | |
| 		dki_info->dki_ctype = DKC_MD;
 | |
| 		strcpy(dki_info->dki_dname, "md");
 | |
| 		rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
 | |
| 		    dki_info->dki_dname + 2,
 | |
| 		    &dki_info->dki_partition);
 | |
| 	} else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
 | |
| 		strcpy(dki_info->dki_cname, "vd");
 | |
| 		dki_info->dki_ctype = DKC_MD;
 | |
| 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
 | |
| 		    dki_info->dki_dname,
 | |
| 		    &dki_info->dki_partition);
 | |
| 	} else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
 | |
| 		strcpy(dki_info->dki_cname, "xvd");
 | |
| 		dki_info->dki_ctype = DKC_MD;
 | |
| 		rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
 | |
| 		    dki_info->dki_dname,
 | |
| 		    &dki_info->dki_partition);
 | |
| 	} else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
 | |
| 		strcpy(dki_info->dki_cname, "zd");
 | |
| 		dki_info->dki_ctype = DKC_MD;
 | |
| 		strcpy(dki_info->dki_dname, "zd");
 | |
| 		rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
 | |
| 		    dki_info->dki_dname + 2,
 | |
| 		    &dki_info->dki_partition);
 | |
| 	} else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
 | |
| 		strcpy(dki_info->dki_cname, "pseudo");
 | |
| 		dki_info->dki_ctype = DKC_VBD;
 | |
| 		strcpy(dki_info->dki_dname, "dm-");
 | |
| 		rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
 | |
| 		    dki_info->dki_dname + 3,
 | |
| 		    &dki_info->dki_partition);
 | |
| 	} else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
 | |
| 		strcpy(dki_info->dki_cname, "pseudo");
 | |
| 		dki_info->dki_ctype = DKC_PCMCIA_MEM;
 | |
| 		strcpy(dki_info->dki_dname, "ram");
 | |
| 		rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
 | |
| 		    dki_info->dki_dname + 3,
 | |
| 		    &dki_info->dki_partition);
 | |
| 	} else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
 | |
| 		strcpy(dki_info->dki_cname, "pseudo");
 | |
| 		dki_info->dki_ctype = DKC_VBD;
 | |
| 		strcpy(dki_info->dki_dname, "loop");
 | |
| 		rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
 | |
| 		    dki_info->dki_dname + 4,
 | |
| 		    &dki_info->dki_partition);
 | |
| 	} else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
 | |
| 		strcpy(dki_info->dki_cname, "nvme");
 | |
| 		dki_info->dki_ctype = DKC_SCSI_CCS;
 | |
| 		strcpy(dki_info->dki_dname, "nvme");
 | |
| 		(void) sscanf(dev_path, "/dev/nvme%[0-9]",
 | |
| 		    dki_info->dki_dname + 4);
 | |
| 		size_t controller_length = strlen(
 | |
| 		    dki_info->dki_dname);
 | |
| 		strcpy(dki_info->dki_dname + controller_length,
 | |
| 		    "n");
 | |
| 		rval = sscanf(dev_path,
 | |
| 		    "/dev/nvme%*[0-9]n%[0-9]p%hu",
 | |
| 		    dki_info->dki_dname + controller_length + 1,
 | |
| 		    &dki_info->dki_partition);
 | |
| 	} else {
 | |
| 		strcpy(dki_info->dki_dname, "unknown");
 | |
| 		strcpy(dki_info->dki_cname, "unknown");
 | |
| 		dki_info->dki_ctype = DKC_UNKNOWN;
 | |
| 	}
 | |
| 
 | |
| 	switch (rval) {
 | |
| 	case 0:
 | |
| 		errno = EINVAL;
 | |
| 		goto error;
 | |
| 	case 1:
 | |
| 		dki_info->dki_partition = 0;
 | |
| 	}
 | |
| 
 | |
| 	free(dev_path);
 | |
| 
 | |
| 	return (0);
 | |
| error:
 | |
| 	if (efi_debug)
 | |
| 		(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
 | |
| 
 | |
| 	switch (errno) {
 | |
| 	case EIO:
 | |
| 		return (VT_EIO);
 | |
| 	case EINVAL:
 | |
| 		return (VT_EINVAL);
 | |
| 	default:
 | |
| 		return (VT_ERROR);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the number of blocks the EFI label takes up (round up to nearest
 | |
|  * block)
 | |
|  */
 | |
| #define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
 | |
| 				((l) - 1)) / (l)))
 | |
| /* number of partitions -- limited by what we can malloc */
 | |
| #define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
 | |
| 			    sizeof (struct dk_part))
 | |
| 
 | |
| int
 | |
| efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
 | |
| {
 | |
| 	diskaddr_t	capacity = 0;
 | |
| 	uint_t		lbsize = 0;
 | |
| 	uint_t		nblocks;
 | |
| 	size_t		length;
 | |
| 	struct dk_gpt	*vptr;
 | |
| 	struct uuid	uuid;
 | |
| 	struct dk_cinfo	dki_info;
 | |
| 
 | |
| 	if (read_disk_info(fd, &capacity, &lbsize) != 0)
 | |
| 		return (-1);
 | |
| 
 | |
| 	if (efi_get_info(fd, &dki_info) != 0)
 | |
| 		return (-1);
 | |
| 
 | |
| 	if (dki_info.dki_partition != 0)
 | |
| 		return (-1);
 | |
| 
 | |
| 	if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
 | |
| 	    (dki_info.dki_ctype == DKC_VBD) ||
 | |
| 	    (dki_info.dki_ctype == DKC_UNKNOWN))
 | |
| 		return (-1);
 | |
| 
 | |
| 	nblocks = NBLOCKS(nparts, lbsize);
 | |
| 	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
 | |
| 		/* 16K plus one block for the GPT */
 | |
| 		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
 | |
| 	}
 | |
| 
 | |
| 	if (nparts > MAX_PARTS) {
 | |
| 		if (efi_debug) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			"the maximum number of partitions supported is %lu\n",
 | |
| 			    MAX_PARTS);
 | |
| 		}
 | |
| 		return (-1);
 | |
| 	}
 | |
| 
 | |
| 	length = sizeof (struct dk_gpt) +
 | |
| 	    sizeof (struct dk_part) * (nparts - 1);
 | |
| 
 | |
| 	vptr = calloc(1, length);
 | |
| 	if (vptr == NULL)
 | |
| 		return (-1);
 | |
| 
 | |
| 	*vtoc = vptr;
 | |
| 
 | |
| 	vptr->efi_version = EFI_VERSION_CURRENT;
 | |
| 	vptr->efi_lbasize = lbsize;
 | |
| 	vptr->efi_nparts = nparts;
 | |
| 	/*
 | |
| 	 * add one block here for the PMBR; on disks with a 512 byte
 | |
| 	 * block size and 128 or fewer partitions, efi_first_u_lba
 | |
| 	 * should work out to "34"
 | |
| 	 */
 | |
| 	vptr->efi_first_u_lba = nblocks + 1;
 | |
| 	vptr->efi_last_lba = capacity - 1;
 | |
| 	vptr->efi_altern_lba = capacity -1;
 | |
| 	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
 | |
| 
 | |
| 	(void) uuid_generate((uchar_t *)&uuid);
 | |
| 	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read EFI - return partition number upon success.
 | |
|  */
 | |
| int
 | |
| efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
 | |
| {
 | |
| 	int			rval;
 | |
| 	uint32_t		nparts;
 | |
| 	int			length;
 | |
| 	struct dk_gpt		*vptr;
 | |
| 
 | |
| 	/* figure out the number of entries that would fit into 16K */
 | |
| 	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
 | |
| 	length = (int) sizeof (struct dk_gpt) +
 | |
| 	    (int) sizeof (struct dk_part) * (nparts - 1);
 | |
| 	vptr = calloc(1, length);
 | |
| 
 | |
| 	if (vptr == NULL)
 | |
| 		return (VT_ERROR);
 | |
| 
 | |
| 	vptr->efi_nparts = nparts;
 | |
| 	rval = efi_read(fd, vptr);
 | |
| 
 | |
| 	if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
 | |
| 		void *tmp;
 | |
| 		length = (int) sizeof (struct dk_gpt) +
 | |
| 		    (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
 | |
| 		if ((tmp = realloc(vptr, length)) == NULL) {
 | |
| 			/* cppcheck-suppress doubleFree */
 | |
| 			free(vptr);
 | |
| 			*vtoc = NULL;
 | |
| 			return (VT_ERROR);
 | |
| 		} else {
 | |
| 			vptr = tmp;
 | |
| 			rval = efi_read(fd, vptr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (rval < 0) {
 | |
| 		if (efi_debug) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "read of EFI table failed, rval=%d\n", rval);
 | |
| 		}
 | |
| 		free(vptr);
 | |
| 		*vtoc = NULL;
 | |
| 	} else {
 | |
| 		*vtoc = vptr;
 | |
| 	}
 | |
| 
 | |
| 	return (rval);
 | |
| }
 | |
| 
 | |
| static int
 | |
| efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
 | |
| {
 | |
| 	void *data = dk_ioc->dki_data;
 | |
| 	int error;
 | |
| 	diskaddr_t capacity;
 | |
| 	uint_t lbsize;
 | |
| 
 | |
| 	/*
 | |
| 	 * When the IO is not being performed in kernel as an ioctl we need
 | |
| 	 * to know the sector size so we can seek to the proper byte offset.
 | |
| 	 */
 | |
| 	if (read_disk_info(fd, &capacity, &lbsize) == -1) {
 | |
| 		if (efi_debug)
 | |
| 			fprintf(stderr, "unable to read disk info: %d", errno);
 | |
| 
 | |
| 		errno = EIO;
 | |
| 		return (-1);
 | |
| 	}
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case DKIOCGETEFI:
 | |
| 		if (lbsize == 0) {
 | |
| 			if (efi_debug)
 | |
| 				(void) fprintf(stderr, "DKIOCGETEFI assuming "
 | |
| 				    "LBA %d bytes\n", DEV_BSIZE);
 | |
| 
 | |
| 			lbsize = DEV_BSIZE;
 | |
| 		}
 | |
| 
 | |
| 		error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
 | |
| 		if (error == -1) {
 | |
| 			if (efi_debug)
 | |
| 				(void) fprintf(stderr, "DKIOCGETEFI lseek "
 | |
| 				    "error: %d\n", errno);
 | |
| 			return (error);
 | |
| 		}
 | |
| 
 | |
| 		error = read(fd, data, dk_ioc->dki_length);
 | |
| 		if (error == -1) {
 | |
| 			if (efi_debug)
 | |
| 				(void) fprintf(stderr, "DKIOCGETEFI read "
 | |
| 				    "error: %d\n", errno);
 | |
| 			return (error);
 | |
| 		}
 | |
| 
 | |
| 		if (error != dk_ioc->dki_length) {
 | |
| 			if (efi_debug)
 | |
| 				(void) fprintf(stderr, "DKIOCGETEFI short "
 | |
| 				    "read of %d bytes\n", error);
 | |
| 			errno = EIO;
 | |
| 			return (-1);
 | |
| 		}
 | |
| 		error = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case DKIOCSETEFI:
 | |
| 		if (lbsize == 0) {
 | |
| 			if (efi_debug)
 | |
| 				(void) fprintf(stderr, "DKIOCSETEFI unknown "
 | |
| 				    "LBA size\n");
 | |
| 			errno = EIO;
 | |
| 			return (-1);
 | |
| 		}
 | |
| 
 | |
| 		error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
 | |
| 		if (error == -1) {
 | |
| 			if (efi_debug)
 | |
| 				(void) fprintf(stderr, "DKIOCSETEFI lseek "
 | |
| 				    "error: %d\n", errno);
 | |
| 			return (error);
 | |
| 		}
 | |
| 
 | |
| 		error = write(fd, data, dk_ioc->dki_length);
 | |
| 		if (error == -1) {
 | |
| 			if (efi_debug)
 | |
| 				(void) fprintf(stderr, "DKIOCSETEFI write "
 | |
| 				    "error: %d\n", errno);
 | |
| 			return (error);
 | |
| 		}
 | |
| 
 | |
| 		if (error != dk_ioc->dki_length) {
 | |
| 			if (efi_debug)
 | |
| 				(void) fprintf(stderr, "DKIOCSETEFI short "
 | |
| 				    "write of %d bytes\n", error);
 | |
| 			errno = EIO;
 | |
| 			return (-1);
 | |
| 		}
 | |
| 
 | |
| 		/* Sync the new EFI table to disk */
 | |
| 		error = fsync(fd);
 | |
| 		if (error == -1)
 | |
| 			return (error);
 | |
| 
 | |
| 		/* Ensure any local disk cache is also flushed */
 | |
| 		if (ioctl(fd, BLKFLSBUF, 0) == -1)
 | |
| 			return (error);
 | |
| 
 | |
| 		error = 0;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		if (efi_debug)
 | |
| 			(void) fprintf(stderr, "unsupported ioctl()\n");
 | |
| 
 | |
| 		errno = EIO;
 | |
| 		return (-1);
 | |
| 	}
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| int
 | |
| efi_rescan(int fd)
 | |
| {
 | |
| 	int retry = 10;
 | |
| 
 | |
| 	/* Notify the kernel a devices partition table has been updated */
 | |
| 	while (ioctl(fd, BLKRRPART) != 0) {
 | |
| 		if ((--retry == 0) || (errno != EBUSY)) {
 | |
| 			(void) fprintf(stderr, "the kernel failed to rescan "
 | |
| 			    "the partition table: %d\n", errno);
 | |
| 			return (-1);
 | |
| 		}
 | |
| 		usleep(50000);
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| check_label(int fd, dk_efi_t *dk_ioc)
 | |
| {
 | |
| 	efi_gpt_t		*efi;
 | |
| 	uint_t			crc;
 | |
| 
 | |
| 	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
 | |
| 		switch (errno) {
 | |
| 		case EIO:
 | |
| 			return (VT_EIO);
 | |
| 		default:
 | |
| 			return (VT_ERROR);
 | |
| 		}
 | |
| 	}
 | |
| 	efi = dk_ioc->dki_data;
 | |
| 	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
 | |
| 		if (efi_debug)
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "Bad EFI signature: 0x%llx != 0x%llx\n",
 | |
| 			    (long long)efi->efi_gpt_Signature,
 | |
| 			    (long long)LE_64(EFI_SIGNATURE));
 | |
| 		return (VT_EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * check CRC of the header; the size of the header should
 | |
| 	 * never be larger than one block
 | |
| 	 */
 | |
| 	crc = efi->efi_gpt_HeaderCRC32;
 | |
| 	efi->efi_gpt_HeaderCRC32 = 0;
 | |
| 	len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
 | |
| 
 | |
| 	if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
 | |
| 		if (efi_debug)
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "Invalid EFI HeaderSize %llu.  Assuming %d.\n",
 | |
| 			    headerSize, EFI_MIN_LABEL_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	if ((headerSize > dk_ioc->dki_length) ||
 | |
| 	    crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
 | |
| 		if (efi_debug)
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "Bad EFI CRC: 0x%x != 0x%x\n",
 | |
| 			    crc, LE_32(efi_crc32((unsigned char *)efi,
 | |
| 			    headerSize)));
 | |
| 		return (VT_EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| efi_read(int fd, struct dk_gpt *vtoc)
 | |
| {
 | |
| 	int			i, j;
 | |
| 	int			label_len;
 | |
| 	int			rval = 0;
 | |
| 	int			md_flag = 0;
 | |
| 	int			vdc_flag = 0;
 | |
| 	diskaddr_t		capacity = 0;
 | |
| 	uint_t			lbsize = 0;
 | |
| 	struct dk_minfo		disk_info;
 | |
| 	dk_efi_t		dk_ioc;
 | |
| 	efi_gpt_t		*efi;
 | |
| 	efi_gpe_t		*efi_parts;
 | |
| 	struct dk_cinfo		dki_info;
 | |
| 	uint32_t		user_length;
 | |
| 	boolean_t		legacy_label = B_FALSE;
 | |
| 
 | |
| 	/*
 | |
| 	 * get the partition number for this file descriptor.
 | |
| 	 */
 | |
| 	if ((rval = efi_get_info(fd, &dki_info)) != 0)
 | |
| 		return (rval);
 | |
| 
 | |
| 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
 | |
| 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
 | |
| 		md_flag++;
 | |
| 	} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
 | |
| 	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
 | |
| 		/*
 | |
| 		 * The controller and drive name "vdc" (virtual disk client)
 | |
| 		 * indicates a LDoms virtual disk.
 | |
| 		 */
 | |
| 		vdc_flag++;
 | |
| 	}
 | |
| 
 | |
| 	/* get the LBA size */
 | |
| 	if (read_disk_info(fd, &capacity, &lbsize) == -1) {
 | |
| 		if (efi_debug) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "unable to read disk info: %d",
 | |
| 			    errno);
 | |
| 		}
 | |
| 		return (VT_EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	disk_info.dki_lbsize = lbsize;
 | |
| 	disk_info.dki_capacity = capacity;
 | |
| 
 | |
| 	if (disk_info.dki_lbsize == 0) {
 | |
| 		if (efi_debug) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "efi_read: assuming LBA 512 bytes\n");
 | |
| 		}
 | |
| 		disk_info.dki_lbsize = DEV_BSIZE;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Read the EFI GPT to figure out how many partitions we need
 | |
| 	 * to deal with.
 | |
| 	 */
 | |
| 	dk_ioc.dki_lba = 1;
 | |
| 	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
 | |
| 		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
 | |
| 	} else {
 | |
| 		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
 | |
| 		    disk_info.dki_lbsize;
 | |
| 		if (label_len % disk_info.dki_lbsize) {
 | |
| 			/* pad to physical sector size */
 | |
| 			label_len += disk_info.dki_lbsize;
 | |
| 			label_len &= ~(disk_info.dki_lbsize - 1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (posix_memalign((void **)&dk_ioc.dki_data,
 | |
| 	    disk_info.dki_lbsize, label_len))
 | |
| 		return (VT_ERROR);
 | |
| 
 | |
| 	memset(dk_ioc.dki_data, 0, label_len);
 | |
| 	dk_ioc.dki_length = disk_info.dki_lbsize;
 | |
| 	user_length = vtoc->efi_nparts;
 | |
| 	efi = dk_ioc.dki_data;
 | |
| 	if (md_flag) {
 | |
| 		dk_ioc.dki_length = label_len;
 | |
| 		if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
 | |
| 			switch (errno) {
 | |
| 			case EIO:
 | |
| 				return (VT_EIO);
 | |
| 			default:
 | |
| 				return (VT_ERROR);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
 | |
| 		/*
 | |
| 		 * No valid label here; try the alternate. Note that here
 | |
| 		 * we just read GPT header and save it into dk_ioc.data,
 | |
| 		 * Later, we will read GUID partition entry array if we
 | |
| 		 * can get valid GPT header.
 | |
| 		 */
 | |
| 
 | |
| 		/*
 | |
| 		 * This is a workaround for legacy systems. In the past, the
 | |
| 		 * last sector of SCSI disk was invisible on x86 platform. At
 | |
| 		 * that time, backup label was saved on the next to the last
 | |
| 		 * sector. It is possible for users to move a disk from previous
 | |
| 		 * solaris system to present system. Here, we attempt to search
 | |
| 		 * legacy backup EFI label first.
 | |
| 		 */
 | |
| 		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
 | |
| 		dk_ioc.dki_length = disk_info.dki_lbsize;
 | |
| 		rval = check_label(fd, &dk_ioc);
 | |
| 		if (rval == VT_EINVAL) {
 | |
| 			/*
 | |
| 			 * we didn't find legacy backup EFI label, try to
 | |
| 			 * search backup EFI label in the last block.
 | |
| 			 */
 | |
| 			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
 | |
| 			dk_ioc.dki_length = disk_info.dki_lbsize;
 | |
| 			rval = check_label(fd, &dk_ioc);
 | |
| 			if (rval == 0) {
 | |
| 				legacy_label = B_TRUE;
 | |
| 				if (efi_debug)
 | |
| 					(void) fprintf(stderr,
 | |
| 					    "efi_read: primary label corrupt; "
 | |
| 					    "using EFI backup label located on"
 | |
| 					    " the last block\n");
 | |
| 			}
 | |
| 		} else {
 | |
| 			if ((efi_debug) && (rval == 0))
 | |
| 				(void) fprintf(stderr, "efi_read: primary label"
 | |
| 				    " corrupt; using legacy EFI backup label "
 | |
| 				    " located on the next to last block\n");
 | |
| 		}
 | |
| 
 | |
| 		if (rval == 0) {
 | |
| 			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
 | |
| 			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
 | |
| 			vtoc->efi_nparts =
 | |
| 			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
 | |
| 			/*
 | |
| 			 * Partition tables are between backup GPT header
 | |
| 			 * table and ParitionEntryLBA (the starting LBA of
 | |
| 			 * the GUID partition entries array). Now that we
 | |
| 			 * already got valid GPT header and saved it in
 | |
| 			 * dk_ioc.dki_data, we try to get GUID partition
 | |
| 			 * entry array here.
 | |
| 			 */
 | |
| 			/* LINTED */
 | |
| 			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
 | |
| 			    + disk_info.dki_lbsize);
 | |
| 			if (legacy_label)
 | |
| 				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
 | |
| 				    dk_ioc.dki_lba;
 | |
| 			else
 | |
| 				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
 | |
| 				    dk_ioc.dki_lba;
 | |
| 			dk_ioc.dki_length *= disk_info.dki_lbsize;
 | |
| 			if (dk_ioc.dki_length >
 | |
| 			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
 | |
| 				rval = VT_EINVAL;
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * read GUID partition entry array
 | |
| 				 */
 | |
| 				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	} else if (rval == 0) {
 | |
| 
 | |
| 		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
 | |
| 		/* LINTED */
 | |
| 		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
 | |
| 		    + disk_info.dki_lbsize);
 | |
| 		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
 | |
| 		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
 | |
| 
 | |
| 	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
 | |
| 		/*
 | |
| 		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
 | |
| 		 * ioctl can fail with EINVAL if the virtual disk backend
 | |
| 		 * is a ZFS volume serviced by a domain running an old version
 | |
| 		 * of Solaris. This is because the DKIOCGETEFI ioctl was
 | |
| 		 * initially incorrectly implemented for a ZFS volume and it
 | |
| 		 * expected the GPT and GPE to be retrieved with a single ioctl.
 | |
| 		 * So we try to read the GPT and the GPE using that old style
 | |
| 		 * ioctl.
 | |
| 		 */
 | |
| 		dk_ioc.dki_lba = 1;
 | |
| 		dk_ioc.dki_length = label_len;
 | |
| 		rval = check_label(fd, &dk_ioc);
 | |
| 	}
 | |
| 
 | |
| 	if (rval < 0) {
 | |
| 		free(efi);
 | |
| 		return (rval);
 | |
| 	}
 | |
| 
 | |
| 	/* LINTED -- always longlong aligned */
 | |
| 	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
 | |
| 
 | |
| 	/*
 | |
| 	 * Assemble this into a "dk_gpt" struct for easier
 | |
| 	 * digestibility by applications.
 | |
| 	 */
 | |
| 	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
 | |
| 	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
 | |
| 	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
 | |
| 	vtoc->efi_lbasize = disk_info.dki_lbsize;
 | |
| 	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
 | |
| 	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
 | |
| 	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
 | |
| 	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
 | |
| 	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the array the user passed in is too small, set the length
 | |
| 	 * to what it needs to be and return
 | |
| 	 */
 | |
| 	if (user_length < vtoc->efi_nparts) {
 | |
| 		return (VT_EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < vtoc->efi_nparts; i++) {
 | |
| 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
 | |
| 		    efi_parts[i].efi_gpe_PartitionTypeGUID);
 | |
| 
 | |
| 		for (j = 0;
 | |
| 		    j < sizeof (conversion_array)
 | |
| 		    / sizeof (struct uuid_to_ptag); j++) {
 | |
| 
 | |
| 			if (memcmp(&vtoc->efi_parts[i].p_guid,
 | |
| 			    &conversion_array[j].uuid,
 | |
| 			    sizeof (struct uuid)) == 0) {
 | |
| 				vtoc->efi_parts[i].p_tag = j;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
 | |
| 			continue;
 | |
| 		vtoc->efi_parts[i].p_flag =
 | |
| 		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
 | |
| 		vtoc->efi_parts[i].p_start =
 | |
| 		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
 | |
| 		vtoc->efi_parts[i].p_size =
 | |
| 		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
 | |
| 		    vtoc->efi_parts[i].p_start + 1;
 | |
| 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
 | |
| 			vtoc->efi_parts[i].p_name[j] =
 | |
| 			    (uchar_t)LE_16(
 | |
| 			    efi_parts[i].efi_gpe_PartitionName[j]);
 | |
| 		}
 | |
| 
 | |
| 		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
 | |
| 		    efi_parts[i].efi_gpe_UniquePartitionGUID);
 | |
| 	}
 | |
| 	free(efi);
 | |
| 
 | |
| 	return (dki_info.dki_partition);
 | |
| }
 | |
| 
 | |
| /* writes a "protective" MBR */
 | |
| static int
 | |
| write_pmbr(int fd, struct dk_gpt *vtoc)
 | |
| {
 | |
| 	dk_efi_t	dk_ioc;
 | |
| 	struct mboot	mb;
 | |
| 	uchar_t		*cp;
 | |
| 	diskaddr_t	size_in_lba;
 | |
| 	uchar_t		*buf;
 | |
| 	int		len;
 | |
| 
 | |
| 	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
 | |
| 	if (posix_memalign((void **)&buf, len, len))
 | |
| 		return (VT_ERROR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Preserve any boot code and disk signature if the first block is
 | |
| 	 * already an MBR.
 | |
| 	 */
 | |
| 	memset(buf, 0, len);
 | |
| 	dk_ioc.dki_lba = 0;
 | |
| 	dk_ioc.dki_length = len;
 | |
| 	/* LINTED -- always longlong aligned */
 | |
| 	dk_ioc.dki_data = (efi_gpt_t *)buf;
 | |
| 	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
 | |
| 		memset(&mb, 0, sizeof (mb));
 | |
| 		mb.signature = LE_16(MBB_MAGIC);
 | |
| 	} else {
 | |
| 		(void) memcpy(&mb, buf, sizeof (mb));
 | |
| 		if (mb.signature != LE_16(MBB_MAGIC)) {
 | |
| 			memset(&mb, 0, sizeof (mb));
 | |
| 			mb.signature = LE_16(MBB_MAGIC);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	memset(&mb.parts, 0, sizeof (mb.parts));
 | |
| 	cp = (uchar_t *)&mb.parts[0];
 | |
| 	/* bootable or not */
 | |
| 	*cp++ = 0;
 | |
| 	/* beginning CHS; 0xffffff if not representable */
 | |
| 	*cp++ = 0xff;
 | |
| 	*cp++ = 0xff;
 | |
| 	*cp++ = 0xff;
 | |
| 	/* OS type */
 | |
| 	*cp++ = EFI_PMBR;
 | |
| 	/* ending CHS; 0xffffff if not representable */
 | |
| 	*cp++ = 0xff;
 | |
| 	*cp++ = 0xff;
 | |
| 	*cp++ = 0xff;
 | |
| 	/* starting LBA: 1 (little endian format) by EFI definition */
 | |
| 	*cp++ = 0x01;
 | |
| 	*cp++ = 0x00;
 | |
| 	*cp++ = 0x00;
 | |
| 	*cp++ = 0x00;
 | |
| 	/* ending LBA: last block on the disk (little endian format) */
 | |
| 	size_in_lba = vtoc->efi_last_lba;
 | |
| 	if (size_in_lba < 0xffffffff) {
 | |
| 		*cp++ = (size_in_lba & 0x000000ff);
 | |
| 		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
 | |
| 		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
 | |
| 		*cp++ = (size_in_lba & 0xff000000) >> 24;
 | |
| 	} else {
 | |
| 		*cp++ = 0xff;
 | |
| 		*cp++ = 0xff;
 | |
| 		*cp++ = 0xff;
 | |
| 		*cp++ = 0xff;
 | |
| 	}
 | |
| 
 | |
| 	(void) memcpy(buf, &mb, sizeof (mb));
 | |
| 	/* LINTED -- always longlong aligned */
 | |
| 	dk_ioc.dki_data = (efi_gpt_t *)buf;
 | |
| 	dk_ioc.dki_lba = 0;
 | |
| 	dk_ioc.dki_length = len;
 | |
| 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
 | |
| 		free(buf);
 | |
| 		switch (errno) {
 | |
| 		case EIO:
 | |
| 			return (VT_EIO);
 | |
| 		case EINVAL:
 | |
| 			return (VT_EINVAL);
 | |
| 		default:
 | |
| 			return (VT_ERROR);
 | |
| 		}
 | |
| 	}
 | |
| 	free(buf);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /* make sure the user specified something reasonable */
 | |
| static int
 | |
| check_input(struct dk_gpt *vtoc)
 | |
| {
 | |
| 	int			resv_part = -1;
 | |
| 	int			i, j;
 | |
| 	diskaddr_t		istart, jstart, isize, jsize, endsect;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity-check the input (make sure no partitions overlap)
 | |
| 	 */
 | |
| 	for (i = 0; i < vtoc->efi_nparts; i++) {
 | |
| 		/* It can't be unassigned and have an actual size */
 | |
| 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
 | |
| 		    (vtoc->efi_parts[i].p_size != 0)) {
 | |
| 			if (efi_debug) {
 | |
| 				(void) fprintf(stderr, "partition %d is "
 | |
| 				    "\"unassigned\" but has a size of %llu",
 | |
| 				    i, vtoc->efi_parts[i].p_size);
 | |
| 			}
 | |
| 			return (VT_EINVAL);
 | |
| 		}
 | |
| 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
 | |
| 			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
 | |
| 				continue;
 | |
| 			/* we have encountered an unknown uuid */
 | |
| 			vtoc->efi_parts[i].p_tag = 0xff;
 | |
| 		}
 | |
| 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
 | |
| 			if (resv_part != -1) {
 | |
| 				if (efi_debug) {
 | |
| 					(void) fprintf(stderr, "found "
 | |
| 					    "duplicate reserved partition "
 | |
| 					    "at %d\n", i);
 | |
| 				}
 | |
| 				return (VT_EINVAL);
 | |
| 			}
 | |
| 			resv_part = i;
 | |
| 		}
 | |
| 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
 | |
| 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
 | |
| 			if (efi_debug) {
 | |
| 				(void) fprintf(stderr,
 | |
| 				    "Partition %d starts at %llu.  ",
 | |
| 				    i,
 | |
| 				    vtoc->efi_parts[i].p_start);
 | |
| 				(void) fprintf(stderr,
 | |
| 				    "It must be between %llu and %llu.\n",
 | |
| 				    vtoc->efi_first_u_lba,
 | |
| 				    vtoc->efi_last_u_lba);
 | |
| 			}
 | |
| 			return (VT_EINVAL);
 | |
| 		}
 | |
| 		if ((vtoc->efi_parts[i].p_start +
 | |
| 		    vtoc->efi_parts[i].p_size <
 | |
| 		    vtoc->efi_first_u_lba) ||
 | |
| 		    (vtoc->efi_parts[i].p_start +
 | |
| 		    vtoc->efi_parts[i].p_size >
 | |
| 		    vtoc->efi_last_u_lba + 1)) {
 | |
| 			if (efi_debug) {
 | |
| 				(void) fprintf(stderr,
 | |
| 				    "Partition %d ends at %llu.  ",
 | |
| 				    i,
 | |
| 				    vtoc->efi_parts[i].p_start +
 | |
| 				    vtoc->efi_parts[i].p_size);
 | |
| 				(void) fprintf(stderr,
 | |
| 				    "It must be between %llu and %llu.\n",
 | |
| 				    vtoc->efi_first_u_lba,
 | |
| 				    vtoc->efi_last_u_lba);
 | |
| 			}
 | |
| 			return (VT_EINVAL);
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < vtoc->efi_nparts; j++) {
 | |
| 			isize = vtoc->efi_parts[i].p_size;
 | |
| 			jsize = vtoc->efi_parts[j].p_size;
 | |
| 			istart = vtoc->efi_parts[i].p_start;
 | |
| 			jstart = vtoc->efi_parts[j].p_start;
 | |
| 			if ((i != j) && (isize != 0) && (jsize != 0)) {
 | |
| 				endsect = jstart + jsize -1;
 | |
| 				if ((jstart <= istart) &&
 | |
| 				    (istart <= endsect)) {
 | |
| 					if (efi_debug) {
 | |
| 						(void) fprintf(stderr,
 | |
| 						    "Partition %d overlaps "
 | |
| 						    "partition %d.", i, j);
 | |
| 					}
 | |
| 					return (VT_EINVAL);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/* just a warning for now */
 | |
| 	if ((resv_part == -1) && efi_debug) {
 | |
| 		(void) fprintf(stderr,
 | |
| 		    "no reserved partition found\n");
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| call_blkpg_ioctl(int fd, int command, diskaddr_t start,
 | |
|     diskaddr_t size, uint_t pno)
 | |
| {
 | |
| 	struct blkpg_ioctl_arg ioctl_arg;
 | |
| 	struct blkpg_partition  linux_part;
 | |
| 	memset(&linux_part, 0, sizeof (linux_part));
 | |
| 
 | |
| 	char *path = efi_get_devname(fd);
 | |
| 	if (path == NULL) {
 | |
| 		(void) fprintf(stderr, "failed to retrieve device name\n");
 | |
| 		return (VT_EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	linux_part.start = start;
 | |
| 	linux_part.length = size;
 | |
| 	linux_part.pno = pno;
 | |
| 	snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno);
 | |
| 	linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0';
 | |
| 	free(path);
 | |
| 
 | |
| 	ioctl_arg.op = command;
 | |
| 	ioctl_arg.flags = 0;
 | |
| 	ioctl_arg.datalen = sizeof (struct blkpg_partition);
 | |
| 	ioctl_arg.data = &linux_part;
 | |
| 
 | |
| 	return (ioctl(fd, BLKPG, &ioctl_arg));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add all the unallocated space to the current label
 | |
|  */
 | |
| int
 | |
| efi_use_whole_disk(int fd)
 | |
| {
 | |
| 	struct dk_gpt *efi_label = NULL;
 | |
| 	int rval;
 | |
| 	int i;
 | |
| 	uint_t resv_index = 0, data_index = 0;
 | |
| 	diskaddr_t resv_start = 0, data_start = 0;
 | |
| 	diskaddr_t data_size, limit, difference;
 | |
| 	boolean_t sync_needed = B_FALSE;
 | |
| 	uint_t nblocks;
 | |
| 
 | |
| 	rval = efi_alloc_and_read(fd, &efi_label);
 | |
| 	if (rval < 0) {
 | |
| 		if (efi_label != NULL)
 | |
| 			efi_free(efi_label);
 | |
| 		return (rval);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the last physically non-zero partition.
 | |
| 	 * This should be the reserved partition.
 | |
| 	 */
 | |
| 	for (i = 0; i < efi_label->efi_nparts; i ++) {
 | |
| 		if (resv_start < efi_label->efi_parts[i].p_start) {
 | |
| 			resv_start = efi_label->efi_parts[i].p_start;
 | |
| 			resv_index = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the last physically non-zero partition before that.
 | |
| 	 * This is the data partition.
 | |
| 	 */
 | |
| 	for (i = 0; i < resv_index; i ++) {
 | |
| 		if (data_start < efi_label->efi_parts[i].p_start) {
 | |
| 			data_start = efi_label->efi_parts[i].p_start;
 | |
| 			data_index = i;
 | |
| 		}
 | |
| 	}
 | |
| 	data_size = efi_label->efi_parts[data_index].p_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * See the "efi_alloc_and_init" function for more information
 | |
| 	 * about where this "nblocks" value comes from.
 | |
| 	 */
 | |
| 	nblocks = efi_label->efi_first_u_lba - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine if the EFI label is out of sync. We check that:
 | |
| 	 *
 | |
| 	 * 1. the data partition ends at the limit we set, and
 | |
| 	 * 2. the reserved partition starts at the limit we set.
 | |
| 	 *
 | |
| 	 * If either of these conditions is not met, then we need to
 | |
| 	 * resync the EFI label.
 | |
| 	 *
 | |
| 	 * The limit is the last usable LBA, determined by the last LBA
 | |
| 	 * and the first usable LBA fields on the EFI label of the disk
 | |
| 	 * (see the lines directly above). Additionally, we factor in
 | |
| 	 * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
 | |
| 	 * P2ALIGN it to ensure the partition boundaries are aligned
 | |
| 	 * (for performance reasons). The alignment should match the
 | |
| 	 * alignment used by the "zpool_label_disk" function.
 | |
| 	 */
 | |
| 	limit = P2ALIGN_TYPED(efi_label->efi_last_lba - nblocks -
 | |
| 	    EFI_MIN_RESV_SIZE, PARTITION_END_ALIGNMENT, diskaddr_t);
 | |
| 	if (data_start + data_size != limit || resv_start != limit)
 | |
| 		sync_needed = B_TRUE;
 | |
| 
 | |
| 	if (efi_debug && sync_needed)
 | |
| 		(void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * If alter_lba is 1, we are using the backup label.
 | |
| 	 * Since we can locate the backup label by disk capacity,
 | |
| 	 * there must be no unallocated space.
 | |
| 	 */
 | |
| 	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
 | |
| 	    >= efi_label->efi_last_lba && !sync_needed)) {
 | |
| 		if (efi_debug) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "efi_use_whole_disk: requested space not found\n");
 | |
| 		}
 | |
| 		efi_free(efi_label);
 | |
| 		return (VT_ENOSPC);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that we've found the reserved partition by checking
 | |
| 	 * that it looks the way it did when we created it in zpool_label_disk.
 | |
| 	 * If we've found the incorrect partition, then we know that this
 | |
| 	 * device was reformatted and no longer is solely used by ZFS.
 | |
| 	 */
 | |
| 	if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
 | |
| 	    (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
 | |
| 	    (resv_index != 8)) {
 | |
| 		if (efi_debug) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "efi_use_whole_disk: wholedisk not available\n");
 | |
| 		}
 | |
| 		efi_free(efi_label);
 | |
| 		return (VT_ENOSPC);
 | |
| 	}
 | |
| 
 | |
| 	if (data_start + data_size != resv_start) {
 | |
| 		if (efi_debug) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "efi_use_whole_disk: "
 | |
| 			    "data_start (%lli) + "
 | |
| 			    "data_size (%lli) != "
 | |
| 			    "resv_start (%lli)\n",
 | |
| 			    data_start, data_size, resv_start);
 | |
| 		}
 | |
| 
 | |
| 		return (VT_EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	if (limit < resv_start) {
 | |
| 		if (efi_debug) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "efi_use_whole_disk: "
 | |
| 			    "limit (%lli) < resv_start (%lli)\n",
 | |
| 			    limit, resv_start);
 | |
| 		}
 | |
| 
 | |
| 		return (VT_EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	difference = limit - resv_start;
 | |
| 
 | |
| 	if (efi_debug)
 | |
| 		(void) fprintf(stderr,
 | |
| 		    "efi_use_whole_disk: difference is %lli\n", difference);
 | |
| 
 | |
| 	/*
 | |
| 	 * Move the reserved partition. There is currently no data in
 | |
| 	 * here except fabricated devids (which get generated via
 | |
| 	 * efi_write()). So there is no need to copy data.
 | |
| 	 */
 | |
| 	efi_label->efi_parts[data_index].p_size += difference;
 | |
| 	efi_label->efi_parts[resv_index].p_start += difference;
 | |
| 	efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
 | |
| 
 | |
| 	/*
 | |
| 	 * Rescanning the partition table in the kernel can result
 | |
| 	 * in the device links to be removed (see comment in vdev_disk_open).
 | |
| 	 * If BLKPG_RESIZE_PARTITION is available, then we can resize
 | |
| 	 * the partition table online and avoid having to remove the device
 | |
| 	 * links used by the pool. This provides a very deterministic
 | |
| 	 * approach to resizing devices and does not require any
 | |
| 	 * loops waiting for devices to reappear.
 | |
| 	 */
 | |
| #ifdef BLKPG_RESIZE_PARTITION
 | |
| 	/*
 | |
| 	 * Delete the reserved partition since we're about to expand
 | |
| 	 * the data partition and it would overlap with the reserved
 | |
| 	 * partition.
 | |
| 	 * NOTE: The starting index for the ioctl is 1 while for the
 | |
| 	 * EFI partitions it's 0. For that reason we have to add one
 | |
| 	 * whenever we make an ioctl call.
 | |
| 	 */
 | |
| 	rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1);
 | |
| 	if (rval != 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Expand the data partition
 | |
| 	 */
 | |
| 	rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION,
 | |
| 	    efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize,
 | |
| 	    efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize,
 | |
| 	    data_index + 1);
 | |
| 	if (rval != 0) {
 | |
| 		(void) fprintf(stderr, "Unable to resize data "
 | |
| 		    "partition:  %d\n", rval);
 | |
| 		/*
 | |
| 		 * Since we failed to resize, we need to reset the start
 | |
| 		 * of the reserve partition and re-create it.
 | |
| 		 */
 | |
| 		efi_label->efi_parts[resv_index].p_start -= difference;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Re-add the reserved partition. If we've expanded the data partition
 | |
| 	 * then we'll move the reserve partition to the end of the data
 | |
| 	 * partition. Otherwise, we'll recreate the partition in its original
 | |
| 	 * location. Note that we do this as best-effort and ignore any
 | |
| 	 * errors that may arise here. This will ensure that we finish writing
 | |
| 	 * the EFI label.
 | |
| 	 */
 | |
| 	(void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION,
 | |
| 	    efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize,
 | |
| 	    efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize,
 | |
| 	    resv_index + 1);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * We're now ready to write the EFI label.
 | |
| 	 */
 | |
| 	if (rval == 0) {
 | |
| 		rval = efi_write(fd, efi_label);
 | |
| 		if (rval < 0 && efi_debug) {
 | |
| 			(void) fprintf(stderr, "efi_use_whole_disk:fail "
 | |
| 			    "to write label, rval=%d\n", rval);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	efi_free(efi_label);
 | |
| 	return (rval);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * write EFI label and backup label
 | |
|  */
 | |
| int
 | |
| efi_write(int fd, struct dk_gpt *vtoc)
 | |
| {
 | |
| 	dk_efi_t		dk_ioc;
 | |
| 	efi_gpt_t		*efi;
 | |
| 	efi_gpe_t		*efi_parts;
 | |
| 	int			i, j;
 | |
| 	struct dk_cinfo		dki_info;
 | |
| 	int			rval;
 | |
| 	int			md_flag = 0;
 | |
| 	int			nblocks;
 | |
| 	diskaddr_t		lba_backup_gpt_hdr;
 | |
| 
 | |
| 	if ((rval = efi_get_info(fd, &dki_info)) != 0)
 | |
| 		return (rval);
 | |
| 
 | |
| 	/* check if we are dealing with a metadevice */
 | |
| 	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
 | |
| 	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
 | |
| 		md_flag = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (check_input(vtoc)) {
 | |
| 		/*
 | |
| 		 * not valid; if it's a metadevice just pass it down
 | |
| 		 * because SVM will do its own checking
 | |
| 		 */
 | |
| 		if (md_flag == 0) {
 | |
| 			return (VT_EINVAL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dk_ioc.dki_lba = 1;
 | |
| 	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
 | |
| 		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
 | |
| 	} else {
 | |
| 		dk_ioc.dki_length = (len_t)NBLOCKS(vtoc->efi_nparts,
 | |
| 		    vtoc->efi_lbasize) *
 | |
| 		    vtoc->efi_lbasize;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * the number of blocks occupied by GUID partition entry array
 | |
| 	 */
 | |
| 	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Backup GPT header is located on the block after GUID
 | |
| 	 * partition entry array. Here, we calculate the address
 | |
| 	 * for backup GPT header.
 | |
| 	 */
 | |
| 	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
 | |
| 	if (posix_memalign((void **)&dk_ioc.dki_data,
 | |
| 	    vtoc->efi_lbasize, dk_ioc.dki_length))
 | |
| 		return (VT_ERROR);
 | |
| 
 | |
| 	memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
 | |
| 	efi = dk_ioc.dki_data;
 | |
| 
 | |
| 	/* stuff user's input into EFI struct */
 | |
| 	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
 | |
| 	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
 | |
| 	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
 | |
| 	efi->efi_gpt_Reserved1 = 0;
 | |
| 	efi->efi_gpt_MyLBA = LE_64(1ULL);
 | |
| 	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
 | |
| 	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
 | |
| 	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
 | |
| 	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
 | |
| 	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
 | |
| 	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
 | |
| 	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
 | |
| 
 | |
| 	/* LINTED -- always longlong aligned */
 | |
| 	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
 | |
| 
 | |
| 	for (i = 0; i < vtoc->efi_nparts; i++) {
 | |
| 		for (j = 0;
 | |
| 		    j < sizeof (conversion_array) /
 | |
| 		    sizeof (struct uuid_to_ptag); j++) {
 | |
| 
 | |
| 			if (vtoc->efi_parts[i].p_tag == j) {
 | |
| 				UUID_LE_CONVERT(
 | |
| 				    efi_parts[i].efi_gpe_PartitionTypeGUID,
 | |
| 				    conversion_array[j].uuid);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (j == sizeof (conversion_array) /
 | |
| 		    sizeof (struct uuid_to_ptag)) {
 | |
| 			/*
 | |
| 			 * If we didn't have a matching uuid match, bail here.
 | |
| 			 * Don't write a label with unknown uuid.
 | |
| 			 */
 | |
| 			if (efi_debug) {
 | |
| 				(void) fprintf(stderr,
 | |
| 				    "Unknown uuid for p_tag %d\n",
 | |
| 				    vtoc->efi_parts[i].p_tag);
 | |
| 			}
 | |
| 			return (VT_EINVAL);
 | |
| 		}
 | |
| 
 | |
| 		/* Zero's should be written for empty partitions */
 | |
| 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
 | |
| 			continue;
 | |
| 
 | |
| 		efi_parts[i].efi_gpe_StartingLBA =
 | |
| 		    LE_64(vtoc->efi_parts[i].p_start);
 | |
| 		efi_parts[i].efi_gpe_EndingLBA =
 | |
| 		    LE_64(vtoc->efi_parts[i].p_start +
 | |
| 		    vtoc->efi_parts[i].p_size - 1);
 | |
| 		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
 | |
| 		    LE_16(vtoc->efi_parts[i].p_flag);
 | |
| 		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
 | |
| 			efi_parts[i].efi_gpe_PartitionName[j] =
 | |
| 			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
 | |
| 		}
 | |
| 		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
 | |
| 		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
 | |
| 			(void) uuid_generate((uchar_t *)
 | |
| 			    &vtoc->efi_parts[i].p_uguid);
 | |
| 		}
 | |
| 		memcpy(&efi_parts[i].efi_gpe_UniquePartitionGUID,
 | |
| 		    &vtoc->efi_parts[i].p_uguid,
 | |
| 		    sizeof (uuid_t));
 | |
| 	}
 | |
| 	efi->efi_gpt_PartitionEntryArrayCRC32 =
 | |
| 	    LE_32(efi_crc32((unsigned char *)efi_parts,
 | |
| 	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
 | |
| 	efi->efi_gpt_HeaderCRC32 =
 | |
| 	    LE_32(efi_crc32((unsigned char *)efi,
 | |
| 	    LE_32(efi->efi_gpt_HeaderSize)));
 | |
| 
 | |
| 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
 | |
| 		free(dk_ioc.dki_data);
 | |
| 		switch (errno) {
 | |
| 		case EIO:
 | |
| 			return (VT_EIO);
 | |
| 		case EINVAL:
 | |
| 			return (VT_EINVAL);
 | |
| 		default:
 | |
| 			return (VT_ERROR);
 | |
| 		}
 | |
| 	}
 | |
| 	/* if it's a metadevice we're done */
 | |
| 	if (md_flag) {
 | |
| 		free(dk_ioc.dki_data);
 | |
| 		return (0);
 | |
| 	}
 | |
| 
 | |
| 	/* write backup partition array */
 | |
| 	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
 | |
| 	dk_ioc.dki_length -= vtoc->efi_lbasize;
 | |
| 	/* LINTED */
 | |
| 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
 | |
| 	    vtoc->efi_lbasize);
 | |
| 
 | |
| 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
 | |
| 		/*
 | |
| 		 * we wrote the primary label okay, so don't fail
 | |
| 		 */
 | |
| 		if (efi_debug) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "write of backup partitions to block %llu "
 | |
| 			    "failed, errno %d\n",
 | |
| 			    vtoc->efi_last_u_lba + 1,
 | |
| 			    errno);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * now swap MyLBA and AlternateLBA fields and write backup
 | |
| 	 * partition table header
 | |
| 	 */
 | |
| 	dk_ioc.dki_lba = lba_backup_gpt_hdr;
 | |
| 	dk_ioc.dki_length = vtoc->efi_lbasize;
 | |
| 	/* LINTED */
 | |
| 	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
 | |
| 	    vtoc->efi_lbasize);
 | |
| 	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
 | |
| 	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
 | |
| 	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
 | |
| 	efi->efi_gpt_HeaderCRC32 = 0;
 | |
| 	efi->efi_gpt_HeaderCRC32 =
 | |
| 	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
 | |
| 	    LE_32(efi->efi_gpt_HeaderSize)));
 | |
| 
 | |
| 	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
 | |
| 		if (efi_debug) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "write of backup header to block %llu failed, "
 | |
| 			    "errno %d\n",
 | |
| 			    lba_backup_gpt_hdr,
 | |
| 			    errno);
 | |
| 		}
 | |
| 	}
 | |
| 	/* write the PMBR */
 | |
| 	(void) write_pmbr(fd, vtoc);
 | |
| 	free(dk_ioc.dki_data);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| efi_free(struct dk_gpt *ptr)
 | |
| {
 | |
| 	free(ptr);
 | |
| }
 | |
| 
 | |
| void
 | |
| efi_err_check(struct dk_gpt *vtoc)
 | |
| {
 | |
| 	int			resv_part = -1;
 | |
| 	int			i, j;
 | |
| 	diskaddr_t		istart, jstart, isize, jsize, endsect;
 | |
| 	int			overlap = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure no partitions overlap
 | |
| 	 */
 | |
| 	for (i = 0; i < vtoc->efi_nparts; i++) {
 | |
| 		/* It can't be unassigned and have an actual size */
 | |
| 		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
 | |
| 		    (vtoc->efi_parts[i].p_size != 0)) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "partition %d is \"unassigned\" but has a size "
 | |
| 			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
 | |
| 		}
 | |
| 		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
 | |
| 			if (resv_part != -1) {
 | |
| 				(void) fprintf(stderr,
 | |
| 				    "found duplicate reserved partition at "
 | |
| 				    "%d\n", i);
 | |
| 			}
 | |
| 			resv_part = i;
 | |
| 			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
 | |
| 				(void) fprintf(stderr,
 | |
| 				    "Warning: reserved partition size must "
 | |
| 				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
 | |
| 		}
 | |
| 		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
 | |
| 		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "Partition %d starts at %llu\n",
 | |
| 			    i,
 | |
| 			    vtoc->efi_parts[i].p_start);
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "It must be between %llu and %llu.\n",
 | |
| 			    vtoc->efi_first_u_lba,
 | |
| 			    vtoc->efi_last_u_lba);
 | |
| 		}
 | |
| 		if ((vtoc->efi_parts[i].p_start +
 | |
| 		    vtoc->efi_parts[i].p_size <
 | |
| 		    vtoc->efi_first_u_lba) ||
 | |
| 		    (vtoc->efi_parts[i].p_start +
 | |
| 		    vtoc->efi_parts[i].p_size >
 | |
| 		    vtoc->efi_last_u_lba + 1)) {
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "Partition %d ends at %llu\n",
 | |
| 			    i,
 | |
| 			    vtoc->efi_parts[i].p_start +
 | |
| 			    vtoc->efi_parts[i].p_size);
 | |
| 			(void) fprintf(stderr,
 | |
| 			    "It must be between %llu and %llu.\n",
 | |
| 			    vtoc->efi_first_u_lba,
 | |
| 			    vtoc->efi_last_u_lba);
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < vtoc->efi_nparts; j++) {
 | |
| 			isize = vtoc->efi_parts[i].p_size;
 | |
| 			jsize = vtoc->efi_parts[j].p_size;
 | |
| 			istart = vtoc->efi_parts[i].p_start;
 | |
| 			jstart = vtoc->efi_parts[j].p_start;
 | |
| 			if ((i != j) && (isize != 0) && (jsize != 0)) {
 | |
| 				endsect = jstart + jsize -1;
 | |
| 				if ((jstart <= istart) &&
 | |
| 				    (istart <= endsect)) {
 | |
| 					if (!overlap) {
 | |
| 					(void) fprintf(stderr,
 | |
| 					    "label error: EFI Labels do not "
 | |
| 					    "support overlapping partitions\n");
 | |
| 					}
 | |
| 					(void) fprintf(stderr,
 | |
| 					    "Partition %d overlaps partition "
 | |
| 					    "%d.\n", i, j);
 | |
| 					overlap = 1;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/* make sure there is a reserved partition */
 | |
| 	if (resv_part == -1) {
 | |
| 		(void) fprintf(stderr,
 | |
| 		    "no reserved partition found\n");
 | |
| 	}
 | |
| }
 |