mirror_zfs/module/zpios/pios.c
Ned Bass aaed7c408c Explicitly include SPL compat headers
Inclusion of SPL compatibility headers was moved out of the public
header sys/types.h to avoid conflicts with external packages.  Include a
few compatiblity headers explicitly to cope with that change.  Also,
sort some linux-specific inclusions alphabetically.

Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2898
2014-11-19 12:30:39 -05:00

1333 lines
32 KiB
C

/*
* ZPIOS is a heavily modified version of the original PIOS test code.
* It is designed to have the test code running in the Linux kernel
* against ZFS while still being flexibly controled from user space.
*
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* LLNL-CODE-403049
*
* Original PIOS Test Code
* Copyright (C) 2004 Cluster File Systems, Inc.
* Written by Peter Braam <braam@clusterfs.com>
* Atul Vidwansa <atul@clusterfs.com>
* Milind Dumbare <milind@clusterfs.com>
*
* This file is part of ZFS on Linux.
* For details, see <http://zfsonlinux.org/>.
*
* ZPIOS is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* ZPIOS is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with ZPIOS. If not, see <http://www.gnu.org/licenses/>.
*/
#include <sys/zfs_context.h>
#include <sys/dmu.h>
#include <sys/txg.h>
#include <sys/dsl_destroy.h>
#include <linux/miscdevice.h>
#include <linux/module_compat.h>
#include "zpios-internal.h"
static char *zpios_tag = "zpios_tag";
static int
zpios_upcall(char *path, char *phase, run_args_t *run_args, int rc)
{
/*
* This is stack heavy but it should be OK since we are only
* making the upcall between tests when the stack is shallow.
*/
char id[16], chunk_size[16], region_size[16], thread_count[16];
char region_count[16], offset[16], region_noise[16], chunk_noise[16];
char thread_delay[16], flags[16], result[8];
char *argv[16], *envp[4];
if ((path == NULL) || (strlen(path) == 0))
return (-ENOENT);
snprintf(id, 15, "%d", run_args->id);
snprintf(chunk_size, 15, "%lu", (long unsigned)run_args->chunk_size);
snprintf(region_size, 15, "%lu", (long unsigned) run_args->region_size);
snprintf(thread_count, 15, "%u", run_args->thread_count);
snprintf(region_count, 15, "%u", run_args->region_count);
snprintf(offset, 15, "%lu", (long unsigned)run_args->offset);
snprintf(region_noise, 15, "%u", run_args->region_noise);
snprintf(chunk_noise, 15, "%u", run_args->chunk_noise);
snprintf(thread_delay, 15, "%u", run_args->thread_delay);
snprintf(flags, 15, "0x%x", run_args->flags);
snprintf(result, 7, "%d", rc);
/* Passing 15 args to registered pre/post upcall */
argv[0] = path;
argv[1] = phase;
argv[2] = strlen(run_args->log) ? run_args->log : "<none>";
argv[3] = id;
argv[4] = run_args->pool;
argv[5] = chunk_size;
argv[6] = region_size;
argv[7] = thread_count;
argv[8] = region_count;
argv[9] = offset;
argv[10] = region_noise;
argv[11] = chunk_noise;
argv[12] = thread_delay;
argv[13] = flags;
argv[14] = result;
argv[15] = NULL;
/* Passing environment for user space upcall */
envp[0] = "HOME=/";
envp[1] = "TERM=linux";
envp[2] = "PATH=/sbin:/usr/sbin:/bin:/usr/bin";
envp[3] = NULL;
return (call_usermodehelper(path, argv, envp, UMH_WAIT_PROC));
}
static int
zpios_print(struct file *file, const char *format, ...)
{
zpios_info_t *info = (zpios_info_t *)file->private_data;
va_list adx;
int rc;
ASSERT(info);
ASSERT(info->info_buffer);
va_start(adx, format);
spin_lock(&info->info_lock);
/* Don't allow the kernel to start a write in the red zone */
if ((int)(info->info_head - info->info_buffer) >
(info->info_size - ZPIOS_INFO_BUFFER_REDZONE)) {
rc = -EOVERFLOW;
} else {
rc = vsprintf(info->info_head, format, adx);
if (rc >= 0)
info->info_head += rc;
}
spin_unlock(&info->info_lock);
va_end(adx);
return (rc);
}
static uint64_t
zpios_dmu_object_create(run_args_t *run_args, objset_t *os)
{
struct dmu_tx *tx;
uint64_t obj = 0ULL;
int rc;
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, OBJ_SIZE);
rc = dmu_tx_assign(tx, TXG_WAIT);
if (rc) {
zpios_print(run_args->file,
"dmu_tx_assign() failed: %d\n", rc);
dmu_tx_abort(tx);
return (obj);
}
obj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, DMU_OT_NONE, 0, tx);
rc = dmu_object_set_blocksize(os, obj, 128ULL << 10, 0, tx);
if (rc) {
zpios_print(run_args->file,
"dmu_object_set_blocksize() failed: %d\n", rc);
dmu_tx_abort(tx);
return (obj);
}
dmu_tx_commit(tx);
return (obj);
}
static int
zpios_dmu_object_free(run_args_t *run_args, objset_t *os, uint64_t obj)
{
struct dmu_tx *tx;
int rc;
tx = dmu_tx_create(os);
dmu_tx_hold_free(tx, obj, 0, DMU_OBJECT_END);
rc = dmu_tx_assign(tx, TXG_WAIT);
if (rc) {
zpios_print(run_args->file,
"dmu_tx_assign() failed: %d\n", rc);
dmu_tx_abort(tx);
return (rc);
}
rc = dmu_object_free(os, obj, tx);
if (rc) {
zpios_print(run_args->file,
"dmu_object_free() failed: %d\n", rc);
dmu_tx_abort(tx);
return (rc);
}
dmu_tx_commit(tx);
return (0);
}
static int
zpios_dmu_setup(run_args_t *run_args)
{
zpios_time_t *t = &(run_args->stats.cr_time);
objset_t *os;
char name[32];
uint64_t obj = 0ULL;
int i, rc = 0, rc2;
(void) zpios_upcall(run_args->pre, PHASE_PRE_CREATE, run_args, 0);
t->start = zpios_timespec_now();
(void) snprintf(name, 32, "%s/id_%d", run_args->pool, run_args->id);
rc = dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL);
if (rc) {
zpios_print(run_args->file, "Error dmu_objset_create(%s, ...) "
"failed: %d\n", name, rc);
goto out;
}
rc = dmu_objset_own(name, DMU_OST_OTHER, 0, zpios_tag, &os);
if (rc) {
zpios_print(run_args->file, "Error dmu_objset_own(%s, ...) "
"failed: %d\n", name, rc);
goto out_destroy;
}
if (!(run_args->flags & DMU_FPP)) {
obj = zpios_dmu_object_create(run_args, os);
if (obj == 0) {
rc = -EBADF;
zpios_print(run_args->file, "Error zpios_dmu_"
"object_create() failed, %d\n", rc);
goto out_destroy;
}
}
for (i = 0; i < run_args->region_count; i++) {
zpios_region_t *region;
region = &run_args->regions[i];
mutex_init(&region->lock, NULL, MUTEX_DEFAULT, NULL);
if (run_args->flags & DMU_FPP) {
/* File per process */
region->obj.os = os;
region->obj.obj = zpios_dmu_object_create(run_args, os);
ASSERT(region->obj.obj > 0); /* XXX - Handle this */
region->wr_offset = run_args->offset;
region->rd_offset = run_args->offset;
region->init_offset = run_args->offset;
region->max_offset = run_args->offset +
run_args->region_size;
} else {
/* Single shared file */
region->obj.os = os;
region->obj.obj = obj;
region->wr_offset = run_args->offset * i;
region->rd_offset = run_args->offset * i;
region->init_offset = run_args->offset * i;
region->max_offset = run_args->offset *
i + run_args->region_size;
}
}
run_args->os = os;
out_destroy:
if (rc) {
rc2 = dsl_destroy_head(name);
if (rc2)
zpios_print(run_args->file, "Error dsl_destroy_head"
"(%s, ...) failed: %d\n", name, rc2);
}
out:
t->stop = zpios_timespec_now();
t->delta = zpios_timespec_sub(t->stop, t->start);
(void) zpios_upcall(run_args->post, PHASE_POST_CREATE, run_args, rc);
return (rc);
}
static int
zpios_setup_run(run_args_t **run_args, zpios_cmd_t *kcmd, struct file *file)
{
run_args_t *ra;
int rc, size;
size = sizeof (*ra) + kcmd->cmd_region_count * sizeof (zpios_region_t);
ra = vmem_zalloc(size, KM_SLEEP);
if (ra == NULL) {
zpios_print(file, "Unable to vmem_zalloc() %d bytes "
"for regions\n", size);
return (-ENOMEM);
}
*run_args = ra;
strncpy(ra->pool, kcmd->cmd_pool, ZPIOS_NAME_SIZE - 1);
strncpy(ra->pre, kcmd->cmd_pre, ZPIOS_PATH_SIZE - 1);
strncpy(ra->post, kcmd->cmd_post, ZPIOS_PATH_SIZE - 1);
strncpy(ra->log, kcmd->cmd_log, ZPIOS_PATH_SIZE - 1);
ra->id = kcmd->cmd_id;
ra->chunk_size = kcmd->cmd_chunk_size;
ra->thread_count = kcmd->cmd_thread_count;
ra->region_count = kcmd->cmd_region_count;
ra->region_size = kcmd->cmd_region_size;
ra->offset = kcmd->cmd_offset;
ra->region_noise = kcmd->cmd_region_noise;
ra->chunk_noise = kcmd->cmd_chunk_noise;
ra->thread_delay = kcmd->cmd_thread_delay;
ra->flags = kcmd->cmd_flags;
ra->stats.wr_data = 0;
ra->stats.wr_chunks = 0;
ra->stats.rd_data = 0;
ra->stats.rd_chunks = 0;
ra->region_next = 0;
ra->file = file;
mutex_init(&ra->lock_work, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ra->lock_ctl, NULL, MUTEX_DEFAULT, NULL);
(void) zpios_upcall(ra->pre, PHASE_PRE_RUN, ra, 0);
rc = zpios_dmu_setup(ra);
if (rc) {
mutex_destroy(&ra->lock_ctl);
mutex_destroy(&ra->lock_work);
vmem_free(ra, size);
*run_args = NULL;
}
return (rc);
}
static int
zpios_get_work_item(run_args_t *run_args, dmu_obj_t *obj, __u64 *offset,
__u32 *chunk_size, zpios_region_t **region, __u32 flags)
{
int i, j, count = 0;
unsigned int random_int;
get_random_bytes(&random_int, sizeof (unsigned int));
mutex_enter(&run_args->lock_work);
i = run_args->region_next;
/*
* XXX: I don't much care for this chunk selection mechansim
* there's the potential to burn a lot of time here doing nothing
* useful while holding the global lock. This could give some
* misleading performance results. I'll fix it latter.
*/
while (count < run_args->region_count) {
__u64 *rw_offset;
zpios_time_t *rw_time;
j = i % run_args->region_count;
*region = &(run_args->regions[j]);
if (flags & DMU_WRITE) {
rw_offset = &((*region)->wr_offset);
rw_time = &((*region)->stats.wr_time);
} else {
rw_offset = &((*region)->rd_offset);
rw_time = &((*region)->stats.rd_time);
}
/* test if region is fully written */
if (*rw_offset + *chunk_size > (*region)->max_offset) {
i++;
count++;
if (unlikely(rw_time->stop.ts_sec == 0) &&
unlikely(rw_time->stop.ts_nsec == 0))
rw_time->stop = zpios_timespec_now();
continue;
}
*offset = *rw_offset;
*obj = (*region)->obj;
*rw_offset += *chunk_size;
/* update ctl structure */
if (run_args->region_noise) {
get_random_bytes(&random_int, sizeof (unsigned int));
run_args->region_next +=
random_int % run_args->region_noise;
} else {
run_args->region_next++;
}
mutex_exit(&run_args->lock_work);
return (1);
}
/* nothing left to do */
mutex_exit(&run_args->lock_work);
return (0);
}
static void
zpios_remove_objset(run_args_t *run_args)
{
zpios_time_t *t = &(run_args->stats.rm_time);
zpios_region_t *region;
char name[32];
int rc = 0, i;
(void) zpios_upcall(run_args->pre, PHASE_PRE_REMOVE, run_args, 0);
t->start = zpios_timespec_now();
(void) snprintf(name, 32, "%s/id_%d", run_args->pool, run_args->id);
if (run_args->flags & DMU_REMOVE) {
if (run_args->flags & DMU_FPP) {
for (i = 0; i < run_args->region_count; i++) {
region = &run_args->regions[i];
rc = zpios_dmu_object_free(run_args,
region->obj.os, region->obj.obj);
if (rc)
zpios_print(run_args->file,
"Error removing object %d, %d\n",
(int)region->obj.obj, rc);
}
} else {
region = &run_args->regions[0];
rc = zpios_dmu_object_free(run_args,
region->obj.os, region->obj.obj);
if (rc)
zpios_print(run_args->file,
"Error removing object %d, %d\n",
(int)region->obj.obj, rc);
}
}
dmu_objset_disown(run_args->os, zpios_tag);
if (run_args->flags & DMU_REMOVE) {
rc = dsl_destroy_head(name);
if (rc)
zpios_print(run_args->file, "Error dsl_destroy_head"
"(%s, ...) failed: %d\n", name, rc);
}
t->stop = zpios_timespec_now();
t->delta = zpios_timespec_sub(t->stop, t->start);
(void) zpios_upcall(run_args->post, PHASE_POST_REMOVE, run_args, rc);
}
static void
zpios_cleanup_run(run_args_t *run_args)
{
int i, size = 0;
if (run_args == NULL)
return;
if (run_args->threads != NULL) {
for (i = 0; i < run_args->thread_count; i++) {
if (run_args->threads[i]) {
mutex_destroy(&run_args->threads[i]->lock);
kmem_free(run_args->threads[i],
sizeof (thread_data_t));
}
}
kmem_free(run_args->threads,
sizeof (thread_data_t *) * run_args->thread_count);
}
for (i = 0; i < run_args->region_count; i++)
mutex_destroy(&run_args->regions[i].lock);
mutex_destroy(&run_args->lock_work);
mutex_destroy(&run_args->lock_ctl);
size = run_args->region_count * sizeof (zpios_region_t);
vmem_free(run_args, sizeof (*run_args) + size);
}
static int
zpios_dmu_write(run_args_t *run_args, objset_t *os, uint64_t object,
uint64_t offset, uint64_t size, const void *buf)
{
struct dmu_tx *tx;
int rc, how = TXG_WAIT;
// int flags = 0;
if (run_args->flags & DMU_WRITE_NOWAIT)
how = TXG_NOWAIT;
while (1) {
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, object, offset, size);
rc = dmu_tx_assign(tx, how);
if (rc) {
if (rc == ERESTART && how == TXG_NOWAIT) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
continue;
}
zpios_print(run_args->file,
"Error in dmu_tx_assign(), %d", rc);
dmu_tx_abort(tx);
return (rc);
}
break;
}
// if (run_args->flags & DMU_WRITE_ZC)
// flags |= DMU_WRITE_ZEROCOPY;
dmu_write(os, object, offset, size, buf, tx);
dmu_tx_commit(tx);
return (0);
}
static int
zpios_dmu_read(run_args_t *run_args, objset_t *os, uint64_t object,
uint64_t offset, uint64_t size, void *buf)
{
int flags = 0;
// if (run_args->flags & DMU_READ_ZC)
// flags |= DMU_READ_ZEROCOPY;
if (run_args->flags & DMU_READ_NOPF)
flags |= DMU_READ_NO_PREFETCH;
return (dmu_read(os, object, offset, size, buf, flags));
}
static int
zpios_thread_main(void *data)
{
thread_data_t *thr = (thread_data_t *)data;
run_args_t *run_args = thr->run_args;
zpios_time_t t;
dmu_obj_t obj;
__u64 offset;
__u32 chunk_size;
zpios_region_t *region;
char *buf;
unsigned int random_int;
int chunk_noise = run_args->chunk_noise;
int chunk_noise_tmp = 0;
int thread_delay = run_args->thread_delay;
int thread_delay_tmp = 0;
int i, rc = 0;
if (chunk_noise) {
get_random_bytes(&random_int, sizeof (unsigned int));
chunk_noise_tmp = (random_int % (chunk_noise * 2))-chunk_noise;
}
/*
* It's OK to vmem_alloc() this memory because it will be copied
* in to the slab and pointers to the slab copy will be setup in
* the bio when the IO is submitted. This of course is not ideal
* since we want a zero-copy IO path if possible. It would be nice
* to have direct access to those slab entries.
*/
chunk_size = run_args->chunk_size + chunk_noise_tmp;
buf = (char *)vmem_alloc(chunk_size, KM_SLEEP);
ASSERT(buf);
/* Trivial data verification pattern for now. */
if (run_args->flags & DMU_VERIFY)
memset(buf, 'z', chunk_size);
/* Write phase */
mutex_enter(&thr->lock);
thr->stats.wr_time.start = zpios_timespec_now();
mutex_exit(&thr->lock);
while (zpios_get_work_item(run_args, &obj, &offset,
&chunk_size, &region, DMU_WRITE)) {
if (thread_delay) {
get_random_bytes(&random_int, sizeof (unsigned int));
thread_delay_tmp = random_int % thread_delay;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(thread_delay_tmp); /* In jiffies */
}
t.start = zpios_timespec_now();
rc = zpios_dmu_write(run_args, obj.os, obj.obj,
offset, chunk_size, buf);
t.stop = zpios_timespec_now();
t.delta = zpios_timespec_sub(t.stop, t.start);
if (rc) {
zpios_print(run_args->file, "IO error while doing "
"dmu_write(): %d\n", rc);
break;
}
mutex_enter(&thr->lock);
thr->stats.wr_data += chunk_size;
thr->stats.wr_chunks++;
thr->stats.wr_time.delta = zpios_timespec_add(
thr->stats.wr_time.delta, t.delta);
mutex_exit(&thr->lock);
mutex_enter(&region->lock);
region->stats.wr_data += chunk_size;
region->stats.wr_chunks++;
region->stats.wr_time.delta = zpios_timespec_add(
region->stats.wr_time.delta, t.delta);
/* First time region was accessed */
if (region->init_offset == offset)
region->stats.wr_time.start = t.start;
mutex_exit(&region->lock);
}
mutex_enter(&run_args->lock_ctl);
run_args->threads_done++;
mutex_exit(&run_args->lock_ctl);
mutex_enter(&thr->lock);
thr->rc = rc;
thr->stats.wr_time.stop = zpios_timespec_now();
mutex_exit(&thr->lock);
wake_up(&run_args->waitq);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule();
/* Check if we should exit */
mutex_enter(&thr->lock);
rc = thr->rc;
mutex_exit(&thr->lock);
if (rc)
goto out;
/* Read phase */
mutex_enter(&thr->lock);
thr->stats.rd_time.start = zpios_timespec_now();
mutex_exit(&thr->lock);
while (zpios_get_work_item(run_args, &obj, &offset,
&chunk_size, &region, DMU_READ)) {
if (thread_delay) {
get_random_bytes(&random_int, sizeof (unsigned int));
thread_delay_tmp = random_int % thread_delay;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(thread_delay_tmp); /* In jiffies */
}
if (run_args->flags & DMU_VERIFY)
memset(buf, 0, chunk_size);
t.start = zpios_timespec_now();
rc = zpios_dmu_read(run_args, obj.os, obj.obj,
offset, chunk_size, buf);
t.stop = zpios_timespec_now();
t.delta = zpios_timespec_sub(t.stop, t.start);
if (rc) {
zpios_print(run_args->file, "IO error while doing "
"dmu_read(): %d\n", rc);
break;
}
/* Trivial data verification, expensive! */
if (run_args->flags & DMU_VERIFY) {
for (i = 0; i < chunk_size; i++) {
if (buf[i] != 'z') {
zpios_print(run_args->file,
"IO verify error: %d/%d/%d\n",
(int)obj.obj, (int)offset,
(int)chunk_size);
break;
}
}
}
mutex_enter(&thr->lock);
thr->stats.rd_data += chunk_size;
thr->stats.rd_chunks++;
thr->stats.rd_time.delta = zpios_timespec_add(
thr->stats.rd_time.delta, t.delta);
mutex_exit(&thr->lock);
mutex_enter(&region->lock);
region->stats.rd_data += chunk_size;
region->stats.rd_chunks++;
region->stats.rd_time.delta = zpios_timespec_add(
region->stats.rd_time.delta, t.delta);
/* First time region was accessed */
if (region->init_offset == offset)
region->stats.rd_time.start = t.start;
mutex_exit(&region->lock);
}
mutex_enter(&run_args->lock_ctl);
run_args->threads_done++;
mutex_exit(&run_args->lock_ctl);
mutex_enter(&thr->lock);
thr->rc = rc;
thr->stats.rd_time.stop = zpios_timespec_now();
mutex_exit(&thr->lock);
wake_up(&run_args->waitq);
out:
vmem_free(buf, chunk_size);
do_exit(0);
return (rc); /* Unreachable, due to do_exit() */
}
static int
zpios_thread_done(run_args_t *run_args)
{
ASSERT(run_args->threads_done <= run_args->thread_count);
return (run_args->threads_done == run_args->thread_count);
}
static int
zpios_threads_run(run_args_t *run_args)
{
struct task_struct *tsk, **tsks;
thread_data_t *thr = NULL;
zpios_time_t *tt = &(run_args->stats.total_time);
zpios_time_t *tw = &(run_args->stats.wr_time);
zpios_time_t *tr = &(run_args->stats.rd_time);
int i, rc = 0, tc = run_args->thread_count;
tsks = kmem_zalloc(sizeof (struct task_struct *) * tc, KM_SLEEP);
if (tsks == NULL) {
rc = -ENOMEM;
goto cleanup2;
}
run_args->threads = kmem_zalloc(sizeof (thread_data_t *)*tc, KM_SLEEP);
if (run_args->threads == NULL) {
rc = -ENOMEM;
goto cleanup;
}
init_waitqueue_head(&run_args->waitq);
run_args->threads_done = 0;
/* Create all the needed threads which will sleep until awoken */
for (i = 0; i < tc; i++) {
thr = kmem_zalloc(sizeof (thread_data_t), KM_SLEEP);
if (thr == NULL) {
rc = -ENOMEM;
goto taskerr;
}
thr->thread_no = i;
thr->run_args = run_args;
thr->rc = 0;
mutex_init(&thr->lock, NULL, MUTEX_DEFAULT, NULL);
run_args->threads[i] = thr;
tsk = kthread_create(zpios_thread_main, (void *)thr,
"%s/%d", "zpios_io", i);
if (IS_ERR(tsk)) {
rc = -EINVAL;
goto taskerr;
}
tsks[i] = tsk;
}
tt->start = zpios_timespec_now();
/* Wake up all threads for write phase */
(void) zpios_upcall(run_args->pre, PHASE_PRE_WRITE, run_args, 0);
for (i = 0; i < tc; i++)
wake_up_process(tsks[i]);
/* Wait for write phase to complete */
tw->start = zpios_timespec_now();
wait_event(run_args->waitq, zpios_thread_done(run_args));
tw->stop = zpios_timespec_now();
(void) zpios_upcall(run_args->post, PHASE_POST_WRITE, run_args, rc);
for (i = 0; i < tc; i++) {
thr = run_args->threads[i];
mutex_enter(&thr->lock);
if (!rc && thr->rc)
rc = thr->rc;
run_args->stats.wr_data += thr->stats.wr_data;
run_args->stats.wr_chunks += thr->stats.wr_chunks;
mutex_exit(&thr->lock);
}
if (rc) {
/* Wake up all threads and tell them to exit */
for (i = 0; i < tc; i++) {
mutex_enter(&thr->lock);
thr->rc = rc;
mutex_exit(&thr->lock);
wake_up_process(tsks[i]);
}
goto out;
}
mutex_enter(&run_args->lock_ctl);
ASSERT(run_args->threads_done == run_args->thread_count);
run_args->threads_done = 0;
mutex_exit(&run_args->lock_ctl);
/* Wake up all threads for read phase */
(void) zpios_upcall(run_args->pre, PHASE_PRE_READ, run_args, 0);
for (i = 0; i < tc; i++)
wake_up_process(tsks[i]);
/* Wait for read phase to complete */
tr->start = zpios_timespec_now();
wait_event(run_args->waitq, zpios_thread_done(run_args));
tr->stop = zpios_timespec_now();
(void) zpios_upcall(run_args->post, PHASE_POST_READ, run_args, rc);
for (i = 0; i < tc; i++) {
thr = run_args->threads[i];
mutex_enter(&thr->lock);
if (!rc && thr->rc)
rc = thr->rc;
run_args->stats.rd_data += thr->stats.rd_data;
run_args->stats.rd_chunks += thr->stats.rd_chunks;
mutex_exit(&thr->lock);
}
out:
tt->stop = zpios_timespec_now();
tt->delta = zpios_timespec_sub(tt->stop, tt->start);
tw->delta = zpios_timespec_sub(tw->stop, tw->start);
tr->delta = zpios_timespec_sub(tr->stop, tr->start);
cleanup:
kmem_free(tsks, sizeof (struct task_struct *) * tc);
cleanup2:
/* Returns first encountered thread error (if any) */
return (rc);
taskerr:
/* Destroy all threads that were created successfully */
for (i = 0; i < tc; i++)
if (tsks[i] != NULL)
(void) kthread_stop(tsks[i]);
goto cleanup;
}
static int
zpios_do_one_run(struct file *file, zpios_cmd_t *kcmd,
int data_size, void *data)
{
run_args_t *run_args = { 0 };
zpios_stats_t *stats = (zpios_stats_t *)data;
int i, n, m, size, rc;
if ((!kcmd->cmd_chunk_size) || (!kcmd->cmd_region_size) ||
(!kcmd->cmd_thread_count) || (!kcmd->cmd_region_count)) {
zpios_print(file, "Invalid chunk_size, region_size, "
"thread_count, or region_count, %d\n", -EINVAL);
return (-EINVAL);
}
if (!(kcmd->cmd_flags & DMU_WRITE) ||
!(kcmd->cmd_flags & DMU_READ)) {
zpios_print(file, "Invalid flags, minimally DMU_WRITE "
"and DMU_READ must be set, %d\n", -EINVAL);
return (-EINVAL);
}
if ((kcmd->cmd_flags & (DMU_WRITE_ZC | DMU_READ_ZC)) &&
(kcmd->cmd_flags & DMU_VERIFY)) {
zpios_print(file, "Invalid flags, DMU_*_ZC incompatible "
"with DMU_VERIFY, used for performance analysis "
"only, %d\n", -EINVAL);
return (-EINVAL);
}
/*
* Opaque data on return contains structs of the following form:
*
* zpios_stat_t stats[];
* stats[0] = run_args->stats;
* stats[1-N] = threads[N]->stats;
* stats[N+1-M] = regions[M]->stats;
*
* Where N is the number of threads, and M is the number of regions.
*/
size = (sizeof (zpios_stats_t) +
(kcmd->cmd_thread_count * sizeof (zpios_stats_t)) +
(kcmd->cmd_region_count * sizeof (zpios_stats_t)));
if (data_size < size) {
zpios_print(file, "Invalid size, command data buffer "
"size too small, (%d < %d)\n", data_size, size);
return (-ENOSPC);
}
rc = zpios_setup_run(&run_args, kcmd, file);
if (rc)
return (rc);
rc = zpios_threads_run(run_args);
zpios_remove_objset(run_args);
if (rc)
goto cleanup;
if (stats) {
n = 1;
m = 1 + kcmd->cmd_thread_count;
stats[0] = run_args->stats;
for (i = 0; i < kcmd->cmd_thread_count; i++)
stats[n+i] = run_args->threads[i]->stats;
for (i = 0; i < kcmd->cmd_region_count; i++)
stats[m+i] = run_args->regions[i].stats;
}
cleanup:
zpios_cleanup_run(run_args);
(void) zpios_upcall(kcmd->cmd_post, PHASE_POST_RUN, run_args, 0);
return (rc);
}
static int
zpios_open(struct inode *inode, struct file *file)
{
zpios_info_t *info;
info = (zpios_info_t *)kmem_alloc(sizeof (*info), KM_SLEEP);
if (info == NULL)
return (-ENOMEM);
spin_lock_init(&info->info_lock);
info->info_size = ZPIOS_INFO_BUFFER_SIZE;
info->info_buffer =
(char *) vmem_alloc(ZPIOS_INFO_BUFFER_SIZE, KM_SLEEP);
if (info->info_buffer == NULL) {
kmem_free(info, sizeof (*info));
return (-ENOMEM);
}
info->info_head = info->info_buffer;
file->private_data = (void *)info;
return (0);
}
static int
zpios_release(struct inode *inode, struct file *file)
{
zpios_info_t *info = (zpios_info_t *)file->private_data;
ASSERT(info);
ASSERT(info->info_buffer);
vmem_free(info->info_buffer, ZPIOS_INFO_BUFFER_SIZE);
kmem_free(info, sizeof (*info));
return (0);
}
static int
zpios_buffer_clear(struct file *file, zpios_cfg_t *kcfg, unsigned long arg)
{
zpios_info_t *info = (zpios_info_t *)file->private_data;
ASSERT(info);
ASSERT(info->info_buffer);
spin_lock(&info->info_lock);
memset(info->info_buffer, 0, info->info_size);
info->info_head = info->info_buffer;
spin_unlock(&info->info_lock);
return (0);
}
static int
zpios_buffer_size(struct file *file, zpios_cfg_t *kcfg, unsigned long arg)
{
zpios_info_t *info = (zpios_info_t *)file->private_data;
char *buf;
int min, size, rc = 0;
ASSERT(info);
ASSERT(info->info_buffer);
spin_lock(&info->info_lock);
if (kcfg->cfg_arg1 > 0) {
size = kcfg->cfg_arg1;
buf = (char *)vmem_alloc(size, KM_SLEEP);
if (buf == NULL) {
rc = -ENOMEM;
goto out;
}
/* Zero fill and truncate contents when coping buffer */
min = ((size < info->info_size) ? size : info->info_size);
memset(buf, 0, size);
memcpy(buf, info->info_buffer, min);
vmem_free(info->info_buffer, info->info_size);
info->info_size = size;
info->info_buffer = buf;
info->info_head = info->info_buffer;
}
kcfg->cfg_rc1 = info->info_size;
if (copy_to_user((struct zpios_cfg_t __user *)arg,
kcfg, sizeof (*kcfg)))
rc = -EFAULT;
out:
spin_unlock(&info->info_lock);
return (rc);
}
static int
zpios_ioctl_cfg(struct file *file, unsigned long arg)
{
zpios_cfg_t kcfg;
int rc = 0;
if (copy_from_user(&kcfg, (zpios_cfg_t *)arg, sizeof (kcfg)))
return (-EFAULT);
if (kcfg.cfg_magic != ZPIOS_CFG_MAGIC) {
zpios_print(file, "Bad config magic 0x%x != 0x%x\n",
kcfg.cfg_magic, ZPIOS_CFG_MAGIC);
return (-EINVAL);
}
switch (kcfg.cfg_cmd) {
case ZPIOS_CFG_BUFFER_CLEAR:
/*
* cfg_arg1 - Unused
* cfg_rc1 - Unused
*/
rc = zpios_buffer_clear(file, &kcfg, arg);
break;
case ZPIOS_CFG_BUFFER_SIZE:
/*
* cfg_arg1 - 0 - query size; >0 resize
* cfg_rc1 - Set to current buffer size
*/
rc = zpios_buffer_size(file, &kcfg, arg);
break;
default:
zpios_print(file, "Bad config command %d\n",
kcfg.cfg_cmd);
rc = -EINVAL;
break;
}
return (rc);
}
static int
zpios_ioctl_cmd(struct file *file, unsigned long arg)
{
zpios_cmd_t *kcmd;
void *data = NULL;
int rc = -EINVAL;
kcmd = kmem_alloc(sizeof (zpios_cmd_t), KM_SLEEP);
if (kcmd == NULL) {
zpios_print(file, "Unable to kmem_alloc() %ld byte for "
"zpios_cmd_t\n", (long int)sizeof (zpios_cmd_t));
return (-ENOMEM);
}
rc = copy_from_user(kcmd, (zpios_cfg_t *)arg, sizeof (zpios_cmd_t));
if (rc) {
zpios_print(file, "Unable to copy command structure "
"from user to kernel memory, %d\n", rc);
goto out_cmd;
}
if (kcmd->cmd_magic != ZPIOS_CMD_MAGIC) {
zpios_print(file, "Bad command magic 0x%x != 0x%x\n",
kcmd->cmd_magic, ZPIOS_CFG_MAGIC);
rc = (-EINVAL);
goto out_cmd;
}
/* Allocate memory for any opaque data the caller needed to pass on */
if (kcmd->cmd_data_size > 0) {
data = (void *)vmem_alloc(kcmd->cmd_data_size, KM_SLEEP);
if (data == NULL) {
zpios_print(file, "Unable to vmem_alloc() %ld "
"bytes for data buffer\n",
(long)kcmd->cmd_data_size);
rc = -ENOMEM;
goto out_cmd;
}
rc = copy_from_user(data, (void *)(arg + offsetof(zpios_cmd_t,
cmd_data_str)), kcmd->cmd_data_size);
if (rc) {
zpios_print(file, "Unable to copy data buffer "
"from user to kernel memory, %d\n", rc);
goto out_data;
}
}
rc = zpios_do_one_run(file, kcmd, kcmd->cmd_data_size, data);
if (data != NULL) {
/* If the test failed do not print out the stats */
if (rc)
goto out_data;
rc = copy_to_user((void *)(arg + offsetof(zpios_cmd_t,
cmd_data_str)), data, kcmd->cmd_data_size);
if (rc) {
zpios_print(file, "Unable to copy data buffer "
"from kernel to user memory, %d\n", rc);
rc = -EFAULT;
}
out_data:
vmem_free(data, kcmd->cmd_data_size);
}
out_cmd:
kmem_free(kcmd, sizeof (zpios_cmd_t));
return (rc);
}
static long
zpios_unlocked_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
int rc = 0;
/* Ignore tty ioctls */
if ((cmd & 0xffffff00) == ((int)'T') << 8)
return (-ENOTTY);
switch (cmd) {
case ZPIOS_CFG:
rc = zpios_ioctl_cfg(file, arg);
break;
case ZPIOS_CMD:
rc = zpios_ioctl_cmd(file, arg);
break;
default:
zpios_print(file, "Bad ioctl command %d\n", cmd);
rc = -EINVAL;
break;
}
return (rc);
}
#ifdef CONFIG_COMPAT
/* Compatibility handler for ioctls from 32-bit ELF binaries */
static long
zpios_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return (zpios_unlocked_ioctl(file, cmd, arg));
}
#endif /* CONFIG_COMPAT */
/*
* I'm not sure why you would want to write in to this buffer from
* user space since its principle use is to pass test status info
* back to the user space, but I don't see any reason to prevent it.
*/
static ssize_t
zpios_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
zpios_info_t *info = (zpios_info_t *)file->private_data;
int rc = 0;
ASSERT(info);
ASSERT(info->info_buffer);
spin_lock(&info->info_lock);
/* Write beyond EOF */
if (*ppos >= info->info_size) {
rc = -EFBIG;
goto out;
}
/* Resize count if beyond EOF */
if (*ppos + count > info->info_size)
count = info->info_size - *ppos;
if (copy_from_user(info->info_buffer, buf, count)) {
rc = -EFAULT;
goto out;
}
*ppos += count;
rc = count;
out:
spin_unlock(&info->info_lock);
return (rc);
}
static ssize_t
zpios_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
zpios_info_t *info = (zpios_info_t *)file->private_data;
int rc = 0;
ASSERT(info);
ASSERT(info->info_buffer);
spin_lock(&info->info_lock);
/* Read beyond EOF */
if (*ppos >= info->info_size)
goto out;
/* Resize count if beyond EOF */
if (*ppos + count > info->info_size)
count = info->info_size - *ppos;
if (copy_to_user(buf, info->info_buffer + *ppos, count)) {
rc = -EFAULT;
goto out;
}
*ppos += count;
rc = count;
out:
spin_unlock(&info->info_lock);
return (rc);
}
static loff_t zpios_seek(struct file *file, loff_t offset, int origin)
{
zpios_info_t *info = (zpios_info_t *)file->private_data;
int rc = -EINVAL;
ASSERT(info);
ASSERT(info->info_buffer);
spin_lock(&info->info_lock);
switch (origin) {
case 0: /* SEEK_SET - No-op just do it */
break;
case 1: /* SEEK_CUR - Seek from current */
offset = file->f_pos + offset;
break;
case 2: /* SEEK_END - Seek from end */
offset = info->info_size + offset;
break;
}
if (offset >= 0) {
file->f_pos = offset;
file->f_version = 0;
rc = offset;
}
spin_unlock(&info->info_lock);
return (rc);
}
static struct file_operations zpios_fops = {
.owner = THIS_MODULE,
.open = zpios_open,
.release = zpios_release,
.unlocked_ioctl = zpios_unlocked_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = zpios_compat_ioctl,
#endif
.read = zpios_read,
.write = zpios_write,
.llseek = zpios_seek,
};
static struct miscdevice zpios_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = ZPIOS_NAME,
.fops = &zpios_fops,
};
#ifdef DEBUG
#define ZFS_DEBUG_STR " (DEBUG mode)"
#else
#define ZFS_DEBUG_STR ""
#endif
static int
zpios_init(void)
{
int error;
error = misc_register(&zpios_misc);
if (error) {
printk(KERN_INFO "ZPIOS: misc_register() failed %d\n", error);
} else {
printk(KERN_INFO "ZPIOS: Loaded module v%s-%s%s\n",
ZFS_META_VERSION, ZFS_META_RELEASE, ZFS_DEBUG_STR);
}
return (error);
}
static int
zpios_fini(void)
{
int error;
error = misc_deregister(&zpios_misc);
if (error)
printk(KERN_INFO "ZPIOS: misc_deregister() failed %d\n", error);
printk(KERN_INFO "ZPIOS: Unloaded module v%s-%s%s\n",
ZFS_META_VERSION, ZFS_META_RELEASE, ZFS_DEBUG_STR);
return (0);
}
spl_module_init(zpios_init);
spl_module_exit(zpios_fini);
MODULE_AUTHOR("LLNL / Sun");
MODULE_DESCRIPTION("Kernel PIOS implementation");
MODULE_LICENSE("GPL");
MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);