mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-02 14:29:35 +03:00
8e94ac0e36
Linux 5.16 moved XSTATE_XSAVE and XSTATE_XRESTORE out of our reach, so add our own XSAVE{,OPT,S} code and use it for Linux 5.16. Please note that this differs from previous behavior in that it won't handle exceptions created by XSAVE an XRSTOR. This is sensible for three reasons. - Exceptions during XSAVE and XRSTOR can only occur if the feature is not supported or enabled or the memory operand isn't aligned on a 64 byte boundary. If this happens something else went terribly wrong, and it may be better to stop execution. - Previously we just printed a warning and didn't handle the fault, this is arguable for the above reason. - All other *SAVE instruction also don't handle exceptions, so this at least aligns behavior. Finally add a test to catch such a regression in the future. Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Attila Fülöp <attila@fueloep.org> Closes #13042 Closes #13059
771 lines
17 KiB
C
771 lines
17 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2016 Gvozden Neskovic <neskovic@compeng.uni-frankfurt.de>.
|
|
*/
|
|
|
|
/*
|
|
* USER API:
|
|
*
|
|
* Kernel fpu methods:
|
|
* kfpu_allowed()
|
|
* kfpu_begin()
|
|
* kfpu_end()
|
|
* kfpu_init()
|
|
* kfpu_fini()
|
|
*
|
|
* SIMD support:
|
|
*
|
|
* Following functions should be called to determine whether CPU feature
|
|
* is supported. All functions are usable in kernel and user space.
|
|
* If a SIMD algorithm is using more than one instruction set
|
|
* all relevant feature test functions should be called.
|
|
*
|
|
* Supported features:
|
|
* zfs_sse_available()
|
|
* zfs_sse2_available()
|
|
* zfs_sse3_available()
|
|
* zfs_ssse3_available()
|
|
* zfs_sse4_1_available()
|
|
* zfs_sse4_2_available()
|
|
*
|
|
* zfs_avx_available()
|
|
* zfs_avx2_available()
|
|
*
|
|
* zfs_bmi1_available()
|
|
* zfs_bmi2_available()
|
|
*
|
|
* zfs_avx512f_available()
|
|
* zfs_avx512cd_available()
|
|
* zfs_avx512er_available()
|
|
* zfs_avx512pf_available()
|
|
* zfs_avx512bw_available()
|
|
* zfs_avx512dq_available()
|
|
* zfs_avx512vl_available()
|
|
* zfs_avx512ifma_available()
|
|
* zfs_avx512vbmi_available()
|
|
*
|
|
* NOTE(AVX-512VL): If using AVX-512 instructions with 128Bit registers
|
|
* also add zfs_avx512vl_available() to feature check.
|
|
*/
|
|
|
|
#ifndef _LINUX_SIMD_X86_H
|
|
#define _LINUX_SIMD_X86_H
|
|
|
|
/* only for __x86 */
|
|
#if defined(__x86)
|
|
|
|
#include <sys/types.h>
|
|
#include <asm/cpufeature.h>
|
|
|
|
/*
|
|
* Disable the WARN_ON_FPU() macro to prevent additional dependencies
|
|
* when providing the kfpu_* functions. Relevant warnings are included
|
|
* as appropriate and are unconditionally enabled.
|
|
*/
|
|
#if defined(CONFIG_X86_DEBUG_FPU) && !defined(KERNEL_EXPORTS_X86_FPU)
|
|
#undef CONFIG_X86_DEBUG_FPU
|
|
#endif
|
|
|
|
#if defined(HAVE_KERNEL_FPU_API_HEADER)
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/fpu/internal.h>
|
|
#if defined(HAVE_KERNEL_FPU_XCR_HEADER)
|
|
#include <asm/fpu/xcr.h>
|
|
#endif
|
|
#else
|
|
#include <asm/i387.h>
|
|
#include <asm/xcr.h>
|
|
#endif
|
|
|
|
/*
|
|
* The following cases are for kernels which export either the
|
|
* kernel_fpu_* or __kernel_fpu_* functions.
|
|
*/
|
|
#if defined(KERNEL_EXPORTS_X86_FPU)
|
|
|
|
#define kfpu_allowed() 1
|
|
#define kfpu_init() 0
|
|
#define kfpu_fini() ((void) 0)
|
|
|
|
#if defined(HAVE_UNDERSCORE_KERNEL_FPU)
|
|
#define kfpu_begin() \
|
|
{ \
|
|
preempt_disable(); \
|
|
__kernel_fpu_begin(); \
|
|
}
|
|
#define kfpu_end() \
|
|
{ \
|
|
__kernel_fpu_end(); \
|
|
preempt_enable(); \
|
|
}
|
|
|
|
#elif defined(HAVE_KERNEL_FPU)
|
|
#define kfpu_begin() kernel_fpu_begin()
|
|
#define kfpu_end() kernel_fpu_end()
|
|
|
|
#else
|
|
/*
|
|
* This case is unreachable. When KERNEL_EXPORTS_X86_FPU is defined then
|
|
* either HAVE_UNDERSCORE_KERNEL_FPU or HAVE_KERNEL_FPU must be defined.
|
|
*/
|
|
#error "Unreachable kernel configuration"
|
|
#endif
|
|
|
|
#else /* defined(KERNEL_EXPORTS_X86_FPU) */
|
|
|
|
/*
|
|
* When the kernel_fpu_* symbols are unavailable then provide our own
|
|
* versions which allow the FPU to be safely used.
|
|
*/
|
|
#if defined(HAVE_KERNEL_FPU_INTERNAL) || defined(HAVE_KERNEL_FPU_XSAVE_INTERNAL)
|
|
|
|
#if defined(HAVE_KERNEL_FPU_XSAVE_INTERNAL)
|
|
/*
|
|
* Some sanity checks.
|
|
* HAVE_KERNEL_FPU_INTERNAL and HAVE_KERNEL_FPU_XSAVE_INTERNAL are exclusive.
|
|
*/
|
|
#if defined(HAVE_KERNEL_FPU_INTERNAL)
|
|
#error "HAVE_KERNEL_FPU_INTERNAL and HAVE_KERNEL_FPU_XSAVE_INTERNAL defined"
|
|
#endif
|
|
/*
|
|
* For kernels >= 5.16 we have to use inline assembly with the XSAVE{,OPT,S}
|
|
* instructions, so we need the toolchain to support at least XSAVE.
|
|
*/
|
|
#if !defined(HAVE_XSAVE)
|
|
#error "Toolchain needs to support the XSAVE assembler instruction"
|
|
#endif
|
|
#endif
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
|
|
extern union fpregs_state **zfs_kfpu_fpregs;
|
|
|
|
/*
|
|
* Initialize per-cpu variables to store FPU state.
|
|
*/
|
|
static inline void
|
|
kfpu_fini(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
if (zfs_kfpu_fpregs[cpu] != NULL) {
|
|
free_pages((unsigned long)zfs_kfpu_fpregs[cpu],
|
|
get_order(sizeof (union fpregs_state)));
|
|
}
|
|
}
|
|
|
|
kfree(zfs_kfpu_fpregs);
|
|
}
|
|
|
|
static inline int
|
|
kfpu_init(void)
|
|
{
|
|
zfs_kfpu_fpregs = kzalloc(num_possible_cpus() *
|
|
sizeof (union fpregs_state *), GFP_KERNEL);
|
|
if (zfs_kfpu_fpregs == NULL)
|
|
return (-ENOMEM);
|
|
|
|
/*
|
|
* The fxsave and xsave operations require 16-/64-byte alignment of
|
|
* the target memory. Since kmalloc() provides no alignment
|
|
* guarantee instead use alloc_pages_node().
|
|
*/
|
|
unsigned int order = get_order(sizeof (union fpregs_state));
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct page *page = alloc_pages_node(cpu_to_node(cpu),
|
|
GFP_KERNEL | __GFP_ZERO, order);
|
|
if (page == NULL) {
|
|
kfpu_fini();
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
zfs_kfpu_fpregs[cpu] = page_address(page);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#define kfpu_allowed() 1
|
|
#if defined(HAVE_KERNEL_FPU_INTERNAL)
|
|
#define ex_handler_fprestore ex_handler_default
|
|
#endif
|
|
|
|
/*
|
|
* FPU save and restore instructions.
|
|
*/
|
|
#define __asm __asm__ __volatile__
|
|
#define kfpu_fxsave(addr) __asm("fxsave %0" : "=m" (*(addr)))
|
|
#define kfpu_fxsaveq(addr) __asm("fxsaveq %0" : "=m" (*(addr)))
|
|
#define kfpu_fnsave(addr) __asm("fnsave %0; fwait" : "=m" (*(addr)))
|
|
#define kfpu_fxrstor(addr) __asm("fxrstor %0" : : "m" (*(addr)))
|
|
#define kfpu_fxrstorq(addr) __asm("fxrstorq %0" : : "m" (*(addr)))
|
|
#define kfpu_frstor(addr) __asm("frstor %0" : : "m" (*(addr)))
|
|
#define kfpu_fxsr_clean(rval) __asm("fnclex; emms; fildl %P[addr]" \
|
|
: : [addr] "m" (rval));
|
|
|
|
#if defined(HAVE_KERNEL_FPU_INTERNAL)
|
|
static inline void
|
|
kfpu_save_xsave(struct xregs_state *addr, uint64_t mask)
|
|
{
|
|
uint32_t low, hi;
|
|
int err;
|
|
|
|
low = mask;
|
|
hi = mask >> 32;
|
|
XSTATE_XSAVE(addr, low, hi, err);
|
|
WARN_ON_ONCE(err);
|
|
}
|
|
#endif /* defined(HAVE_KERNEL_FPU_INTERNAL) */
|
|
|
|
#if defined(HAVE_KERNEL_FPU_XSAVE_INTERNAL)
|
|
#define kfpu_do_xsave(instruction, addr, mask) \
|
|
{ \
|
|
uint32_t low, hi; \
|
|
\
|
|
low = mask; \
|
|
hi = (uint64_t)(mask) >> 32; \
|
|
__asm(instruction " %[dst]\n\t" \
|
|
: \
|
|
: [dst] "m" (*(addr)), "a" (low), "d" (hi) \
|
|
: "memory"); \
|
|
}
|
|
#endif /* defined(HAVE_KERNEL_FPU_XSAVE_INTERNAL) */
|
|
|
|
static inline void
|
|
kfpu_save_fxsr(struct fxregs_state *addr)
|
|
{
|
|
if (IS_ENABLED(CONFIG_X86_32))
|
|
kfpu_fxsave(addr);
|
|
else
|
|
kfpu_fxsaveq(addr);
|
|
}
|
|
|
|
static inline void
|
|
kfpu_save_fsave(struct fregs_state *addr)
|
|
{
|
|
kfpu_fnsave(addr);
|
|
}
|
|
|
|
#if defined(HAVE_KERNEL_FPU_INTERNAL)
|
|
static inline void
|
|
kfpu_begin(void)
|
|
{
|
|
/*
|
|
* Preemption and interrupts must be disabled for the critical
|
|
* region where the FPU state is being modified.
|
|
*/
|
|
preempt_disable();
|
|
local_irq_disable();
|
|
|
|
/*
|
|
* The current FPU registers need to be preserved by kfpu_begin()
|
|
* and restored by kfpu_end(). They are stored in a dedicated
|
|
* per-cpu variable, not in the task struct, this allows any user
|
|
* FPU state to be correctly preserved and restored.
|
|
*/
|
|
union fpregs_state *state = zfs_kfpu_fpregs[smp_processor_id()];
|
|
if (static_cpu_has(X86_FEATURE_XSAVE)) {
|
|
kfpu_save_xsave(&state->xsave, ~0);
|
|
} else if (static_cpu_has(X86_FEATURE_FXSR)) {
|
|
kfpu_save_fxsr(&state->fxsave);
|
|
} else {
|
|
kfpu_save_fsave(&state->fsave);
|
|
}
|
|
}
|
|
#endif /* defined(HAVE_KERNEL_FPU_INTERNAL) */
|
|
|
|
#if defined(HAVE_KERNEL_FPU_XSAVE_INTERNAL)
|
|
static inline void
|
|
kfpu_begin(void)
|
|
{
|
|
/*
|
|
* Preemption and interrupts must be disabled for the critical
|
|
* region where the FPU state is being modified.
|
|
*/
|
|
preempt_disable();
|
|
local_irq_disable();
|
|
|
|
/*
|
|
* The current FPU registers need to be preserved by kfpu_begin()
|
|
* and restored by kfpu_end(). They are stored in a dedicated
|
|
* per-cpu variable, not in the task struct, this allows any user
|
|
* FPU state to be correctly preserved and restored.
|
|
*/
|
|
union fpregs_state *state = zfs_kfpu_fpregs[smp_processor_id()];
|
|
#if defined(HAVE_XSAVES)
|
|
if (static_cpu_has(X86_FEATURE_XSAVES)) {
|
|
kfpu_do_xsave("xsaves", &state->xsave, ~0);
|
|
goto out;
|
|
}
|
|
#endif
|
|
#if defined(HAVE_XSAVEOPT)
|
|
if (static_cpu_has(X86_FEATURE_XSAVEOPT)) {
|
|
kfpu_do_xsave("xsaveopt", &state->xsave, ~0);
|
|
goto out;
|
|
}
|
|
#endif
|
|
if (static_cpu_has(X86_FEATURE_XSAVE)) {
|
|
kfpu_do_xsave("xsave", &state->xsave, ~0);
|
|
} else if (static_cpu_has(X86_FEATURE_FXSR)) {
|
|
kfpu_save_fxsr(&state->fxsave);
|
|
} else {
|
|
kfpu_save_fsave(&state->fsave);
|
|
}
|
|
out:
|
|
}
|
|
#endif /* defined(HAVE_KERNEL_FPU_XSAVE_INTERNAL) */
|
|
|
|
#if defined(HAVE_KERNEL_FPU_INTERNAL)
|
|
static inline void
|
|
kfpu_restore_xsave(struct xregs_state *addr, uint64_t mask)
|
|
{
|
|
uint32_t low, hi;
|
|
|
|
low = mask;
|
|
hi = mask >> 32;
|
|
XSTATE_XRESTORE(addr, low, hi);
|
|
}
|
|
#endif /* defined(HAVE_KERNEL_FPU_INTERNAL) */
|
|
|
|
#if defined(HAVE_KERNEL_FPU_XSAVE_INTERNAL)
|
|
#define kfpu_do_xrstor(instruction, addr, mask) \
|
|
{ \
|
|
uint32_t low, hi; \
|
|
\
|
|
low = mask; \
|
|
hi = (uint64_t)(mask) >> 32; \
|
|
__asm(instruction " %[src]" \
|
|
: \
|
|
: [src] "m" (*(addr)), "a" (low), "d" (hi) \
|
|
: "memory"); \
|
|
}
|
|
#endif /* defined(HAVE_KERNEL_FPU_XSAVE_INTERNAL) */
|
|
|
|
static inline void
|
|
kfpu_restore_fxsr(struct fxregs_state *addr)
|
|
{
|
|
/*
|
|
* On AuthenticAMD K7 and K8 processors the fxrstor instruction only
|
|
* restores the _x87 FOP, FIP, and FDP registers when an exception
|
|
* is pending. Clean the _x87 state to force the restore.
|
|
*/
|
|
if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK)))
|
|
kfpu_fxsr_clean(addr);
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32)) {
|
|
kfpu_fxrstor(addr);
|
|
} else {
|
|
kfpu_fxrstorq(addr);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
kfpu_restore_fsave(struct fregs_state *addr)
|
|
{
|
|
kfpu_frstor(addr);
|
|
}
|
|
|
|
#if defined(HAVE_KERNEL_FPU_INTERNAL)
|
|
static inline void
|
|
kfpu_end(void)
|
|
{
|
|
union fpregs_state *state = zfs_kfpu_fpregs[smp_processor_id()];
|
|
|
|
if (static_cpu_has(X86_FEATURE_XSAVE)) {
|
|
kfpu_restore_xsave(&state->xsave, ~0);
|
|
} else if (static_cpu_has(X86_FEATURE_FXSR)) {
|
|
kfpu_restore_fxsr(&state->fxsave);
|
|
} else {
|
|
kfpu_restore_fsave(&state->fsave);
|
|
}
|
|
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
}
|
|
#endif /* defined(HAVE_KERNEL_FPU_INTERNAL) */
|
|
|
|
#if defined(HAVE_KERNEL_FPU_XSAVE_INTERNAL)
|
|
static inline void
|
|
kfpu_end(void)
|
|
{
|
|
union fpregs_state *state = zfs_kfpu_fpregs[smp_processor_id()];
|
|
#if defined(HAVE_XSAVES)
|
|
if (static_cpu_has(X86_FEATURE_XSAVES)) {
|
|
kfpu_do_xrstor("xrstors", &state->xsave, ~0);
|
|
goto out;
|
|
}
|
|
#endif
|
|
if (static_cpu_has(X86_FEATURE_XSAVE)) {
|
|
kfpu_do_xrstor("xrstor", &state->xsave, ~0);
|
|
} else if (static_cpu_has(X86_FEATURE_FXSR)) {
|
|
kfpu_save_fxsr(&state->fxsave);
|
|
} else {
|
|
kfpu_save_fsave(&state->fsave);
|
|
}
|
|
out:
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
|
|
}
|
|
#endif /* defined(HAVE_KERNEL_FPU_XSAVE_INTERNAL) */
|
|
|
|
#else
|
|
|
|
/*
|
|
* FPU support is unavailable.
|
|
*/
|
|
#define kfpu_allowed() 0
|
|
#define kfpu_begin() do {} while (0)
|
|
#define kfpu_end() do {} while (0)
|
|
#define kfpu_init() 0
|
|
#define kfpu_fini() ((void) 0)
|
|
|
|
#endif /* defined(HAVE_KERNEL_FPU_INTERNAL || HAVE_KERNEL_FPU_XSAVE_INTERNAL) */
|
|
#endif /* defined(KERNEL_EXPORTS_X86_FPU) */
|
|
|
|
/*
|
|
* Linux kernel provides an interface for CPU feature testing.
|
|
*/
|
|
|
|
/*
|
|
* Detect register set support
|
|
*/
|
|
static inline boolean_t
|
|
__simd_state_enabled(const uint64_t state)
|
|
{
|
|
boolean_t has_osxsave;
|
|
uint64_t xcr0;
|
|
|
|
#if defined(X86_FEATURE_OSXSAVE)
|
|
has_osxsave = !!boot_cpu_has(X86_FEATURE_OSXSAVE);
|
|
#else
|
|
has_osxsave = B_FALSE;
|
|
#endif
|
|
if (!has_osxsave)
|
|
return (B_FALSE);
|
|
|
|
xcr0 = xgetbv(0);
|
|
return ((xcr0 & state) == state);
|
|
}
|
|
|
|
#define _XSTATE_SSE_AVX (0x2 | 0x4)
|
|
#define _XSTATE_AVX512 (0xE0 | _XSTATE_SSE_AVX)
|
|
|
|
#define __ymm_enabled() __simd_state_enabled(_XSTATE_SSE_AVX)
|
|
#define __zmm_enabled() __simd_state_enabled(_XSTATE_AVX512)
|
|
|
|
/*
|
|
* Check if SSE instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse_available(void)
|
|
{
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM));
|
|
}
|
|
|
|
/*
|
|
* Check if SSE2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse2_available(void)
|
|
{
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM2));
|
|
}
|
|
|
|
/*
|
|
* Check if SSE3 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse3_available(void)
|
|
{
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM3));
|
|
}
|
|
|
|
/*
|
|
* Check if SSSE3 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_ssse3_available(void)
|
|
{
|
|
return (!!boot_cpu_has(X86_FEATURE_SSSE3));
|
|
}
|
|
|
|
/*
|
|
* Check if SSE4.1 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse4_1_available(void)
|
|
{
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM4_1));
|
|
}
|
|
|
|
/*
|
|
* Check if SSE4.2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_sse4_2_available(void)
|
|
{
|
|
return (!!boot_cpu_has(X86_FEATURE_XMM4_2));
|
|
}
|
|
|
|
/*
|
|
* Check if AVX instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx_available(void)
|
|
{
|
|
return (boot_cpu_has(X86_FEATURE_AVX) && __ymm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx2_available(void)
|
|
{
|
|
return (boot_cpu_has(X86_FEATURE_AVX2) && __ymm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if BMI1 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_bmi1_available(void)
|
|
{
|
|
#if defined(X86_FEATURE_BMI1)
|
|
return (!!boot_cpu_has(X86_FEATURE_BMI1));
|
|
#else
|
|
return (B_FALSE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if BMI2 instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_bmi2_available(void)
|
|
{
|
|
#if defined(X86_FEATURE_BMI2)
|
|
return (!!boot_cpu_has(X86_FEATURE_BMI2));
|
|
#else
|
|
return (B_FALSE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if AES instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_aes_available(void)
|
|
{
|
|
#if defined(X86_FEATURE_AES)
|
|
return (!!boot_cpu_has(X86_FEATURE_AES));
|
|
#else
|
|
return (B_FALSE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if PCLMULQDQ instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_pclmulqdq_available(void)
|
|
{
|
|
#if defined(X86_FEATURE_PCLMULQDQ)
|
|
return (!!boot_cpu_has(X86_FEATURE_PCLMULQDQ));
|
|
#else
|
|
return (B_FALSE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Check if MOVBE instruction is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_movbe_available(void)
|
|
{
|
|
#if defined(X86_FEATURE_MOVBE)
|
|
return (!!boot_cpu_has(X86_FEATURE_MOVBE));
|
|
#else
|
|
return (B_FALSE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* AVX-512 family of instruction sets:
|
|
*
|
|
* AVX512F Foundation
|
|
* AVX512CD Conflict Detection Instructions
|
|
* AVX512ER Exponential and Reciprocal Instructions
|
|
* AVX512PF Prefetch Instructions
|
|
*
|
|
* AVX512BW Byte and Word Instructions
|
|
* AVX512DQ Double-word and Quadword Instructions
|
|
* AVX512VL Vector Length Extensions
|
|
*
|
|
* AVX512IFMA Integer Fused Multiply Add (Not supported by kernel 4.4)
|
|
* AVX512VBMI Vector Byte Manipulation Instructions
|
|
*/
|
|
|
|
/*
|
|
* Check if AVX512F instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx512f_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(X86_FEATURE_AVX512F)
|
|
has_avx512 = !!boot_cpu_has(X86_FEATURE_AVX512F);
|
|
#endif
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX512CD instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx512cd_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(X86_FEATURE_AVX512CD)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512CD);
|
|
#endif
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX512ER instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx512er_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(X86_FEATURE_AVX512ER)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512ER);
|
|
#endif
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX512PF instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx512pf_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(X86_FEATURE_AVX512PF)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512PF);
|
|
#endif
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX512BW instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx512bw_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(X86_FEATURE_AVX512BW)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512BW);
|
|
#endif
|
|
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX512DQ instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx512dq_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(X86_FEATURE_AVX512DQ)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512DQ);
|
|
#endif
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX512VL instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx512vl_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(X86_FEATURE_AVX512VL)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512VL);
|
|
#endif
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX512IFMA instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx512ifma_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(X86_FEATURE_AVX512IFMA)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512IFMA);
|
|
#endif
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
/*
|
|
* Check if AVX512VBMI instruction set is available
|
|
*/
|
|
static inline boolean_t
|
|
zfs_avx512vbmi_available(void)
|
|
{
|
|
boolean_t has_avx512 = B_FALSE;
|
|
|
|
#if defined(X86_FEATURE_AVX512VBMI)
|
|
has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
|
|
boot_cpu_has(X86_FEATURE_AVX512VBMI);
|
|
#endif
|
|
return (has_avx512 && __zmm_enabled());
|
|
}
|
|
|
|
#endif /* defined(__x86) */
|
|
|
|
#endif /* _LINUX_SIMD_X86_H */
|