mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 04:30:33 +03:00
02730c333c
Enable picky cstyle checks and resolve the new warnings. The vast majority of the changes needed were to handle minor issues with whitespace formatting. This patch contains no functional changes. Non-whitespace changes are as follows: * 8 times ; to { } in for/while loop * fix missing ; in cmd/zed/agents/zfs_diagnosis.c * comment (confim -> confirm) * change endline , to ; in cmd/zpool/zpool_main.c * a number of /* BEGIN CSTYLED */ /* END CSTYLED */ blocks * /* CSTYLED */ markers * change == 0 to ! * ulong to unsigned long in module/zfs/dsl_scan.c * rearrangement of module_param lines in module/zfs/metaslab.c * add { } block around statement after for_each_online_node Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov> Reviewed-by: Håkan Johansson <f96hajo@chalmers.se> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #5465
925 lines
27 KiB
C
925 lines
27 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* This file is part of the core Kernel Cryptographic Framework.
|
|
* It implements the SPI functions exported to cryptographic
|
|
* providers.
|
|
*/
|
|
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/crypto/common.h>
|
|
#include <sys/crypto/impl.h>
|
|
#include <sys/crypto/sched_impl.h>
|
|
#include <sys/crypto/spi.h>
|
|
|
|
/*
|
|
* minalloc and maxalloc values to be used for taskq_create().
|
|
*/
|
|
int crypto_taskq_threads = CRYPTO_TASKQ_THREADS;
|
|
int crypto_taskq_minalloc = CYRPTO_TASKQ_MIN;
|
|
int crypto_taskq_maxalloc = CRYPTO_TASKQ_MAX;
|
|
|
|
static void remove_provider(kcf_provider_desc_t *);
|
|
static void process_logical_providers(crypto_provider_info_t *,
|
|
kcf_provider_desc_t *);
|
|
static int init_prov_mechs(crypto_provider_info_t *, kcf_provider_desc_t *);
|
|
static int kcf_prov_kstat_update(kstat_t *, int);
|
|
static void delete_kstat(kcf_provider_desc_t *);
|
|
|
|
static kcf_prov_stats_t kcf_stats_ks_data_template = {
|
|
{ "kcf_ops_total", KSTAT_DATA_UINT64 },
|
|
{ "kcf_ops_passed", KSTAT_DATA_UINT64 },
|
|
{ "kcf_ops_failed", KSTAT_DATA_UINT64 },
|
|
{ "kcf_ops_returned_busy", KSTAT_DATA_UINT64 }
|
|
};
|
|
|
|
#define KCF_SPI_COPY_OPS(src, dst, ops) if ((src)->ops != NULL) \
|
|
*((dst)->ops) = *((src)->ops);
|
|
|
|
/*
|
|
* Copy an ops vector from src to dst. Used during provider registration
|
|
* to copy the ops vector from the provider info structure to the
|
|
* provider descriptor maintained by KCF.
|
|
* Copying the ops vector specified by the provider is needed since the
|
|
* framework does not require the provider info structure to be
|
|
* persistent.
|
|
*/
|
|
static void
|
|
copy_ops_vector_v1(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
|
|
{
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_control_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_digest_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_cipher_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mac_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_sign_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_verify_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_dual_cipher_mac_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_random_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_session_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_object_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_key_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_provider_ops);
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_ctx_ops);
|
|
}
|
|
|
|
static void
|
|
copy_ops_vector_v2(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
|
|
{
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_mech_ops);
|
|
}
|
|
|
|
static void
|
|
copy_ops_vector_v3(crypto_ops_t *src_ops, crypto_ops_t *dst_ops)
|
|
{
|
|
KCF_SPI_COPY_OPS(src_ops, dst_ops, co_nostore_key_ops);
|
|
}
|
|
|
|
/*
|
|
* This routine is used to add cryptographic providers to the KEF framework.
|
|
* Providers pass a crypto_provider_info structure to crypto_register_provider()
|
|
* and get back a handle. The crypto_provider_info structure contains a
|
|
* list of mechanisms supported by the provider and an ops vector containing
|
|
* provider entry points. Hardware providers call this routine in their attach
|
|
* routines. Software providers call this routine in their _init() routine.
|
|
*/
|
|
int
|
|
crypto_register_provider(crypto_provider_info_t *info,
|
|
crypto_kcf_provider_handle_t *handle)
|
|
{
|
|
char ks_name[KSTAT_STRLEN];
|
|
|
|
kcf_provider_desc_t *prov_desc = NULL;
|
|
int ret = CRYPTO_ARGUMENTS_BAD;
|
|
|
|
if (info->pi_interface_version > CRYPTO_SPI_VERSION_3)
|
|
return (CRYPTO_VERSION_MISMATCH);
|
|
|
|
/*
|
|
* Check provider type, must be software, hardware, or logical.
|
|
*/
|
|
if (info->pi_provider_type != CRYPTO_HW_PROVIDER &&
|
|
info->pi_provider_type != CRYPTO_SW_PROVIDER &&
|
|
info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER)
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
|
|
/*
|
|
* Allocate and initialize a new provider descriptor. We also
|
|
* hold it and release it when done.
|
|
*/
|
|
prov_desc = kcf_alloc_provider_desc(info);
|
|
KCF_PROV_REFHOLD(prov_desc);
|
|
|
|
prov_desc->pd_prov_type = info->pi_provider_type;
|
|
|
|
/* provider-private handle, opaque to KCF */
|
|
prov_desc->pd_prov_handle = info->pi_provider_handle;
|
|
|
|
/* copy provider description string */
|
|
if (info->pi_provider_description != NULL) {
|
|
/*
|
|
* pi_provider_descriptor is a string that can contain
|
|
* up to CRYPTO_PROVIDER_DESCR_MAX_LEN + 1 characters
|
|
* INCLUDING the terminating null character. A bcopy()
|
|
* is necessary here as pd_description should not have
|
|
* a null character. See comments in kcf_alloc_provider_desc()
|
|
* for details on pd_description field.
|
|
*/
|
|
bcopy(info->pi_provider_description, prov_desc->pd_description,
|
|
MIN(strlen(info->pi_provider_description),
|
|
(size_t)CRYPTO_PROVIDER_DESCR_MAX_LEN));
|
|
}
|
|
|
|
if (info->pi_provider_type != CRYPTO_LOGICAL_PROVIDER) {
|
|
if (info->pi_ops_vector == NULL) {
|
|
goto bail;
|
|
}
|
|
copy_ops_vector_v1(info->pi_ops_vector,
|
|
prov_desc->pd_ops_vector);
|
|
if (info->pi_interface_version >= CRYPTO_SPI_VERSION_2) {
|
|
copy_ops_vector_v2(info->pi_ops_vector,
|
|
prov_desc->pd_ops_vector);
|
|
prov_desc->pd_flags = info->pi_flags;
|
|
}
|
|
if (info->pi_interface_version == CRYPTO_SPI_VERSION_3) {
|
|
copy_ops_vector_v3(info->pi_ops_vector,
|
|
prov_desc->pd_ops_vector);
|
|
}
|
|
}
|
|
|
|
/* object_ops and nostore_key_ops are mutually exclusive */
|
|
if (prov_desc->pd_ops_vector->co_object_ops &&
|
|
prov_desc->pd_ops_vector->co_nostore_key_ops) {
|
|
goto bail;
|
|
}
|
|
|
|
/* process the mechanisms supported by the provider */
|
|
if ((ret = init_prov_mechs(info, prov_desc)) != CRYPTO_SUCCESS)
|
|
goto bail;
|
|
|
|
/*
|
|
* Add provider to providers tables, also sets the descriptor
|
|
* pd_prov_id field.
|
|
*/
|
|
if ((ret = kcf_prov_tab_add_provider(prov_desc)) != CRYPTO_SUCCESS) {
|
|
undo_register_provider(prov_desc, B_FALSE);
|
|
goto bail;
|
|
}
|
|
|
|
/*
|
|
* We create a taskq only for a hardware provider. The global
|
|
* software queue is used for software providers. We handle ordering
|
|
* of multi-part requests in the taskq routine. So, it is safe to
|
|
* have multiple threads for the taskq. We pass TASKQ_PREPOPULATE flag
|
|
* to keep some entries cached to improve performance.
|
|
*/
|
|
if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER)
|
|
prov_desc->pd_sched_info.ks_taskq = taskq_create("kcf_taskq",
|
|
crypto_taskq_threads, minclsyspri,
|
|
crypto_taskq_minalloc, crypto_taskq_maxalloc,
|
|
TASKQ_PREPOPULATE);
|
|
else
|
|
prov_desc->pd_sched_info.ks_taskq = NULL;
|
|
|
|
/* no kernel session to logical providers */
|
|
if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
|
|
/*
|
|
* Open a session for session-oriented providers. This session
|
|
* is used for all kernel consumers. This is fine as a provider
|
|
* is required to support multiple thread access to a session.
|
|
* We can do this only after the taskq has been created as we
|
|
* do a kcf_submit_request() to open the session.
|
|
*/
|
|
if (KCF_PROV_SESSION_OPS(prov_desc) != NULL) {
|
|
kcf_req_params_t params;
|
|
|
|
KCF_WRAP_SESSION_OPS_PARAMS(¶ms,
|
|
KCF_OP_SESSION_OPEN, &prov_desc->pd_sid, 0,
|
|
CRYPTO_USER, NULL, 0, prov_desc);
|
|
ret = kcf_submit_request(prov_desc, NULL, NULL, ¶ms,
|
|
B_FALSE);
|
|
|
|
if (ret != CRYPTO_SUCCESS) {
|
|
undo_register_provider(prov_desc, B_TRUE);
|
|
ret = CRYPTO_FAILED;
|
|
goto bail;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
|
|
/*
|
|
* Create the kstat for this provider. There is a kstat
|
|
* installed for each successfully registered provider.
|
|
* This kstat is deleted, when the provider unregisters.
|
|
*/
|
|
if (prov_desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
|
|
(void) snprintf(ks_name, KSTAT_STRLEN, "%s_%s",
|
|
"NONAME", "provider_stats");
|
|
} else {
|
|
(void) snprintf(ks_name, KSTAT_STRLEN, "%s_%d_%u_%s",
|
|
"NONAME", 0,
|
|
prov_desc->pd_prov_id, "provider_stats");
|
|
}
|
|
|
|
prov_desc->pd_kstat = kstat_create("kcf", 0, ks_name, "crypto",
|
|
KSTAT_TYPE_NAMED, sizeof (kcf_prov_stats_t) /
|
|
sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
|
|
|
|
if (prov_desc->pd_kstat != NULL) {
|
|
bcopy(&kcf_stats_ks_data_template,
|
|
&prov_desc->pd_ks_data,
|
|
sizeof (kcf_stats_ks_data_template));
|
|
prov_desc->pd_kstat->ks_data = &prov_desc->pd_ks_data;
|
|
KCF_PROV_REFHOLD(prov_desc);
|
|
KCF_PROV_IREFHOLD(prov_desc);
|
|
prov_desc->pd_kstat->ks_private = prov_desc;
|
|
prov_desc->pd_kstat->ks_update = kcf_prov_kstat_update;
|
|
kstat_install(prov_desc->pd_kstat);
|
|
}
|
|
}
|
|
|
|
if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER)
|
|
process_logical_providers(info, prov_desc);
|
|
|
|
mutex_enter(&prov_desc->pd_lock);
|
|
prov_desc->pd_state = KCF_PROV_READY;
|
|
mutex_exit(&prov_desc->pd_lock);
|
|
kcf_do_notify(prov_desc, B_TRUE);
|
|
|
|
*handle = prov_desc->pd_kcf_prov_handle;
|
|
ret = CRYPTO_SUCCESS;
|
|
|
|
bail:
|
|
KCF_PROV_REFRELE(prov_desc);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* This routine is used to notify the framework when a provider is being
|
|
* removed. Hardware providers call this routine in their detach routines.
|
|
* Software providers call this routine in their _fini() routine.
|
|
*/
|
|
int
|
|
crypto_unregister_provider(crypto_kcf_provider_handle_t handle)
|
|
{
|
|
uint_t mech_idx;
|
|
kcf_provider_desc_t *desc;
|
|
kcf_prov_state_t saved_state;
|
|
|
|
/* lookup provider descriptor */
|
|
if ((desc = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL)
|
|
return (CRYPTO_UNKNOWN_PROVIDER);
|
|
|
|
mutex_enter(&desc->pd_lock);
|
|
/*
|
|
* Check if any other thread is disabling or removing
|
|
* this provider. We return if this is the case.
|
|
*/
|
|
if (desc->pd_state >= KCF_PROV_DISABLED) {
|
|
mutex_exit(&desc->pd_lock);
|
|
/* Release reference held by kcf_prov_tab_lookup(). */
|
|
KCF_PROV_REFRELE(desc);
|
|
return (CRYPTO_BUSY);
|
|
}
|
|
|
|
saved_state = desc->pd_state;
|
|
desc->pd_state = KCF_PROV_REMOVED;
|
|
|
|
if (saved_state == KCF_PROV_BUSY) {
|
|
/*
|
|
* The per-provider taskq threads may be waiting. We
|
|
* signal them so that they can start failing requests.
|
|
*/
|
|
cv_broadcast(&desc->pd_resume_cv);
|
|
}
|
|
|
|
if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
|
|
/*
|
|
* Check if this provider is currently being used.
|
|
* pd_irefcnt is the number of holds from the internal
|
|
* structures. We add one to account for the above lookup.
|
|
*/
|
|
if (desc->pd_refcnt > desc->pd_irefcnt + 1) {
|
|
desc->pd_state = saved_state;
|
|
mutex_exit(&desc->pd_lock);
|
|
/* Release reference held by kcf_prov_tab_lookup(). */
|
|
KCF_PROV_REFRELE(desc);
|
|
/*
|
|
* The administrator presumably will stop the clients
|
|
* thus removing the holds, when they get the busy
|
|
* return value. Any retry will succeed then.
|
|
*/
|
|
return (CRYPTO_BUSY);
|
|
}
|
|
}
|
|
mutex_exit(&desc->pd_lock);
|
|
|
|
if (desc->pd_prov_type != CRYPTO_SW_PROVIDER) {
|
|
remove_provider(desc);
|
|
}
|
|
|
|
if (desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
|
|
/* remove the provider from the mechanisms tables */
|
|
for (mech_idx = 0; mech_idx < desc->pd_mech_list_count;
|
|
mech_idx++) {
|
|
kcf_remove_mech_provider(
|
|
desc->pd_mechanisms[mech_idx].cm_mech_name, desc);
|
|
}
|
|
}
|
|
|
|
/* remove provider from providers table */
|
|
if (kcf_prov_tab_rem_provider((crypto_provider_id_t)handle) !=
|
|
CRYPTO_SUCCESS) {
|
|
/* Release reference held by kcf_prov_tab_lookup(). */
|
|
KCF_PROV_REFRELE(desc);
|
|
return (CRYPTO_UNKNOWN_PROVIDER);
|
|
}
|
|
|
|
delete_kstat(desc);
|
|
|
|
if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
|
|
/* Release reference held by kcf_prov_tab_lookup(). */
|
|
KCF_PROV_REFRELE(desc);
|
|
|
|
/*
|
|
* Wait till the existing requests complete.
|
|
*/
|
|
mutex_enter(&desc->pd_lock);
|
|
while (desc->pd_state != KCF_PROV_FREED)
|
|
cv_wait(&desc->pd_remove_cv, &desc->pd_lock);
|
|
mutex_exit(&desc->pd_lock);
|
|
} else {
|
|
/*
|
|
* Wait until requests that have been sent to the provider
|
|
* complete.
|
|
*/
|
|
mutex_enter(&desc->pd_lock);
|
|
while (desc->pd_irefcnt > 0)
|
|
cv_wait(&desc->pd_remove_cv, &desc->pd_lock);
|
|
mutex_exit(&desc->pd_lock);
|
|
}
|
|
|
|
kcf_do_notify(desc, B_FALSE);
|
|
|
|
if (desc->pd_prov_type == CRYPTO_SW_PROVIDER) {
|
|
/*
|
|
* This is the only place where kcf_free_provider_desc()
|
|
* is called directly. KCF_PROV_REFRELE() should free the
|
|
* structure in all other places.
|
|
*/
|
|
ASSERT(desc->pd_state == KCF_PROV_FREED &&
|
|
desc->pd_refcnt == 0);
|
|
kcf_free_provider_desc(desc);
|
|
} else {
|
|
KCF_PROV_REFRELE(desc);
|
|
}
|
|
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* This routine is used to notify the framework that the state of
|
|
* a cryptographic provider has changed. Valid state codes are:
|
|
*
|
|
* CRYPTO_PROVIDER_READY
|
|
* The provider indicates that it can process more requests. A provider
|
|
* will notify with this event if it previously has notified us with a
|
|
* CRYPTO_PROVIDER_BUSY.
|
|
*
|
|
* CRYPTO_PROVIDER_BUSY
|
|
* The provider can not take more requests.
|
|
*
|
|
* CRYPTO_PROVIDER_FAILED
|
|
* The provider encountered an internal error. The framework will not
|
|
* be sending any more requests to the provider. The provider may notify
|
|
* with a CRYPTO_PROVIDER_READY, if it is able to recover from the error.
|
|
*
|
|
* This routine can be called from user or interrupt context.
|
|
*/
|
|
void
|
|
crypto_provider_notification(crypto_kcf_provider_handle_t handle, uint_t state)
|
|
{
|
|
kcf_provider_desc_t *pd;
|
|
|
|
/* lookup the provider from the given handle */
|
|
if ((pd = kcf_prov_tab_lookup((crypto_provider_id_t)handle)) == NULL)
|
|
return;
|
|
|
|
mutex_enter(&pd->pd_lock);
|
|
|
|
if (pd->pd_state <= KCF_PROV_VERIFICATION_FAILED)
|
|
goto out;
|
|
|
|
if (pd->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
|
|
cmn_err(CE_WARN, "crypto_provider_notification: "
|
|
"logical provider (%x) ignored\n", handle);
|
|
goto out;
|
|
}
|
|
switch (state) {
|
|
case CRYPTO_PROVIDER_READY:
|
|
switch (pd->pd_state) {
|
|
case KCF_PROV_BUSY:
|
|
pd->pd_state = KCF_PROV_READY;
|
|
/*
|
|
* Signal the per-provider taskq threads that they
|
|
* can start submitting requests.
|
|
*/
|
|
cv_broadcast(&pd->pd_resume_cv);
|
|
break;
|
|
|
|
case KCF_PROV_FAILED:
|
|
/*
|
|
* The provider recovered from the error. Let us
|
|
* use it now.
|
|
*/
|
|
pd->pd_state = KCF_PROV_READY;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case CRYPTO_PROVIDER_BUSY:
|
|
switch (pd->pd_state) {
|
|
case KCF_PROV_READY:
|
|
pd->pd_state = KCF_PROV_BUSY;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case CRYPTO_PROVIDER_FAILED:
|
|
/*
|
|
* We note the failure and return. The per-provider taskq
|
|
* threads check this flag and start failing the
|
|
* requests, if it is set. See process_req_hwp() for details.
|
|
*/
|
|
switch (pd->pd_state) {
|
|
case KCF_PROV_READY:
|
|
pd->pd_state = KCF_PROV_FAILED;
|
|
break;
|
|
|
|
case KCF_PROV_BUSY:
|
|
pd->pd_state = KCF_PROV_FAILED;
|
|
/*
|
|
* The per-provider taskq threads may be waiting. We
|
|
* signal them so that they can start failing requests.
|
|
*/
|
|
cv_broadcast(&pd->pd_resume_cv);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
out:
|
|
mutex_exit(&pd->pd_lock);
|
|
KCF_PROV_REFRELE(pd);
|
|
}
|
|
|
|
/*
|
|
* This routine is used to notify the framework the result of
|
|
* an asynchronous request handled by a provider. Valid error
|
|
* codes are the same as the CRYPTO_* errors defined in common.h.
|
|
*
|
|
* This routine can be called from user or interrupt context.
|
|
*/
|
|
void
|
|
crypto_op_notification(crypto_req_handle_t handle, int error)
|
|
{
|
|
kcf_call_type_t ctype;
|
|
|
|
if (handle == NULL)
|
|
return;
|
|
|
|
if ((ctype = GET_REQ_TYPE(handle)) == CRYPTO_SYNCH) {
|
|
kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)handle;
|
|
|
|
if (error != CRYPTO_SUCCESS)
|
|
sreq->sn_provider->pd_sched_info.ks_nfails++;
|
|
KCF_PROV_IREFRELE(sreq->sn_provider);
|
|
kcf_sop_done(sreq, error);
|
|
} else {
|
|
kcf_areq_node_t *areq = (kcf_areq_node_t *)handle;
|
|
|
|
ASSERT(ctype == CRYPTO_ASYNCH);
|
|
if (error != CRYPTO_SUCCESS)
|
|
areq->an_provider->pd_sched_info.ks_nfails++;
|
|
KCF_PROV_IREFRELE(areq->an_provider);
|
|
kcf_aop_done(areq, error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine is used by software providers to determine
|
|
* whether to use KM_SLEEP or KM_NOSLEEP during memory allocation.
|
|
* Note that hardware providers can always use KM_SLEEP. So,
|
|
* they do not need to call this routine.
|
|
*
|
|
* This routine can be called from user or interrupt context.
|
|
*/
|
|
int
|
|
crypto_kmflag(crypto_req_handle_t handle)
|
|
{
|
|
return (REQHNDL2_KMFLAG(handle));
|
|
}
|
|
|
|
/*
|
|
* Process the mechanism info structures specified by the provider
|
|
* during registration. A NULL crypto_provider_info_t indicates
|
|
* an already initialized provider descriptor.
|
|
*
|
|
* Mechanisms are not added to the kernel's mechanism table if the
|
|
* provider is a logical provider.
|
|
*
|
|
* Returns CRYPTO_SUCCESS on success, CRYPTO_ARGUMENTS if one
|
|
* of the specified mechanisms was malformed, or CRYPTO_HOST_MEMORY
|
|
* if the table of mechanisms is full.
|
|
*/
|
|
static int
|
|
init_prov_mechs(crypto_provider_info_t *info, kcf_provider_desc_t *desc)
|
|
{
|
|
uint_t mech_idx;
|
|
uint_t cleanup_idx;
|
|
int err = CRYPTO_SUCCESS;
|
|
kcf_prov_mech_desc_t *pmd;
|
|
int desc_use_count = 0;
|
|
int mcount = desc->pd_mech_list_count;
|
|
|
|
if (desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER) {
|
|
if (info != NULL) {
|
|
ASSERT(info->pi_mechanisms != NULL);
|
|
bcopy(info->pi_mechanisms, desc->pd_mechanisms,
|
|
sizeof (crypto_mech_info_t) * mcount);
|
|
}
|
|
return (CRYPTO_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Copy the mechanism list from the provider info to the provider
|
|
* descriptor. desc->pd_mechanisms has an extra crypto_mech_info_t
|
|
* element if the provider has random_ops since we keep an internal
|
|
* mechanism, SUN_RANDOM, in this case.
|
|
*/
|
|
if (info != NULL) {
|
|
if (info->pi_ops_vector->co_random_ops != NULL) {
|
|
crypto_mech_info_t *rand_mi;
|
|
|
|
/*
|
|
* Need the following check as it is possible to have
|
|
* a provider that implements just random_ops and has
|
|
* pi_mechanisms == NULL.
|
|
*/
|
|
if (info->pi_mechanisms != NULL) {
|
|
bcopy(info->pi_mechanisms, desc->pd_mechanisms,
|
|
sizeof (crypto_mech_info_t) * (mcount - 1));
|
|
}
|
|
rand_mi = &desc->pd_mechanisms[mcount - 1];
|
|
|
|
bzero(rand_mi, sizeof (crypto_mech_info_t));
|
|
(void) strncpy(rand_mi->cm_mech_name, SUN_RANDOM,
|
|
CRYPTO_MAX_MECH_NAME);
|
|
rand_mi->cm_func_group_mask = CRYPTO_FG_RANDOM;
|
|
} else {
|
|
ASSERT(info->pi_mechanisms != NULL);
|
|
bcopy(info->pi_mechanisms, desc->pd_mechanisms,
|
|
sizeof (crypto_mech_info_t) * mcount);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For each mechanism support by the provider, add the provider
|
|
* to the corresponding KCF mechanism mech_entry chain.
|
|
*/
|
|
for (mech_idx = 0; mech_idx < desc->pd_mech_list_count; mech_idx++) {
|
|
crypto_mech_info_t *mi = &desc->pd_mechanisms[mech_idx];
|
|
|
|
if ((mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BITS) &&
|
|
(mi->cm_mech_flags & CRYPTO_KEYSIZE_UNIT_IN_BYTES)) {
|
|
err = CRYPTO_ARGUMENTS_BAD;
|
|
break;
|
|
}
|
|
|
|
if (desc->pd_flags & CRYPTO_HASH_NO_UPDATE &&
|
|
mi->cm_func_group_mask & CRYPTO_FG_DIGEST) {
|
|
/*
|
|
* We ask the provider to specify the limit
|
|
* per hash mechanism. But, in practice, a
|
|
* hardware limitation means all hash mechanisms
|
|
* will have the same maximum size allowed for
|
|
* input data. So, we make it a per provider
|
|
* limit to keep it simple.
|
|
*/
|
|
if (mi->cm_max_input_length == 0) {
|
|
err = CRYPTO_ARGUMENTS_BAD;
|
|
break;
|
|
} else {
|
|
desc->pd_hash_limit = mi->cm_max_input_length;
|
|
}
|
|
}
|
|
|
|
if ((err = kcf_add_mech_provider(mech_idx, desc, &pmd)) !=
|
|
KCF_SUCCESS)
|
|
break;
|
|
|
|
if (pmd == NULL)
|
|
continue;
|
|
|
|
/* The provider will be used for this mechanism */
|
|
desc_use_count++;
|
|
}
|
|
|
|
/*
|
|
* Don't allow multiple software providers with disabled mechanisms
|
|
* to register. Subsequent enabling of mechanisms will result in
|
|
* an unsupported configuration, i.e. multiple software providers
|
|
* per mechanism.
|
|
*/
|
|
if (desc_use_count == 0 && desc->pd_prov_type == CRYPTO_SW_PROVIDER)
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
|
|
if (err == KCF_SUCCESS)
|
|
return (CRYPTO_SUCCESS);
|
|
|
|
/*
|
|
* An error occurred while adding the mechanism, cleanup
|
|
* and bail.
|
|
*/
|
|
for (cleanup_idx = 0; cleanup_idx < mech_idx; cleanup_idx++) {
|
|
kcf_remove_mech_provider(
|
|
desc->pd_mechanisms[cleanup_idx].cm_mech_name, desc);
|
|
}
|
|
|
|
if (err == KCF_MECH_TAB_FULL)
|
|
return (CRYPTO_HOST_MEMORY);
|
|
|
|
return (CRYPTO_ARGUMENTS_BAD);
|
|
}
|
|
|
|
/*
|
|
* Update routine for kstat. Only privileged users are allowed to
|
|
* access this information, since this information is sensitive.
|
|
* There are some cryptographic attacks (e.g. traffic analysis)
|
|
* which can use this information.
|
|
*/
|
|
static int
|
|
kcf_prov_kstat_update(kstat_t *ksp, int rw)
|
|
{
|
|
kcf_prov_stats_t *ks_data;
|
|
kcf_provider_desc_t *pd = (kcf_provider_desc_t *)ksp->ks_private;
|
|
|
|
if (rw == KSTAT_WRITE)
|
|
return (EACCES);
|
|
|
|
ks_data = ksp->ks_data;
|
|
|
|
ks_data->ps_ops_total.value.ui64 = pd->pd_sched_info.ks_ndispatches;
|
|
ks_data->ps_ops_failed.value.ui64 = pd->pd_sched_info.ks_nfails;
|
|
ks_data->ps_ops_busy_rval.value.ui64 = pd->pd_sched_info.ks_nbusy_rval;
|
|
ks_data->ps_ops_passed.value.ui64 =
|
|
pd->pd_sched_info.ks_ndispatches -
|
|
pd->pd_sched_info.ks_nfails -
|
|
pd->pd_sched_info.ks_nbusy_rval;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Utility routine called from failure paths in crypto_register_provider()
|
|
* and from crypto_load_soft_disabled().
|
|
*/
|
|
void
|
|
undo_register_provider(kcf_provider_desc_t *desc, boolean_t remove_prov)
|
|
{
|
|
uint_t mech_idx;
|
|
|
|
/* remove the provider from the mechanisms tables */
|
|
for (mech_idx = 0; mech_idx < desc->pd_mech_list_count;
|
|
mech_idx++) {
|
|
kcf_remove_mech_provider(
|
|
desc->pd_mechanisms[mech_idx].cm_mech_name, desc);
|
|
}
|
|
|
|
/* remove provider from providers table */
|
|
if (remove_prov)
|
|
(void) kcf_prov_tab_rem_provider(desc->pd_prov_id);
|
|
}
|
|
|
|
/*
|
|
* Utility routine called from crypto_load_soft_disabled(). Callers
|
|
* should have done a prior undo_register_provider().
|
|
*/
|
|
void
|
|
redo_register_provider(kcf_provider_desc_t *pd)
|
|
{
|
|
/* process the mechanisms supported by the provider */
|
|
(void) init_prov_mechs(NULL, pd);
|
|
|
|
/*
|
|
* Hold provider in providers table. We should not call
|
|
* kcf_prov_tab_add_provider() here as the provider descriptor
|
|
* is still valid which means it has an entry in the provider
|
|
* table.
|
|
*/
|
|
KCF_PROV_REFHOLD(pd);
|
|
KCF_PROV_IREFHOLD(pd);
|
|
}
|
|
|
|
/*
|
|
* Add provider (p1) to another provider's array of providers (p2).
|
|
* Hardware and logical providers use this array to cross-reference
|
|
* each other.
|
|
*/
|
|
static void
|
|
add_provider_to_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2)
|
|
{
|
|
kcf_provider_list_t *new;
|
|
|
|
new = kmem_alloc(sizeof (kcf_provider_list_t), KM_SLEEP);
|
|
mutex_enter(&p2->pd_lock);
|
|
new->pl_next = p2->pd_provider_list;
|
|
p2->pd_provider_list = new;
|
|
KCF_PROV_IREFHOLD(p1);
|
|
new->pl_provider = p1;
|
|
mutex_exit(&p2->pd_lock);
|
|
}
|
|
|
|
/*
|
|
* Remove provider (p1) from another provider's array of providers (p2).
|
|
* Hardware and logical providers use this array to cross-reference
|
|
* each other.
|
|
*/
|
|
static void
|
|
remove_provider_from_array(kcf_provider_desc_t *p1, kcf_provider_desc_t *p2)
|
|
{
|
|
|
|
kcf_provider_list_t *pl = NULL, **prev;
|
|
|
|
mutex_enter(&p2->pd_lock);
|
|
for (pl = p2->pd_provider_list, prev = &p2->pd_provider_list;
|
|
pl != NULL; prev = &pl->pl_next, pl = pl->pl_next) {
|
|
if (pl->pl_provider == p1) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (p1 == NULL) {
|
|
mutex_exit(&p2->pd_lock);
|
|
return;
|
|
}
|
|
|
|
/* detach and free kcf_provider_list structure */
|
|
KCF_PROV_IREFRELE(p1);
|
|
*prev = pl->pl_next;
|
|
kmem_free(pl, sizeof (*pl));
|
|
mutex_exit(&p2->pd_lock);
|
|
}
|
|
|
|
/*
|
|
* Convert an array of logical provider handles (crypto_provider_id)
|
|
* stored in a crypto_provider_info structure into an array of provider
|
|
* descriptors (kcf_provider_desc_t) attached to a logical provider.
|
|
*/
|
|
static void
|
|
process_logical_providers(crypto_provider_info_t *info, kcf_provider_desc_t *hp)
|
|
{
|
|
kcf_provider_desc_t *lp;
|
|
crypto_provider_id_t handle;
|
|
int count = info->pi_logical_provider_count;
|
|
int i;
|
|
|
|
/* add hardware provider to each logical provider */
|
|
for (i = 0; i < count; i++) {
|
|
handle = info->pi_logical_providers[i];
|
|
lp = kcf_prov_tab_lookup((crypto_provider_id_t)handle);
|
|
if (lp == NULL) {
|
|
continue;
|
|
}
|
|
add_provider_to_array(hp, lp);
|
|
hp->pd_flags |= KCF_LPROV_MEMBER;
|
|
|
|
/*
|
|
* A hardware provider has to have the provider descriptor of
|
|
* every logical provider it belongs to, so it can be removed
|
|
* from the logical provider if the hardware provider
|
|
* unregisters from the framework.
|
|
*/
|
|
add_provider_to_array(lp, hp);
|
|
KCF_PROV_REFRELE(lp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine removes a provider from all of the logical or
|
|
* hardware providers it belongs to, and frees the provider's
|
|
* array of pointers to providers.
|
|
*/
|
|
static void
|
|
remove_provider(kcf_provider_desc_t *pp)
|
|
{
|
|
kcf_provider_desc_t *p;
|
|
kcf_provider_list_t *e, *next;
|
|
|
|
mutex_enter(&pp->pd_lock);
|
|
for (e = pp->pd_provider_list; e != NULL; e = next) {
|
|
p = e->pl_provider;
|
|
remove_provider_from_array(pp, p);
|
|
if (p->pd_prov_type == CRYPTO_HW_PROVIDER &&
|
|
p->pd_provider_list == NULL)
|
|
p->pd_flags &= ~KCF_LPROV_MEMBER;
|
|
KCF_PROV_IREFRELE(p);
|
|
next = e->pl_next;
|
|
kmem_free(e, sizeof (*e));
|
|
}
|
|
pp->pd_provider_list = NULL;
|
|
mutex_exit(&pp->pd_lock);
|
|
}
|
|
|
|
/*
|
|
* Dispatch events as needed for a provider. is_added flag tells
|
|
* whether the provider is registering or unregistering.
|
|
*/
|
|
void
|
|
kcf_do_notify(kcf_provider_desc_t *prov_desc, boolean_t is_added)
|
|
{
|
|
int i;
|
|
crypto_notify_event_change_t ec;
|
|
|
|
ASSERT(prov_desc->pd_state > KCF_PROV_VERIFICATION_FAILED);
|
|
|
|
/*
|
|
* Inform interested clients of the mechanisms becoming
|
|
* available/unavailable. We skip this for logical providers
|
|
* as they do not affect mechanisms.
|
|
*/
|
|
if (prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER) {
|
|
ec.ec_provider_type = prov_desc->pd_prov_type;
|
|
ec.ec_change = is_added ? CRYPTO_MECH_ADDED :
|
|
CRYPTO_MECH_REMOVED;
|
|
for (i = 0; i < prov_desc->pd_mech_list_count; i++) {
|
|
(void) strlcpy(ec.ec_mech_name,
|
|
prov_desc->pd_mechanisms[i].cm_mech_name,
|
|
CRYPTO_MAX_MECH_NAME);
|
|
kcf_walk_ntfylist(CRYPTO_EVENT_MECHS_CHANGED, &ec);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Inform interested clients about the new or departing provider.
|
|
* In case of a logical provider, we need to notify the event only
|
|
* for the logical provider and not for the underlying
|
|
* providers which are known by the KCF_LPROV_MEMBER bit.
|
|
*/
|
|
if (prov_desc->pd_prov_type == CRYPTO_LOGICAL_PROVIDER ||
|
|
(prov_desc->pd_flags & KCF_LPROV_MEMBER) == 0) {
|
|
kcf_walk_ntfylist(is_added ? CRYPTO_EVENT_PROVIDER_REGISTERED :
|
|
CRYPTO_EVENT_PROVIDER_UNREGISTERED, prov_desc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
delete_kstat(kcf_provider_desc_t *desc)
|
|
{
|
|
/* destroy the kstat created for this provider */
|
|
if (desc->pd_kstat != NULL) {
|
|
kcf_provider_desc_t *kspd = desc->pd_kstat->ks_private;
|
|
|
|
/* release reference held by desc->pd_kstat->ks_private */
|
|
ASSERT(desc == kspd);
|
|
kstat_delete(kspd->pd_kstat);
|
|
desc->pd_kstat = NULL;
|
|
KCF_PROV_REFRELE(kspd);
|
|
KCF_PROV_IREFRELE(kspd);
|
|
}
|
|
}
|