mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-03 23:09:35 +03:00
f1512ee61e
5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354
151 lines
5.5 KiB
C
151 lines
5.5 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/* Portions Copyright 2010 Robert Milkowski */
|
|
|
|
#ifndef _SYS_ZIL_IMPL_H
|
|
#define _SYS_ZIL_IMPL_H
|
|
|
|
#include <sys/zil.h>
|
|
#include <sys/dmu_objset.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/*
|
|
* Log write buffer.
|
|
*/
|
|
typedef struct lwb {
|
|
zilog_t *lwb_zilog; /* back pointer to log struct */
|
|
blkptr_t lwb_blk; /* on disk address of this log blk */
|
|
boolean_t lwb_fastwrite; /* is blk marked for fastwrite? */
|
|
int lwb_nused; /* # used bytes in buffer */
|
|
int lwb_sz; /* size of block and buffer */
|
|
char *lwb_buf; /* log write buffer */
|
|
zio_t *lwb_zio; /* zio for this buffer */
|
|
dmu_tx_t *lwb_tx; /* tx for log block allocation */
|
|
uint64_t lwb_max_txg; /* highest txg in this lwb */
|
|
list_node_t lwb_node; /* zilog->zl_lwb_list linkage */
|
|
} lwb_t;
|
|
|
|
/*
|
|
* Intent log transaction lists
|
|
*/
|
|
typedef struct itxs {
|
|
list_t i_sync_list; /* list of synchronous itxs */
|
|
avl_tree_t i_async_tree; /* tree of foids for async itxs */
|
|
} itxs_t;
|
|
|
|
typedef struct itxg {
|
|
kmutex_t itxg_lock; /* lock for this structure */
|
|
uint64_t itxg_txg; /* txg for this chain */
|
|
uint64_t itxg_sod; /* total size on disk for this txg */
|
|
itxs_t *itxg_itxs; /* sync and async itxs */
|
|
} itxg_t;
|
|
|
|
/* for async nodes we build up an AVL tree of lists of async itxs per file */
|
|
typedef struct itx_async_node {
|
|
uint64_t ia_foid; /* file object id */
|
|
list_t ia_list; /* list of async itxs for this foid */
|
|
avl_node_t ia_node; /* AVL tree linkage */
|
|
} itx_async_node_t;
|
|
|
|
/*
|
|
* Vdev flushing: during a zil_commit(), we build up an AVL tree of the vdevs
|
|
* we've touched so we know which ones need a write cache flush at the end.
|
|
*/
|
|
typedef struct zil_vdev_node {
|
|
uint64_t zv_vdev; /* vdev to be flushed */
|
|
avl_node_t zv_node; /* AVL tree linkage */
|
|
} zil_vdev_node_t;
|
|
|
|
#define ZIL_PREV_BLKS 16
|
|
|
|
/*
|
|
* Stable storage intent log management structure. One per dataset.
|
|
*/
|
|
struct zilog {
|
|
kmutex_t zl_lock; /* protects most zilog_t fields */
|
|
struct dsl_pool *zl_dmu_pool; /* DSL pool */
|
|
spa_t *zl_spa; /* handle for read/write log */
|
|
const zil_header_t *zl_header; /* log header buffer */
|
|
objset_t *zl_os; /* object set we're logging */
|
|
zil_get_data_t *zl_get_data; /* callback to get object content */
|
|
zio_t *zl_root_zio; /* log writer root zio */
|
|
uint64_t zl_lr_seq; /* on-disk log record sequence number */
|
|
uint64_t zl_commit_lr_seq; /* last committed on-disk lr seq */
|
|
uint64_t zl_destroy_txg; /* txg of last zil_destroy() */
|
|
uint64_t zl_replayed_seq[TXG_SIZE]; /* last replayed rec seq */
|
|
uint64_t zl_replaying_seq; /* current replay seq number */
|
|
uint32_t zl_suspend; /* log suspend count */
|
|
kcondvar_t zl_cv_writer; /* log writer thread completion */
|
|
kcondvar_t zl_cv_suspend; /* log suspend completion */
|
|
uint8_t zl_suspending; /* log is currently suspending */
|
|
uint8_t zl_keep_first; /* keep first log block in destroy */
|
|
uint8_t zl_replay; /* replaying records while set */
|
|
uint8_t zl_stop_sync; /* for debugging */
|
|
uint8_t zl_writer; /* boolean: write setup in progress */
|
|
uint8_t zl_logbias; /* latency or throughput */
|
|
uint8_t zl_sync; /* synchronous or asynchronous */
|
|
int zl_parse_error; /* last zil_parse() error */
|
|
uint64_t zl_parse_blk_seq; /* highest blk seq on last parse */
|
|
uint64_t zl_parse_lr_seq; /* highest lr seq on last parse */
|
|
uint64_t zl_parse_blk_count; /* number of blocks parsed */
|
|
uint64_t zl_parse_lr_count; /* number of log records parsed */
|
|
uint64_t zl_next_batch; /* next batch number */
|
|
uint64_t zl_com_batch; /* committed batch number */
|
|
kcondvar_t zl_cv_batch[2]; /* batch condition variables */
|
|
itxg_t zl_itxg[TXG_SIZE]; /* intent log txg chains */
|
|
list_t zl_itx_commit_list; /* itx list to be committed */
|
|
uint64_t zl_itx_list_sz; /* total size of records on list */
|
|
uint64_t zl_cur_used; /* current commit log size used */
|
|
list_t zl_lwb_list; /* in-flight log write list */
|
|
kmutex_t zl_vdev_lock; /* protects zl_vdev_tree */
|
|
avl_tree_t zl_vdev_tree; /* vdevs to flush in zil_commit() */
|
|
taskq_t *zl_clean_taskq; /* runs lwb and itx clean tasks */
|
|
avl_tree_t zl_bp_tree; /* track bps during log parse */
|
|
clock_t zl_replay_time; /* lbolt of when replay started */
|
|
uint64_t zl_replay_blks; /* number of log blocks replayed */
|
|
zil_header_t zl_old_header; /* debugging aid */
|
|
uint_t zl_prev_blks[ZIL_PREV_BLKS]; /* size - sector rounded */
|
|
uint_t zl_prev_rotor; /* rotor for zl_prev[] */
|
|
txg_node_t zl_dirty_link; /* protected by dp_dirty_zilogs list */
|
|
};
|
|
|
|
typedef struct zil_bp_node {
|
|
dva_t zn_dva;
|
|
avl_node_t zn_node;
|
|
} zil_bp_node_t;
|
|
|
|
#define ZIL_MAX_LOG_DATA (SPA_OLD_MAXBLOCKSIZE - sizeof (zil_chain_t) - \
|
|
sizeof (lr_write_t))
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _SYS_ZIL_IMPL_H */
|