mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-18 02:20:59 +03:00
8aa4f0f0fc
bv_entcount can be a relatively large allocation (see comment for BRT_RANGESIZE), so get it from the big allocator. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Kay Pedersen <mail@mkwg.de> Signed-off-by: Rob Norris <rob.norris@klarasystems.com> Sponsored-By: OpenDrives Inc. Sponsored-By: Klara Inc. Closes #15050
1885 lines
54 KiB
C
1885 lines
54 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/brt.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/bitmap.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/kstat.h>
|
|
#include <sys/wmsum.h>
|
|
|
|
/*
|
|
* Block Cloning design.
|
|
*
|
|
* Block Cloning allows to manually clone a file (or a subset of its blocks)
|
|
* into another (or the same) file by just creating additional references to
|
|
* the data blocks without copying the data itself. Those references are kept
|
|
* in the Block Reference Tables (BRTs).
|
|
*
|
|
* In many ways this is similar to the existing deduplication, but there are
|
|
* some important differences:
|
|
*
|
|
* - Deduplication is automatic and Block Cloning is not - one has to use a
|
|
* dedicated system call(s) to clone the given file/blocks.
|
|
* - Deduplication keeps all data blocks in its table, even those referenced
|
|
* just once. Block Cloning creates an entry in its tables only when there
|
|
* are at least two references to the given data block. If the block was
|
|
* never explicitly cloned or the second to last reference was dropped,
|
|
* there will be neither space nor performance overhead.
|
|
* - Deduplication needs data to work - one needs to pass real data to the
|
|
* write(2) syscall, so hash can be calculated. Block Cloning doesn't require
|
|
* data, just block pointers to the data, so it is extremely fast, as we pay
|
|
* neither the cost of reading the data, nor the cost of writing the data -
|
|
* we operate exclusively on metadata.
|
|
* - If the D (dedup) bit is not set in the block pointer, it means that
|
|
* the block is not in the dedup table (DDT) and we won't consult the DDT
|
|
* when we need to free the block. Block Cloning must be consulted on every
|
|
* free, because we cannot modify the source BP (eg. by setting something
|
|
* similar to the D bit), thus we have no hint if the block is in the
|
|
* Block Reference Table (BRT), so we need to look into the BRT. There is
|
|
* an optimization in place that allows us to eliminate the majority of BRT
|
|
* lookups which is described below in the "Minimizing free penalty" section.
|
|
* - The BRT entry is much smaller than the DDT entry - for BRT we only store
|
|
* 64bit offset and 64bit reference counter.
|
|
* - Dedup keys are cryptographic hashes, so two blocks that are close to each
|
|
* other on disk are most likely in totally different parts of the DDT.
|
|
* The BRT entry keys are offsets into a single top-level VDEV, so data blocks
|
|
* from one file should have BRT entries close to each other.
|
|
* - Scrub will only do a single pass over a block that is referenced multiple
|
|
* times in the DDT. Unfortunately it is not currently (if at all) possible
|
|
* with Block Cloning and block referenced multiple times will be scrubbed
|
|
* multiple times. The new, sorted scrub should be able to eliminate
|
|
* duplicated reads given enough memory.
|
|
* - Deduplication requires cryptographically strong hash as a checksum or
|
|
* additional data verification. Block Cloning works with any checksum
|
|
* algorithm or even with checksumming disabled.
|
|
*
|
|
* As mentioned above, the BRT entries are much smaller than the DDT entries.
|
|
* To uniquely identify a block we just need its vdev id and offset. We also
|
|
* need to maintain a reference counter. The vdev id will often repeat, as there
|
|
* is a small number of top-level VDEVs and a large number of blocks stored in
|
|
* each VDEV. We take advantage of that to reduce the BRT entry size further by
|
|
* maintaining one BRT for each top-level VDEV, so we can then have only offset
|
|
* and counter as the BRT entry.
|
|
*
|
|
* Minimizing free penalty.
|
|
*
|
|
* Block Cloning allows creating additional references to any existing block.
|
|
* When we free a block there is no hint in the block pointer whether the block
|
|
* was cloned or not, so on each free we have to check if there is a
|
|
* corresponding entry in the BRT or not. If there is, we need to decrease
|
|
* the reference counter. Doing BRT lookup on every free can potentially be
|
|
* expensive by requiring additional I/Os if the BRT doesn't fit into memory.
|
|
* This is the main problem with deduplication, so we've learned our lesson and
|
|
* try not to repeat the same mistake here. How do we do that? We divide each
|
|
* top-level VDEV into 16MB regions. For each region we maintain a counter that
|
|
* is a sum of all the BRT entries that have offsets within the region. This
|
|
* creates the entries count array of 16bit numbers for each top-level VDEV.
|
|
* The entries count array is always kept in memory and updated on disk in the
|
|
* same transaction group as the BRT updates to keep everything in-sync. We can
|
|
* keep the array in memory, because it is very small. With 16MB regions and
|
|
* 1TB VDEV the array requires only 128kB of memory (we may decide to decrease
|
|
* the region size even further in the future). Now, when we want to free
|
|
* a block, we first consult the array. If the counter for the whole region is
|
|
* zero, there is no need to look for the BRT entry, as there isn't one for
|
|
* sure. If the counter for the region is greater than zero, only then we will
|
|
* do a BRT lookup and if an entry is found we will decrease the reference
|
|
* counter in the BRT entry and in the entry counters array.
|
|
*
|
|
* The entry counters array is small, but can potentially be larger for very
|
|
* large VDEVs or smaller regions. In this case we don't want to rewrite entire
|
|
* array on every change. We then divide the array into 32kB block and keep
|
|
* a bitmap of dirty blocks within a transaction group. When we sync the
|
|
* transaction group we can only update the parts of the entry counters array
|
|
* that were modified. Note: Keeping track of the dirty parts of the entry
|
|
* counters array is implemented, but updating only parts of the array on disk
|
|
* is not yet implemented - for now we will update entire array if there was
|
|
* any change.
|
|
*
|
|
* The implementation tries to be economic: if BRT is not used, or no longer
|
|
* used, there will be no entries in the MOS and no additional memory used (eg.
|
|
* the entry counters array is only allocated if needed).
|
|
*
|
|
* Interaction between Deduplication and Block Cloning.
|
|
*
|
|
* If both functionalities are in use, we could end up with a block that is
|
|
* referenced multiple times in both DDT and BRT. When we free one of the
|
|
* references we couldn't tell where it belongs, so we would have to decide
|
|
* what table takes the precedence: do we first clear DDT references or BRT
|
|
* references? To avoid this dilemma BRT cooperates with DDT - if a given block
|
|
* is being cloned using BRT and the BP has the D (dedup) bit set, BRT will
|
|
* lookup DDT entry instead and increase the counter there. No BRT entry
|
|
* will be created for a block which has the D (dedup) bit set.
|
|
* BRT may be more efficient for manual deduplication, but if the block is
|
|
* already in the DDT, then creating additional BRT entry would be less
|
|
* efficient. This clever idea was proposed by Allan Jude.
|
|
*
|
|
* Block Cloning across datasets.
|
|
*
|
|
* Block Cloning is not limited to cloning blocks within the same dataset.
|
|
* It is possible (and very useful) to clone blocks between different datasets.
|
|
* One use case is recovering files from snapshots. By cloning the files into
|
|
* dataset we need no additional storage. Without Block Cloning we would need
|
|
* additional space for those files.
|
|
* Another interesting use case is moving the files between datasets
|
|
* (copying the file content to the new dataset and removing the source file).
|
|
* In that case Block Cloning will only be used briefly, because the BRT entries
|
|
* will be removed when the source is removed.
|
|
* Note: currently it is not possible to clone blocks between encrypted
|
|
* datasets, even if those datasets use the same encryption key (this includes
|
|
* snapshots of encrypted datasets). Cloning blocks between datasets that use
|
|
* the same keys should be possible and should be implemented in the future.
|
|
*
|
|
* Block Cloning flow through ZFS layers.
|
|
*
|
|
* Note: Block Cloning can be used both for cloning file system blocks and ZVOL
|
|
* blocks. As of this writing no interface is implemented that allows for block
|
|
* cloning within a ZVOL.
|
|
* FreeBSD and Linux provides copy_file_range(2) system call and we will use it
|
|
* for blocking cloning.
|
|
*
|
|
* ssize_t
|
|
* copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp,
|
|
* size_t len, unsigned int flags);
|
|
*
|
|
* Even though offsets and length represent bytes, they have to be
|
|
* block-aligned or we will return the EXDEV error so the upper layer can
|
|
* fallback to the generic mechanism that will just copy the data.
|
|
* Using copy_file_range(2) will call OS-independent zfs_clone_range() function.
|
|
* This function was implemented based on zfs_write(), but instead of writing
|
|
* the given data we first read block pointers using the new dmu_read_l0_bps()
|
|
* function from the source file. Once we have BPs from the source file we call
|
|
* the dmu_brt_clone() function on the destination file. This function
|
|
* allocates BPs for us. We iterate over all source BPs. If the given BP is
|
|
* a hole or an embedded block, we just copy BP as-is. If it points to a real
|
|
* data we place this BP on a BRT pending list using the brt_pending_add()
|
|
* function.
|
|
*
|
|
* We use this pending list to keep track of all BPs that got new references
|
|
* within this transaction group.
|
|
*
|
|
* Some special cases to consider and how we address them:
|
|
* - The block we want to clone may have been created within the same
|
|
* transaction group that we are trying to clone. Such block has no BP
|
|
* allocated yet, so cannot be immediately cloned. We return EXDEV.
|
|
* - The block we want to clone may have been modified within the same
|
|
* transaction group. We return EXDEV.
|
|
* - A block may be cloned multiple times during one transaction group (that's
|
|
* why pending list is actually a tree and not an append-only list - this
|
|
* way we can figure out faster if this block is cloned for the first time
|
|
* in this txg or consecutive time).
|
|
* - A block may be cloned and freed within the same transaction group
|
|
* (see dbuf_undirty()).
|
|
* - A block may be cloned and within the same transaction group the clone
|
|
* can be cloned again (see dmu_read_l0_bps()).
|
|
* - A file might have been deleted, but the caller still has a file descriptor
|
|
* open to this file and clones it.
|
|
*
|
|
* When we free a block we have an additional step in the ZIO pipeline where we
|
|
* call the zio_brt_free() function. We then call the brt_entry_decref()
|
|
* that loads the corresponding BRT entry (if one exists) and decreases
|
|
* reference counter. If this is not the last reference we will stop ZIO
|
|
* pipeline here. If this is the last reference or the block is not in the
|
|
* BRT, we continue the pipeline and free the block as usual.
|
|
*
|
|
* At the beginning of spa_sync() where there can be no more block cloning,
|
|
* but before issuing frees we call brt_pending_apply(). This function applies
|
|
* all the new clones to the BRT table - we load BRT entries and update
|
|
* reference counters. To sync new BRT entries to disk, we use brt_sync()
|
|
* function. This function will sync all dirty per-top-level-vdev BRTs,
|
|
* the entry counters arrays, etc.
|
|
*
|
|
* Block Cloning and ZIL.
|
|
*
|
|
* Every clone operation is divided into chunks (similar to write) and each
|
|
* chunk is cloned in a separate transaction. The chunk size is determined by
|
|
* how many BPs we can fit into a single ZIL entry.
|
|
* Replaying clone operation is different from the regular clone operation,
|
|
* as when we log clone operations we cannot use the source object - it may
|
|
* reside on a different dataset, so we log BPs we want to clone.
|
|
* The ZIL is replayed when we mount the given dataset, not when the pool is
|
|
* imported. Taking this into account it is possible that the pool is imported
|
|
* without mounting datasets and the source dataset is destroyed before the
|
|
* destination dataset is mounted and its ZIL replayed.
|
|
* To address this situation we leverage zil_claim() mechanism where ZFS will
|
|
* parse all the ZILs on pool import. When we come across TX_CLONE_RANGE
|
|
* entries, we will bump reference counters for their BPs in the BRT and then
|
|
* on mount and ZIL replay we will just attach BPs to the file without
|
|
* bumping reference counters.
|
|
* Note it is still possible that after zil_claim() we never mount the
|
|
* destination, so we never replay its ZIL and we destroy it. This way we would
|
|
* end up with leaked references in BRT. We address that too as ZFS gives us
|
|
* a chance to clean this up on dataset destroy (see zil_free_clone_range()).
|
|
*/
|
|
|
|
/*
|
|
* BRT - Block Reference Table.
|
|
*/
|
|
#define BRT_OBJECT_VDEV_PREFIX "com.fudosecurity:brt:vdev:"
|
|
|
|
/*
|
|
* We divide each VDEV into 16MB chunks. Each chunk is represented in memory
|
|
* by a 16bit counter, thus 1TB VDEV requires 128kB of memory: (1TB / 16MB) * 2B
|
|
* Each element in this array represents how many BRT entries do we have in this
|
|
* chunk of storage. We always load this entire array into memory and update as
|
|
* needed. By having it in memory we can quickly tell (during zio_free()) if
|
|
* there are any BRT entries that we might need to update.
|
|
*
|
|
* This value cannot be larger than 16MB, at least as long as we support
|
|
* 512 byte block sizes. With 512 byte block size we can have exactly
|
|
* 32768 blocks in 16MB. In 32MB we could have 65536 blocks, which is one too
|
|
* many for a 16bit counter.
|
|
*/
|
|
#define BRT_RANGESIZE (16 * 1024 * 1024)
|
|
_Static_assert(BRT_RANGESIZE / SPA_MINBLOCKSIZE <= UINT16_MAX,
|
|
"BRT_RANGESIZE is too large.");
|
|
/*
|
|
* We don't want to update the whole structure every time. Maintain bitmap
|
|
* of dirty blocks within the regions, so that a single bit represents a
|
|
* block size of entcounts. For example if we have a 1PB vdev then all
|
|
* entcounts take 128MB of memory ((64TB / 16MB) * 2B). We can divide this
|
|
* 128MB array of entcounts into 32kB disk blocks, as we don't want to update
|
|
* the whole 128MB on disk when we have updated only a single entcount.
|
|
* We maintain a bitmap where each 32kB disk block within 128MB entcounts array
|
|
* is represented by a single bit. This gives us 4096 bits. A set bit in the
|
|
* bitmap means that we had a change in at least one of the 16384 entcounts
|
|
* that reside on a 32kB disk block (32kB / sizeof (uint16_t)).
|
|
*/
|
|
#define BRT_BLOCKSIZE (32 * 1024)
|
|
#define BRT_RANGESIZE_TO_NBLOCKS(size) \
|
|
(((size) - 1) / BRT_BLOCKSIZE / sizeof (uint16_t) + 1)
|
|
|
|
#define BRT_LITTLE_ENDIAN 0
|
|
#define BRT_BIG_ENDIAN 1
|
|
#ifdef _ZFS_LITTLE_ENDIAN
|
|
#define BRT_NATIVE_BYTEORDER BRT_LITTLE_ENDIAN
|
|
#define BRT_NON_NATIVE_BYTEORDER BRT_BIG_ENDIAN
|
|
#else
|
|
#define BRT_NATIVE_BYTEORDER BRT_BIG_ENDIAN
|
|
#define BRT_NON_NATIVE_BYTEORDER BRT_LITTLE_ENDIAN
|
|
#endif
|
|
|
|
typedef struct brt_vdev_phys {
|
|
uint64_t bvp_mos_entries;
|
|
uint64_t bvp_size;
|
|
uint64_t bvp_byteorder;
|
|
uint64_t bvp_totalcount;
|
|
uint64_t bvp_rangesize;
|
|
uint64_t bvp_usedspace;
|
|
uint64_t bvp_savedspace;
|
|
} brt_vdev_phys_t;
|
|
|
|
typedef struct brt_vdev {
|
|
/*
|
|
* VDEV id.
|
|
*/
|
|
uint64_t bv_vdevid;
|
|
/*
|
|
* Is the structure initiated?
|
|
* (bv_entcount and bv_bitmap are allocated?)
|
|
*/
|
|
boolean_t bv_initiated;
|
|
/*
|
|
* Object number in the MOS for the entcount array and brt_vdev_phys.
|
|
*/
|
|
uint64_t bv_mos_brtvdev;
|
|
/*
|
|
* Object number in the MOS for the entries table.
|
|
*/
|
|
uint64_t bv_mos_entries;
|
|
/*
|
|
* Entries to sync.
|
|
*/
|
|
avl_tree_t bv_tree;
|
|
/*
|
|
* Does the bv_entcount[] array needs byte swapping?
|
|
*/
|
|
boolean_t bv_need_byteswap;
|
|
/*
|
|
* Number of entries in the bv_entcount[] array.
|
|
*/
|
|
uint64_t bv_size;
|
|
/*
|
|
* This is the array with BRT entry count per BRT_RANGESIZE.
|
|
*/
|
|
uint16_t *bv_entcount;
|
|
/*
|
|
* Sum of all bv_entcount[]s.
|
|
*/
|
|
uint64_t bv_totalcount;
|
|
/*
|
|
* Space on disk occupied by cloned blocks (without compression).
|
|
*/
|
|
uint64_t bv_usedspace;
|
|
/*
|
|
* How much additional space would be occupied without block cloning.
|
|
*/
|
|
uint64_t bv_savedspace;
|
|
/*
|
|
* brt_vdev_phys needs updating on disk.
|
|
*/
|
|
boolean_t bv_meta_dirty;
|
|
/*
|
|
* bv_entcount[] needs updating on disk.
|
|
*/
|
|
boolean_t bv_entcount_dirty;
|
|
/*
|
|
* bv_entcount[] potentially can be a bit too big to sychronize it all
|
|
* when we just changed few entcounts. The fields below allow us to
|
|
* track updates to bv_entcount[] array since the last sync.
|
|
* A single bit in the bv_bitmap represents as many entcounts as can
|
|
* fit into a single BRT_BLOCKSIZE.
|
|
* For example we have 65536 entcounts in the bv_entcount array
|
|
* (so the whole array is 128kB). We updated bv_entcount[2] and
|
|
* bv_entcount[5]. In that case only first bit in the bv_bitmap will
|
|
* be set and we will write only first BRT_BLOCKSIZE out of 128kB.
|
|
*/
|
|
ulong_t *bv_bitmap;
|
|
uint64_t bv_nblocks;
|
|
} brt_vdev_t;
|
|
|
|
/*
|
|
* In-core brt
|
|
*/
|
|
typedef struct brt {
|
|
krwlock_t brt_lock;
|
|
spa_t *brt_spa;
|
|
#define brt_mos brt_spa->spa_meta_objset
|
|
uint64_t brt_rangesize;
|
|
uint64_t brt_usedspace;
|
|
uint64_t brt_savedspace;
|
|
avl_tree_t brt_pending_tree[TXG_SIZE];
|
|
kmutex_t brt_pending_lock[TXG_SIZE];
|
|
/* Sum of all entries across all bv_trees. */
|
|
uint64_t brt_nentries;
|
|
brt_vdev_t *brt_vdevs;
|
|
uint64_t brt_nvdevs;
|
|
} brt_t;
|
|
|
|
/* Size of bre_offset / sizeof (uint64_t). */
|
|
#define BRT_KEY_WORDS (1)
|
|
|
|
/*
|
|
* In-core brt entry.
|
|
* On-disk we use bre_offset as the key and bre_refcount as the value.
|
|
*/
|
|
typedef struct brt_entry {
|
|
uint64_t bre_offset;
|
|
uint64_t bre_refcount;
|
|
avl_node_t bre_node;
|
|
} brt_entry_t;
|
|
|
|
typedef struct brt_pending_entry {
|
|
blkptr_t bpe_bp;
|
|
int bpe_count;
|
|
avl_node_t bpe_node;
|
|
} brt_pending_entry_t;
|
|
|
|
static kmem_cache_t *brt_entry_cache;
|
|
static kmem_cache_t *brt_pending_entry_cache;
|
|
|
|
/*
|
|
* Enable/disable prefetching of BRT entries that we are going to modify.
|
|
*/
|
|
int zfs_brt_prefetch = 1;
|
|
|
|
#ifdef ZFS_DEBUG
|
|
#define BRT_DEBUG(...) do { \
|
|
if ((zfs_flags & ZFS_DEBUG_BRT) != 0) { \
|
|
__dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define BRT_DEBUG(...) do { } while (0)
|
|
#endif
|
|
|
|
int brt_zap_leaf_blockshift = 12;
|
|
int brt_zap_indirect_blockshift = 12;
|
|
|
|
static kstat_t *brt_ksp;
|
|
|
|
typedef struct brt_stats {
|
|
kstat_named_t brt_addref_entry_in_memory;
|
|
kstat_named_t brt_addref_entry_not_on_disk;
|
|
kstat_named_t brt_addref_entry_on_disk;
|
|
kstat_named_t brt_addref_entry_read_lost_race;
|
|
kstat_named_t brt_decref_entry_in_memory;
|
|
kstat_named_t brt_decref_entry_loaded_from_disk;
|
|
kstat_named_t brt_decref_entry_not_in_memory;
|
|
kstat_named_t brt_decref_entry_not_on_disk;
|
|
kstat_named_t brt_decref_entry_read_lost_race;
|
|
kstat_named_t brt_decref_entry_still_referenced;
|
|
kstat_named_t brt_decref_free_data_later;
|
|
kstat_named_t brt_decref_free_data_now;
|
|
kstat_named_t brt_decref_no_entry;
|
|
} brt_stats_t;
|
|
|
|
static brt_stats_t brt_stats = {
|
|
{ "addref_entry_in_memory", KSTAT_DATA_UINT64 },
|
|
{ "addref_entry_not_on_disk", KSTAT_DATA_UINT64 },
|
|
{ "addref_entry_on_disk", KSTAT_DATA_UINT64 },
|
|
{ "addref_entry_read_lost_race", KSTAT_DATA_UINT64 },
|
|
{ "decref_entry_in_memory", KSTAT_DATA_UINT64 },
|
|
{ "decref_entry_loaded_from_disk", KSTAT_DATA_UINT64 },
|
|
{ "decref_entry_not_in_memory", KSTAT_DATA_UINT64 },
|
|
{ "decref_entry_not_on_disk", KSTAT_DATA_UINT64 },
|
|
{ "decref_entry_read_lost_race", KSTAT_DATA_UINT64 },
|
|
{ "decref_entry_still_referenced", KSTAT_DATA_UINT64 },
|
|
{ "decref_free_data_later", KSTAT_DATA_UINT64 },
|
|
{ "decref_free_data_now", KSTAT_DATA_UINT64 },
|
|
{ "decref_no_entry", KSTAT_DATA_UINT64 }
|
|
};
|
|
|
|
struct {
|
|
wmsum_t brt_addref_entry_in_memory;
|
|
wmsum_t brt_addref_entry_not_on_disk;
|
|
wmsum_t brt_addref_entry_on_disk;
|
|
wmsum_t brt_addref_entry_read_lost_race;
|
|
wmsum_t brt_decref_entry_in_memory;
|
|
wmsum_t brt_decref_entry_loaded_from_disk;
|
|
wmsum_t brt_decref_entry_not_in_memory;
|
|
wmsum_t brt_decref_entry_not_on_disk;
|
|
wmsum_t brt_decref_entry_read_lost_race;
|
|
wmsum_t brt_decref_entry_still_referenced;
|
|
wmsum_t brt_decref_free_data_later;
|
|
wmsum_t brt_decref_free_data_now;
|
|
wmsum_t brt_decref_no_entry;
|
|
} brt_sums;
|
|
|
|
#define BRTSTAT_BUMP(stat) wmsum_add(&brt_sums.stat, 1)
|
|
|
|
static int brt_entry_compare(const void *x1, const void *x2);
|
|
static int brt_pending_entry_compare(const void *x1, const void *x2);
|
|
|
|
static void
|
|
brt_rlock(brt_t *brt)
|
|
{
|
|
rw_enter(&brt->brt_lock, RW_READER);
|
|
}
|
|
|
|
static void
|
|
brt_wlock(brt_t *brt)
|
|
{
|
|
rw_enter(&brt->brt_lock, RW_WRITER);
|
|
}
|
|
|
|
static void
|
|
brt_unlock(brt_t *brt)
|
|
{
|
|
rw_exit(&brt->brt_lock);
|
|
}
|
|
|
|
static uint16_t
|
|
brt_vdev_entcount_get(const brt_vdev_t *brtvd, uint64_t idx)
|
|
{
|
|
|
|
ASSERT3U(idx, <, brtvd->bv_size);
|
|
|
|
if (brtvd->bv_need_byteswap) {
|
|
return (BSWAP_16(brtvd->bv_entcount[idx]));
|
|
} else {
|
|
return (brtvd->bv_entcount[idx]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
brt_vdev_entcount_set(brt_vdev_t *brtvd, uint64_t idx, uint16_t entcnt)
|
|
{
|
|
|
|
ASSERT3U(idx, <, brtvd->bv_size);
|
|
|
|
if (brtvd->bv_need_byteswap) {
|
|
brtvd->bv_entcount[idx] = BSWAP_16(entcnt);
|
|
} else {
|
|
brtvd->bv_entcount[idx] = entcnt;
|
|
}
|
|
}
|
|
|
|
static void
|
|
brt_vdev_entcount_inc(brt_vdev_t *brtvd, uint64_t idx)
|
|
{
|
|
uint16_t entcnt;
|
|
|
|
ASSERT3U(idx, <, brtvd->bv_size);
|
|
|
|
entcnt = brt_vdev_entcount_get(brtvd, idx);
|
|
ASSERT(entcnt < UINT16_MAX);
|
|
|
|
brt_vdev_entcount_set(brtvd, idx, entcnt + 1);
|
|
}
|
|
|
|
static void
|
|
brt_vdev_entcount_dec(brt_vdev_t *brtvd, uint64_t idx)
|
|
{
|
|
uint16_t entcnt;
|
|
|
|
ASSERT3U(idx, <, brtvd->bv_size);
|
|
|
|
entcnt = brt_vdev_entcount_get(brtvd, idx);
|
|
ASSERT(entcnt > 0);
|
|
|
|
brt_vdev_entcount_set(brtvd, idx, entcnt - 1);
|
|
}
|
|
|
|
#ifdef ZFS_DEBUG
|
|
static void
|
|
brt_vdev_dump(brt_t *brt)
|
|
{
|
|
brt_vdev_t *brtvd;
|
|
uint64_t vdevid;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_BRT) == 0) {
|
|
return;
|
|
}
|
|
|
|
if (brt->brt_nvdevs == 0) {
|
|
zfs_dbgmsg("BRT empty");
|
|
return;
|
|
}
|
|
|
|
zfs_dbgmsg("BRT vdev dump:");
|
|
for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
|
|
uint64_t idx;
|
|
|
|
brtvd = &brt->brt_vdevs[vdevid];
|
|
zfs_dbgmsg(" vdevid=%llu/%llu meta_dirty=%d entcount_dirty=%d "
|
|
"size=%llu totalcount=%llu nblocks=%llu bitmapsize=%zu\n",
|
|
(u_longlong_t)vdevid, (u_longlong_t)brtvd->bv_vdevid,
|
|
brtvd->bv_meta_dirty, brtvd->bv_entcount_dirty,
|
|
(u_longlong_t)brtvd->bv_size,
|
|
(u_longlong_t)brtvd->bv_totalcount,
|
|
(u_longlong_t)brtvd->bv_nblocks,
|
|
(size_t)BT_SIZEOFMAP(brtvd->bv_nblocks));
|
|
if (brtvd->bv_totalcount > 0) {
|
|
zfs_dbgmsg(" entcounts:");
|
|
for (idx = 0; idx < brtvd->bv_size; idx++) {
|
|
if (brt_vdev_entcount_get(brtvd, idx) > 0) {
|
|
zfs_dbgmsg(" [%04llu] %hu",
|
|
(u_longlong_t)idx,
|
|
brt_vdev_entcount_get(brtvd, idx));
|
|
}
|
|
}
|
|
}
|
|
if (brtvd->bv_entcount_dirty) {
|
|
char *bitmap;
|
|
|
|
bitmap = kmem_alloc(brtvd->bv_nblocks + 1, KM_SLEEP);
|
|
for (idx = 0; idx < brtvd->bv_nblocks; idx++) {
|
|
bitmap[idx] =
|
|
BT_TEST(brtvd->bv_bitmap, idx) ? 'x' : '.';
|
|
}
|
|
bitmap[idx] = '\0';
|
|
zfs_dbgmsg(" bitmap: %s", bitmap);
|
|
kmem_free(bitmap, brtvd->bv_nblocks + 1);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static brt_vdev_t *
|
|
brt_vdev(brt_t *brt, uint64_t vdevid)
|
|
{
|
|
brt_vdev_t *brtvd;
|
|
|
|
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
|
|
|
|
if (vdevid < brt->brt_nvdevs) {
|
|
brtvd = &brt->brt_vdevs[vdevid];
|
|
} else {
|
|
brtvd = NULL;
|
|
}
|
|
|
|
return (brtvd);
|
|
}
|
|
|
|
static void
|
|
brt_vdev_create(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
|
|
{
|
|
char name[64];
|
|
|
|
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
|
|
ASSERT0(brtvd->bv_mos_brtvdev);
|
|
ASSERT0(brtvd->bv_mos_entries);
|
|
ASSERT(brtvd->bv_entcount != NULL);
|
|
ASSERT(brtvd->bv_size > 0);
|
|
ASSERT(brtvd->bv_bitmap != NULL);
|
|
ASSERT(brtvd->bv_nblocks > 0);
|
|
|
|
brtvd->bv_mos_entries = zap_create_flags(brt->brt_mos, 0,
|
|
ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY, DMU_OTN_ZAP_METADATA,
|
|
brt_zap_leaf_blockshift, brt_zap_indirect_blockshift, DMU_OT_NONE,
|
|
0, tx);
|
|
VERIFY(brtvd->bv_mos_entries != 0);
|
|
BRT_DEBUG("MOS entries created, object=%llu",
|
|
(u_longlong_t)brtvd->bv_mos_entries);
|
|
|
|
/*
|
|
* We allocate DMU buffer to store the bv_entcount[] array.
|
|
* We will keep array size (bv_size) and cummulative count for all
|
|
* bv_entcount[]s (bv_totalcount) in the bonus buffer.
|
|
*/
|
|
brtvd->bv_mos_brtvdev = dmu_object_alloc(brt->brt_mos,
|
|
DMU_OTN_UINT64_METADATA, BRT_BLOCKSIZE,
|
|
DMU_OTN_UINT64_METADATA, sizeof (brt_vdev_phys_t), tx);
|
|
VERIFY(brtvd->bv_mos_brtvdev != 0);
|
|
BRT_DEBUG("MOS BRT VDEV created, object=%llu",
|
|
(u_longlong_t)brtvd->bv_mos_brtvdev);
|
|
|
|
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
|
|
(u_longlong_t)brtvd->bv_vdevid);
|
|
VERIFY0(zap_add(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name,
|
|
sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev, tx));
|
|
BRT_DEBUG("Pool directory object created, object=%s", name);
|
|
|
|
spa_feature_incr(brt->brt_spa, SPA_FEATURE_BLOCK_CLONING, tx);
|
|
}
|
|
|
|
static void
|
|
brt_vdev_realloc(brt_t *brt, brt_vdev_t *brtvd)
|
|
{
|
|
vdev_t *vd;
|
|
uint16_t *entcount;
|
|
ulong_t *bitmap;
|
|
uint64_t nblocks, size;
|
|
|
|
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
|
|
|
|
spa_config_enter(brt->brt_spa, SCL_VDEV, FTAG, RW_READER);
|
|
vd = vdev_lookup_top(brt->brt_spa, brtvd->bv_vdevid);
|
|
size = (vdev_get_min_asize(vd) - 1) / brt->brt_rangesize + 1;
|
|
spa_config_exit(brt->brt_spa, SCL_VDEV, FTAG);
|
|
|
|
entcount = vmem_zalloc(sizeof (entcount[0]) * size, KM_SLEEP);
|
|
nblocks = BRT_RANGESIZE_TO_NBLOCKS(size);
|
|
bitmap = kmem_zalloc(BT_SIZEOFMAP(nblocks), KM_SLEEP);
|
|
|
|
if (!brtvd->bv_initiated) {
|
|
ASSERT0(brtvd->bv_size);
|
|
ASSERT(brtvd->bv_entcount == NULL);
|
|
ASSERT(brtvd->bv_bitmap == NULL);
|
|
ASSERT0(brtvd->bv_nblocks);
|
|
|
|
avl_create(&brtvd->bv_tree, brt_entry_compare,
|
|
sizeof (brt_entry_t), offsetof(brt_entry_t, bre_node));
|
|
} else {
|
|
ASSERT(brtvd->bv_size > 0);
|
|
ASSERT(brtvd->bv_entcount != NULL);
|
|
ASSERT(brtvd->bv_bitmap != NULL);
|
|
ASSERT(brtvd->bv_nblocks > 0);
|
|
/*
|
|
* TODO: Allow vdev shrinking. We only need to implement
|
|
* shrinking the on-disk BRT VDEV object.
|
|
* dmu_free_range(brt->brt_mos, brtvd->bv_mos_brtvdev, offset,
|
|
* size, tx);
|
|
*/
|
|
ASSERT3U(brtvd->bv_size, <=, size);
|
|
|
|
memcpy(entcount, brtvd->bv_entcount,
|
|
sizeof (entcount[0]) * MIN(size, brtvd->bv_size));
|
|
memcpy(bitmap, brtvd->bv_bitmap, MIN(BT_SIZEOFMAP(nblocks),
|
|
BT_SIZEOFMAP(brtvd->bv_nblocks)));
|
|
vmem_free(brtvd->bv_entcount,
|
|
sizeof (entcount[0]) * brtvd->bv_size);
|
|
kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(brtvd->bv_nblocks));
|
|
}
|
|
|
|
brtvd->bv_size = size;
|
|
brtvd->bv_entcount = entcount;
|
|
brtvd->bv_bitmap = bitmap;
|
|
brtvd->bv_nblocks = nblocks;
|
|
if (!brtvd->bv_initiated) {
|
|
brtvd->bv_need_byteswap = FALSE;
|
|
brtvd->bv_initiated = TRUE;
|
|
BRT_DEBUG("BRT VDEV %llu initiated.",
|
|
(u_longlong_t)brtvd->bv_vdevid);
|
|
}
|
|
}
|
|
|
|
static void
|
|
brt_vdev_load(brt_t *brt, brt_vdev_t *brtvd)
|
|
{
|
|
char name[64];
|
|
dmu_buf_t *db;
|
|
brt_vdev_phys_t *bvphys;
|
|
int error;
|
|
|
|
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
|
|
(u_longlong_t)brtvd->bv_vdevid);
|
|
error = zap_lookup(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name,
|
|
sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev);
|
|
if (error != 0)
|
|
return;
|
|
ASSERT(brtvd->bv_mos_brtvdev != 0);
|
|
|
|
error = dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db);
|
|
ASSERT0(error);
|
|
if (error != 0)
|
|
return;
|
|
|
|
bvphys = db->db_data;
|
|
if (brt->brt_rangesize == 0) {
|
|
brt->brt_rangesize = bvphys->bvp_rangesize;
|
|
} else {
|
|
ASSERT3U(brt->brt_rangesize, ==, bvphys->bvp_rangesize);
|
|
}
|
|
|
|
ASSERT(!brtvd->bv_initiated);
|
|
brt_vdev_realloc(brt, brtvd);
|
|
|
|
/* TODO: We don't support VDEV shrinking. */
|
|
ASSERT3U(bvphys->bvp_size, <=, brtvd->bv_size);
|
|
|
|
/*
|
|
* If VDEV grew, we will leave new bv_entcount[] entries zeroed out.
|
|
*/
|
|
error = dmu_read(brt->brt_mos, brtvd->bv_mos_brtvdev, 0,
|
|
MIN(brtvd->bv_size, bvphys->bvp_size) * sizeof (uint16_t),
|
|
brtvd->bv_entcount, DMU_READ_NO_PREFETCH);
|
|
ASSERT0(error);
|
|
|
|
brtvd->bv_mos_entries = bvphys->bvp_mos_entries;
|
|
ASSERT(brtvd->bv_mos_entries != 0);
|
|
brtvd->bv_need_byteswap =
|
|
(bvphys->bvp_byteorder != BRT_NATIVE_BYTEORDER);
|
|
brtvd->bv_totalcount = bvphys->bvp_totalcount;
|
|
brtvd->bv_usedspace = bvphys->bvp_usedspace;
|
|
brtvd->bv_savedspace = bvphys->bvp_savedspace;
|
|
brt->brt_usedspace += brtvd->bv_usedspace;
|
|
brt->brt_savedspace += brtvd->bv_savedspace;
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
BRT_DEBUG("MOS BRT VDEV %s loaded: mos_brtvdev=%llu, mos_entries=%llu",
|
|
name, (u_longlong_t)brtvd->bv_mos_brtvdev,
|
|
(u_longlong_t)brtvd->bv_mos_entries);
|
|
}
|
|
|
|
static void
|
|
brt_vdev_dealloc(brt_t *brt, brt_vdev_t *brtvd)
|
|
{
|
|
|
|
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
|
|
ASSERT(brtvd->bv_initiated);
|
|
|
|
vmem_free(brtvd->bv_entcount, sizeof (uint16_t) * brtvd->bv_size);
|
|
brtvd->bv_entcount = NULL;
|
|
kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(brtvd->bv_nblocks));
|
|
brtvd->bv_bitmap = NULL;
|
|
ASSERT0(avl_numnodes(&brtvd->bv_tree));
|
|
avl_destroy(&brtvd->bv_tree);
|
|
|
|
brtvd->bv_size = 0;
|
|
brtvd->bv_nblocks = 0;
|
|
|
|
brtvd->bv_initiated = FALSE;
|
|
BRT_DEBUG("BRT VDEV %llu deallocated.", (u_longlong_t)brtvd->bv_vdevid);
|
|
}
|
|
|
|
static void
|
|
brt_vdev_destroy(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
|
|
{
|
|
char name[64];
|
|
uint64_t count;
|
|
dmu_buf_t *db;
|
|
brt_vdev_phys_t *bvphys;
|
|
|
|
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
|
|
ASSERT(brtvd->bv_mos_brtvdev != 0);
|
|
ASSERT(brtvd->bv_mos_entries != 0);
|
|
|
|
VERIFY0(zap_count(brt->brt_mos, brtvd->bv_mos_entries, &count));
|
|
VERIFY0(count);
|
|
VERIFY0(zap_destroy(brt->brt_mos, brtvd->bv_mos_entries, tx));
|
|
BRT_DEBUG("MOS entries destroyed, object=%llu",
|
|
(u_longlong_t)brtvd->bv_mos_entries);
|
|
brtvd->bv_mos_entries = 0;
|
|
|
|
VERIFY0(dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db));
|
|
bvphys = db->db_data;
|
|
ASSERT0(bvphys->bvp_totalcount);
|
|
ASSERT0(bvphys->bvp_usedspace);
|
|
ASSERT0(bvphys->bvp_savedspace);
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
VERIFY0(dmu_object_free(brt->brt_mos, brtvd->bv_mos_brtvdev, tx));
|
|
BRT_DEBUG("MOS BRT VDEV destroyed, object=%llu",
|
|
(u_longlong_t)brtvd->bv_mos_brtvdev);
|
|
brtvd->bv_mos_brtvdev = 0;
|
|
|
|
snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
|
|
(u_longlong_t)brtvd->bv_vdevid);
|
|
VERIFY0(zap_remove(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name, tx));
|
|
BRT_DEBUG("Pool directory object removed, object=%s", name);
|
|
|
|
brt_vdev_dealloc(brt, brtvd);
|
|
|
|
spa_feature_decr(brt->brt_spa, SPA_FEATURE_BLOCK_CLONING, tx);
|
|
}
|
|
|
|
static void
|
|
brt_vdevs_expand(brt_t *brt, uint64_t nvdevs)
|
|
{
|
|
brt_vdev_t *brtvd, *vdevs;
|
|
uint64_t vdevid;
|
|
|
|
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
|
|
ASSERT3U(nvdevs, >, brt->brt_nvdevs);
|
|
|
|
vdevs = kmem_zalloc(sizeof (vdevs[0]) * nvdevs, KM_SLEEP);
|
|
if (brt->brt_nvdevs > 0) {
|
|
ASSERT(brt->brt_vdevs != NULL);
|
|
|
|
memcpy(vdevs, brt->brt_vdevs,
|
|
sizeof (brt_vdev_t) * brt->brt_nvdevs);
|
|
kmem_free(brt->brt_vdevs,
|
|
sizeof (brt_vdev_t) * brt->brt_nvdevs);
|
|
}
|
|
for (vdevid = brt->brt_nvdevs; vdevid < nvdevs; vdevid++) {
|
|
brtvd = &vdevs[vdevid];
|
|
|
|
brtvd->bv_vdevid = vdevid;
|
|
brtvd->bv_initiated = FALSE;
|
|
}
|
|
|
|
BRT_DEBUG("BRT VDEVs expanded from %llu to %llu.",
|
|
(u_longlong_t)brt->brt_nvdevs, (u_longlong_t)nvdevs);
|
|
|
|
brt->brt_vdevs = vdevs;
|
|
brt->brt_nvdevs = nvdevs;
|
|
}
|
|
|
|
static boolean_t
|
|
brt_vdev_lookup(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre)
|
|
{
|
|
uint64_t idx;
|
|
|
|
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
|
|
|
|
idx = bre->bre_offset / brt->brt_rangesize;
|
|
if (brtvd->bv_entcount != NULL && idx < brtvd->bv_size) {
|
|
/* VDEV wasn't expanded. */
|
|
return (brt_vdev_entcount_get(brtvd, idx) > 0);
|
|
}
|
|
|
|
return (FALSE);
|
|
}
|
|
|
|
static void
|
|
brt_vdev_addref(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre,
|
|
uint64_t dsize)
|
|
{
|
|
uint64_t idx;
|
|
|
|
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
|
|
ASSERT(brtvd != NULL);
|
|
ASSERT(brtvd->bv_entcount != NULL);
|
|
|
|
brt->brt_savedspace += dsize;
|
|
brtvd->bv_savedspace += dsize;
|
|
brtvd->bv_meta_dirty = TRUE;
|
|
|
|
if (bre->bre_refcount > 1) {
|
|
return;
|
|
}
|
|
|
|
brt->brt_usedspace += dsize;
|
|
brtvd->bv_usedspace += dsize;
|
|
|
|
idx = bre->bre_offset / brt->brt_rangesize;
|
|
if (idx >= brtvd->bv_size) {
|
|
/* VDEV has been expanded. */
|
|
brt_vdev_realloc(brt, brtvd);
|
|
}
|
|
|
|
ASSERT3U(idx, <, brtvd->bv_size);
|
|
|
|
brtvd->bv_totalcount++;
|
|
brt_vdev_entcount_inc(brtvd, idx);
|
|
brtvd->bv_entcount_dirty = TRUE;
|
|
idx = idx / BRT_BLOCKSIZE / 8;
|
|
BT_SET(brtvd->bv_bitmap, idx);
|
|
|
|
#ifdef ZFS_DEBUG
|
|
brt_vdev_dump(brt);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
brt_vdev_decref(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre,
|
|
uint64_t dsize)
|
|
{
|
|
uint64_t idx;
|
|
|
|
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
|
|
ASSERT(brtvd != NULL);
|
|
ASSERT(brtvd->bv_entcount != NULL);
|
|
|
|
brt->brt_savedspace -= dsize;
|
|
brtvd->bv_savedspace -= dsize;
|
|
brtvd->bv_meta_dirty = TRUE;
|
|
|
|
if (bre->bre_refcount > 0) {
|
|
return;
|
|
}
|
|
|
|
brt->brt_usedspace -= dsize;
|
|
brtvd->bv_usedspace -= dsize;
|
|
|
|
idx = bre->bre_offset / brt->brt_rangesize;
|
|
ASSERT3U(idx, <, brtvd->bv_size);
|
|
|
|
ASSERT(brtvd->bv_totalcount > 0);
|
|
brtvd->bv_totalcount--;
|
|
brt_vdev_entcount_dec(brtvd, idx);
|
|
brtvd->bv_entcount_dirty = TRUE;
|
|
idx = idx / BRT_BLOCKSIZE / 8;
|
|
BT_SET(brtvd->bv_bitmap, idx);
|
|
|
|
#ifdef ZFS_DEBUG
|
|
brt_vdev_dump(brt);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
brt_vdev_sync(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t *db;
|
|
brt_vdev_phys_t *bvphys;
|
|
|
|
ASSERT(brtvd->bv_meta_dirty);
|
|
ASSERT(brtvd->bv_mos_brtvdev != 0);
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
VERIFY0(dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db));
|
|
|
|
if (brtvd->bv_entcount_dirty) {
|
|
/*
|
|
* TODO: Walk brtvd->bv_bitmap and write only the dirty blocks.
|
|
*/
|
|
dmu_write(brt->brt_mos, brtvd->bv_mos_brtvdev, 0,
|
|
brtvd->bv_size * sizeof (brtvd->bv_entcount[0]),
|
|
brtvd->bv_entcount, tx);
|
|
memset(brtvd->bv_bitmap, 0, BT_SIZEOFMAP(brtvd->bv_nblocks));
|
|
brtvd->bv_entcount_dirty = FALSE;
|
|
}
|
|
|
|
dmu_buf_will_dirty(db, tx);
|
|
bvphys = db->db_data;
|
|
bvphys->bvp_mos_entries = brtvd->bv_mos_entries;
|
|
bvphys->bvp_size = brtvd->bv_size;
|
|
if (brtvd->bv_need_byteswap) {
|
|
bvphys->bvp_byteorder = BRT_NON_NATIVE_BYTEORDER;
|
|
} else {
|
|
bvphys->bvp_byteorder = BRT_NATIVE_BYTEORDER;
|
|
}
|
|
bvphys->bvp_totalcount = brtvd->bv_totalcount;
|
|
bvphys->bvp_rangesize = brt->brt_rangesize;
|
|
bvphys->bvp_usedspace = brtvd->bv_usedspace;
|
|
bvphys->bvp_savedspace = brtvd->bv_savedspace;
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
brtvd->bv_meta_dirty = FALSE;
|
|
}
|
|
|
|
static void
|
|
brt_vdevs_alloc(brt_t *brt, boolean_t load)
|
|
{
|
|
brt_vdev_t *brtvd;
|
|
uint64_t vdevid;
|
|
|
|
brt_wlock(brt);
|
|
|
|
brt_vdevs_expand(brt, brt->brt_spa->spa_root_vdev->vdev_children);
|
|
|
|
if (load) {
|
|
for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
|
|
brtvd = &brt->brt_vdevs[vdevid];
|
|
ASSERT(brtvd->bv_entcount == NULL);
|
|
|
|
brt_vdev_load(brt, brtvd);
|
|
}
|
|
}
|
|
|
|
if (brt->brt_rangesize == 0) {
|
|
brt->brt_rangesize = BRT_RANGESIZE;
|
|
}
|
|
|
|
brt_unlock(brt);
|
|
}
|
|
|
|
static void
|
|
brt_vdevs_free(brt_t *brt)
|
|
{
|
|
brt_vdev_t *brtvd;
|
|
uint64_t vdevid;
|
|
|
|
brt_wlock(brt);
|
|
|
|
for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
|
|
brtvd = &brt->brt_vdevs[vdevid];
|
|
if (brtvd->bv_initiated)
|
|
brt_vdev_dealloc(brt, brtvd);
|
|
}
|
|
kmem_free(brt->brt_vdevs, sizeof (brt_vdev_t) * brt->brt_nvdevs);
|
|
|
|
brt_unlock(brt);
|
|
}
|
|
|
|
static void
|
|
brt_entry_fill(const blkptr_t *bp, brt_entry_t *bre, uint64_t *vdevidp)
|
|
{
|
|
|
|
bre->bre_offset = DVA_GET_OFFSET(&bp->blk_dva[0]);
|
|
bre->bre_refcount = 0;
|
|
|
|
*vdevidp = DVA_GET_VDEV(&bp->blk_dva[0]);
|
|
}
|
|
|
|
static int
|
|
brt_entry_compare(const void *x1, const void *x2)
|
|
{
|
|
const brt_entry_t *bre1 = x1;
|
|
const brt_entry_t *bre2 = x2;
|
|
|
|
return (TREE_CMP(bre1->bre_offset, bre2->bre_offset));
|
|
}
|
|
|
|
static int
|
|
brt_entry_lookup(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre)
|
|
{
|
|
uint64_t mos_entries;
|
|
uint64_t one, physsize;
|
|
int error;
|
|
|
|
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
|
|
|
|
if (!brt_vdev_lookup(brt, brtvd, bre))
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
/*
|
|
* Remember mos_entries object number. After we reacquire the BRT lock,
|
|
* the brtvd pointer may be invalid.
|
|
*/
|
|
mos_entries = brtvd->bv_mos_entries;
|
|
if (mos_entries == 0)
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
brt_unlock(brt);
|
|
|
|
error = zap_length_uint64(brt->brt_mos, mos_entries, &bre->bre_offset,
|
|
BRT_KEY_WORDS, &one, &physsize);
|
|
if (error == 0) {
|
|
ASSERT3U(one, ==, 1);
|
|
ASSERT3U(physsize, ==, sizeof (bre->bre_refcount));
|
|
|
|
error = zap_lookup_uint64(brt->brt_mos, mos_entries,
|
|
&bre->bre_offset, BRT_KEY_WORDS, 1,
|
|
sizeof (bre->bre_refcount), &bre->bre_refcount);
|
|
BRT_DEBUG("ZAP lookup: object=%llu vdev=%llu offset=%llu "
|
|
"count=%llu error=%d", (u_longlong_t)mos_entries,
|
|
(u_longlong_t)brtvd->bv_vdevid,
|
|
(u_longlong_t)bre->bre_offset,
|
|
error == 0 ? (u_longlong_t)bre->bre_refcount : 0, error);
|
|
}
|
|
|
|
brt_wlock(brt);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
brt_entry_prefetch(brt_t *brt, uint64_t vdevid, brt_entry_t *bre)
|
|
{
|
|
brt_vdev_t *brtvd;
|
|
uint64_t mos_entries = 0;
|
|
|
|
brt_rlock(brt);
|
|
brtvd = brt_vdev(brt, vdevid);
|
|
if (brtvd != NULL)
|
|
mos_entries = brtvd->bv_mos_entries;
|
|
brt_unlock(brt);
|
|
|
|
if (mos_entries == 0)
|
|
return;
|
|
|
|
BRT_DEBUG("ZAP prefetch: object=%llu vdev=%llu offset=%llu",
|
|
(u_longlong_t)mos_entries, (u_longlong_t)vdevid,
|
|
(u_longlong_t)bre->bre_offset);
|
|
(void) zap_prefetch_uint64(brt->brt_mos, mos_entries,
|
|
(uint64_t *)&bre->bre_offset, BRT_KEY_WORDS);
|
|
}
|
|
|
|
static int
|
|
brt_entry_update(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre, dmu_tx_t *tx)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
|
|
ASSERT(brtvd->bv_mos_entries != 0);
|
|
ASSERT(bre->bre_refcount > 0);
|
|
|
|
error = zap_update_uint64(brt->brt_mos, brtvd->bv_mos_entries,
|
|
(uint64_t *)&bre->bre_offset, BRT_KEY_WORDS, 1,
|
|
sizeof (bre->bre_refcount), &bre->bre_refcount, tx);
|
|
BRT_DEBUG("ZAP update: object=%llu vdev=%llu offset=%llu count=%llu "
|
|
"error=%d", (u_longlong_t)brtvd->bv_mos_entries,
|
|
(u_longlong_t)brtvd->bv_vdevid, (u_longlong_t)bre->bre_offset,
|
|
(u_longlong_t)bre->bre_refcount, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
brt_entry_remove(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre, dmu_tx_t *tx)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(RW_LOCK_HELD(&brt->brt_lock));
|
|
ASSERT(brtvd->bv_mos_entries != 0);
|
|
ASSERT0(bre->bre_refcount);
|
|
|
|
error = zap_remove_uint64(brt->brt_mos, brtvd->bv_mos_entries,
|
|
(uint64_t *)&bre->bre_offset, BRT_KEY_WORDS, tx);
|
|
BRT_DEBUG("ZAP remove: object=%llu vdev=%llu offset=%llu count=%llu "
|
|
"error=%d", (u_longlong_t)brtvd->bv_mos_entries,
|
|
(u_longlong_t)brtvd->bv_vdevid, (u_longlong_t)bre->bre_offset,
|
|
(u_longlong_t)bre->bre_refcount, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return TRUE if we _can_ have BRT entry for this bp. It might be false
|
|
* positive, but gives us quick answer if we should look into BRT, which
|
|
* may require reads and thus will be more expensive.
|
|
*/
|
|
boolean_t
|
|
brt_maybe_exists(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
brt_t *brt = spa->spa_brt;
|
|
brt_vdev_t *brtvd;
|
|
brt_entry_t bre_search;
|
|
boolean_t mayexists = FALSE;
|
|
uint64_t vdevid;
|
|
|
|
brt_entry_fill(bp, &bre_search, &vdevid);
|
|
|
|
brt_rlock(brt);
|
|
|
|
brtvd = brt_vdev(brt, vdevid);
|
|
if (brtvd != NULL && brtvd->bv_initiated) {
|
|
if (!avl_is_empty(&brtvd->bv_tree) ||
|
|
brt_vdev_lookup(brt, brtvd, &bre_search)) {
|
|
mayexists = TRUE;
|
|
}
|
|
}
|
|
|
|
brt_unlock(brt);
|
|
|
|
return (mayexists);
|
|
}
|
|
|
|
uint64_t
|
|
brt_get_dspace(spa_t *spa)
|
|
{
|
|
brt_t *brt = spa->spa_brt;
|
|
|
|
if (brt == NULL)
|
|
return (0);
|
|
|
|
return (brt->brt_savedspace);
|
|
}
|
|
|
|
uint64_t
|
|
brt_get_used(spa_t *spa)
|
|
{
|
|
brt_t *brt = spa->spa_brt;
|
|
|
|
if (brt == NULL)
|
|
return (0);
|
|
|
|
return (brt->brt_usedspace);
|
|
}
|
|
|
|
uint64_t
|
|
brt_get_saved(spa_t *spa)
|
|
{
|
|
brt_t *brt = spa->spa_brt;
|
|
|
|
if (brt == NULL)
|
|
return (0);
|
|
|
|
return (brt->brt_savedspace);
|
|
}
|
|
|
|
uint64_t
|
|
brt_get_ratio(spa_t *spa)
|
|
{
|
|
brt_t *brt = spa->spa_brt;
|
|
|
|
if (brt->brt_usedspace == 0)
|
|
return (100);
|
|
|
|
return ((brt->brt_usedspace + brt->brt_savedspace) * 100 /
|
|
brt->brt_usedspace);
|
|
}
|
|
|
|
static int
|
|
brt_kstats_update(kstat_t *ksp, int rw)
|
|
{
|
|
brt_stats_t *bs = ksp->ks_data;
|
|
|
|
if (rw == KSTAT_WRITE)
|
|
return (EACCES);
|
|
|
|
bs->brt_addref_entry_in_memory.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_addref_entry_in_memory);
|
|
bs->brt_addref_entry_not_on_disk.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_addref_entry_not_on_disk);
|
|
bs->brt_addref_entry_on_disk.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_addref_entry_on_disk);
|
|
bs->brt_addref_entry_read_lost_race.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_addref_entry_read_lost_race);
|
|
bs->brt_decref_entry_in_memory.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_decref_entry_in_memory);
|
|
bs->brt_decref_entry_loaded_from_disk.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_decref_entry_loaded_from_disk);
|
|
bs->brt_decref_entry_not_in_memory.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_decref_entry_not_in_memory);
|
|
bs->brt_decref_entry_not_on_disk.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_decref_entry_not_on_disk);
|
|
bs->brt_decref_entry_read_lost_race.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_decref_entry_read_lost_race);
|
|
bs->brt_decref_entry_still_referenced.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_decref_entry_still_referenced);
|
|
bs->brt_decref_free_data_later.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_decref_free_data_later);
|
|
bs->brt_decref_free_data_now.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_decref_free_data_now);
|
|
bs->brt_decref_no_entry.value.ui64 =
|
|
wmsum_value(&brt_sums.brt_decref_no_entry);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
brt_stat_init(void)
|
|
{
|
|
|
|
wmsum_init(&brt_sums.brt_addref_entry_in_memory, 0);
|
|
wmsum_init(&brt_sums.brt_addref_entry_not_on_disk, 0);
|
|
wmsum_init(&brt_sums.brt_addref_entry_on_disk, 0);
|
|
wmsum_init(&brt_sums.brt_addref_entry_read_lost_race, 0);
|
|
wmsum_init(&brt_sums.brt_decref_entry_in_memory, 0);
|
|
wmsum_init(&brt_sums.brt_decref_entry_loaded_from_disk, 0);
|
|
wmsum_init(&brt_sums.brt_decref_entry_not_in_memory, 0);
|
|
wmsum_init(&brt_sums.brt_decref_entry_not_on_disk, 0);
|
|
wmsum_init(&brt_sums.brt_decref_entry_read_lost_race, 0);
|
|
wmsum_init(&brt_sums.brt_decref_entry_still_referenced, 0);
|
|
wmsum_init(&brt_sums.brt_decref_free_data_later, 0);
|
|
wmsum_init(&brt_sums.brt_decref_free_data_now, 0);
|
|
wmsum_init(&brt_sums.brt_decref_no_entry, 0);
|
|
|
|
brt_ksp = kstat_create("zfs", 0, "brtstats", "misc", KSTAT_TYPE_NAMED,
|
|
sizeof (brt_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
|
|
if (brt_ksp != NULL) {
|
|
brt_ksp->ks_data = &brt_stats;
|
|
brt_ksp->ks_update = brt_kstats_update;
|
|
kstat_install(brt_ksp);
|
|
}
|
|
}
|
|
|
|
static void
|
|
brt_stat_fini(void)
|
|
{
|
|
if (brt_ksp != NULL) {
|
|
kstat_delete(brt_ksp);
|
|
brt_ksp = NULL;
|
|
}
|
|
|
|
wmsum_fini(&brt_sums.brt_addref_entry_in_memory);
|
|
wmsum_fini(&brt_sums.brt_addref_entry_not_on_disk);
|
|
wmsum_fini(&brt_sums.brt_addref_entry_on_disk);
|
|
wmsum_fini(&brt_sums.brt_addref_entry_read_lost_race);
|
|
wmsum_fini(&brt_sums.brt_decref_entry_in_memory);
|
|
wmsum_fini(&brt_sums.brt_decref_entry_loaded_from_disk);
|
|
wmsum_fini(&brt_sums.brt_decref_entry_not_in_memory);
|
|
wmsum_fini(&brt_sums.brt_decref_entry_not_on_disk);
|
|
wmsum_fini(&brt_sums.brt_decref_entry_read_lost_race);
|
|
wmsum_fini(&brt_sums.brt_decref_entry_still_referenced);
|
|
wmsum_fini(&brt_sums.brt_decref_free_data_later);
|
|
wmsum_fini(&brt_sums.brt_decref_free_data_now);
|
|
wmsum_fini(&brt_sums.brt_decref_no_entry);
|
|
}
|
|
|
|
void
|
|
brt_init(void)
|
|
{
|
|
brt_entry_cache = kmem_cache_create("brt_entry_cache",
|
|
sizeof (brt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
brt_pending_entry_cache = kmem_cache_create("brt_pending_entry_cache",
|
|
sizeof (brt_pending_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
|
|
brt_stat_init();
|
|
}
|
|
|
|
void
|
|
brt_fini(void)
|
|
{
|
|
brt_stat_fini();
|
|
|
|
kmem_cache_destroy(brt_entry_cache);
|
|
kmem_cache_destroy(brt_pending_entry_cache);
|
|
}
|
|
|
|
static brt_entry_t *
|
|
brt_entry_alloc(const brt_entry_t *bre_init)
|
|
{
|
|
brt_entry_t *bre;
|
|
|
|
bre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
|
|
bre->bre_offset = bre_init->bre_offset;
|
|
bre->bre_refcount = bre_init->bre_refcount;
|
|
|
|
return (bre);
|
|
}
|
|
|
|
static void
|
|
brt_entry_free(brt_entry_t *bre)
|
|
{
|
|
|
|
kmem_cache_free(brt_entry_cache, bre);
|
|
}
|
|
|
|
static void
|
|
brt_entry_addref(brt_t *brt, const blkptr_t *bp)
|
|
{
|
|
brt_vdev_t *brtvd;
|
|
brt_entry_t *bre, *racebre;
|
|
brt_entry_t bre_search;
|
|
avl_index_t where;
|
|
uint64_t vdevid;
|
|
int error;
|
|
|
|
ASSERT(!RW_WRITE_HELD(&brt->brt_lock));
|
|
|
|
brt_entry_fill(bp, &bre_search, &vdevid);
|
|
|
|
brt_wlock(brt);
|
|
|
|
brtvd = brt_vdev(brt, vdevid);
|
|
if (brtvd == NULL) {
|
|
ASSERT3U(vdevid, >=, brt->brt_nvdevs);
|
|
|
|
/* New VDEV was added. */
|
|
brt_vdevs_expand(brt, vdevid + 1);
|
|
brtvd = brt_vdev(brt, vdevid);
|
|
}
|
|
ASSERT(brtvd != NULL);
|
|
if (!brtvd->bv_initiated)
|
|
brt_vdev_realloc(brt, brtvd);
|
|
|
|
bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
|
|
if (bre != NULL) {
|
|
BRTSTAT_BUMP(brt_addref_entry_in_memory);
|
|
} else {
|
|
/*
|
|
* brt_entry_lookup() may drop the BRT (read) lock and
|
|
* reacquire it (write).
|
|
*/
|
|
error = brt_entry_lookup(brt, brtvd, &bre_search);
|
|
/* bre_search now contains correct bre_refcount */
|
|
ASSERT(error == 0 || error == ENOENT);
|
|
if (error == 0)
|
|
BRTSTAT_BUMP(brt_addref_entry_on_disk);
|
|
else
|
|
BRTSTAT_BUMP(brt_addref_entry_not_on_disk);
|
|
/*
|
|
* When the BRT lock was dropped, brt_vdevs[] may have been
|
|
* expanded and reallocated, we need to update brtvd's pointer.
|
|
*/
|
|
brtvd = brt_vdev(brt, vdevid);
|
|
ASSERT(brtvd != NULL);
|
|
|
|
racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
|
|
if (racebre == NULL) {
|
|
bre = brt_entry_alloc(&bre_search);
|
|
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
|
|
avl_insert(&brtvd->bv_tree, bre, where);
|
|
brt->brt_nentries++;
|
|
} else {
|
|
/*
|
|
* The entry was added when the BRT lock was dropped in
|
|
* brt_entry_lookup().
|
|
*/
|
|
BRTSTAT_BUMP(brt_addref_entry_read_lost_race);
|
|
bre = racebre;
|
|
}
|
|
}
|
|
bre->bre_refcount++;
|
|
brt_vdev_addref(brt, brtvd, bre, bp_get_dsize(brt->brt_spa, bp));
|
|
|
|
brt_unlock(brt);
|
|
}
|
|
|
|
/* Return TRUE if block should be freed immediately. */
|
|
boolean_t
|
|
brt_entry_decref(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
brt_t *brt = spa->spa_brt;
|
|
brt_vdev_t *brtvd;
|
|
brt_entry_t *bre, *racebre;
|
|
brt_entry_t bre_search;
|
|
avl_index_t where;
|
|
uint64_t vdevid;
|
|
int error;
|
|
|
|
brt_entry_fill(bp, &bre_search, &vdevid);
|
|
|
|
brt_wlock(brt);
|
|
|
|
brtvd = brt_vdev(brt, vdevid);
|
|
ASSERT(brtvd != NULL);
|
|
|
|
bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
|
|
if (bre != NULL) {
|
|
BRTSTAT_BUMP(brt_decref_entry_in_memory);
|
|
goto out;
|
|
} else {
|
|
BRTSTAT_BUMP(brt_decref_entry_not_in_memory);
|
|
}
|
|
|
|
/*
|
|
* brt_entry_lookup() may drop the BRT lock and reacquire it.
|
|
*/
|
|
error = brt_entry_lookup(brt, brtvd, &bre_search);
|
|
/* bre_search now contains correct bre_refcount */
|
|
ASSERT(error == 0 || error == ENOENT);
|
|
/*
|
|
* When the BRT lock was dropped, brt_vdevs[] may have been expanded
|
|
* and reallocated, we need to update brtvd's pointer.
|
|
*/
|
|
brtvd = brt_vdev(brt, vdevid);
|
|
ASSERT(brtvd != NULL);
|
|
|
|
if (error == ENOENT) {
|
|
BRTSTAT_BUMP(brt_decref_entry_not_on_disk);
|
|
bre = NULL;
|
|
goto out;
|
|
}
|
|
|
|
racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
|
|
if (racebre != NULL) {
|
|
/*
|
|
* The entry was added when the BRT lock was dropped in
|
|
* brt_entry_lookup().
|
|
*/
|
|
BRTSTAT_BUMP(brt_decref_entry_read_lost_race);
|
|
bre = racebre;
|
|
goto out;
|
|
}
|
|
|
|
BRTSTAT_BUMP(brt_decref_entry_loaded_from_disk);
|
|
bre = brt_entry_alloc(&bre_search);
|
|
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
|
|
avl_insert(&brtvd->bv_tree, bre, where);
|
|
brt->brt_nentries++;
|
|
|
|
out:
|
|
if (bre == NULL) {
|
|
/*
|
|
* This is a free of a regular (not cloned) block.
|
|
*/
|
|
brt_unlock(brt);
|
|
BRTSTAT_BUMP(brt_decref_no_entry);
|
|
return (B_TRUE);
|
|
}
|
|
if (bre->bre_refcount == 0) {
|
|
brt_unlock(brt);
|
|
BRTSTAT_BUMP(brt_decref_free_data_now);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
ASSERT(bre->bre_refcount > 0);
|
|
bre->bre_refcount--;
|
|
if (bre->bre_refcount == 0)
|
|
BRTSTAT_BUMP(brt_decref_free_data_later);
|
|
else
|
|
BRTSTAT_BUMP(brt_decref_entry_still_referenced);
|
|
brt_vdev_decref(brt, brtvd, bre, bp_get_dsize(brt->brt_spa, bp));
|
|
|
|
brt_unlock(brt);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
static void
|
|
brt_prefetch(brt_t *brt, const blkptr_t *bp)
|
|
{
|
|
brt_entry_t bre;
|
|
uint64_t vdevid;
|
|
|
|
ASSERT(bp != NULL);
|
|
|
|
if (!zfs_brt_prefetch)
|
|
return;
|
|
|
|
brt_entry_fill(bp, &bre, &vdevid);
|
|
|
|
brt_entry_prefetch(brt, vdevid, &bre);
|
|
}
|
|
|
|
static int
|
|
brt_pending_entry_compare(const void *x1, const void *x2)
|
|
{
|
|
const brt_pending_entry_t *bpe1 = x1, *bpe2 = x2;
|
|
const blkptr_t *bp1 = &bpe1->bpe_bp, *bp2 = &bpe2->bpe_bp;
|
|
int cmp;
|
|
|
|
cmp = TREE_CMP(BP_PHYSICAL_BIRTH(bp1), BP_PHYSICAL_BIRTH(bp2));
|
|
if (cmp == 0) {
|
|
cmp = TREE_CMP(DVA_GET_VDEV(&bp1->blk_dva[0]),
|
|
DVA_GET_VDEV(&bp2->blk_dva[0]));
|
|
if (cmp == 0) {
|
|
cmp = TREE_CMP(DVA_GET_OFFSET(&bp1->blk_dva[0]),
|
|
DVA_GET_OFFSET(&bp2->blk_dva[0]));
|
|
}
|
|
}
|
|
|
|
return (cmp);
|
|
}
|
|
|
|
void
|
|
brt_pending_add(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
brt_t *brt;
|
|
avl_tree_t *pending_tree;
|
|
kmutex_t *pending_lock;
|
|
brt_pending_entry_t *bpe, *newbpe;
|
|
avl_index_t where;
|
|
uint64_t txg;
|
|
|
|
brt = spa->spa_brt;
|
|
txg = dmu_tx_get_txg(tx);
|
|
ASSERT3U(txg, !=, 0);
|
|
pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
|
|
pending_lock = &brt->brt_pending_lock[txg & TXG_MASK];
|
|
|
|
newbpe = kmem_cache_alloc(brt_pending_entry_cache, KM_SLEEP);
|
|
newbpe->bpe_bp = *bp;
|
|
newbpe->bpe_count = 1;
|
|
|
|
mutex_enter(pending_lock);
|
|
|
|
bpe = avl_find(pending_tree, newbpe, &where);
|
|
if (bpe == NULL) {
|
|
avl_insert(pending_tree, newbpe, where);
|
|
newbpe = NULL;
|
|
} else {
|
|
bpe->bpe_count++;
|
|
}
|
|
|
|
mutex_exit(pending_lock);
|
|
|
|
if (newbpe != NULL) {
|
|
ASSERT(bpe != NULL);
|
|
ASSERT(bpe != newbpe);
|
|
kmem_cache_free(brt_pending_entry_cache, newbpe);
|
|
} else {
|
|
ASSERT(bpe == NULL);
|
|
}
|
|
|
|
/* Prefetch BRT entry, as we will need it in the syncing context. */
|
|
brt_prefetch(brt, bp);
|
|
}
|
|
|
|
void
|
|
brt_pending_remove(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
brt_t *brt;
|
|
avl_tree_t *pending_tree;
|
|
kmutex_t *pending_lock;
|
|
brt_pending_entry_t *bpe, bpe_search;
|
|
uint64_t txg;
|
|
|
|
brt = spa->spa_brt;
|
|
txg = dmu_tx_get_txg(tx);
|
|
ASSERT3U(txg, !=, 0);
|
|
pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
|
|
pending_lock = &brt->brt_pending_lock[txg & TXG_MASK];
|
|
|
|
bpe_search.bpe_bp = *bp;
|
|
|
|
mutex_enter(pending_lock);
|
|
|
|
bpe = avl_find(pending_tree, &bpe_search, NULL);
|
|
/* I believe we should always find bpe when this function is called. */
|
|
if (bpe != NULL) {
|
|
ASSERT(bpe->bpe_count > 0);
|
|
|
|
bpe->bpe_count--;
|
|
if (bpe->bpe_count == 0) {
|
|
avl_remove(pending_tree, bpe);
|
|
kmem_cache_free(brt_pending_entry_cache, bpe);
|
|
}
|
|
}
|
|
|
|
mutex_exit(pending_lock);
|
|
}
|
|
|
|
void
|
|
brt_pending_apply(spa_t *spa, uint64_t txg)
|
|
{
|
|
brt_t *brt;
|
|
brt_pending_entry_t *bpe;
|
|
avl_tree_t *pending_tree;
|
|
kmutex_t *pending_lock;
|
|
void *c;
|
|
|
|
ASSERT3U(txg, !=, 0);
|
|
|
|
brt = spa->spa_brt;
|
|
pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
|
|
pending_lock = &brt->brt_pending_lock[txg & TXG_MASK];
|
|
|
|
mutex_enter(pending_lock);
|
|
|
|
c = NULL;
|
|
while ((bpe = avl_destroy_nodes(pending_tree, &c)) != NULL) {
|
|
boolean_t added_to_ddt;
|
|
|
|
mutex_exit(pending_lock);
|
|
|
|
for (int i = 0; i < bpe->bpe_count; i++) {
|
|
/*
|
|
* If the block has DEDUP bit set, it means that it
|
|
* already exists in the DEDUP table, so we can just
|
|
* use that instead of creating new entry in
|
|
* the BRT table.
|
|
*/
|
|
if (BP_GET_DEDUP(&bpe->bpe_bp)) {
|
|
added_to_ddt = ddt_addref(spa, &bpe->bpe_bp);
|
|
} else {
|
|
added_to_ddt = B_FALSE;
|
|
}
|
|
if (!added_to_ddt)
|
|
brt_entry_addref(brt, &bpe->bpe_bp);
|
|
}
|
|
|
|
kmem_cache_free(brt_pending_entry_cache, bpe);
|
|
mutex_enter(pending_lock);
|
|
}
|
|
|
|
mutex_exit(pending_lock);
|
|
}
|
|
|
|
static void
|
|
brt_sync_entry(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre, dmu_tx_t *tx)
|
|
{
|
|
|
|
ASSERT(RW_WRITE_HELD(&brt->brt_lock));
|
|
ASSERT(brtvd->bv_mos_entries != 0);
|
|
|
|
if (bre->bre_refcount == 0) {
|
|
int error;
|
|
|
|
error = brt_entry_remove(brt, brtvd, bre, tx);
|
|
ASSERT(error == 0 || error == ENOENT);
|
|
/*
|
|
* If error == ENOENT then zfs_clone_range() was done from a
|
|
* removed (but opened) file (open(), unlink()).
|
|
*/
|
|
ASSERT(brt_entry_lookup(brt, brtvd, bre) == ENOENT);
|
|
} else {
|
|
VERIFY0(brt_entry_update(brt, brtvd, bre, tx));
|
|
}
|
|
}
|
|
|
|
static void
|
|
brt_sync_table(brt_t *brt, dmu_tx_t *tx)
|
|
{
|
|
brt_vdev_t *brtvd;
|
|
brt_entry_t *bre;
|
|
uint64_t vdevid;
|
|
void *c;
|
|
|
|
brt_wlock(brt);
|
|
|
|
for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
|
|
brtvd = &brt->brt_vdevs[vdevid];
|
|
|
|
if (!brtvd->bv_initiated)
|
|
continue;
|
|
|
|
if (!brtvd->bv_meta_dirty) {
|
|
ASSERT(!brtvd->bv_entcount_dirty);
|
|
ASSERT0(avl_numnodes(&brtvd->bv_tree));
|
|
continue;
|
|
}
|
|
|
|
ASSERT(!brtvd->bv_entcount_dirty ||
|
|
avl_numnodes(&brtvd->bv_tree) != 0);
|
|
|
|
if (brtvd->bv_mos_brtvdev == 0)
|
|
brt_vdev_create(brt, brtvd, tx);
|
|
|
|
c = NULL;
|
|
while ((bre = avl_destroy_nodes(&brtvd->bv_tree, &c)) != NULL) {
|
|
brt_sync_entry(brt, brtvd, bre, tx);
|
|
brt_entry_free(bre);
|
|
ASSERT(brt->brt_nentries > 0);
|
|
brt->brt_nentries--;
|
|
}
|
|
|
|
brt_vdev_sync(brt, brtvd, tx);
|
|
|
|
if (brtvd->bv_totalcount == 0)
|
|
brt_vdev_destroy(brt, brtvd, tx);
|
|
}
|
|
|
|
ASSERT0(brt->brt_nentries);
|
|
|
|
brt_unlock(brt);
|
|
}
|
|
|
|
void
|
|
brt_sync(spa_t *spa, uint64_t txg)
|
|
{
|
|
dmu_tx_t *tx;
|
|
brt_t *brt;
|
|
|
|
ASSERT(spa_syncing_txg(spa) == txg);
|
|
|
|
brt = spa->spa_brt;
|
|
brt_rlock(brt);
|
|
if (brt->brt_nentries == 0) {
|
|
/* No changes. */
|
|
brt_unlock(brt);
|
|
return;
|
|
}
|
|
brt_unlock(brt);
|
|
|
|
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
|
|
|
|
brt_sync_table(brt, tx);
|
|
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
static void
|
|
brt_table_alloc(brt_t *brt)
|
|
{
|
|
|
|
for (int i = 0; i < TXG_SIZE; i++) {
|
|
avl_create(&brt->brt_pending_tree[i],
|
|
brt_pending_entry_compare,
|
|
sizeof (brt_pending_entry_t),
|
|
offsetof(brt_pending_entry_t, bpe_node));
|
|
mutex_init(&brt->brt_pending_lock[i], NULL, MUTEX_DEFAULT,
|
|
NULL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
brt_table_free(brt_t *brt)
|
|
{
|
|
|
|
for (int i = 0; i < TXG_SIZE; i++) {
|
|
ASSERT(avl_is_empty(&brt->brt_pending_tree[i]));
|
|
|
|
avl_destroy(&brt->brt_pending_tree[i]);
|
|
mutex_destroy(&brt->brt_pending_lock[i]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
brt_alloc(spa_t *spa)
|
|
{
|
|
brt_t *brt;
|
|
|
|
ASSERT(spa->spa_brt == NULL);
|
|
|
|
brt = kmem_zalloc(sizeof (*brt), KM_SLEEP);
|
|
rw_init(&brt->brt_lock, NULL, RW_DEFAULT, NULL);
|
|
brt->brt_spa = spa;
|
|
brt->brt_rangesize = 0;
|
|
brt->brt_nentries = 0;
|
|
brt->brt_vdevs = NULL;
|
|
brt->brt_nvdevs = 0;
|
|
brt_table_alloc(brt);
|
|
|
|
spa->spa_brt = brt;
|
|
}
|
|
|
|
void
|
|
brt_create(spa_t *spa)
|
|
{
|
|
|
|
brt_alloc(spa);
|
|
brt_vdevs_alloc(spa->spa_brt, B_FALSE);
|
|
}
|
|
|
|
int
|
|
brt_load(spa_t *spa)
|
|
{
|
|
|
|
brt_alloc(spa);
|
|
brt_vdevs_alloc(spa->spa_brt, B_TRUE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
brt_unload(spa_t *spa)
|
|
{
|
|
brt_t *brt = spa->spa_brt;
|
|
|
|
if (brt == NULL)
|
|
return;
|
|
|
|
brt_vdevs_free(brt);
|
|
brt_table_free(brt);
|
|
rw_destroy(&brt->brt_lock);
|
|
kmem_free(brt, sizeof (*brt));
|
|
spa->spa_brt = NULL;
|
|
}
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs_brt, zfs_brt_, prefetch, INT, ZMOD_RW,
|
|
"Enable prefetching of BRT entries");
|
|
#ifdef ZFS_BRT_DEBUG
|
|
ZFS_MODULE_PARAM(zfs_brt, zfs_brt_, debug, INT, ZMOD_RW, "BRT debug");
|
|
#endif
|
|
/* END CSTYLED */
|