mirror_zfs/module/zfs/vdev.c
Toomas Soome 8a06356e24 zio_ereport_post() and zio_ereport_start() return values are ignored
use (void) to silence analyzers.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Toomas Soome <tsoome@me.com>
Closes #10857
2020-09-03 16:15:47 -07:00

5092 lines
140 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
* Copyright 2017 Nexenta Systems, Inc.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2016 Toomas Soome <tsoome@me.com>
* Copyright 2017 Joyent, Inc.
* Copyright (c) 2017, Intel Corporation.
* Copyright (c) 2019, Datto Inc. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/fm/fs/zfs.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/bpobj.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/dsl_dir.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_rebuild.h>
#include <sys/uberblock_impl.h>
#include <sys/metaslab.h>
#include <sys/metaslab_impl.h>
#include <sys/space_map.h>
#include <sys/space_reftree.h>
#include <sys/zio.h>
#include <sys/zap.h>
#include <sys/fs/zfs.h>
#include <sys/arc.h>
#include <sys/zil.h>
#include <sys/dsl_scan.h>
#include <sys/abd.h>
#include <sys/vdev_initialize.h>
#include <sys/vdev_trim.h>
#include <sys/zvol.h>
#include <sys/zfs_ratelimit.h>
/* default target for number of metaslabs per top-level vdev */
int zfs_vdev_default_ms_count = 200;
/* minimum number of metaslabs per top-level vdev */
int zfs_vdev_min_ms_count = 16;
/* practical upper limit of total metaslabs per top-level vdev */
int zfs_vdev_ms_count_limit = 1ULL << 17;
/* lower limit for metaslab size (512M) */
int zfs_vdev_default_ms_shift = 29;
/* upper limit for metaslab size (16G) */
int zfs_vdev_max_ms_shift = 34;
int vdev_validate_skip = B_FALSE;
/*
* Since the DTL space map of a vdev is not expected to have a lot of
* entries, we default its block size to 4K.
*/
int zfs_vdev_dtl_sm_blksz = (1 << 12);
/*
* Rate limit slow IO (delay) events to this many per second.
*/
unsigned int zfs_slow_io_events_per_second = 20;
/*
* Rate limit checksum events after this many checksum errors per second.
*/
unsigned int zfs_checksum_events_per_second = 20;
/*
* Ignore errors during scrub/resilver. Allows to work around resilver
* upon import when there are pool errors.
*/
int zfs_scan_ignore_errors = 0;
/*
* vdev-wide space maps that have lots of entries written to them at
* the end of each transaction can benefit from a higher I/O bandwidth
* (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
*/
int zfs_vdev_standard_sm_blksz = (1 << 17);
/*
* Tunable parameter for debugging or performance analysis. Setting this
* will cause pool corruption on power loss if a volatile out-of-order
* write cache is enabled.
*/
int zfs_nocacheflush = 0;
uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
/*PRINTFLIKE2*/
void
vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
{
va_list adx;
char buf[256];
va_start(adx, fmt);
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
va_end(adx);
if (vd->vdev_path != NULL) {
zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
vd->vdev_path, buf);
} else {
zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
vd->vdev_ops->vdev_op_type,
(u_longlong_t)vd->vdev_id,
(u_longlong_t)vd->vdev_guid, buf);
}
}
void
vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
{
char state[20];
if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
vd->vdev_ops->vdev_op_type);
return;
}
switch (vd->vdev_state) {
case VDEV_STATE_UNKNOWN:
(void) snprintf(state, sizeof (state), "unknown");
break;
case VDEV_STATE_CLOSED:
(void) snprintf(state, sizeof (state), "closed");
break;
case VDEV_STATE_OFFLINE:
(void) snprintf(state, sizeof (state), "offline");
break;
case VDEV_STATE_REMOVED:
(void) snprintf(state, sizeof (state), "removed");
break;
case VDEV_STATE_CANT_OPEN:
(void) snprintf(state, sizeof (state), "can't open");
break;
case VDEV_STATE_FAULTED:
(void) snprintf(state, sizeof (state), "faulted");
break;
case VDEV_STATE_DEGRADED:
(void) snprintf(state, sizeof (state), "degraded");
break;
case VDEV_STATE_HEALTHY:
(void) snprintf(state, sizeof (state), "healthy");
break;
default:
(void) snprintf(state, sizeof (state), "<state %u>",
(uint_t)vd->vdev_state);
}
zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
"", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
vd->vdev_islog ? " (log)" : "",
(u_longlong_t)vd->vdev_guid,
vd->vdev_path ? vd->vdev_path : "N/A", state);
for (uint64_t i = 0; i < vd->vdev_children; i++)
vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
}
/*
* Virtual device management.
*/
static vdev_ops_t *vdev_ops_table[] = {
&vdev_root_ops,
&vdev_raidz_ops,
&vdev_mirror_ops,
&vdev_replacing_ops,
&vdev_spare_ops,
&vdev_disk_ops,
&vdev_file_ops,
&vdev_missing_ops,
&vdev_hole_ops,
&vdev_indirect_ops,
NULL
};
/*
* Given a vdev type, return the appropriate ops vector.
*/
static vdev_ops_t *
vdev_getops(const char *type)
{
vdev_ops_t *ops, **opspp;
for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
if (strcmp(ops->vdev_op_type, type) == 0)
break;
return (ops);
}
/* ARGSUSED */
void
vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res)
{
res->rs_start = in->rs_start;
res->rs_end = in->rs_end;
}
/*
* Derive the enumerated allocation bias from string input.
* String origin is either the per-vdev zap or zpool(1M).
*/
static vdev_alloc_bias_t
vdev_derive_alloc_bias(const char *bias)
{
vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
alloc_bias = VDEV_BIAS_LOG;
else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
alloc_bias = VDEV_BIAS_SPECIAL;
else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
alloc_bias = VDEV_BIAS_DEDUP;
return (alloc_bias);
}
/*
* Default asize function: return the MAX of psize with the asize of
* all children. This is what's used by anything other than RAID-Z.
*/
uint64_t
vdev_default_asize(vdev_t *vd, uint64_t psize)
{
uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
uint64_t csize;
for (int c = 0; c < vd->vdev_children; c++) {
csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
asize = MAX(asize, csize);
}
return (asize);
}
/*
* Get the minimum allocatable size. We define the allocatable size as
* the vdev's asize rounded to the nearest metaslab. This allows us to
* replace or attach devices which don't have the same physical size but
* can still satisfy the same number of allocations.
*/
uint64_t
vdev_get_min_asize(vdev_t *vd)
{
vdev_t *pvd = vd->vdev_parent;
/*
* If our parent is NULL (inactive spare or cache) or is the root,
* just return our own asize.
*/
if (pvd == NULL)
return (vd->vdev_asize);
/*
* The top-level vdev just returns the allocatable size rounded
* to the nearest metaslab.
*/
if (vd == vd->vdev_top)
return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
/*
* The allocatable space for a raidz vdev is N * sizeof(smallest child),
* so each child must provide at least 1/Nth of its asize.
*/
if (pvd->vdev_ops == &vdev_raidz_ops)
return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
pvd->vdev_children);
return (pvd->vdev_min_asize);
}
void
vdev_set_min_asize(vdev_t *vd)
{
vd->vdev_min_asize = vdev_get_min_asize(vd);
for (int c = 0; c < vd->vdev_children; c++)
vdev_set_min_asize(vd->vdev_child[c]);
}
vdev_t *
vdev_lookup_top(spa_t *spa, uint64_t vdev)
{
vdev_t *rvd = spa->spa_root_vdev;
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
if (vdev < rvd->vdev_children) {
ASSERT(rvd->vdev_child[vdev] != NULL);
return (rvd->vdev_child[vdev]);
}
return (NULL);
}
vdev_t *
vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
{
vdev_t *mvd;
if (vd->vdev_guid == guid)
return (vd);
for (int c = 0; c < vd->vdev_children; c++)
if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
NULL)
return (mvd);
return (NULL);
}
static int
vdev_count_leaves_impl(vdev_t *vd)
{
int n = 0;
if (vd->vdev_ops->vdev_op_leaf)
return (1);
for (int c = 0; c < vd->vdev_children; c++)
n += vdev_count_leaves_impl(vd->vdev_child[c]);
return (n);
}
int
vdev_count_leaves(spa_t *spa)
{
int rc;
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
rc = vdev_count_leaves_impl(spa->spa_root_vdev);
spa_config_exit(spa, SCL_VDEV, FTAG);
return (rc);
}
void
vdev_add_child(vdev_t *pvd, vdev_t *cvd)
{
size_t oldsize, newsize;
uint64_t id = cvd->vdev_id;
vdev_t **newchild;
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
ASSERT(cvd->vdev_parent == NULL);
cvd->vdev_parent = pvd;
if (pvd == NULL)
return;
ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
oldsize = pvd->vdev_children * sizeof (vdev_t *);
pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
newsize = pvd->vdev_children * sizeof (vdev_t *);
newchild = kmem_alloc(newsize, KM_SLEEP);
if (pvd->vdev_child != NULL) {
bcopy(pvd->vdev_child, newchild, oldsize);
kmem_free(pvd->vdev_child, oldsize);
}
pvd->vdev_child = newchild;
pvd->vdev_child[id] = cvd;
cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
/*
* Walk up all ancestors to update guid sum.
*/
for (; pvd != NULL; pvd = pvd->vdev_parent)
pvd->vdev_guid_sum += cvd->vdev_guid_sum;
if (cvd->vdev_ops->vdev_op_leaf) {
list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
cvd->vdev_spa->spa_leaf_list_gen++;
}
}
void
vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
{
int c;
uint_t id = cvd->vdev_id;
ASSERT(cvd->vdev_parent == pvd);
if (pvd == NULL)
return;
ASSERT(id < pvd->vdev_children);
ASSERT(pvd->vdev_child[id] == cvd);
pvd->vdev_child[id] = NULL;
cvd->vdev_parent = NULL;
for (c = 0; c < pvd->vdev_children; c++)
if (pvd->vdev_child[c])
break;
if (c == pvd->vdev_children) {
kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
pvd->vdev_child = NULL;
pvd->vdev_children = 0;
}
if (cvd->vdev_ops->vdev_op_leaf) {
spa_t *spa = cvd->vdev_spa;
list_remove(&spa->spa_leaf_list, cvd);
spa->spa_leaf_list_gen++;
}
/*
* Walk up all ancestors to update guid sum.
*/
for (; pvd != NULL; pvd = pvd->vdev_parent)
pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
}
/*
* Remove any holes in the child array.
*/
void
vdev_compact_children(vdev_t *pvd)
{
vdev_t **newchild, *cvd;
int oldc = pvd->vdev_children;
int newc;
ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
if (oldc == 0)
return;
for (int c = newc = 0; c < oldc; c++)
if (pvd->vdev_child[c])
newc++;
if (newc > 0) {
newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
for (int c = newc = 0; c < oldc; c++) {
if ((cvd = pvd->vdev_child[c]) != NULL) {
newchild[newc] = cvd;
cvd->vdev_id = newc++;
}
}
} else {
newchild = NULL;
}
kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
pvd->vdev_child = newchild;
pvd->vdev_children = newc;
}
/*
* Allocate and minimally initialize a vdev_t.
*/
vdev_t *
vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
{
vdev_t *vd;
vdev_indirect_config_t *vic;
vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
vic = &vd->vdev_indirect_config;
if (spa->spa_root_vdev == NULL) {
ASSERT(ops == &vdev_root_ops);
spa->spa_root_vdev = vd;
spa->spa_load_guid = spa_generate_guid(NULL);
}
if (guid == 0 && ops != &vdev_hole_ops) {
if (spa->spa_root_vdev == vd) {
/*
* The root vdev's guid will also be the pool guid,
* which must be unique among all pools.
*/
guid = spa_generate_guid(NULL);
} else {
/*
* Any other vdev's guid must be unique within the pool.
*/
guid = spa_generate_guid(spa);
}
ASSERT(!spa_guid_exists(spa_guid(spa), guid));
}
vd->vdev_spa = spa;
vd->vdev_id = id;
vd->vdev_guid = guid;
vd->vdev_guid_sum = guid;
vd->vdev_ops = ops;
vd->vdev_state = VDEV_STATE_CLOSED;
vd->vdev_ishole = (ops == &vdev_hole_ops);
vic->vic_prev_indirect_vdev = UINT64_MAX;
rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
0, 0);
/*
* Initialize rate limit structs for events. We rate limit ZIO delay
* and checksum events so that we don't overwhelm ZED with thousands
* of events when a disk is acting up.
*/
zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
1);
zfs_ratelimit_init(&vd->vdev_checksum_rl,
&zfs_checksum_events_per_second, 1);
list_link_init(&vd->vdev_config_dirty_node);
list_link_init(&vd->vdev_state_dirty_node);
list_link_init(&vd->vdev_initialize_node);
list_link_init(&vd->vdev_leaf_node);
list_link_init(&vd->vdev_trim_node);
mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_rebuild_io_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
cv_init(&vd->vdev_rebuild_io_cv, NULL, CV_DEFAULT, NULL);
for (int t = 0; t < DTL_TYPES; t++) {
vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
0);
}
txg_list_create(&vd->vdev_ms_list, spa,
offsetof(struct metaslab, ms_txg_node));
txg_list_create(&vd->vdev_dtl_list, spa,
offsetof(struct vdev, vdev_dtl_node));
vd->vdev_stat.vs_timestamp = gethrtime();
vdev_queue_init(vd);
vdev_cache_init(vd);
return (vd);
}
/*
* Allocate a new vdev. The 'alloctype' is used to control whether we are
* creating a new vdev or loading an existing one - the behavior is slightly
* different for each case.
*/
int
vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
int alloctype)
{
vdev_ops_t *ops;
char *type;
uint64_t guid = 0, islog, nparity;
vdev_t *vd;
vdev_indirect_config_t *vic;
char *tmp = NULL;
int rc;
vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
boolean_t top_level = (parent && !parent->vdev_parent);
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
return (SET_ERROR(EINVAL));
if ((ops = vdev_getops(type)) == NULL)
return (SET_ERROR(EINVAL));
/*
* If this is a load, get the vdev guid from the nvlist.
* Otherwise, vdev_alloc_common() will generate one for us.
*/
if (alloctype == VDEV_ALLOC_LOAD) {
uint64_t label_id;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
label_id != id)
return (SET_ERROR(EINVAL));
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (SET_ERROR(EINVAL));
} else if (alloctype == VDEV_ALLOC_SPARE) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (SET_ERROR(EINVAL));
} else if (alloctype == VDEV_ALLOC_L2CACHE) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (SET_ERROR(EINVAL));
} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
return (SET_ERROR(EINVAL));
}
/*
* The first allocated vdev must be of type 'root'.
*/
if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
return (SET_ERROR(EINVAL));
/*
* Determine whether we're a log vdev.
*/
islog = 0;
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
return (SET_ERROR(ENOTSUP));
if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
return (SET_ERROR(ENOTSUP));
/*
* Set the nparity property for RAID-Z vdevs.
*/
nparity = -1ULL;
if (ops == &vdev_raidz_ops) {
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
&nparity) == 0) {
if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
return (SET_ERROR(EINVAL));
/*
* Previous versions could only support 1 or 2 parity
* device.
*/
if (nparity > 1 &&
spa_version(spa) < SPA_VERSION_RAIDZ2)
return (SET_ERROR(ENOTSUP));
if (nparity > 2 &&
spa_version(spa) < SPA_VERSION_RAIDZ3)
return (SET_ERROR(ENOTSUP));
} else {
/*
* We require the parity to be specified for SPAs that
* support multiple parity levels.
*/
if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
return (SET_ERROR(EINVAL));
/*
* Otherwise, we default to 1 parity device for RAID-Z.
*/
nparity = 1;
}
} else {
nparity = 0;
}
ASSERT(nparity != -1ULL);
/*
* If creating a top-level vdev, check for allocation classes input
*/
if (top_level && alloctype == VDEV_ALLOC_ADD) {
char *bias;
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
&bias) == 0) {
alloc_bias = vdev_derive_alloc_bias(bias);
/* spa_vdev_add() expects feature to be enabled */
if (spa->spa_load_state != SPA_LOAD_CREATE &&
!spa_feature_is_enabled(spa,
SPA_FEATURE_ALLOCATION_CLASSES)) {
return (SET_ERROR(ENOTSUP));
}
}
}
vd = vdev_alloc_common(spa, id, guid, ops);
vic = &vd->vdev_indirect_config;
vd->vdev_islog = islog;
vd->vdev_nparity = nparity;
if (top_level && alloc_bias != VDEV_BIAS_NONE)
vd->vdev_alloc_bias = alloc_bias;
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
vd->vdev_path = spa_strdup(vd->vdev_path);
/*
* ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
* fault on a vdev and want it to persist across imports (like with
* zpool offline -f).
*/
rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
vd->vdev_faulted = 1;
vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
}
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
vd->vdev_devid = spa_strdup(vd->vdev_devid);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
&vd->vdev_physpath) == 0)
vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
&vd->vdev_enc_sysfs_path) == 0)
vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
vd->vdev_fru = spa_strdup(vd->vdev_fru);
/*
* Set the whole_disk property. If it's not specified, leave the value
* as -1.
*/
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
&vd->vdev_wholedisk) != 0)
vd->vdev_wholedisk = -1ULL;
ASSERT0(vic->vic_mapping_object);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
&vic->vic_mapping_object);
ASSERT0(vic->vic_births_object);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
&vic->vic_births_object);
ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
&vic->vic_prev_indirect_vdev);
/*
* Look for the 'not present' flag. This will only be set if the device
* was not present at the time of import.
*/
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
&vd->vdev_not_present);
/*
* Get the alignment requirement.
*/
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
/*
* Retrieve the vdev creation time.
*/
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
&vd->vdev_crtxg);
/*
* If we're a top-level vdev, try to load the allocation parameters.
*/
if (top_level &&
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
&vd->vdev_ms_array);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
&vd->vdev_ms_shift);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
&vd->vdev_asize);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
&vd->vdev_removing);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
&vd->vdev_top_zap);
} else {
ASSERT0(vd->vdev_top_zap);
}
if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
ASSERT(alloctype == VDEV_ALLOC_LOAD ||
alloctype == VDEV_ALLOC_ADD ||
alloctype == VDEV_ALLOC_SPLIT ||
alloctype == VDEV_ALLOC_ROOTPOOL);
/* Note: metaslab_group_create() is now deferred */
}
if (vd->vdev_ops->vdev_op_leaf &&
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
(void) nvlist_lookup_uint64(nv,
ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
} else {
ASSERT0(vd->vdev_leaf_zap);
}
/*
* If we're a leaf vdev, try to load the DTL object and other state.
*/
if (vd->vdev_ops->vdev_op_leaf &&
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
alloctype == VDEV_ALLOC_ROOTPOOL)) {
if (alloctype == VDEV_ALLOC_LOAD) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
&vd->vdev_dtl_object);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
&vd->vdev_unspare);
}
if (alloctype == VDEV_ALLOC_ROOTPOOL) {
uint64_t spare = 0;
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
&spare) == 0 && spare)
spa_spare_add(vd);
}
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
&vd->vdev_offline);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
&vd->vdev_resilver_txg);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
&vd->vdev_rebuild_txg);
if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
vdev_defer_resilver(vd);
/*
* In general, when importing a pool we want to ignore the
* persistent fault state, as the diagnosis made on another
* system may not be valid in the current context. The only
* exception is if we forced a vdev to a persistently faulted
* state with 'zpool offline -f'. The persistent fault will
* remain across imports until cleared.
*
* Local vdevs will remain in the faulted state.
*/
if (spa_load_state(spa) == SPA_LOAD_OPEN ||
spa_load_state(spa) == SPA_LOAD_IMPORT) {
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
&vd->vdev_faulted);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
&vd->vdev_degraded);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
&vd->vdev_removed);
if (vd->vdev_faulted || vd->vdev_degraded) {
char *aux;
vd->vdev_label_aux =
VDEV_AUX_ERR_EXCEEDED;
if (nvlist_lookup_string(nv,
ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
strcmp(aux, "external") == 0)
vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
else
vd->vdev_faulted = 0ULL;
}
}
}
/*
* Add ourselves to the parent's list of children.
*/
vdev_add_child(parent, vd);
*vdp = vd;
return (0);
}
void
vdev_free(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
ASSERT3P(vd->vdev_trim_thread, ==, NULL);
ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
/*
* Scan queues are normally destroyed at the end of a scan. If the
* queue exists here, that implies the vdev is being removed while
* the scan is still running.
*/
if (vd->vdev_scan_io_queue != NULL) {
mutex_enter(&vd->vdev_scan_io_queue_lock);
dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
vd->vdev_scan_io_queue = NULL;
mutex_exit(&vd->vdev_scan_io_queue_lock);
}
/*
* vdev_free() implies closing the vdev first. This is simpler than
* trying to ensure complicated semantics for all callers.
*/
vdev_close(vd);
ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
/*
* Free all children.
*/
for (int c = 0; c < vd->vdev_children; c++)
vdev_free(vd->vdev_child[c]);
ASSERT(vd->vdev_child == NULL);
ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
/*
* Discard allocation state.
*/
if (vd->vdev_mg != NULL) {
vdev_metaslab_fini(vd);
metaslab_group_destroy(vd->vdev_mg);
vd->vdev_mg = NULL;
}
ASSERT0(vd->vdev_stat.vs_space);
ASSERT0(vd->vdev_stat.vs_dspace);
ASSERT0(vd->vdev_stat.vs_alloc);
/*
* Remove this vdev from its parent's child list.
*/
vdev_remove_child(vd->vdev_parent, vd);
ASSERT(vd->vdev_parent == NULL);
ASSERT(!list_link_active(&vd->vdev_leaf_node));
/*
* Clean up vdev structure.
*/
vdev_queue_fini(vd);
vdev_cache_fini(vd);
if (vd->vdev_path)
spa_strfree(vd->vdev_path);
if (vd->vdev_devid)
spa_strfree(vd->vdev_devid);
if (vd->vdev_physpath)
spa_strfree(vd->vdev_physpath);
if (vd->vdev_enc_sysfs_path)
spa_strfree(vd->vdev_enc_sysfs_path);
if (vd->vdev_fru)
spa_strfree(vd->vdev_fru);
if (vd->vdev_isspare)
spa_spare_remove(vd);
if (vd->vdev_isl2cache)
spa_l2cache_remove(vd);
txg_list_destroy(&vd->vdev_ms_list);
txg_list_destroy(&vd->vdev_dtl_list);
mutex_enter(&vd->vdev_dtl_lock);
space_map_close(vd->vdev_dtl_sm);
for (int t = 0; t < DTL_TYPES; t++) {
range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
range_tree_destroy(vd->vdev_dtl[t]);
}
mutex_exit(&vd->vdev_dtl_lock);
EQUIV(vd->vdev_indirect_births != NULL,
vd->vdev_indirect_mapping != NULL);
if (vd->vdev_indirect_births != NULL) {
vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
vdev_indirect_births_close(vd->vdev_indirect_births);
}
if (vd->vdev_obsolete_sm != NULL) {
ASSERT(vd->vdev_removing ||
vd->vdev_ops == &vdev_indirect_ops);
space_map_close(vd->vdev_obsolete_sm);
vd->vdev_obsolete_sm = NULL;
}
range_tree_destroy(vd->vdev_obsolete_segments);
rw_destroy(&vd->vdev_indirect_rwlock);
mutex_destroy(&vd->vdev_obsolete_lock);
mutex_destroy(&vd->vdev_dtl_lock);
mutex_destroy(&vd->vdev_stat_lock);
mutex_destroy(&vd->vdev_probe_lock);
mutex_destroy(&vd->vdev_scan_io_queue_lock);
mutex_destroy(&vd->vdev_initialize_lock);
mutex_destroy(&vd->vdev_initialize_io_lock);
cv_destroy(&vd->vdev_initialize_io_cv);
cv_destroy(&vd->vdev_initialize_cv);
mutex_destroy(&vd->vdev_trim_lock);
mutex_destroy(&vd->vdev_autotrim_lock);
mutex_destroy(&vd->vdev_trim_io_lock);
cv_destroy(&vd->vdev_trim_cv);
cv_destroy(&vd->vdev_autotrim_cv);
cv_destroy(&vd->vdev_trim_io_cv);
mutex_destroy(&vd->vdev_rebuild_lock);
mutex_destroy(&vd->vdev_rebuild_io_lock);
cv_destroy(&vd->vdev_rebuild_cv);
cv_destroy(&vd->vdev_rebuild_io_cv);
zfs_ratelimit_fini(&vd->vdev_delay_rl);
zfs_ratelimit_fini(&vd->vdev_checksum_rl);
if (vd == spa->spa_root_vdev)
spa->spa_root_vdev = NULL;
kmem_free(vd, sizeof (vdev_t));
}
/*
* Transfer top-level vdev state from svd to tvd.
*/
static void
vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
{
spa_t *spa = svd->vdev_spa;
metaslab_t *msp;
vdev_t *vd;
int t;
ASSERT(tvd == tvd->vdev_top);
tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
tvd->vdev_ms_array = svd->vdev_ms_array;
tvd->vdev_ms_shift = svd->vdev_ms_shift;
tvd->vdev_ms_count = svd->vdev_ms_count;
tvd->vdev_top_zap = svd->vdev_top_zap;
svd->vdev_ms_array = 0;
svd->vdev_ms_shift = 0;
svd->vdev_ms_count = 0;
svd->vdev_top_zap = 0;
if (tvd->vdev_mg)
ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
tvd->vdev_mg = svd->vdev_mg;
tvd->vdev_ms = svd->vdev_ms;
svd->vdev_mg = NULL;
svd->vdev_ms = NULL;
if (tvd->vdev_mg != NULL)
tvd->vdev_mg->mg_vd = tvd;
tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
svd->vdev_checkpoint_sm = NULL;
tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
svd->vdev_alloc_bias = VDEV_BIAS_NONE;
tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
svd->vdev_stat.vs_alloc = 0;
svd->vdev_stat.vs_space = 0;
svd->vdev_stat.vs_dspace = 0;
/*
* State which may be set on a top-level vdev that's in the
* process of being removed.
*/
ASSERT0(tvd->vdev_indirect_config.vic_births_object);
ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
ASSERT0(tvd->vdev_removing);
ASSERT0(tvd->vdev_rebuilding);
tvd->vdev_removing = svd->vdev_removing;
tvd->vdev_rebuilding = svd->vdev_rebuilding;
tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
tvd->vdev_indirect_config = svd->vdev_indirect_config;
tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
tvd->vdev_indirect_births = svd->vdev_indirect_births;
range_tree_swap(&svd->vdev_obsolete_segments,
&tvd->vdev_obsolete_segments);
tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
svd->vdev_indirect_config.vic_mapping_object = 0;
svd->vdev_indirect_config.vic_births_object = 0;
svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
svd->vdev_indirect_mapping = NULL;
svd->vdev_indirect_births = NULL;
svd->vdev_obsolete_sm = NULL;
svd->vdev_removing = 0;
svd->vdev_rebuilding = 0;
for (t = 0; t < TXG_SIZE; t++) {
while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
}
if (list_link_active(&svd->vdev_config_dirty_node)) {
vdev_config_clean(svd);
vdev_config_dirty(tvd);
}
if (list_link_active(&svd->vdev_state_dirty_node)) {
vdev_state_clean(svd);
vdev_state_dirty(tvd);
}
tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
svd->vdev_deflate_ratio = 0;
tvd->vdev_islog = svd->vdev_islog;
svd->vdev_islog = 0;
dsl_scan_io_queue_vdev_xfer(svd, tvd);
}
static void
vdev_top_update(vdev_t *tvd, vdev_t *vd)
{
if (vd == NULL)
return;
vd->vdev_top = tvd;
for (int c = 0; c < vd->vdev_children; c++)
vdev_top_update(tvd, vd->vdev_child[c]);
}
/*
* Add a mirror/replacing vdev above an existing vdev.
*/
vdev_t *
vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
{
spa_t *spa = cvd->vdev_spa;
vdev_t *pvd = cvd->vdev_parent;
vdev_t *mvd;
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
mvd->vdev_asize = cvd->vdev_asize;
mvd->vdev_min_asize = cvd->vdev_min_asize;
mvd->vdev_max_asize = cvd->vdev_max_asize;
mvd->vdev_psize = cvd->vdev_psize;
mvd->vdev_ashift = cvd->vdev_ashift;
mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
mvd->vdev_state = cvd->vdev_state;
mvd->vdev_crtxg = cvd->vdev_crtxg;
vdev_remove_child(pvd, cvd);
vdev_add_child(pvd, mvd);
cvd->vdev_id = mvd->vdev_children;
vdev_add_child(mvd, cvd);
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
if (mvd == mvd->vdev_top)
vdev_top_transfer(cvd, mvd);
return (mvd);
}
/*
* Remove a 1-way mirror/replacing vdev from the tree.
*/
void
vdev_remove_parent(vdev_t *cvd)
{
vdev_t *mvd = cvd->vdev_parent;
vdev_t *pvd = mvd->vdev_parent;
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
ASSERT(mvd->vdev_children == 1);
ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
mvd->vdev_ops == &vdev_replacing_ops ||
mvd->vdev_ops == &vdev_spare_ops);
cvd->vdev_ashift = mvd->vdev_ashift;
cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
vdev_remove_child(mvd, cvd);
vdev_remove_child(pvd, mvd);
/*
* If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
* Otherwise, we could have detached an offline device, and when we
* go to import the pool we'll think we have two top-level vdevs,
* instead of a different version of the same top-level vdev.
*/
if (mvd->vdev_top == mvd) {
uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
cvd->vdev_orig_guid = cvd->vdev_guid;
cvd->vdev_guid += guid_delta;
cvd->vdev_guid_sum += guid_delta;
/*
* If pool not set for autoexpand, we need to also preserve
* mvd's asize to prevent automatic expansion of cvd.
* Otherwise if we are adjusting the mirror by attaching and
* detaching children of non-uniform sizes, the mirror could
* autoexpand, unexpectedly requiring larger devices to
* re-establish the mirror.
*/
if (!cvd->vdev_spa->spa_autoexpand)
cvd->vdev_asize = mvd->vdev_asize;
}
cvd->vdev_id = mvd->vdev_id;
vdev_add_child(pvd, cvd);
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
if (cvd == cvd->vdev_top)
vdev_top_transfer(mvd, cvd);
ASSERT(mvd->vdev_children == 0);
vdev_free(mvd);
}
static void
vdev_metaslab_group_create(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
/*
* metaslab_group_create was delayed until allocation bias was available
*/
if (vd->vdev_mg == NULL) {
metaslab_class_t *mc;
if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
vd->vdev_alloc_bias = VDEV_BIAS_LOG;
ASSERT3U(vd->vdev_islog, ==,
(vd->vdev_alloc_bias == VDEV_BIAS_LOG));
switch (vd->vdev_alloc_bias) {
case VDEV_BIAS_LOG:
mc = spa_log_class(spa);
break;
case VDEV_BIAS_SPECIAL:
mc = spa_special_class(spa);
break;
case VDEV_BIAS_DEDUP:
mc = spa_dedup_class(spa);
break;
default:
mc = spa_normal_class(spa);
}
vd->vdev_mg = metaslab_group_create(mc, vd,
spa->spa_alloc_count);
/*
* The spa ashift values currently only reflect the
* general vdev classes. Class destination is late
* binding so ashift checking had to wait until now
*/
if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
if (vd->vdev_ashift > spa->spa_max_ashift)
spa->spa_max_ashift = vd->vdev_ashift;
if (vd->vdev_ashift < spa->spa_min_ashift)
spa->spa_min_ashift = vd->vdev_ashift;
}
}
}
int
vdev_metaslab_init(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
objset_t *mos = spa->spa_meta_objset;
uint64_t m;
uint64_t oldc = vd->vdev_ms_count;
uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
metaslab_t **mspp;
int error;
boolean_t expanding = (oldc != 0);
ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
/*
* This vdev is not being allocated from yet or is a hole.
*/
if (vd->vdev_ms_shift == 0)
return (0);
ASSERT(!vd->vdev_ishole);
ASSERT(oldc <= newc);
mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
if (expanding) {
bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
}
vd->vdev_ms = mspp;
vd->vdev_ms_count = newc;
for (m = oldc; m < newc; m++) {
uint64_t object = 0;
/*
* vdev_ms_array may be 0 if we are creating the "fake"
* metaslabs for an indirect vdev for zdb's leak detection.
* See zdb_leak_init().
*/
if (txg == 0 && vd->vdev_ms_array != 0) {
error = dmu_read(mos, vd->vdev_ms_array,
m * sizeof (uint64_t), sizeof (uint64_t), &object,
DMU_READ_PREFETCH);
if (error != 0) {
vdev_dbgmsg(vd, "unable to read the metaslab "
"array [error=%d]", error);
return (error);
}
}
#ifndef _KERNEL
/*
* To accommodate zdb_leak_init() fake indirect
* metaslabs, we allocate a metaslab group for
* indirect vdevs which normally don't have one.
*/
if (vd->vdev_mg == NULL) {
ASSERT0(vdev_is_concrete(vd));
vdev_metaslab_group_create(vd);
}
#endif
error = metaslab_init(vd->vdev_mg, m, object, txg,
&(vd->vdev_ms[m]));
if (error != 0) {
vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
error);
return (error);
}
}
if (txg == 0)
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
/*
* If the vdev is being removed we don't activate
* the metaslabs since we want to ensure that no new
* allocations are performed on this device.
*/
if (!expanding && !vd->vdev_removing) {
metaslab_group_activate(vd->vdev_mg);
}
if (txg == 0)
spa_config_exit(spa, SCL_ALLOC, FTAG);
/*
* Regardless whether this vdev was just added or it is being
* expanded, the metaslab count has changed. Recalculate the
* block limit.
*/
spa_log_sm_set_blocklimit(spa);
return (0);
}
void
vdev_metaslab_fini(vdev_t *vd)
{
if (vd->vdev_checkpoint_sm != NULL) {
ASSERT(spa_feature_is_active(vd->vdev_spa,
SPA_FEATURE_POOL_CHECKPOINT));
space_map_close(vd->vdev_checkpoint_sm);
/*
* Even though we close the space map, we need to set its
* pointer to NULL. The reason is that vdev_metaslab_fini()
* may be called multiple times for certain operations
* (i.e. when destroying a pool) so we need to ensure that
* this clause never executes twice. This logic is similar
* to the one used for the vdev_ms clause below.
*/
vd->vdev_checkpoint_sm = NULL;
}
if (vd->vdev_ms != NULL) {
metaslab_group_t *mg = vd->vdev_mg;
metaslab_group_passivate(mg);
uint64_t count = vd->vdev_ms_count;
for (uint64_t m = 0; m < count; m++) {
metaslab_t *msp = vd->vdev_ms[m];
if (msp != NULL)
metaslab_fini(msp);
}
vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
vd->vdev_ms = NULL;
vd->vdev_ms_count = 0;
for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
ASSERT0(mg->mg_histogram[i]);
}
ASSERT0(vd->vdev_ms_count);
ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
}
typedef struct vdev_probe_stats {
boolean_t vps_readable;
boolean_t vps_writeable;
int vps_flags;
} vdev_probe_stats_t;
static void
vdev_probe_done(zio_t *zio)
{
spa_t *spa = zio->io_spa;
vdev_t *vd = zio->io_vd;
vdev_probe_stats_t *vps = zio->io_private;
ASSERT(vd->vdev_probe_zio != NULL);
if (zio->io_type == ZIO_TYPE_READ) {
if (zio->io_error == 0)
vps->vps_readable = 1;
if (zio->io_error == 0 && spa_writeable(spa)) {
zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
zio->io_offset, zio->io_size, zio->io_abd,
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
} else {
abd_free(zio->io_abd);
}
} else if (zio->io_type == ZIO_TYPE_WRITE) {
if (zio->io_error == 0)
vps->vps_writeable = 1;
abd_free(zio->io_abd);
} else if (zio->io_type == ZIO_TYPE_NULL) {
zio_t *pio;
zio_link_t *zl;
vd->vdev_cant_read |= !vps->vps_readable;
vd->vdev_cant_write |= !vps->vps_writeable;
if (vdev_readable(vd) &&
(vdev_writeable(vd) || !spa_writeable(spa))) {
zio->io_error = 0;
} else {
ASSERT(zio->io_error != 0);
vdev_dbgmsg(vd, "failed probe");
(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
spa, vd, NULL, NULL, 0, 0);
zio->io_error = SET_ERROR(ENXIO);
}
mutex_enter(&vd->vdev_probe_lock);
ASSERT(vd->vdev_probe_zio == zio);
vd->vdev_probe_zio = NULL;
mutex_exit(&vd->vdev_probe_lock);
zl = NULL;
while ((pio = zio_walk_parents(zio, &zl)) != NULL)
if (!vdev_accessible(vd, pio))
pio->io_error = SET_ERROR(ENXIO);
kmem_free(vps, sizeof (*vps));
}
}
/*
* Determine whether this device is accessible.
*
* Read and write to several known locations: the pad regions of each
* vdev label but the first, which we leave alone in case it contains
* a VTOC.
*/
zio_t *
vdev_probe(vdev_t *vd, zio_t *zio)
{
spa_t *spa = vd->vdev_spa;
vdev_probe_stats_t *vps = NULL;
zio_t *pio;
ASSERT(vd->vdev_ops->vdev_op_leaf);
/*
* Don't probe the probe.
*/
if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
return (NULL);
/*
* To prevent 'probe storms' when a device fails, we create
* just one probe i/o at a time. All zios that want to probe
* this vdev will become parents of the probe io.
*/
mutex_enter(&vd->vdev_probe_lock);
if ((pio = vd->vdev_probe_zio) == NULL) {
vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
ZIO_FLAG_TRYHARD;
if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
/*
* vdev_cant_read and vdev_cant_write can only
* transition from TRUE to FALSE when we have the
* SCL_ZIO lock as writer; otherwise they can only
* transition from FALSE to TRUE. This ensures that
* any zio looking at these values can assume that
* failures persist for the life of the I/O. That's
* important because when a device has intermittent
* connectivity problems, we want to ensure that
* they're ascribed to the device (ENXIO) and not
* the zio (EIO).
*
* Since we hold SCL_ZIO as writer here, clear both
* values so the probe can reevaluate from first
* principles.
*/
vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
vd->vdev_cant_read = B_FALSE;
vd->vdev_cant_write = B_FALSE;
}
vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
vdev_probe_done, vps,
vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
/*
* We can't change the vdev state in this context, so we
* kick off an async task to do it on our behalf.
*/
if (zio != NULL) {
vd->vdev_probe_wanted = B_TRUE;
spa_async_request(spa, SPA_ASYNC_PROBE);
}
}
if (zio != NULL)
zio_add_child(zio, pio);
mutex_exit(&vd->vdev_probe_lock);
if (vps == NULL) {
ASSERT(zio != NULL);
return (NULL);
}
for (int l = 1; l < VDEV_LABELS; l++) {
zio_nowait(zio_read_phys(pio, vd,
vdev_label_offset(vd->vdev_psize, l,
offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
}
if (zio == NULL)
return (pio);
zio_nowait(pio);
return (NULL);
}
static void
vdev_open_child(void *arg)
{
vdev_t *vd = arg;
vd->vdev_open_thread = curthread;
vd->vdev_open_error = vdev_open(vd);
vd->vdev_open_thread = NULL;
}
static boolean_t
vdev_uses_zvols(vdev_t *vd)
{
#ifdef _KERNEL
if (zvol_is_zvol(vd->vdev_path))
return (B_TRUE);
#endif
for (int c = 0; c < vd->vdev_children; c++)
if (vdev_uses_zvols(vd->vdev_child[c]))
return (B_TRUE);
return (B_FALSE);
}
void
vdev_open_children(vdev_t *vd)
{
taskq_t *tq;
int children = vd->vdev_children;
/*
* in order to handle pools on top of zvols, do the opens
* in a single thread so that the same thread holds the
* spa_namespace_lock
*/
if (vdev_uses_zvols(vd)) {
retry_sync:
for (int c = 0; c < children; c++)
vd->vdev_child[c]->vdev_open_error =
vdev_open(vd->vdev_child[c]);
} else {
tq = taskq_create("vdev_open", children, minclsyspri,
children, children, TASKQ_PREPOPULATE);
if (tq == NULL)
goto retry_sync;
for (int c = 0; c < children; c++)
VERIFY(taskq_dispatch(tq, vdev_open_child,
vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
taskq_destroy(tq);
}
vd->vdev_nonrot = B_TRUE;
for (int c = 0; c < children; c++)
vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
}
/*
* Compute the raidz-deflation ratio. Note, we hard-code
* in 128k (1 << 17) because it is the "typical" blocksize.
* Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
* otherwise it would inconsistently account for existing bp's.
*/
static void
vdev_set_deflate_ratio(vdev_t *vd)
{
if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
vd->vdev_deflate_ratio = (1 << 17) /
(vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
}
}
/*
* Prepare a virtual device for access.
*/
int
vdev_open(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
int error;
uint64_t osize = 0;
uint64_t max_osize = 0;
uint64_t asize, max_asize, psize;
uint64_t logical_ashift = 0;
uint64_t physical_ashift = 0;
ASSERT(vd->vdev_open_thread == curthread ||
spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
vd->vdev_state == VDEV_STATE_CANT_OPEN ||
vd->vdev_state == VDEV_STATE_OFFLINE);
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
vd->vdev_cant_read = B_FALSE;
vd->vdev_cant_write = B_FALSE;
vd->vdev_min_asize = vdev_get_min_asize(vd);
/*
* If this vdev is not removed, check its fault status. If it's
* faulted, bail out of the open.
*/
if (!vd->vdev_removed && vd->vdev_faulted) {
ASSERT(vd->vdev_children == 0);
ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
vd->vdev_label_aux);
return (SET_ERROR(ENXIO));
} else if (vd->vdev_offline) {
ASSERT(vd->vdev_children == 0);
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
return (SET_ERROR(ENXIO));
}
error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
&logical_ashift, &physical_ashift);
/*
* Physical volume size should never be larger than its max size, unless
* the disk has shrunk while we were reading it or the device is buggy
* or damaged: either way it's not safe for use, bail out of the open.
*/
if (osize > max_osize) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_OPEN_FAILED);
return (SET_ERROR(ENXIO));
}
/*
* Reset the vdev_reopening flag so that we actually close
* the vdev on error.
*/
vd->vdev_reopening = B_FALSE;
if (zio_injection_enabled && error == 0)
error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
if (error) {
if (vd->vdev_removed &&
vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
vd->vdev_removed = B_FALSE;
if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
vd->vdev_stat.vs_aux);
} else {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
vd->vdev_stat.vs_aux);
}
return (error);
}
vd->vdev_removed = B_FALSE;
/*
* Recheck the faulted flag now that we have confirmed that
* the vdev is accessible. If we're faulted, bail.
*/
if (vd->vdev_faulted) {
ASSERT(vd->vdev_children == 0);
ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
vd->vdev_label_aux);
return (SET_ERROR(ENXIO));
}
if (vd->vdev_degraded) {
ASSERT(vd->vdev_children == 0);
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
VDEV_AUX_ERR_EXCEEDED);
} else {
vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
}
/*
* For hole or missing vdevs we just return success.
*/
if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
return (0);
for (int c = 0; c < vd->vdev_children; c++) {
if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
VDEV_AUX_NONE);
break;
}
}
osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
if (vd->vdev_children == 0) {
if (osize < SPA_MINDEVSIZE) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_TOO_SMALL);
return (SET_ERROR(EOVERFLOW));
}
psize = osize;
asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
max_asize = max_osize - (VDEV_LABEL_START_SIZE +
VDEV_LABEL_END_SIZE);
} else {
if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
(VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_TOO_SMALL);
return (SET_ERROR(EOVERFLOW));
}
psize = 0;
asize = osize;
max_asize = max_osize;
}
/*
* If the vdev was expanded, record this so that we can re-create the
* uberblock rings in labels {2,3}, during the next sync.
*/
if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
vd->vdev_copy_uberblocks = B_TRUE;
vd->vdev_psize = psize;
/*
* Make sure the allocatable size hasn't shrunk too much.
*/
if (asize < vd->vdev_min_asize) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_LABEL);
return (SET_ERROR(EINVAL));
}
vd->vdev_physical_ashift =
MAX(physical_ashift, vd->vdev_physical_ashift);
vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
if (vd->vdev_logical_ashift > ASHIFT_MAX) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_ASHIFT_TOO_BIG);
return (SET_ERROR(EDOM));
}
if (vd->vdev_asize == 0) {
/*
* This is the first-ever open, so use the computed values.
* For compatibility, a different ashift can be requested.
*/
vd->vdev_asize = asize;
vd->vdev_max_asize = max_asize;
if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
vd->vdev_ashift > ASHIFT_MAX)) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_ASHIFT);
return (SET_ERROR(EDOM));
}
} else {
/*
* Make sure the alignment required hasn't increased.
*/
if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
vd->vdev_ops->vdev_op_leaf) {
(void) zfs_ereport_post(
FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
spa, vd, NULL, NULL, 0, 0);
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_LABEL);
return (SET_ERROR(EDOM));
}
vd->vdev_max_asize = max_asize;
}
/*
* If all children are healthy we update asize if either:
* The asize has increased, due to a device expansion caused by dynamic
* LUN growth or vdev replacement, and automatic expansion is enabled;
* making the additional space available.
*
* The asize has decreased, due to a device shrink usually caused by a
* vdev replace with a smaller device. This ensures that calculations
* based of max_asize and asize e.g. esize are always valid. It's safe
* to do this as we've already validated that asize is greater than
* vdev_min_asize.
*/
if (vd->vdev_state == VDEV_STATE_HEALTHY &&
((asize > vd->vdev_asize &&
(vd->vdev_expanding || spa->spa_autoexpand)) ||
(asize < vd->vdev_asize)))
vd->vdev_asize = asize;
vdev_set_min_asize(vd);
/*
* Ensure we can issue some IO before declaring the
* vdev open for business.
*/
if (vd->vdev_ops->vdev_op_leaf &&
(error = zio_wait(vdev_probe(vd, NULL))) != 0) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
VDEV_AUX_ERR_EXCEEDED);
return (error);
}
/*
* Track the min and max ashift values for normal data devices.
*/
if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
if (vd->vdev_ashift > spa->spa_max_ashift)
spa->spa_max_ashift = vd->vdev_ashift;
if (vd->vdev_ashift < spa->spa_min_ashift)
spa->spa_min_ashift = vd->vdev_ashift;
}
/*
* If this is a leaf vdev, assess whether a resilver is needed.
* But don't do this if we are doing a reopen for a scrub, since
* this would just restart the scrub we are already doing.
*/
if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
return (0);
}
/*
* Called once the vdevs are all opened, this routine validates the label
* contents. This needs to be done before vdev_load() so that we don't
* inadvertently do repair I/Os to the wrong device.
*
* This function will only return failure if one of the vdevs indicates that it
* has since been destroyed or exported. This is only possible if
* /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
* will be updated but the function will return 0.
*/
int
vdev_validate(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
nvlist_t *label;
uint64_t guid = 0, aux_guid = 0, top_guid;
uint64_t state;
nvlist_t *nvl;
uint64_t txg;
if (vdev_validate_skip)
return (0);
for (uint64_t c = 0; c < vd->vdev_children; c++)
if (vdev_validate(vd->vdev_child[c]) != 0)
return (SET_ERROR(EBADF));
/*
* If the device has already failed, or was marked offline, don't do
* any further validation. Otherwise, label I/O will fail and we will
* overwrite the previous state.
*/
if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
return (0);
/*
* If we are performing an extreme rewind, we allow for a label that
* was modified at a point after the current txg.
* If config lock is not held do not check for the txg. spa_sync could
* be updating the vdev's label before updating spa_last_synced_txg.
*/
if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
txg = UINT64_MAX;
else
txg = spa_last_synced_txg(spa);
if ((label = vdev_label_read_config(vd, txg)) == NULL) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_BAD_LABEL);
vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
"txg %llu", (u_longlong_t)txg);
return (0);
}
/*
* Determine if this vdev has been split off into another
* pool. If so, then refuse to open it.
*/
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
&aux_guid) == 0 && aux_guid == spa_guid(spa)) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_SPLIT_POOL);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
return (0);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
ZPOOL_CONFIG_POOL_GUID);
return (0);
}
/*
* If config is not trusted then ignore the spa guid check. This is
* necessary because if the machine crashed during a re-guid the new
* guid might have been written to all of the vdev labels, but not the
* cached config. The check will be performed again once we have the
* trusted config from the MOS.
*/
if (spa->spa_trust_config && guid != spa_guid(spa)) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
"match config (%llu != %llu)", (u_longlong_t)guid,
(u_longlong_t)spa_guid(spa));
return (0);
}
if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
!= 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
&aux_guid) != 0)
aux_guid = 0;
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
ZPOOL_CONFIG_GUID);
return (0);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
!= 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
ZPOOL_CONFIG_TOP_GUID);
return (0);
}
/*
* If this vdev just became a top-level vdev because its sibling was
* detached, it will have adopted the parent's vdev guid -- but the
* label may or may not be on disk yet. Fortunately, either version
* of the label will have the same top guid, so if we're a top-level
* vdev, we can safely compare to that instead.
* However, if the config comes from a cachefile that failed to update
* after the detach, a top-level vdev will appear as a non top-level
* vdev in the config. Also relax the constraints if we perform an
* extreme rewind.
*
* If we split this vdev off instead, then we also check the
* original pool's guid. We don't want to consider the vdev
* corrupt if it is partway through a split operation.
*/
if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
boolean_t mismatch = B_FALSE;
if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
mismatch = B_TRUE;
} else {
if (vd->vdev_guid != top_guid &&
vd->vdev_top->vdev_guid != guid)
mismatch = B_TRUE;
}
if (mismatch) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: config guid "
"doesn't match label guid");
vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
(u_longlong_t)vd->vdev_guid,
(u_longlong_t)vd->vdev_top->vdev_guid);
vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
"aux_guid %llu", (u_longlong_t)guid,
(u_longlong_t)top_guid, (u_longlong_t)aux_guid);
return (0);
}
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
&state) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
ZPOOL_CONFIG_POOL_STATE);
return (0);
}
nvlist_free(label);
/*
* If this is a verbatim import, no need to check the
* state of the pool.
*/
if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
spa_load_state(spa) == SPA_LOAD_OPEN &&
state != POOL_STATE_ACTIVE) {
vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
"for spa %s", (u_longlong_t)state, spa->spa_name);
return (SET_ERROR(EBADF));
}
/*
* If we were able to open and validate a vdev that was
* previously marked permanently unavailable, clear that state
* now.
*/
if (vd->vdev_not_present)
vd->vdev_not_present = 0;
return (0);
}
static void
vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
{
if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
"from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
dvd->vdev_path, svd->vdev_path);
spa_strfree(dvd->vdev_path);
dvd->vdev_path = spa_strdup(svd->vdev_path);
}
} else if (svd->vdev_path != NULL) {
dvd->vdev_path = spa_strdup(svd->vdev_path);
zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
(u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
}
}
/*
* Recursively copy vdev paths from one vdev to another. Source and destination
* vdev trees must have same geometry otherwise return error. Intended to copy
* paths from userland config into MOS config.
*/
int
vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
{
if ((svd->vdev_ops == &vdev_missing_ops) ||
(svd->vdev_ishole && dvd->vdev_ishole) ||
(dvd->vdev_ops == &vdev_indirect_ops))
return (0);
if (svd->vdev_ops != dvd->vdev_ops) {
vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
return (SET_ERROR(EINVAL));
}
if (svd->vdev_guid != dvd->vdev_guid) {
vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
"%llu)", (u_longlong_t)svd->vdev_guid,
(u_longlong_t)dvd->vdev_guid);
return (SET_ERROR(EINVAL));
}
if (svd->vdev_children != dvd->vdev_children) {
vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
"%llu != %llu", (u_longlong_t)svd->vdev_children,
(u_longlong_t)dvd->vdev_children);
return (SET_ERROR(EINVAL));
}
for (uint64_t i = 0; i < svd->vdev_children; i++) {
int error = vdev_copy_path_strict(svd->vdev_child[i],
dvd->vdev_child[i]);
if (error != 0)
return (error);
}
if (svd->vdev_ops->vdev_op_leaf)
vdev_copy_path_impl(svd, dvd);
return (0);
}
static void
vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
{
ASSERT(stvd->vdev_top == stvd);
ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
for (uint64_t i = 0; i < dvd->vdev_children; i++) {
vdev_copy_path_search(stvd, dvd->vdev_child[i]);
}
if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
return;
/*
* The idea here is that while a vdev can shift positions within
* a top vdev (when replacing, attaching mirror, etc.) it cannot
* step outside of it.
*/
vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
return;
ASSERT(vd->vdev_ops->vdev_op_leaf);
vdev_copy_path_impl(vd, dvd);
}
/*
* Recursively copy vdev paths from one root vdev to another. Source and
* destination vdev trees may differ in geometry. For each destination leaf
* vdev, search a vdev with the same guid and top vdev id in the source.
* Intended to copy paths from userland config into MOS config.
*/
void
vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
{
uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
ASSERT(srvd->vdev_ops == &vdev_root_ops);
ASSERT(drvd->vdev_ops == &vdev_root_ops);
for (uint64_t i = 0; i < children; i++) {
vdev_copy_path_search(srvd->vdev_child[i],
drvd->vdev_child[i]);
}
}
/*
* Close a virtual device.
*/
void
vdev_close(vdev_t *vd)
{
vdev_t *pvd = vd->vdev_parent;
spa_t *spa __maybe_unused = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
/*
* If our parent is reopening, then we are as well, unless we are
* going offline.
*/
if (pvd != NULL && pvd->vdev_reopening)
vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
vd->vdev_ops->vdev_op_close(vd);
vdev_cache_purge(vd);
/*
* We record the previous state before we close it, so that if we are
* doing a reopen(), we don't generate FMA ereports if we notice that
* it's still faulted.
*/
vd->vdev_prevstate = vd->vdev_state;
if (vd->vdev_offline)
vd->vdev_state = VDEV_STATE_OFFLINE;
else
vd->vdev_state = VDEV_STATE_CLOSED;
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
}
void
vdev_hold(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_is_root(spa));
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
return;
for (int c = 0; c < vd->vdev_children; c++)
vdev_hold(vd->vdev_child[c]);
if (vd->vdev_ops->vdev_op_leaf)
vd->vdev_ops->vdev_op_hold(vd);
}
void
vdev_rele(vdev_t *vd)
{
ASSERT(spa_is_root(vd->vdev_spa));
for (int c = 0; c < vd->vdev_children; c++)
vdev_rele(vd->vdev_child[c]);
if (vd->vdev_ops->vdev_op_leaf)
vd->vdev_ops->vdev_op_rele(vd);
}
/*
* Reopen all interior vdevs and any unopened leaves. We don't actually
* reopen leaf vdevs which had previously been opened as they might deadlock
* on the spa_config_lock. Instead we only obtain the leaf's physical size.
* If the leaf has never been opened then open it, as usual.
*/
void
vdev_reopen(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
/* set the reopening flag unless we're taking the vdev offline */
vd->vdev_reopening = !vd->vdev_offline;
vdev_close(vd);
(void) vdev_open(vd);
/*
* Call vdev_validate() here to make sure we have the same device.
* Otherwise, a device with an invalid label could be successfully
* opened in response to vdev_reopen().
*/
if (vd->vdev_aux) {
(void) vdev_validate_aux(vd);
if (vdev_readable(vd) && vdev_writeable(vd) &&
vd->vdev_aux == &spa->spa_l2cache) {
/*
* In case the vdev is present we should evict all ARC
* buffers and pointers to log blocks and reclaim their
* space before restoring its contents to L2ARC.
*/
if (l2arc_vdev_present(vd)) {
l2arc_rebuild_vdev(vd, B_TRUE);
} else {
l2arc_add_vdev(spa, vd);
}
spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
}
} else {
(void) vdev_validate(vd);
}
/*
* Reassess parent vdev's health.
*/
vdev_propagate_state(vd);
}
int
vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
{
int error;
/*
* Normally, partial opens (e.g. of a mirror) are allowed.
* For a create, however, we want to fail the request if
* there are any components we can't open.
*/
error = vdev_open(vd);
if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
vdev_close(vd);
return (error ? error : SET_ERROR(ENXIO));
}
/*
* Recursively load DTLs and initialize all labels.
*/
if ((error = vdev_dtl_load(vd)) != 0 ||
(error = vdev_label_init(vd, txg, isreplacing ?
VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
vdev_close(vd);
return (error);
}
return (0);
}
void
vdev_metaslab_set_size(vdev_t *vd)
{
uint64_t asize = vd->vdev_asize;
uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
uint64_t ms_shift;
/*
* There are two dimensions to the metaslab sizing calculation:
* the size of the metaslab and the count of metaslabs per vdev.
*
* The default values used below are a good balance between memory
* usage (larger metaslab size means more memory needed for loaded
* metaslabs; more metaslabs means more memory needed for the
* metaslab_t structs), metaslab load time (larger metaslabs take
* longer to load), and metaslab sync time (more metaslabs means
* more time spent syncing all of them).
*
* In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
* The range of the dimensions are as follows:
*
* 2^29 <= ms_size <= 2^34
* 16 <= ms_count <= 131,072
*
* On the lower end of vdev sizes, we aim for metaslabs sizes of
* at least 512MB (2^29) to minimize fragmentation effects when
* testing with smaller devices. However, the count constraint
* of at least 16 metaslabs will override this minimum size goal.
*
* On the upper end of vdev sizes, we aim for a maximum metaslab
* size of 16GB. However, we will cap the total count to 2^17
* metaslabs to keep our memory footprint in check and let the
* metaslab size grow from there if that limit is hit.
*
* The net effect of applying above constrains is summarized below.
*
* vdev size metaslab count
* --------------|-----------------
* < 8GB ~16
* 8GB - 100GB one per 512MB
* 100GB - 3TB ~200
* 3TB - 2PB one per 16GB
* > 2PB ~131,072
* --------------------------------
*
* Finally, note that all of the above calculate the initial
* number of metaslabs. Expanding a top-level vdev will result
* in additional metaslabs being allocated making it possible
* to exceed the zfs_vdev_ms_count_limit.
*/
if (ms_count < zfs_vdev_min_ms_count)
ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
else if (ms_count > zfs_vdev_default_ms_count)
ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
else
ms_shift = zfs_vdev_default_ms_shift;
if (ms_shift < SPA_MAXBLOCKSHIFT) {
ms_shift = SPA_MAXBLOCKSHIFT;
} else if (ms_shift > zfs_vdev_max_ms_shift) {
ms_shift = zfs_vdev_max_ms_shift;
/* cap the total count to constrain memory footprint */
if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
}
vd->vdev_ms_shift = ms_shift;
ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
}
/*
* Maximize performance by inflating the configured ashift for top level
* vdevs to be as close to the physical ashift as possible while maintaining
* administrator defined limits and ensuring it doesn't go below the
* logical ashift.
*/
void
vdev_ashift_optimize(vdev_t *vd)
{
if (vd == vd->vdev_top) {
if (vd->vdev_ashift < vd->vdev_physical_ashift) {
vd->vdev_ashift = MIN(
MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
MAX(zfs_vdev_min_auto_ashift,
vd->vdev_physical_ashift));
} else {
/*
* Unusual case where logical ashift > physical ashift
* so we can't cap the calculated ashift based on max
* ashift as that would cause failures.
* We still check if we need to increase it to match
* the min ashift.
*/
vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
vd->vdev_ashift);
}
}
}
void
vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
{
ASSERT(vd == vd->vdev_top);
/* indirect vdevs don't have metaslabs or dtls */
ASSERT(vdev_is_concrete(vd) || flags == 0);
ASSERT(ISP2(flags));
ASSERT(spa_writeable(vd->vdev_spa));
if (flags & VDD_METASLAB)
(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
if (flags & VDD_DTL)
(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
}
void
vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
{
for (int c = 0; c < vd->vdev_children; c++)
vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
if (vd->vdev_ops->vdev_op_leaf)
vdev_dirty(vd->vdev_top, flags, vd, txg);
}
/*
* DTLs.
*
* A vdev's DTL (dirty time log) is the set of transaction groups for which
* the vdev has less than perfect replication. There are four kinds of DTL:
*
* DTL_MISSING: txgs for which the vdev has no valid copies of the data
*
* DTL_PARTIAL: txgs for which data is available, but not fully replicated
*
* DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
* scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
* txgs that was scrubbed.
*
* DTL_OUTAGE: txgs which cannot currently be read, whether due to
* persistent errors or just some device being offline.
* Unlike the other three, the DTL_OUTAGE map is not generally
* maintained; it's only computed when needed, typically to
* determine whether a device can be detached.
*
* For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
* either has the data or it doesn't.
*
* For interior vdevs such as mirror and RAID-Z the picture is more complex.
* A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
* if any child is less than fully replicated, then so is its parent.
* A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
* comprising only those txgs which appear in 'maxfaults' or more children;
* those are the txgs we don't have enough replication to read. For example,
* double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
* thus, its DTL_MISSING consists of the set of txgs that appear in more than
* two child DTL_MISSING maps.
*
* It should be clear from the above that to compute the DTLs and outage maps
* for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
* Therefore, that is all we keep on disk. When loading the pool, or after
* a configuration change, we generate all other DTLs from first principles.
*/
void
vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
{
range_tree_t *rt = vd->vdev_dtl[t];
ASSERT(t < DTL_TYPES);
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
ASSERT(spa_writeable(vd->vdev_spa));
mutex_enter(&vd->vdev_dtl_lock);
if (!range_tree_contains(rt, txg, size))
range_tree_add(rt, txg, size);
mutex_exit(&vd->vdev_dtl_lock);
}
boolean_t
vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
{
range_tree_t *rt = vd->vdev_dtl[t];
boolean_t dirty = B_FALSE;
ASSERT(t < DTL_TYPES);
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
/*
* While we are loading the pool, the DTLs have not been loaded yet.
* Ignore the DTLs and try all devices. This avoids a recursive
* mutex enter on the vdev_dtl_lock, and also makes us try hard
* when loading the pool (relying on the checksum to ensure that
* we get the right data -- note that we while loading, we are
* only reading the MOS, which is always checksummed).
*/
if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
return (B_FALSE);
mutex_enter(&vd->vdev_dtl_lock);
if (!range_tree_is_empty(rt))
dirty = range_tree_contains(rt, txg, size);
mutex_exit(&vd->vdev_dtl_lock);
return (dirty);
}
boolean_t
vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
{
range_tree_t *rt = vd->vdev_dtl[t];
boolean_t empty;
mutex_enter(&vd->vdev_dtl_lock);
empty = range_tree_is_empty(rt);
mutex_exit(&vd->vdev_dtl_lock);
return (empty);
}
/*
* Returns B_TRUE if vdev determines offset needs to be resilvered.
*/
boolean_t
vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
{
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
vd->vdev_ops->vdev_op_leaf)
return (B_TRUE);
return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
}
/*
* Returns the lowest txg in the DTL range.
*/
static uint64_t
vdev_dtl_min(vdev_t *vd)
{
ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
ASSERT0(vd->vdev_children);
return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
}
/*
* Returns the highest txg in the DTL.
*/
static uint64_t
vdev_dtl_max(vdev_t *vd)
{
ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
ASSERT0(vd->vdev_children);
return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
}
/*
* Determine if a resilvering vdev should remove any DTL entries from
* its range. If the vdev was resilvering for the entire duration of the
* scan then it should excise that range from its DTLs. Otherwise, this
* vdev is considered partially resilvered and should leave its DTL
* entries intact. The comment in vdev_dtl_reassess() describes how we
* excise the DTLs.
*/
static boolean_t
vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
{
ASSERT0(vd->vdev_children);
if (vd->vdev_state < VDEV_STATE_DEGRADED)
return (B_FALSE);
if (vd->vdev_resilver_deferred)
return (B_FALSE);
if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
return (B_TRUE);
if (rebuild_done) {
vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
/* Rebuild not initiated by attach */
if (vd->vdev_rebuild_txg == 0)
return (B_TRUE);
/*
* When a rebuild completes without error then all missing data
* up to the rebuild max txg has been reconstructed and the DTL
* is eligible for excision.
*/
if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
return (B_TRUE);
}
} else {
dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
/* Resilver not initiated by attach */
if (vd->vdev_resilver_txg == 0)
return (B_TRUE);
/*
* When a resilver is initiated the scan will assign the
* scn_max_txg value to the highest txg value that exists
* in all DTLs. If this device's max DTL is not part of this
* scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
* then it is not eligible for excision.
*/
if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
return (B_TRUE);
}
}
return (B_FALSE);
}
/*
* Reassess DTLs after a config change or scrub completion. If txg == 0 no
* write operations will be issued to the pool.
*/
void
vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
boolean_t scrub_done, boolean_t rebuild_done)
{
spa_t *spa = vd->vdev_spa;
avl_tree_t reftree;
int minref;
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
for (int c = 0; c < vd->vdev_children; c++)
vdev_dtl_reassess(vd->vdev_child[c], txg,
scrub_txg, scrub_done, rebuild_done);
if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
return;
if (vd->vdev_ops->vdev_op_leaf) {
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
boolean_t check_excise = B_FALSE;
boolean_t wasempty = B_TRUE;
mutex_enter(&vd->vdev_dtl_lock);
/*
* If requested, pretend the scan or rebuild completed cleanly.
*/
if (zfs_scan_ignore_errors) {
if (scn != NULL)
scn->scn_phys.scn_errors = 0;
if (vr != NULL)
vr->vr_rebuild_phys.vrp_errors = 0;
}
if (scrub_txg != 0 &&
!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
wasempty = B_FALSE;
zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
"dtl:%llu/%llu errors:%llu",
(u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
(u_longlong_t)scrub_txg, spa->spa_scrub_started,
(u_longlong_t)vdev_dtl_min(vd),
(u_longlong_t)vdev_dtl_max(vd),
(u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
}
/*
* If we've completed a scrub/resilver or a rebuild cleanly
* then determine if this vdev should remove any DTLs. We
* only want to excise regions on vdevs that were available
* during the entire duration of this scan.
*/
if (rebuild_done &&
vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
check_excise = B_TRUE;
} else {
if (spa->spa_scrub_started ||
(scn != NULL && scn->scn_phys.scn_errors == 0)) {
check_excise = B_TRUE;
}
}
if (scrub_txg && check_excise &&
vdev_dtl_should_excise(vd, rebuild_done)) {
/*
* We completed a scrub, resilver or rebuild up to
* scrub_txg. If we did it without rebooting, then
* the scrub dtl will be valid, so excise the old
* region and fold in the scrub dtl. Otherwise,
* leave the dtl as-is if there was an error.
*
* There's little trick here: to excise the beginning
* of the DTL_MISSING map, we put it into a reference
* tree and then add a segment with refcnt -1 that
* covers the range [0, scrub_txg). This means
* that each txg in that range has refcnt -1 or 0.
* We then add DTL_SCRUB with a refcnt of 2, so that
* entries in the range [0, scrub_txg) will have a
* positive refcnt -- either 1 or 2. We then convert
* the reference tree into the new DTL_MISSING map.
*/
space_reftree_create(&reftree);
space_reftree_add_map(&reftree,
vd->vdev_dtl[DTL_MISSING], 1);
space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
space_reftree_add_map(&reftree,
vd->vdev_dtl[DTL_SCRUB], 2);
space_reftree_generate_map(&reftree,
vd->vdev_dtl[DTL_MISSING], 1);
space_reftree_destroy(&reftree);
if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
(u_longlong_t)vdev_dtl_min(vd),
(u_longlong_t)vdev_dtl_max(vd));
} else if (!wasempty) {
zfs_dbgmsg("DTL_MISSING is now empty");
}
}
range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
range_tree_walk(vd->vdev_dtl[DTL_MISSING],
range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
if (scrub_done)
range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
if (!vdev_readable(vd))
range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
else
range_tree_walk(vd->vdev_dtl[DTL_MISSING],
range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
/*
* If the vdev was resilvering or rebuilding and no longer
* has any DTLs then reset the appropriate flag and dirty
* the top level so that we persist the change.
*/
if (txg != 0 &&
range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
if (vd->vdev_rebuild_txg != 0) {
vd->vdev_rebuild_txg = 0;
vdev_config_dirty(vd->vdev_top);
} else if (vd->vdev_resilver_txg != 0) {
vd->vdev_resilver_txg = 0;
vdev_config_dirty(vd->vdev_top);
}
}
mutex_exit(&vd->vdev_dtl_lock);
if (txg != 0)
vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
return;
}
mutex_enter(&vd->vdev_dtl_lock);
for (int t = 0; t < DTL_TYPES; t++) {
/* account for child's outage in parent's missing map */
int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
if (t == DTL_SCRUB)
continue; /* leaf vdevs only */
if (t == DTL_PARTIAL)
minref = 1; /* i.e. non-zero */
else if (vd->vdev_nparity != 0)
minref = vd->vdev_nparity + 1; /* RAID-Z */
else
minref = vd->vdev_children; /* any kind of mirror */
space_reftree_create(&reftree);
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
mutex_enter(&cvd->vdev_dtl_lock);
space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
mutex_exit(&cvd->vdev_dtl_lock);
}
space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
space_reftree_destroy(&reftree);
}
mutex_exit(&vd->vdev_dtl_lock);
}
int
vdev_dtl_load(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
objset_t *mos = spa->spa_meta_objset;
int error = 0;
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
ASSERT(vdev_is_concrete(vd));
error = space_map_open(&vd->vdev_dtl_sm, mos,
vd->vdev_dtl_object, 0, -1ULL, 0);
if (error)
return (error);
ASSERT(vd->vdev_dtl_sm != NULL);
mutex_enter(&vd->vdev_dtl_lock);
error = space_map_load(vd->vdev_dtl_sm,
vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
mutex_exit(&vd->vdev_dtl_lock);
return (error);
}
for (int c = 0; c < vd->vdev_children; c++) {
error = vdev_dtl_load(vd->vdev_child[c]);
if (error != 0)
break;
}
return (error);
}
static void
vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
{
spa_t *spa = vd->vdev_spa;
objset_t *mos = spa->spa_meta_objset;
vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
const char *string;
ASSERT(alloc_bias != VDEV_BIAS_NONE);
string =
(alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
(alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
(alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
ASSERT(string != NULL);
VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
1, strlen(string) + 1, string, tx));
if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
spa_activate_allocation_classes(spa, tx);
}
}
void
vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
{
spa_t *spa = vd->vdev_spa;
VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
zapobj, tx));
}
uint64_t
vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
{
spa_t *spa = vd->vdev_spa;
uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
DMU_OT_NONE, 0, tx);
ASSERT(zap != 0);
VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
zap, tx));
return (zap);
}
void
vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
{
if (vd->vdev_ops != &vdev_hole_ops &&
vd->vdev_ops != &vdev_missing_ops &&
vd->vdev_ops != &vdev_root_ops &&
!vd->vdev_top->vdev_removing) {
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
}
if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
vdev_zap_allocation_data(vd, tx);
}
}
for (uint64_t i = 0; i < vd->vdev_children; i++) {
vdev_construct_zaps(vd->vdev_child[i], tx);
}
}
static void
vdev_dtl_sync(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
objset_t *mos = spa->spa_meta_objset;
range_tree_t *rtsync;
dmu_tx_t *tx;
uint64_t object = space_map_object(vd->vdev_dtl_sm);
ASSERT(vdev_is_concrete(vd));
ASSERT(vd->vdev_ops->vdev_op_leaf);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
mutex_enter(&vd->vdev_dtl_lock);
space_map_free(vd->vdev_dtl_sm, tx);
space_map_close(vd->vdev_dtl_sm);
vd->vdev_dtl_sm = NULL;
mutex_exit(&vd->vdev_dtl_lock);
/*
* We only destroy the leaf ZAP for detached leaves or for
* removed log devices. Removed data devices handle leaf ZAP
* cleanup later, once cancellation is no longer possible.
*/
if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
vd->vdev_top->vdev_islog)) {
vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
vd->vdev_leaf_zap = 0;
}
dmu_tx_commit(tx);
return;
}
if (vd->vdev_dtl_sm == NULL) {
uint64_t new_object;
new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
VERIFY3U(new_object, !=, 0);
VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
0, -1ULL, 0));
ASSERT(vd->vdev_dtl_sm != NULL);
}
rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
mutex_enter(&vd->vdev_dtl_lock);
range_tree_walk(rt, range_tree_add, rtsync);
mutex_exit(&vd->vdev_dtl_lock);
space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
range_tree_vacate(rtsync, NULL, NULL);
range_tree_destroy(rtsync);
/*
* If the object for the space map has changed then dirty
* the top level so that we update the config.
*/
if (object != space_map_object(vd->vdev_dtl_sm)) {
vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
"new object %llu", (u_longlong_t)txg, spa_name(spa),
(u_longlong_t)object,
(u_longlong_t)space_map_object(vd->vdev_dtl_sm));
vdev_config_dirty(vd->vdev_top);
}
dmu_tx_commit(tx);
}
/*
* Determine whether the specified vdev can be offlined/detached/removed
* without losing data.
*/
boolean_t
vdev_dtl_required(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
vdev_t *tvd = vd->vdev_top;
uint8_t cant_read = vd->vdev_cant_read;
boolean_t required;
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
if (vd == spa->spa_root_vdev || vd == tvd)
return (B_TRUE);
/*
* Temporarily mark the device as unreadable, and then determine
* whether this results in any DTL outages in the top-level vdev.
* If not, we can safely offline/detach/remove the device.
*/
vd->vdev_cant_read = B_TRUE;
vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
vd->vdev_cant_read = cant_read;
vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
if (!required && zio_injection_enabled) {
required = !!zio_handle_device_injection(vd, NULL,
SET_ERROR(ECHILD));
}
return (required);
}
/*
* Determine if resilver is needed, and if so the txg range.
*/
boolean_t
vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
{
boolean_t needed = B_FALSE;
uint64_t thismin = UINT64_MAX;
uint64_t thismax = 0;
if (vd->vdev_children == 0) {
mutex_enter(&vd->vdev_dtl_lock);
if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
vdev_writeable(vd)) {
thismin = vdev_dtl_min(vd);
thismax = vdev_dtl_max(vd);
needed = B_TRUE;
}
mutex_exit(&vd->vdev_dtl_lock);
} else {
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
uint64_t cmin, cmax;
if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
thismin = MIN(thismin, cmin);
thismax = MAX(thismax, cmax);
needed = B_TRUE;
}
}
}
if (needed && minp) {
*minp = thismin;
*maxp = thismax;
}
return (needed);
}
/*
* Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
* will contain either the checkpoint spacemap object or zero if none exists.
* All other errors are returned to the caller.
*/
int
vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
{
ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
if (vd->vdev_top_zap == 0) {
*sm_obj = 0;
return (0);
}
int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
if (error == ENOENT) {
*sm_obj = 0;
error = 0;
}
return (error);
}
int
vdev_load(vdev_t *vd)
{
int error = 0;
/*
* Recursively load all children.
*/
for (int c = 0; c < vd->vdev_children; c++) {
error = vdev_load(vd->vdev_child[c]);
if (error != 0) {
return (error);
}
}
vdev_set_deflate_ratio(vd);
/*
* On spa_load path, grab the allocation bias from our zap
*/
if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
spa_t *spa = vd->vdev_spa;
char bias_str[64];
error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
bias_str);
if (error == 0) {
ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
} else if (error != ENOENT) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
"failed [error=%d]", vd->vdev_top_zap, error);
return (error);
}
}
/*
* Load any rebuild state from the top-level vdev zap.
*/
if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
error = vdev_rebuild_load(vd);
if (error && error != ENOTSUP) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
"failed [error=%d]", error);
return (error);
}
}
/*
* If this is a top-level vdev, initialize its metaslabs.
*/
if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
vdev_metaslab_group_create(vd);
if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
"asize=%llu", (u_longlong_t)vd->vdev_ashift,
(u_longlong_t)vd->vdev_asize);
return (SET_ERROR(ENXIO));
}
error = vdev_metaslab_init(vd, 0);
if (error != 0) {
vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
"[error=%d]", error);
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
return (error);
}
uint64_t checkpoint_sm_obj;
error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
if (error == 0 && checkpoint_sm_obj != 0) {
objset_t *mos = spa_meta_objset(vd->vdev_spa);
ASSERT(vd->vdev_asize != 0);
ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
error = space_map_open(&vd->vdev_checkpoint_sm,
mos, checkpoint_sm_obj, 0, vd->vdev_asize,
vd->vdev_ashift);
if (error != 0) {
vdev_dbgmsg(vd, "vdev_load: space_map_open "
"failed for checkpoint spacemap (obj %llu) "
"[error=%d]",
(u_longlong_t)checkpoint_sm_obj, error);
return (error);
}
ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
/*
* Since the checkpoint_sm contains free entries
* exclusively we can use space_map_allocated() to
* indicate the cumulative checkpointed space that
* has been freed.
*/
vd->vdev_stat.vs_checkpoint_space =
-space_map_allocated(vd->vdev_checkpoint_sm);
vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
vd->vdev_stat.vs_checkpoint_space;
} else if (error != 0) {
vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
"checkpoint space map object from vdev ZAP "
"[error=%d]", error);
return (error);
}
}
/*
* If this is a leaf vdev, load its DTL.
*/
if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
"[error=%d]", error);
return (error);
}
uint64_t obsolete_sm_object;
error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
if (error == 0 && obsolete_sm_object != 0) {
objset_t *mos = vd->vdev_spa->spa_meta_objset;
ASSERT(vd->vdev_asize != 0);
ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
obsolete_sm_object, 0, vd->vdev_asize, 0))) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
"obsolete spacemap (obj %llu) [error=%d]",
(u_longlong_t)obsolete_sm_object, error);
return (error);
}
} else if (error != 0) {
vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
"space map object from vdev ZAP [error=%d]", error);
return (error);
}
return (0);
}
/*
* The special vdev case is used for hot spares and l2cache devices. Its
* sole purpose it to set the vdev state for the associated vdev. To do this,
* we make sure that we can open the underlying device, then try to read the
* label, and make sure that the label is sane and that it hasn't been
* repurposed to another pool.
*/
int
vdev_validate_aux(vdev_t *vd)
{
nvlist_t *label;
uint64_t guid, version;
uint64_t state;
if (!vdev_readable(vd))
return (0);
if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
return (-1);
}
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
!SPA_VERSION_IS_SUPPORTED(version) ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
guid != vd->vdev_guid ||
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
nvlist_free(label);
return (-1);
}
/*
* We don't actually check the pool state here. If it's in fact in
* use by another pool, we update this fact on the fly when requested.
*/
nvlist_free(label);
return (0);
}
static void
vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
{
objset_t *mos = spa_meta_objset(vd->vdev_spa);
if (vd->vdev_top_zap == 0)
return;
uint64_t object = 0;
int err = zap_lookup(mos, vd->vdev_top_zap,
VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
if (err == ENOENT)
return;
VERIFY0(err);
VERIFY0(dmu_object_free(mos, object, tx));
VERIFY0(zap_remove(mos, vd->vdev_top_zap,
VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
}
/*
* Free the objects used to store this vdev's spacemaps, and the array
* that points to them.
*/
void
vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
{
if (vd->vdev_ms_array == 0)
return;
objset_t *mos = vd->vdev_spa->spa_meta_objset;
uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
size_t array_bytes = array_count * sizeof (uint64_t);
uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
array_bytes, smobj_array, 0));
for (uint64_t i = 0; i < array_count; i++) {
uint64_t smobj = smobj_array[i];
if (smobj == 0)
continue;
space_map_free_obj(mos, smobj, tx);
}
kmem_free(smobj_array, array_bytes);
VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
vdev_destroy_ms_flush_data(vd, tx);
vd->vdev_ms_array = 0;
}
static void
vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
ASSERT(vd->vdev_islog);
ASSERT(vd == vd->vdev_top);
ASSERT3U(txg, ==, spa_syncing_txg(spa));
dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
vdev_destroy_spacemaps(vd, tx);
if (vd->vdev_top_zap != 0) {
vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
vd->vdev_top_zap = 0;
}
dmu_tx_commit(tx);
}
void
vdev_sync_done(vdev_t *vd, uint64_t txg)
{
metaslab_t *msp;
boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
ASSERT(vdev_is_concrete(vd));
while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
!= NULL)
metaslab_sync_done(msp, txg);
if (reassess)
metaslab_sync_reassess(vd->vdev_mg);
}
void
vdev_sync(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
vdev_t *lvd;
metaslab_t *msp;
ASSERT3U(txg, ==, spa->spa_syncing_txg);
dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
ASSERT(vd->vdev_removing ||
vd->vdev_ops == &vdev_indirect_ops);
vdev_indirect_sync_obsolete(vd, tx);
/*
* If the vdev is indirect, it can't have dirty
* metaslabs or DTLs.
*/
if (vd->vdev_ops == &vdev_indirect_ops) {
ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
dmu_tx_commit(tx);
return;
}
}
ASSERT(vdev_is_concrete(vd));
if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
!vd->vdev_removing) {
ASSERT(vd == vd->vdev_top);
ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
ASSERT(vd->vdev_ms_array != 0);
vdev_config_dirty(vd);
}
while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
metaslab_sync(msp, txg);
(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
}
while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
vdev_dtl_sync(lvd, txg);
/*
* If this is an empty log device being removed, destroy the
* metadata associated with it.
*/
if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
vdev_remove_empty_log(vd, txg);
(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
dmu_tx_commit(tx);
}
uint64_t
vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
{
return (vd->vdev_ops->vdev_op_asize(vd, psize));
}
/*
* Mark the given vdev faulted. A faulted vdev behaves as if the device could
* not be opened, and no I/O is attempted.
*/
int
vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
{
vdev_t *vd, *tvd;
spa_vdev_state_enter(spa, SCL_NONE);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
tvd = vd->vdev_top;
/*
* If user did a 'zpool offline -f' then make the fault persist across
* reboots.
*/
if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
/*
* There are two kinds of forced faults: temporary and
* persistent. Temporary faults go away at pool import, while
* persistent faults stay set. Both types of faults can be
* cleared with a zpool clear.
*
* We tell if a vdev is persistently faulted by looking at the
* ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
* import then it's a persistent fault. Otherwise, it's
* temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
* by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
* tells vdev_config_generate() (which gets run later) to set
* ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
*/
vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
vd->vdev_tmpoffline = B_FALSE;
aux = VDEV_AUX_EXTERNAL;
} else {
vd->vdev_tmpoffline = B_TRUE;
}
/*
* We don't directly use the aux state here, but if we do a
* vdev_reopen(), we need this value to be present to remember why we
* were faulted.
*/
vd->vdev_label_aux = aux;
/*
* Faulted state takes precedence over degraded.
*/
vd->vdev_delayed_close = B_FALSE;
vd->vdev_faulted = 1ULL;
vd->vdev_degraded = 0ULL;
vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
/*
* If this device has the only valid copy of the data, then
* back off and simply mark the vdev as degraded instead.
*/
if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
vd->vdev_degraded = 1ULL;
vd->vdev_faulted = 0ULL;
/*
* If we reopen the device and it's not dead, only then do we
* mark it degraded.
*/
vdev_reopen(tvd);
if (vdev_readable(vd))
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
}
return (spa_vdev_state_exit(spa, vd, 0));
}
/*
* Mark the given vdev degraded. A degraded vdev is purely an indication to the
* user that something is wrong. The vdev continues to operate as normal as far
* as I/O is concerned.
*/
int
vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
{
vdev_t *vd;
spa_vdev_state_enter(spa, SCL_NONE);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
/*
* If the vdev is already faulted, then don't do anything.
*/
if (vd->vdev_faulted || vd->vdev_degraded)
return (spa_vdev_state_exit(spa, NULL, 0));
vd->vdev_degraded = 1ULL;
if (!vdev_is_dead(vd))
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
aux);
return (spa_vdev_state_exit(spa, vd, 0));
}
/*
* Online the given vdev.
*
* If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
* spare device should be detached when the device finishes resilvering.
* Second, the online should be treated like a 'test' online case, so no FMA
* events are generated if the device fails to open.
*/
int
vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
{
vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
boolean_t wasoffline;
vdev_state_t oldstate;
spa_vdev_state_enter(spa, SCL_NONE);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
oldstate = vd->vdev_state;
tvd = vd->vdev_top;
vd->vdev_offline = B_FALSE;
vd->vdev_tmpoffline = B_FALSE;
vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
/* XXX - L2ARC 1.0 does not support expansion */
if (!vd->vdev_aux) {
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
spa->spa_autoexpand);
vd->vdev_expansion_time = gethrestime_sec();
}
vdev_reopen(tvd);
vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
if (!vd->vdev_aux) {
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
pvd->vdev_expanding = B_FALSE;
}
if (newstate)
*newstate = vd->vdev_state;
if ((flags & ZFS_ONLINE_UNSPARE) &&
!vdev_is_dead(vd) && vd->vdev_parent &&
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
vd->vdev_parent->vdev_child[0] == vd)
vd->vdev_unspare = B_TRUE;
if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
/* XXX - L2ARC 1.0 does not support expansion */
if (vd->vdev_aux)
return (spa_vdev_state_exit(spa, vd, ENOTSUP));
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
}
/* Restart initializing if necessary */
mutex_enter(&vd->vdev_initialize_lock);
if (vdev_writeable(vd) &&
vd->vdev_initialize_thread == NULL &&
vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
(void) vdev_initialize(vd);
}
mutex_exit(&vd->vdev_initialize_lock);
/*
* Restart trimming if necessary. We do not restart trimming for cache
* devices here. This is triggered by l2arc_rebuild_vdev()
* asynchronously for the whole device or in l2arc_evict() as it evicts
* space for upcoming writes.
*/
mutex_enter(&vd->vdev_trim_lock);
if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
vd->vdev_trim_thread == NULL &&
vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
vd->vdev_trim_secure);
}
mutex_exit(&vd->vdev_trim_lock);
if (wasoffline ||
(oldstate < VDEV_STATE_DEGRADED &&
vd->vdev_state >= VDEV_STATE_DEGRADED))
spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
return (spa_vdev_state_exit(spa, vd, 0));
}
static int
vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
{
vdev_t *vd, *tvd;
int error = 0;
uint64_t generation;
metaslab_group_t *mg;
top:
spa_vdev_state_enter(spa, SCL_ALLOC);
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
tvd = vd->vdev_top;
mg = tvd->vdev_mg;
generation = spa->spa_config_generation + 1;
/*
* If the device isn't already offline, try to offline it.
*/
if (!vd->vdev_offline) {
/*
* If this device has the only valid copy of some data,
* don't allow it to be offlined. Log devices are always
* expendable.
*/
if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
vdev_dtl_required(vd))
return (spa_vdev_state_exit(spa, NULL,
SET_ERROR(EBUSY)));
/*
* If the top-level is a slog and it has had allocations
* then proceed. We check that the vdev's metaslab group
* is not NULL since it's possible that we may have just
* added this vdev but not yet initialized its metaslabs.
*/
if (tvd->vdev_islog && mg != NULL) {
/*
* Prevent any future allocations.
*/
metaslab_group_passivate(mg);
(void) spa_vdev_state_exit(spa, vd, 0);
error = spa_reset_logs(spa);
/*
* If the log device was successfully reset but has
* checkpointed data, do not offline it.
*/
if (error == 0 &&
tvd->vdev_checkpoint_sm != NULL) {
ASSERT3U(space_map_allocated(
tvd->vdev_checkpoint_sm), !=, 0);
error = ZFS_ERR_CHECKPOINT_EXISTS;
}
spa_vdev_state_enter(spa, SCL_ALLOC);
/*
* Check to see if the config has changed.
*/
if (error || generation != spa->spa_config_generation) {
metaslab_group_activate(mg);
if (error)
return (spa_vdev_state_exit(spa,
vd, error));
(void) spa_vdev_state_exit(spa, vd, 0);
goto top;
}
ASSERT0(tvd->vdev_stat.vs_alloc);
}
/*
* Offline this device and reopen its top-level vdev.
* If the top-level vdev is a log device then just offline
* it. Otherwise, if this action results in the top-level
* vdev becoming unusable, undo it and fail the request.
*/
vd->vdev_offline = B_TRUE;
vdev_reopen(tvd);
if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
vdev_is_dead(tvd)) {
vd->vdev_offline = B_FALSE;
vdev_reopen(tvd);
return (spa_vdev_state_exit(spa, NULL,
SET_ERROR(EBUSY)));
}
/*
* Add the device back into the metaslab rotor so that
* once we online the device it's open for business.
*/
if (tvd->vdev_islog && mg != NULL)
metaslab_group_activate(mg);
}
vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
return (spa_vdev_state_exit(spa, vd, 0));
}
int
vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
{
int error;
mutex_enter(&spa->spa_vdev_top_lock);
error = vdev_offline_locked(spa, guid, flags);
mutex_exit(&spa->spa_vdev_top_lock);
return (error);
}
/*
* Clear the error counts associated with this vdev. Unlike vdev_online() and
* vdev_offline(), we assume the spa config is locked. We also clear all
* children. If 'vd' is NULL, then the user wants to clear all vdevs.
*/
void
vdev_clear(spa_t *spa, vdev_t *vd)
{
vdev_t *rvd = spa->spa_root_vdev;
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
if (vd == NULL)
vd = rvd;
vd->vdev_stat.vs_read_errors = 0;
vd->vdev_stat.vs_write_errors = 0;
vd->vdev_stat.vs_checksum_errors = 0;
vd->vdev_stat.vs_slow_ios = 0;
for (int c = 0; c < vd->vdev_children; c++)
vdev_clear(spa, vd->vdev_child[c]);
/*
* It makes no sense to "clear" an indirect vdev.
*/
if (!vdev_is_concrete(vd))
return;
/*
* If we're in the FAULTED state or have experienced failed I/O, then
* clear the persistent state and attempt to reopen the device. We
* also mark the vdev config dirty, so that the new faulted state is
* written out to disk.
*/
if (vd->vdev_faulted || vd->vdev_degraded ||
!vdev_readable(vd) || !vdev_writeable(vd)) {
/*
* When reopening in response to a clear event, it may be due to
* a fmadm repair request. In this case, if the device is
* still broken, we want to still post the ereport again.
*/
vd->vdev_forcefault = B_TRUE;
vd->vdev_faulted = vd->vdev_degraded = 0ULL;
vd->vdev_cant_read = B_FALSE;
vd->vdev_cant_write = B_FALSE;
vd->vdev_stat.vs_aux = 0;
vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
vd->vdev_forcefault = B_FALSE;
if (vd != rvd && vdev_writeable(vd->vdev_top))
vdev_state_dirty(vd->vdev_top);
/* If a resilver isn't required, check if vdevs can be culled */
if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
!dsl_scan_resilvering(spa->spa_dsl_pool) &&
!dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
}
/*
* When clearing a FMA-diagnosed fault, we always want to
* unspare the device, as we assume that the original spare was
* done in response to the FMA fault.
*/
if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
vd->vdev_parent->vdev_child[0] == vd)
vd->vdev_unspare = B_TRUE;
}
boolean_t
vdev_is_dead(vdev_t *vd)
{
/*
* Holes and missing devices are always considered "dead".
* This simplifies the code since we don't have to check for
* these types of devices in the various code paths.
* Instead we rely on the fact that we skip over dead devices
* before issuing I/O to them.
*/
return (vd->vdev_state < VDEV_STATE_DEGRADED ||
vd->vdev_ops == &vdev_hole_ops ||
vd->vdev_ops == &vdev_missing_ops);
}
boolean_t
vdev_readable(vdev_t *vd)
{
return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
}
boolean_t
vdev_writeable(vdev_t *vd)
{
return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
vdev_is_concrete(vd));
}
boolean_t
vdev_allocatable(vdev_t *vd)
{
uint64_t state = vd->vdev_state;
/*
* We currently allow allocations from vdevs which may be in the
* process of reopening (i.e. VDEV_STATE_CLOSED). If the device
* fails to reopen then we'll catch it later when we're holding
* the proper locks. Note that we have to get the vdev state
* in a local variable because although it changes atomically,
* we're asking two separate questions about it.
*/
return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
!vd->vdev_cant_write && vdev_is_concrete(vd) &&
vd->vdev_mg->mg_initialized);
}
boolean_t
vdev_accessible(vdev_t *vd, zio_t *zio)
{
ASSERT(zio->io_vd == vd);
if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
return (B_FALSE);
if (zio->io_type == ZIO_TYPE_READ)
return (!vd->vdev_cant_read);
if (zio->io_type == ZIO_TYPE_WRITE)
return (!vd->vdev_cant_write);
return (B_TRUE);
}
static void
vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
{
for (int t = 0; t < VS_ZIO_TYPES; t++) {
vs->vs_ops[t] += cvs->vs_ops[t];
vs->vs_bytes[t] += cvs->vs_bytes[t];
}
cvs->vs_scan_removing = cvd->vdev_removing;
}
/*
* Get extended stats
*/
static void
vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
{
int t, b;
for (t = 0; t < ZIO_TYPES; t++) {
for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
vsx->vsx_total_histo[t][b] +=
cvsx->vsx_total_histo[t][b];
}
}
for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
vsx->vsx_queue_histo[t][b] +=
cvsx->vsx_queue_histo[t][b];
}
vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
}
}
boolean_t
vdev_is_spacemap_addressable(vdev_t *vd)
{
if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
return (B_TRUE);
/*
* If double-word space map entries are not enabled we assume
* 47 bits of the space map entry are dedicated to the entry's
* offset (see SM_OFFSET_BITS in space_map.h). We then use that
* to calculate the maximum address that can be described by a
* space map entry for the given device.
*/
uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
if (shift >= 63) /* detect potential overflow */
return (B_TRUE);
return (vd->vdev_asize < (1ULL << shift));
}
/*
* Get statistics for the given vdev.
*/
static void
vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
{
int t;
/*
* If we're getting stats on the root vdev, aggregate the I/O counts
* over all top-level vdevs (i.e. the direct children of the root).
*/
if (!vd->vdev_ops->vdev_op_leaf) {
if (vs) {
memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
}
if (vsx)
memset(vsx, 0, sizeof (*vsx));
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
vdev_stat_t *cvs = &cvd->vdev_stat;
vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
vdev_get_stats_ex_impl(cvd, cvs, cvsx);
if (vs)
vdev_get_child_stat(cvd, vs, cvs);
if (vsx)
vdev_get_child_stat_ex(cvd, vsx, cvsx);
}
} else {
/*
* We're a leaf. Just copy our ZIO active queue stats in. The
* other leaf stats are updated in vdev_stat_update().
*/
if (!vsx)
return;
memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
vsx->vsx_active_queue[t] =
vd->vdev_queue.vq_class[t].vqc_active;
vsx->vsx_pend_queue[t] = avl_numnodes(
&vd->vdev_queue.vq_class[t].vqc_queued_tree);
}
}
}
void
vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
{
vdev_t *tvd = vd->vdev_top;
mutex_enter(&vd->vdev_stat_lock);
if (vs) {
bcopy(&vd->vdev_stat, vs, sizeof (*vs));
vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
vs->vs_state = vd->vdev_state;
vs->vs_rsize = vdev_get_min_asize(vd);
if (vd->vdev_ops->vdev_op_leaf) {
vs->vs_rsize += VDEV_LABEL_START_SIZE +
VDEV_LABEL_END_SIZE;
/*
* Report initializing progress. Since we don't
* have the initializing locks held, this is only
* an estimate (although a fairly accurate one).
*/
vs->vs_initialize_bytes_done =
vd->vdev_initialize_bytes_done;
vs->vs_initialize_bytes_est =
vd->vdev_initialize_bytes_est;
vs->vs_initialize_state = vd->vdev_initialize_state;
vs->vs_initialize_action_time =
vd->vdev_initialize_action_time;
/*
* Report manual TRIM progress. Since we don't have
* the manual TRIM locks held, this is only an
* estimate (although fairly accurate one).
*/
vs->vs_trim_notsup = !vd->vdev_has_trim;
vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
vs->vs_trim_state = vd->vdev_trim_state;
vs->vs_trim_action_time = vd->vdev_trim_action_time;
/* Set when there is a deferred resilver. */
vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
}
/*
* Report expandable space on top-level, non-auxiliary devices
* only. The expandable space is reported in terms of metaslab
* sized units since that determines how much space the pool
* can expand.
*/
if (vd->vdev_aux == NULL && tvd != NULL) {
vs->vs_esize = P2ALIGN(
vd->vdev_max_asize - vd->vdev_asize,
1ULL << tvd->vdev_ms_shift);
}
vs->vs_configured_ashift = vd->vdev_top != NULL
? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
vs->vs_logical_ashift = vd->vdev_logical_ashift;
vs->vs_physical_ashift = vd->vdev_physical_ashift;
/*
* Report fragmentation and rebuild progress for top-level,
* non-auxiliary, concrete devices.
*/
if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
vdev_is_concrete(vd)) {
vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
vd->vdev_mg->mg_fragmentation : 0;
}
}
vdev_get_stats_ex_impl(vd, vs, vsx);
mutex_exit(&vd->vdev_stat_lock);
}
void
vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
{
return (vdev_get_stats_ex(vd, vs, NULL));
}
void
vdev_clear_stats(vdev_t *vd)
{
mutex_enter(&vd->vdev_stat_lock);
vd->vdev_stat.vs_space = 0;
vd->vdev_stat.vs_dspace = 0;
vd->vdev_stat.vs_alloc = 0;
mutex_exit(&vd->vdev_stat_lock);
}
void
vdev_scan_stat_init(vdev_t *vd)
{
vdev_stat_t *vs = &vd->vdev_stat;
for (int c = 0; c < vd->vdev_children; c++)
vdev_scan_stat_init(vd->vdev_child[c]);
mutex_enter(&vd->vdev_stat_lock);
vs->vs_scan_processed = 0;
mutex_exit(&vd->vdev_stat_lock);
}
void
vdev_stat_update(zio_t *zio, uint64_t psize)
{
spa_t *spa = zio->io_spa;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
vdev_t *pvd;
uint64_t txg = zio->io_txg;
vdev_stat_t *vs = &vd->vdev_stat;
vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
zio_type_t type = zio->io_type;
int flags = zio->io_flags;
/*
* If this i/o is a gang leader, it didn't do any actual work.
*/
if (zio->io_gang_tree)
return;
if (zio->io_error == 0) {
/*
* If this is a root i/o, don't count it -- we've already
* counted the top-level vdevs, and vdev_get_stats() will
* aggregate them when asked. This reduces contention on
* the root vdev_stat_lock and implicitly handles blocks
* that compress away to holes, for which there is no i/o.
* (Holes never create vdev children, so all the counters
* remain zero, which is what we want.)
*
* Note: this only applies to successful i/o (io_error == 0)
* because unlike i/o counts, errors are not additive.
* When reading a ditto block, for example, failure of
* one top-level vdev does not imply a root-level error.
*/
if (vd == rvd)
return;
ASSERT(vd == zio->io_vd);
if (flags & ZIO_FLAG_IO_BYPASS)
return;
mutex_enter(&vd->vdev_stat_lock);
if (flags & ZIO_FLAG_IO_REPAIR) {
/*
* Repair is the result of a resilver issued by the
* scan thread (spa_sync).
*/
if (flags & ZIO_FLAG_SCAN_THREAD) {
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
dsl_scan_phys_t *scn_phys = &scn->scn_phys;
uint64_t *processed = &scn_phys->scn_processed;
if (vd->vdev_ops->vdev_op_leaf)
atomic_add_64(processed, psize);
vs->vs_scan_processed += psize;
}
/*
* Repair is the result of a rebuild issued by the
* rebuild thread (vdev_rebuild_thread).
*/
if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
vdev_t *tvd = vd->vdev_top;
vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
if (vd->vdev_ops->vdev_op_leaf)
atomic_add_64(rebuilt, psize);
vs->vs_rebuild_processed += psize;
}
if (flags & ZIO_FLAG_SELF_HEAL)
vs->vs_self_healed += psize;
}
/*
* The bytes/ops/histograms are recorded at the leaf level and
* aggregated into the higher level vdevs in vdev_get_stats().
*/
if (vd->vdev_ops->vdev_op_leaf &&
(zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
zio_type_t vs_type = type;
zio_priority_t priority = zio->io_priority;
/*
* TRIM ops and bytes are reported to user space as
* ZIO_TYPE_IOCTL. This is done to preserve the
* vdev_stat_t structure layout for user space.
*/
if (type == ZIO_TYPE_TRIM)
vs_type = ZIO_TYPE_IOCTL;
/*
* Solely for the purposes of 'zpool iostat -lqrw'
* reporting use the priority to catagorize the IO.
* Only the following are reported to user space:
*
* ZIO_PRIORITY_SYNC_READ,
* ZIO_PRIORITY_SYNC_WRITE,
* ZIO_PRIORITY_ASYNC_READ,
* ZIO_PRIORITY_ASYNC_WRITE,
* ZIO_PRIORITY_SCRUB,
* ZIO_PRIORITY_TRIM.
*/
if (priority == ZIO_PRIORITY_REBUILD) {
priority = ((type == ZIO_TYPE_WRITE) ?
ZIO_PRIORITY_ASYNC_WRITE :
ZIO_PRIORITY_SCRUB);
} else if (priority == ZIO_PRIORITY_INITIALIZING) {
ASSERT3U(type, ==, ZIO_TYPE_WRITE);
priority = ZIO_PRIORITY_ASYNC_WRITE;
} else if (priority == ZIO_PRIORITY_REMOVAL) {
priority = ((type == ZIO_TYPE_WRITE) ?
ZIO_PRIORITY_ASYNC_WRITE :
ZIO_PRIORITY_ASYNC_READ);
}
vs->vs_ops[vs_type]++;
vs->vs_bytes[vs_type] += psize;
if (flags & ZIO_FLAG_DELEGATED) {
vsx->vsx_agg_histo[priority]
[RQ_HISTO(zio->io_size)]++;
} else {
vsx->vsx_ind_histo[priority]
[RQ_HISTO(zio->io_size)]++;
}
if (zio->io_delta && zio->io_delay) {
vsx->vsx_queue_histo[priority]
[L_HISTO(zio->io_delta - zio->io_delay)]++;
vsx->vsx_disk_histo[type]
[L_HISTO(zio->io_delay)]++;
vsx->vsx_total_histo[type]
[L_HISTO(zio->io_delta)]++;
}
}
mutex_exit(&vd->vdev_stat_lock);
return;
}
if (flags & ZIO_FLAG_SPECULATIVE)
return;
/*
* If this is an I/O error that is going to be retried, then ignore the
* error. Otherwise, the user may interpret B_FAILFAST I/O errors as
* hard errors, when in reality they can happen for any number of
* innocuous reasons (bus resets, MPxIO link failure, etc).
*/
if (zio->io_error == EIO &&
!(zio->io_flags & ZIO_FLAG_IO_RETRY))
return;
/*
* Intent logs writes won't propagate their error to the root
* I/O so don't mark these types of failures as pool-level
* errors.
*/
if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
return;
if (spa->spa_load_state == SPA_LOAD_NONE &&
type == ZIO_TYPE_WRITE && txg != 0 &&
(!(flags & ZIO_FLAG_IO_REPAIR) ||
(flags & ZIO_FLAG_SCAN_THREAD) ||
spa->spa_claiming)) {
/*
* This is either a normal write (not a repair), or it's
* a repair induced by the scrub thread, or it's a repair
* made by zil_claim() during spa_load() in the first txg.
* In the normal case, we commit the DTL change in the same
* txg as the block was born. In the scrub-induced repair
* case, we know that scrubs run in first-pass syncing context,
* so we commit the DTL change in spa_syncing_txg(spa).
* In the zil_claim() case, we commit in spa_first_txg(spa).
*
* We currently do not make DTL entries for failed spontaneous
* self-healing writes triggered by normal (non-scrubbing)
* reads, because we have no transactional context in which to
* do so -- and it's not clear that it'd be desirable anyway.
*/
if (vd->vdev_ops->vdev_op_leaf) {
uint64_t commit_txg = txg;
if (flags & ZIO_FLAG_SCAN_THREAD) {
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
ASSERT(spa_sync_pass(spa) == 1);
vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
commit_txg = spa_syncing_txg(spa);
} else if (spa->spa_claiming) {
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
commit_txg = spa_first_txg(spa);
}
ASSERT(commit_txg >= spa_syncing_txg(spa));
if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
return;
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
}
if (vd != rvd)
vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
}
}
int64_t
vdev_deflated_space(vdev_t *vd, int64_t space)
{
ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
}
/*
* Update the in-core space usage stats for this vdev, its metaslab class,
* and the root vdev.
*/
void
vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
int64_t space_delta)
{
int64_t dspace_delta;
spa_t *spa = vd->vdev_spa;
vdev_t *rvd = spa->spa_root_vdev;
ASSERT(vd == vd->vdev_top);
/*
* Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
* factor. We must calculate this here and not at the root vdev
* because the root vdev's psize-to-asize is simply the max of its
* children's, thus not accurate enough for us.
*/
dspace_delta = vdev_deflated_space(vd, space_delta);
mutex_enter(&vd->vdev_stat_lock);
/* ensure we won't underflow */
if (alloc_delta < 0) {
ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
}
vd->vdev_stat.vs_alloc += alloc_delta;
vd->vdev_stat.vs_space += space_delta;
vd->vdev_stat.vs_dspace += dspace_delta;
mutex_exit(&vd->vdev_stat_lock);
/* every class but log contributes to root space stats */
if (vd->vdev_mg != NULL && !vd->vdev_islog) {
ASSERT(!vd->vdev_isl2cache);
mutex_enter(&rvd->vdev_stat_lock);
rvd->vdev_stat.vs_alloc += alloc_delta;
rvd->vdev_stat.vs_space += space_delta;
rvd->vdev_stat.vs_dspace += dspace_delta;
mutex_exit(&rvd->vdev_stat_lock);
}
/* Note: metaslab_class_space_update moved to metaslab_space_update */
}
/*
* Mark a top-level vdev's config as dirty, placing it on the dirty list
* so that it will be written out next time the vdev configuration is synced.
* If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
*/
void
vdev_config_dirty(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
vdev_t *rvd = spa->spa_root_vdev;
int c;
ASSERT(spa_writeable(spa));
/*
* If this is an aux vdev (as with l2cache and spare devices), then we
* update the vdev config manually and set the sync flag.
*/
if (vd->vdev_aux != NULL) {
spa_aux_vdev_t *sav = vd->vdev_aux;
nvlist_t **aux;
uint_t naux;
for (c = 0; c < sav->sav_count; c++) {
if (sav->sav_vdevs[c] == vd)
break;
}
if (c == sav->sav_count) {
/*
* We're being removed. There's nothing more to do.
*/
ASSERT(sav->sav_sync == B_TRUE);
return;
}
sav->sav_sync = B_TRUE;
if (nvlist_lookup_nvlist_array(sav->sav_config,
ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
}
ASSERT(c < naux);
/*
* Setting the nvlist in the middle if the array is a little
* sketchy, but it will work.
*/
nvlist_free(aux[c]);
aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
return;
}
/*
* The dirty list is protected by the SCL_CONFIG lock. The caller
* must either hold SCL_CONFIG as writer, or must be the sync thread
* (which holds SCL_CONFIG as reader). There's only one sync thread,
* so this is sufficient to ensure mutual exclusion.
*/
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_CONFIG, RW_READER)));
if (vd == rvd) {
for (c = 0; c < rvd->vdev_children; c++)
vdev_config_dirty(rvd->vdev_child[c]);
} else {
ASSERT(vd == vd->vdev_top);
if (!list_link_active(&vd->vdev_config_dirty_node) &&
vdev_is_concrete(vd)) {
list_insert_head(&spa->spa_config_dirty_list, vd);
}
}
}
void
vdev_config_clean(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_CONFIG, RW_READER)));
ASSERT(list_link_active(&vd->vdev_config_dirty_node));
list_remove(&spa->spa_config_dirty_list, vd);
}
/*
* Mark a top-level vdev's state as dirty, so that the next pass of
* spa_sync() can convert this into vdev_config_dirty(). We distinguish
* the state changes from larger config changes because they require
* much less locking, and are often needed for administrative actions.
*/
void
vdev_state_dirty(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_writeable(spa));
ASSERT(vd == vd->vdev_top);
/*
* The state list is protected by the SCL_STATE lock. The caller
* must either hold SCL_STATE as writer, or must be the sync thread
* (which holds SCL_STATE as reader). There's only one sync thread,
* so this is sufficient to ensure mutual exclusion.
*/
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_STATE, RW_READER)));
if (!list_link_active(&vd->vdev_state_dirty_node) &&
vdev_is_concrete(vd))
list_insert_head(&spa->spa_state_dirty_list, vd);
}
void
vdev_state_clean(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_STATE, RW_READER)));
ASSERT(list_link_active(&vd->vdev_state_dirty_node));
list_remove(&spa->spa_state_dirty_list, vd);
}
/*
* Propagate vdev state up from children to parent.
*/
void
vdev_propagate_state(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
vdev_t *rvd = spa->spa_root_vdev;
int degraded = 0, faulted = 0;
int corrupted = 0;
vdev_t *child;
if (vd->vdev_children > 0) {
for (int c = 0; c < vd->vdev_children; c++) {
child = vd->vdev_child[c];
/*
* Don't factor holes or indirect vdevs into the
* decision.
*/
if (!vdev_is_concrete(child))
continue;
if (!vdev_readable(child) ||
(!vdev_writeable(child) && spa_writeable(spa))) {
/*
* Root special: if there is a top-level log
* device, treat the root vdev as if it were
* degraded.
*/
if (child->vdev_islog && vd == rvd)
degraded++;
else
faulted++;
} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
degraded++;
}
if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
corrupted++;
}
vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
/*
* Root special: if there is a top-level vdev that cannot be
* opened due to corrupted metadata, then propagate the root
* vdev's aux state as 'corrupt' rather than 'insufficient
* replicas'.
*/
if (corrupted && vd == rvd &&
rvd->vdev_state == VDEV_STATE_CANT_OPEN)
vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
}
if (vd->vdev_parent)
vdev_propagate_state(vd->vdev_parent);
}
/*
* Set a vdev's state. If this is during an open, we don't update the parent
* state, because we're in the process of opening children depth-first.
* Otherwise, we propagate the change to the parent.
*
* If this routine places a device in a faulted state, an appropriate ereport is
* generated.
*/
void
vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
{
uint64_t save_state;
spa_t *spa = vd->vdev_spa;
if (state == vd->vdev_state) {
/*
* Since vdev_offline() code path is already in an offline
* state we can miss a statechange event to OFFLINE. Check
* the previous state to catch this condition.
*/
if (vd->vdev_ops->vdev_op_leaf &&
(state == VDEV_STATE_OFFLINE) &&
(vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
/* post an offline state change */
zfs_post_state_change(spa, vd, vd->vdev_prevstate);
}
vd->vdev_stat.vs_aux = aux;
return;
}
save_state = vd->vdev_state;
vd->vdev_state = state;
vd->vdev_stat.vs_aux = aux;
/*
* If we are setting the vdev state to anything but an open state, then
* always close the underlying device unless the device has requested
* a delayed close (i.e. we're about to remove or fault the device).
* Otherwise, we keep accessible but invalid devices open forever.
* We don't call vdev_close() itself, because that implies some extra
* checks (offline, etc) that we don't want here. This is limited to
* leaf devices, because otherwise closing the device will affect other
* children.
*/
if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
vd->vdev_ops->vdev_op_leaf)
vd->vdev_ops->vdev_op_close(vd);
if (vd->vdev_removed &&
state == VDEV_STATE_CANT_OPEN &&
(aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
/*
* If the previous state is set to VDEV_STATE_REMOVED, then this
* device was previously marked removed and someone attempted to
* reopen it. If this failed due to a nonexistent device, then
* keep the device in the REMOVED state. We also let this be if
* it is one of our special test online cases, which is only
* attempting to online the device and shouldn't generate an FMA
* fault.
*/
vd->vdev_state = VDEV_STATE_REMOVED;
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
} else if (state == VDEV_STATE_REMOVED) {
vd->vdev_removed = B_TRUE;
} else if (state == VDEV_STATE_CANT_OPEN) {
/*
* If we fail to open a vdev during an import or recovery, we
* mark it as "not available", which signifies that it was
* never there to begin with. Failure to open such a device
* is not considered an error.
*/
if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
spa_load_state(spa) == SPA_LOAD_RECOVER) &&
vd->vdev_ops->vdev_op_leaf)
vd->vdev_not_present = 1;
/*
* Post the appropriate ereport. If the 'prevstate' field is
* set to something other than VDEV_STATE_UNKNOWN, it indicates
* that this is part of a vdev_reopen(). In this case, we don't
* want to post the ereport if the device was already in the
* CANT_OPEN state beforehand.
*
* If the 'checkremove' flag is set, then this is an attempt to
* online the device in response to an insertion event. If we
* hit this case, then we have detected an insertion event for a
* faulted or offline device that wasn't in the removed state.
* In this scenario, we don't post an ereport because we are
* about to replace the device, or attempt an online with
* vdev_forcefault, which will generate the fault for us.
*/
if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
!vd->vdev_not_present && !vd->vdev_checkremove &&
vd != spa->spa_root_vdev) {
const char *class;
switch (aux) {
case VDEV_AUX_OPEN_FAILED:
class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
break;
case VDEV_AUX_CORRUPT_DATA:
class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
break;
case VDEV_AUX_NO_REPLICAS:
class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
break;
case VDEV_AUX_BAD_GUID_SUM:
class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
break;
case VDEV_AUX_TOO_SMALL:
class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
break;
case VDEV_AUX_BAD_LABEL:
class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
break;
case VDEV_AUX_BAD_ASHIFT:
class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
break;
default:
class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
}
(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
save_state, 0);
}
/* Erase any notion of persistent removed state */
vd->vdev_removed = B_FALSE;
} else {
vd->vdev_removed = B_FALSE;
}
/*
* Notify ZED of any significant state-change on a leaf vdev.
*
*/
if (vd->vdev_ops->vdev_op_leaf) {
/* preserve original state from a vdev_reopen() */
if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
(vd->vdev_prevstate != vd->vdev_state) &&
(save_state <= VDEV_STATE_CLOSED))
save_state = vd->vdev_prevstate;
/* filter out state change due to initial vdev_open */
if (save_state > VDEV_STATE_CLOSED)
zfs_post_state_change(spa, vd, save_state);
}
if (!isopen && vd->vdev_parent)
vdev_propagate_state(vd->vdev_parent);
}
boolean_t
vdev_children_are_offline(vdev_t *vd)
{
ASSERT(!vd->vdev_ops->vdev_op_leaf);
for (uint64_t i = 0; i < vd->vdev_children; i++) {
if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
return (B_FALSE);
}
return (B_TRUE);
}
/*
* Check the vdev configuration to ensure that it's capable of supporting
* a root pool. We do not support partial configuration.
*/
boolean_t
vdev_is_bootable(vdev_t *vd)
{
if (!vd->vdev_ops->vdev_op_leaf) {
const char *vdev_type = vd->vdev_ops->vdev_op_type;
if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
return (B_FALSE);
}
}
for (int c = 0; c < vd->vdev_children; c++) {
if (!vdev_is_bootable(vd->vdev_child[c]))
return (B_FALSE);
}
return (B_TRUE);
}
boolean_t
vdev_is_concrete(vdev_t *vd)
{
vdev_ops_t *ops = vd->vdev_ops;
if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
ops == &vdev_missing_ops || ops == &vdev_root_ops) {
return (B_FALSE);
} else {
return (B_TRUE);
}
}
/*
* Determine if a log device has valid content. If the vdev was
* removed or faulted in the MOS config then we know that
* the content on the log device has already been written to the pool.
*/
boolean_t
vdev_log_state_valid(vdev_t *vd)
{
if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
!vd->vdev_removed)
return (B_TRUE);
for (int c = 0; c < vd->vdev_children; c++)
if (vdev_log_state_valid(vd->vdev_child[c]))
return (B_TRUE);
return (B_FALSE);
}
/*
* Expand a vdev if possible.
*/
void
vdev_expand(vdev_t *vd, uint64_t txg)
{
ASSERT(vd->vdev_top == vd);
ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
ASSERT(vdev_is_concrete(vd));
vdev_set_deflate_ratio(vd);
if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
vdev_is_concrete(vd)) {
vdev_metaslab_group_create(vd);
VERIFY(vdev_metaslab_init(vd, txg) == 0);
vdev_config_dirty(vd);
}
}
/*
* Split a vdev.
*/
void
vdev_split(vdev_t *vd)
{
vdev_t *cvd, *pvd = vd->vdev_parent;
vdev_remove_child(pvd, vd);
vdev_compact_children(pvd);
cvd = pvd->vdev_child[0];
if (pvd->vdev_children == 1) {
vdev_remove_parent(cvd);
cvd->vdev_splitting = B_TRUE;
}
vdev_propagate_state(cvd);
}
void
vdev_deadman(vdev_t *vd, char *tag)
{
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
vdev_deadman(cvd, tag);
}
if (vd->vdev_ops->vdev_op_leaf) {
vdev_queue_t *vq = &vd->vdev_queue;
mutex_enter(&vq->vq_lock);
if (avl_numnodes(&vq->vq_active_tree) > 0) {
spa_t *spa = vd->vdev_spa;
zio_t *fio;
uint64_t delta;
zfs_dbgmsg("slow vdev: %s has %d active IOs",
vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
/*
* Look at the head of all the pending queues,
* if any I/O has been outstanding for longer than
* the spa_deadman_synctime invoke the deadman logic.
*/
fio = avl_first(&vq->vq_active_tree);
delta = gethrtime() - fio->io_timestamp;
if (delta > spa_deadman_synctime(spa))
zio_deadman(fio, tag);
}
mutex_exit(&vq->vq_lock);
}
}
void
vdev_defer_resilver(vdev_t *vd)
{
ASSERT(vd->vdev_ops->vdev_op_leaf);
vd->vdev_resilver_deferred = B_TRUE;
vd->vdev_spa->spa_resilver_deferred = B_TRUE;
}
/*
* Clears the resilver deferred flag on all leaf devs under vd. Returns
* B_TRUE if we have devices that need to be resilvered and are available to
* accept resilver I/Os.
*/
boolean_t
vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
{
boolean_t resilver_needed = B_FALSE;
spa_t *spa = vd->vdev_spa;
for (int c = 0; c < vd->vdev_children; c++) {
vdev_t *cvd = vd->vdev_child[c];
resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
}
if (vd == spa->spa_root_vdev &&
spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
vdev_config_dirty(vd);
spa->spa_resilver_deferred = B_FALSE;
return (resilver_needed);
}
if (!vdev_is_concrete(vd) || vd->vdev_aux ||
!vd->vdev_ops->vdev_op_leaf)
return (resilver_needed);
vd->vdev_resilver_deferred = B_FALSE;
return (!vdev_is_dead(vd) && !vd->vdev_offline &&
vdev_resilver_needed(vd, NULL, NULL));
}
/*
* Translate a logical range to the physical range for the specified vdev_t.
* This function is initially called with a leaf vdev and will walk each
* parent vdev until it reaches a top-level vdev. Once the top-level is
* reached the physical range is initialized and the recursive function
* begins to unwind. As it unwinds it calls the parent's vdev specific
* translation function to do the real conversion.
*/
void
vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
range_seg64_t *physical_rs)
{
/*
* Walk up the vdev tree
*/
if (vd != vd->vdev_top) {
vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
} else {
/*
* We've reached the top-level vdev, initialize the
* physical range to the logical range and start to
* unwind.
*/
physical_rs->rs_start = logical_rs->rs_start;
physical_rs->rs_end = logical_rs->rs_end;
return;
}
vdev_t *pvd = vd->vdev_parent;
ASSERT3P(pvd, !=, NULL);
ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
/*
* As this recursive function unwinds, translate the logical
* range into its physical components by calling the
* vdev specific translate function.
*/
range_seg64_t intermediate = { 0 };
pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
physical_rs->rs_start = intermediate.rs_start;
physical_rs->rs_end = intermediate.rs_end;
}
/*
* Look at the vdev tree and determine whether any devices are currently being
* replaced.
*/
boolean_t
vdev_replace_in_progress(vdev_t *vdev)
{
ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
if (vdev->vdev_ops == &vdev_replacing_ops)
return (B_TRUE);
/*
* A 'spare' vdev indicates that we have a replace in progress, unless
* it has exactly two children, and the second, the hot spare, has
* finished being resilvered.
*/
if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
!vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
return (B_TRUE);
for (int i = 0; i < vdev->vdev_children; i++) {
if (vdev_replace_in_progress(vdev->vdev_child[i]))
return (B_TRUE);
}
return (B_FALSE);
}
EXPORT_SYMBOL(vdev_fault);
EXPORT_SYMBOL(vdev_degrade);
EXPORT_SYMBOL(vdev_online);
EXPORT_SYMBOL(vdev_offline);
EXPORT_SYMBOL(vdev_clear);
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
"Target number of metaslabs per top-level vdev");
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
"Default limit for metaslab size");
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
"Minimum number of metaslabs per top-level vdev");
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
"Practical upper limit of total metaslabs per top-level vdev");
ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
"Rate limit slow IO (delay) events to this many per second");
ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
"Rate limit checksum events to this many checksum errors per second "
"(do not set below zed threshold).");
ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
"Ignore errors during resilver/scrub");
ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
"Bypass vdev_validate()");
ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
"Disable cache flushes");
ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
"Minimum ashift used when creating new top-level vdevs");
ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
"Maximum ashift used when optimizing for logical -> physical sector "
"size on new top-level vdevs");
/* END CSTYLED */