mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-21 23:46:34 +03:00
035219ee10
Fix a leak of abd_t that manifested mostly when using raidzN with at least as many columns as N (e.g. a four-disk raidz2 but not a three-disk raidz2). Sufficiently heavy raidz use would eventually run a system out of memory. Additionally: * Switch abd_cache arena to FIRSTFIT, which empirically improves perofrmance. * Make abd_chunk_cache more performant and debuggable. * Allocate the abd_zero_buf from abd_chunk_cache rather than the heap. * Don't try to reap non-existent qcaches in abd_cache arena. * KM_PUSHPAGE->KM_SLEEP when allocating chunks from their own arena Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Signed-off-by: Jorgen Lundman <lundman@lundman.net> Co-authored-by: Sean Doran <smd@use.net> Closes #12295
1217 lines
32 KiB
C
1217 lines
32 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
|
|
* Copyright (c) 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* ARC buffer data (ABD).
|
|
*
|
|
* ABDs are an abstract data structure for the ARC which can use two
|
|
* different ways of storing the underlying data:
|
|
*
|
|
* (a) Linear buffer. In this case, all the data in the ABD is stored in one
|
|
* contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
|
|
*
|
|
* +-------------------+
|
|
* | ABD (linear) |
|
|
* | abd_flags = ... |
|
|
* | abd_size = ... | +--------------------------------+
|
|
* | abd_buf ------------->| raw buffer of size abd_size |
|
|
* +-------------------+ +--------------------------------+
|
|
* no abd_chunks
|
|
*
|
|
* (b) Scattered buffer. In this case, the data in the ABD is split into
|
|
* equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
|
|
* to the chunks recorded in an array at the end of the ABD structure.
|
|
*
|
|
* +-------------------+
|
|
* | ABD (scattered) |
|
|
* | abd_flags = ... |
|
|
* | abd_size = ... |
|
|
* | abd_offset = 0 | +-----------+
|
|
* | abd_chunks[0] ----------------------------->| chunk 0 |
|
|
* | abd_chunks[1] ---------------------+ +-----------+
|
|
* | ... | | +-----------+
|
|
* | abd_chunks[N-1] ---------+ +------->| chunk 1 |
|
|
* +-------------------+ | +-----------+
|
|
* | ...
|
|
* | +-----------+
|
|
* +----------------->| chunk N-1 |
|
|
* +-----------+
|
|
*
|
|
* In addition to directly allocating a linear or scattered ABD, it is also
|
|
* possible to create an ABD by requesting the "sub-ABD" starting at an offset
|
|
* within an existing ABD. In linear buffers this is simple (set abd_buf of
|
|
* the new ABD to the starting point within the original raw buffer), but
|
|
* scattered ABDs are a little more complex. The new ABD makes a copy of the
|
|
* relevant abd_chunks pointers (but not the underlying data). However, to
|
|
* provide arbitrary rather than only chunk-aligned starting offsets, it also
|
|
* tracks an abd_offset field which represents the starting point of the data
|
|
* within the first chunk in abd_chunks. For both linear and scattered ABDs,
|
|
* creating an offset ABD marks the original ABD as the offset's parent, and the
|
|
* original ABD's abd_children refcount is incremented. This data allows us to
|
|
* ensure the root ABD isn't deleted before its children.
|
|
*
|
|
* Most consumers should never need to know what type of ABD they're using --
|
|
* the ABD public API ensures that it's possible to transparently switch from
|
|
* using a linear ABD to a scattered one when doing so would be beneficial.
|
|
*
|
|
* If you need to use the data within an ABD directly, if you know it's linear
|
|
* (because you allocated it) you can use abd_to_buf() to access the underlying
|
|
* raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
|
|
* which will allocate a raw buffer if necessary. Use the abd_return_buf*
|
|
* functions to return any raw buffers that are no longer necessary when you're
|
|
* done using them.
|
|
*
|
|
* There are a variety of ABD APIs that implement basic buffer operations:
|
|
* compare, copy, read, write, and fill with zeroes. If you need a custom
|
|
* function which progressively accesses the whole ABD, use the abd_iterate_*
|
|
* functions.
|
|
*
|
|
* As an additional feature, linear and scatter ABD's can be stitched together
|
|
* by using the gang ABD type (abd_alloc_gang_abd()). This allows for
|
|
* multiple ABDs to be viewed as a singular ABD.
|
|
*
|
|
* It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
|
|
* B_FALSE.
|
|
*/
|
|
|
|
#include <sys/abd_impl.h>
|
|
#include <sys/param.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/zfs_znode.h>
|
|
|
|
/* see block comment above for description */
|
|
int zfs_abd_scatter_enabled = B_TRUE;
|
|
|
|
void
|
|
abd_verify(abd_t *abd)
|
|
{
|
|
#ifdef ZFS_DEBUG
|
|
ASSERT3U(abd->abd_size, >, 0);
|
|
ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
|
|
ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
|
|
ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
|
|
ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG |
|
|
ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS | ABD_FLAG_ALLOCD));
|
|
IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
|
|
IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
|
|
if (abd_is_linear(abd)) {
|
|
ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL);
|
|
} else if (abd_is_gang(abd)) {
|
|
uint_t child_sizes = 0;
|
|
for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
|
|
cabd != NULL;
|
|
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
|
|
ASSERT(list_link_active(&cabd->abd_gang_link));
|
|
child_sizes += cabd->abd_size;
|
|
abd_verify(cabd);
|
|
}
|
|
ASSERT3U(abd->abd_size, ==, child_sizes);
|
|
} else {
|
|
abd_verify_scatter(abd);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
abd_init_struct(abd_t *abd)
|
|
{
|
|
list_link_init(&abd->abd_gang_link);
|
|
mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
abd->abd_flags = 0;
|
|
#ifdef ZFS_DEBUG
|
|
zfs_refcount_create(&abd->abd_children);
|
|
abd->abd_parent = NULL;
|
|
#endif
|
|
abd->abd_size = 0;
|
|
}
|
|
|
|
static void
|
|
abd_fini_struct(abd_t *abd)
|
|
{
|
|
mutex_destroy(&abd->abd_mtx);
|
|
ASSERT(!list_link_active(&abd->abd_gang_link));
|
|
#ifdef ZFS_DEBUG
|
|
zfs_refcount_destroy(&abd->abd_children);
|
|
#endif
|
|
}
|
|
|
|
abd_t *
|
|
abd_alloc_struct(size_t size)
|
|
{
|
|
abd_t *abd = abd_alloc_struct_impl(size);
|
|
abd_init_struct(abd);
|
|
abd->abd_flags |= ABD_FLAG_ALLOCD;
|
|
return (abd);
|
|
}
|
|
|
|
void
|
|
abd_free_struct(abd_t *abd)
|
|
{
|
|
abd_fini_struct(abd);
|
|
abd_free_struct_impl(abd);
|
|
}
|
|
|
|
/*
|
|
* Allocate an ABD, along with its own underlying data buffers. Use this if you
|
|
* don't care whether the ABD is linear or not.
|
|
*/
|
|
abd_t *
|
|
abd_alloc(size_t size, boolean_t is_metadata)
|
|
{
|
|
if (!zfs_abd_scatter_enabled || abd_size_alloc_linear(size))
|
|
return (abd_alloc_linear(size, is_metadata));
|
|
|
|
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
|
|
abd_t *abd = abd_alloc_struct(size);
|
|
abd->abd_flags |= ABD_FLAG_OWNER;
|
|
abd->abd_u.abd_scatter.abd_offset = 0;
|
|
abd_alloc_chunks(abd, size);
|
|
|
|
if (is_metadata) {
|
|
abd->abd_flags |= ABD_FLAG_META;
|
|
}
|
|
abd->abd_size = size;
|
|
|
|
abd_update_scatter_stats(abd, ABDSTAT_INCR);
|
|
|
|
return (abd);
|
|
}
|
|
|
|
/*
|
|
* Allocate an ABD that must be linear, along with its own underlying data
|
|
* buffer. Only use this when it would be very annoying to write your ABD
|
|
* consumer with a scattered ABD.
|
|
*/
|
|
abd_t *
|
|
abd_alloc_linear(size_t size, boolean_t is_metadata)
|
|
{
|
|
abd_t *abd = abd_alloc_struct(0);
|
|
|
|
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
|
|
abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
|
|
if (is_metadata) {
|
|
abd->abd_flags |= ABD_FLAG_META;
|
|
}
|
|
abd->abd_size = size;
|
|
|
|
if (is_metadata) {
|
|
ABD_LINEAR_BUF(abd) = zio_buf_alloc(size);
|
|
} else {
|
|
ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size);
|
|
}
|
|
|
|
abd_update_linear_stats(abd, ABDSTAT_INCR);
|
|
|
|
return (abd);
|
|
}
|
|
|
|
static void
|
|
abd_free_linear(abd_t *abd)
|
|
{
|
|
if (abd_is_linear_page(abd)) {
|
|
abd_free_linear_page(abd);
|
|
return;
|
|
}
|
|
if (abd->abd_flags & ABD_FLAG_META) {
|
|
zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
|
|
} else {
|
|
zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
|
|
}
|
|
|
|
abd_update_linear_stats(abd, ABDSTAT_DECR);
|
|
}
|
|
|
|
static void
|
|
abd_free_gang(abd_t *abd)
|
|
{
|
|
ASSERT(abd_is_gang(abd));
|
|
abd_t *cabd;
|
|
|
|
while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) {
|
|
/*
|
|
* We must acquire the child ABDs mutex to ensure that if it
|
|
* is being added to another gang ABD we will set the link
|
|
* as inactive when removing it from this gang ABD and before
|
|
* adding it to the other gang ABD.
|
|
*/
|
|
mutex_enter(&cabd->abd_mtx);
|
|
ASSERT(list_link_active(&cabd->abd_gang_link));
|
|
list_remove(&ABD_GANG(abd).abd_gang_chain, cabd);
|
|
mutex_exit(&cabd->abd_mtx);
|
|
if (cabd->abd_flags & ABD_FLAG_GANG_FREE)
|
|
abd_free(cabd);
|
|
}
|
|
list_destroy(&ABD_GANG(abd).abd_gang_chain);
|
|
}
|
|
|
|
static void
|
|
abd_free_scatter(abd_t *abd)
|
|
{
|
|
abd_free_chunks(abd);
|
|
abd_update_scatter_stats(abd, ABDSTAT_DECR);
|
|
}
|
|
|
|
/*
|
|
* Free an ABD. Use with any kind of abd: those created with abd_alloc_*()
|
|
* and abd_get_*(), including abd_get_offset_struct().
|
|
*
|
|
* If the ABD was created with abd_alloc_*(), the underlying data
|
|
* (scatterlist or linear buffer) will also be freed. (Subject to ownership
|
|
* changes via abd_*_ownership_of_buf().)
|
|
*
|
|
* Unless the ABD was created with abd_get_offset_struct(), the abd_t will
|
|
* also be freed.
|
|
*/
|
|
void
|
|
abd_free(abd_t *abd)
|
|
{
|
|
if (abd == NULL)
|
|
return;
|
|
|
|
abd_verify(abd);
|
|
#ifdef ZFS_DEBUG
|
|
IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL);
|
|
#endif
|
|
|
|
if (abd_is_gang(abd)) {
|
|
abd_free_gang(abd);
|
|
} else if (abd_is_linear(abd)) {
|
|
if (abd->abd_flags & ABD_FLAG_OWNER)
|
|
abd_free_linear(abd);
|
|
} else {
|
|
if (abd->abd_flags & ABD_FLAG_OWNER)
|
|
abd_free_scatter(abd);
|
|
}
|
|
|
|
#ifdef ZFS_DEBUG
|
|
if (abd->abd_parent != NULL) {
|
|
(void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
|
|
abd->abd_size, abd);
|
|
}
|
|
#endif
|
|
|
|
abd_fini_struct(abd);
|
|
if (abd->abd_flags & ABD_FLAG_ALLOCD)
|
|
abd_free_struct_impl(abd);
|
|
}
|
|
|
|
/*
|
|
* Allocate an ABD of the same format (same metadata flag, same scatterize
|
|
* setting) as another ABD.
|
|
*/
|
|
abd_t *
|
|
abd_alloc_sametype(abd_t *sabd, size_t size)
|
|
{
|
|
boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
|
|
if (abd_is_linear(sabd) &&
|
|
!abd_is_linear_page(sabd)) {
|
|
return (abd_alloc_linear(size, is_metadata));
|
|
} else {
|
|
return (abd_alloc(size, is_metadata));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create gang ABD that will be the head of a list of ABD's. This is used
|
|
* to "chain" scatter/gather lists together when constructing aggregated
|
|
* IO's. To free this abd, abd_free() must be called.
|
|
*/
|
|
abd_t *
|
|
abd_alloc_gang(void)
|
|
{
|
|
abd_t *abd = abd_alloc_struct(0);
|
|
abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER;
|
|
list_create(&ABD_GANG(abd).abd_gang_chain,
|
|
sizeof (abd_t), offsetof(abd_t, abd_gang_link));
|
|
return (abd);
|
|
}
|
|
|
|
/*
|
|
* Add a child gang ABD to a parent gang ABDs chained list.
|
|
*/
|
|
static void
|
|
abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
|
|
{
|
|
ASSERT(abd_is_gang(pabd));
|
|
ASSERT(abd_is_gang(cabd));
|
|
|
|
if (free_on_free) {
|
|
/*
|
|
* If the parent is responsible for freeing the child gang
|
|
* ABD we will just splice the child's children ABD list to
|
|
* the parent's list and immediately free the child gang ABD
|
|
* struct. The parent gang ABDs children from the child gang
|
|
* will retain all the free_on_free settings after being
|
|
* added to the parents list.
|
|
*/
|
|
pabd->abd_size += cabd->abd_size;
|
|
list_move_tail(&ABD_GANG(pabd).abd_gang_chain,
|
|
&ABD_GANG(cabd).abd_gang_chain);
|
|
ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
|
|
abd_verify(pabd);
|
|
abd_free(cabd);
|
|
} else {
|
|
for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain);
|
|
child != NULL;
|
|
child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) {
|
|
/*
|
|
* We always pass B_FALSE for free_on_free as it is the
|
|
* original child gang ABDs responsibility to determine
|
|
* if any of its child ABDs should be free'd on the call
|
|
* to abd_free().
|
|
*/
|
|
abd_gang_add(pabd, child, B_FALSE);
|
|
}
|
|
abd_verify(pabd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a child ABD to a gang ABD's chained list.
|
|
*/
|
|
void
|
|
abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
|
|
{
|
|
ASSERT(abd_is_gang(pabd));
|
|
abd_t *child_abd = NULL;
|
|
|
|
/*
|
|
* If the child being added is a gang ABD, we will add the
|
|
* child's ABDs to the parent gang ABD. This allows us to account
|
|
* for the offset correctly in the parent gang ABD.
|
|
*/
|
|
if (abd_is_gang(cabd)) {
|
|
ASSERT(!list_link_active(&cabd->abd_gang_link));
|
|
ASSERT(!list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
|
|
return (abd_gang_add_gang(pabd, cabd, free_on_free));
|
|
}
|
|
ASSERT(!abd_is_gang(cabd));
|
|
|
|
/*
|
|
* In order to verify that an ABD is not already part of
|
|
* another gang ABD, we must lock the child ABD's abd_mtx
|
|
* to check its abd_gang_link status. We unlock the abd_mtx
|
|
* only after it is has been added to a gang ABD, which
|
|
* will update the abd_gang_link's status. See comment below
|
|
* for how an ABD can be in multiple gang ABD's simultaneously.
|
|
*/
|
|
mutex_enter(&cabd->abd_mtx);
|
|
if (list_link_active(&cabd->abd_gang_link)) {
|
|
/*
|
|
* If the child ABD is already part of another
|
|
* gang ABD then we must allocate a new
|
|
* ABD to use a separate link. We mark the newly
|
|
* allocated ABD with ABD_FLAG_GANG_FREE, before
|
|
* adding it to the gang ABD's list, to make the
|
|
* gang ABD aware that it is responsible to call
|
|
* abd_free(). We use abd_get_offset() in order
|
|
* to just allocate a new ABD but avoid copying the
|
|
* data over into the newly allocated ABD.
|
|
*
|
|
* An ABD may become part of multiple gang ABD's. For
|
|
* example, when writing ditto bocks, the same ABD
|
|
* is used to write 2 or 3 locations with 2 or 3
|
|
* zio_t's. Each of the zio's may be aggregated with
|
|
* different adjacent zio's. zio aggregation uses gang
|
|
* zio's, so the single ABD can become part of multiple
|
|
* gang zio's.
|
|
*
|
|
* The ASSERT below is to make sure that if
|
|
* free_on_free is passed as B_TRUE, the ABD can
|
|
* not be in multiple gang ABD's. The gang ABD
|
|
* can not be responsible for cleaning up the child
|
|
* ABD memory allocation if the ABD can be in
|
|
* multiple gang ABD's at one time.
|
|
*/
|
|
ASSERT3B(free_on_free, ==, B_FALSE);
|
|
child_abd = abd_get_offset(cabd, 0);
|
|
child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
|
|
} else {
|
|
child_abd = cabd;
|
|
if (free_on_free)
|
|
child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
|
|
}
|
|
ASSERT3P(child_abd, !=, NULL);
|
|
|
|
list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd);
|
|
mutex_exit(&cabd->abd_mtx);
|
|
pabd->abd_size += child_abd->abd_size;
|
|
}
|
|
|
|
/*
|
|
* Locate the ABD for the supplied offset in the gang ABD.
|
|
* Return a new offset relative to the returned ABD.
|
|
*/
|
|
abd_t *
|
|
abd_gang_get_offset(abd_t *abd, size_t *off)
|
|
{
|
|
abd_t *cabd;
|
|
|
|
ASSERT(abd_is_gang(abd));
|
|
ASSERT3U(*off, <, abd->abd_size);
|
|
for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL;
|
|
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
|
|
if (*off >= cabd->abd_size)
|
|
*off -= cabd->abd_size;
|
|
else
|
|
return (cabd);
|
|
}
|
|
VERIFY3P(cabd, !=, NULL);
|
|
return (cabd);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new ABD, using the provided struct (if non-NULL, and if
|
|
* circumstances allow - otherwise allocate the struct). The returned ABD will
|
|
* point to offset off of sabd. It shares the underlying buffer data with sabd.
|
|
* Use abd_free() to free. sabd must not be freed while any derived ABDs exist.
|
|
*/
|
|
static abd_t *
|
|
abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size)
|
|
{
|
|
abd_verify(sabd);
|
|
ASSERT3U(off + size, <=, sabd->abd_size);
|
|
|
|
if (abd_is_linear(sabd)) {
|
|
if (abd == NULL)
|
|
abd = abd_alloc_struct(0);
|
|
/*
|
|
* Even if this buf is filesystem metadata, we only track that
|
|
* if we own the underlying data buffer, which is not true in
|
|
* this case. Therefore, we don't ever use ABD_FLAG_META here.
|
|
*/
|
|
abd->abd_flags |= ABD_FLAG_LINEAR;
|
|
|
|
ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off;
|
|
} else if (abd_is_gang(sabd)) {
|
|
size_t left = size;
|
|
if (abd == NULL) {
|
|
abd = abd_alloc_gang();
|
|
} else {
|
|
abd->abd_flags |= ABD_FLAG_GANG;
|
|
list_create(&ABD_GANG(abd).abd_gang_chain,
|
|
sizeof (abd_t), offsetof(abd_t, abd_gang_link));
|
|
}
|
|
|
|
abd->abd_flags &= ~ABD_FLAG_OWNER;
|
|
for (abd_t *cabd = abd_gang_get_offset(sabd, &off);
|
|
cabd != NULL && left > 0;
|
|
cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) {
|
|
int csize = MIN(left, cabd->abd_size - off);
|
|
|
|
abd_t *nabd = abd_get_offset_size(cabd, off, csize);
|
|
abd_gang_add(abd, nabd, B_TRUE);
|
|
left -= csize;
|
|
off = 0;
|
|
}
|
|
ASSERT3U(left, ==, 0);
|
|
} else {
|
|
abd = abd_get_offset_scatter(abd, sabd, off, size);
|
|
}
|
|
|
|
ASSERT3P(abd, !=, NULL);
|
|
abd->abd_size = size;
|
|
#ifdef ZFS_DEBUG
|
|
abd->abd_parent = sabd;
|
|
(void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
|
|
#endif
|
|
return (abd);
|
|
}
|
|
|
|
/*
|
|
* Like abd_get_offset_size(), but memory for the abd_t is provided by the
|
|
* caller. Using this routine can improve performance by avoiding the cost
|
|
* of allocating memory for the abd_t struct, and updating the abd stats.
|
|
* Usually, the provided abd is returned, but in some circumstances (FreeBSD,
|
|
* if sabd is scatter and size is more than 2 pages) a new abd_t may need to
|
|
* be allocated. Therefore callers should be careful to use the returned
|
|
* abd_t*.
|
|
*/
|
|
abd_t *
|
|
abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size)
|
|
{
|
|
abd_t *result;
|
|
abd_init_struct(abd);
|
|
result = abd_get_offset_impl(abd, sabd, off, size);
|
|
if (result != abd)
|
|
abd_fini_struct(abd);
|
|
return (result);
|
|
}
|
|
|
|
abd_t *
|
|
abd_get_offset(abd_t *sabd, size_t off)
|
|
{
|
|
size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
|
|
VERIFY3U(size, >, 0);
|
|
return (abd_get_offset_impl(NULL, sabd, off, size));
|
|
}
|
|
|
|
abd_t *
|
|
abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
|
|
{
|
|
ASSERT3U(off + size, <=, sabd->abd_size);
|
|
return (abd_get_offset_impl(NULL, sabd, off, size));
|
|
}
|
|
|
|
/*
|
|
* Return a size scatter ABD containing only zeros.
|
|
*/
|
|
abd_t *
|
|
abd_get_zeros(size_t size)
|
|
{
|
|
ASSERT3P(abd_zero_scatter, !=, NULL);
|
|
ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
return (abd_get_offset_size(abd_zero_scatter, 0, size));
|
|
}
|
|
|
|
/*
|
|
* Allocate a linear ABD structure for buf.
|
|
*/
|
|
abd_t *
|
|
abd_get_from_buf(void *buf, size_t size)
|
|
{
|
|
abd_t *abd = abd_alloc_struct(0);
|
|
|
|
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
|
|
/*
|
|
* Even if this buf is filesystem metadata, we only track that if we
|
|
* own the underlying data buffer, which is not true in this case.
|
|
* Therefore, we don't ever use ABD_FLAG_META here.
|
|
*/
|
|
abd->abd_flags |= ABD_FLAG_LINEAR;
|
|
abd->abd_size = size;
|
|
|
|
ABD_LINEAR_BUF(abd) = buf;
|
|
|
|
return (abd);
|
|
}
|
|
|
|
/*
|
|
* Get the raw buffer associated with a linear ABD.
|
|
*/
|
|
void *
|
|
abd_to_buf(abd_t *abd)
|
|
{
|
|
ASSERT(abd_is_linear(abd));
|
|
abd_verify(abd);
|
|
return (ABD_LINEAR_BUF(abd));
|
|
}
|
|
|
|
/*
|
|
* Borrow a raw buffer from an ABD without copying the contents of the ABD
|
|
* into the buffer. If the ABD is scattered, this will allocate a raw buffer
|
|
* whose contents are undefined. To copy over the existing data in the ABD, use
|
|
* abd_borrow_buf_copy() instead.
|
|
*/
|
|
void *
|
|
abd_borrow_buf(abd_t *abd, size_t n)
|
|
{
|
|
void *buf;
|
|
abd_verify(abd);
|
|
ASSERT3U(abd->abd_size, >=, n);
|
|
if (abd_is_linear(abd)) {
|
|
buf = abd_to_buf(abd);
|
|
} else {
|
|
buf = zio_buf_alloc(n);
|
|
}
|
|
#ifdef ZFS_DEBUG
|
|
(void) zfs_refcount_add_many(&abd->abd_children, n, buf);
|
|
#endif
|
|
return (buf);
|
|
}
|
|
|
|
void *
|
|
abd_borrow_buf_copy(abd_t *abd, size_t n)
|
|
{
|
|
void *buf = abd_borrow_buf(abd, n);
|
|
if (!abd_is_linear(abd)) {
|
|
abd_copy_to_buf(buf, abd, n);
|
|
}
|
|
return (buf);
|
|
}
|
|
|
|
/*
|
|
* Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
|
|
* not change the contents of the ABD and will ASSERT that you didn't modify
|
|
* the buffer since it was borrowed. If you want any changes you made to buf to
|
|
* be copied back to abd, use abd_return_buf_copy() instead.
|
|
*/
|
|
void
|
|
abd_return_buf(abd_t *abd, void *buf, size_t n)
|
|
{
|
|
abd_verify(abd);
|
|
ASSERT3U(abd->abd_size, >=, n);
|
|
if (abd_is_linear(abd)) {
|
|
ASSERT3P(buf, ==, abd_to_buf(abd));
|
|
} else {
|
|
ASSERT0(abd_cmp_buf(abd, buf, n));
|
|
zio_buf_free(buf, n);
|
|
}
|
|
#ifdef ZFS_DEBUG
|
|
(void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
|
|
{
|
|
if (!abd_is_linear(abd)) {
|
|
abd_copy_from_buf(abd, buf, n);
|
|
}
|
|
abd_return_buf(abd, buf, n);
|
|
}
|
|
|
|
void
|
|
abd_release_ownership_of_buf(abd_t *abd)
|
|
{
|
|
ASSERT(abd_is_linear(abd));
|
|
ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
|
|
|
|
/*
|
|
* abd_free() needs to handle LINEAR_PAGE ABD's specially.
|
|
* Since that flag does not survive the
|
|
* abd_release_ownership_of_buf() -> abd_get_from_buf() ->
|
|
* abd_take_ownership_of_buf() sequence, we don't allow releasing
|
|
* these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
|
|
*/
|
|
ASSERT(!abd_is_linear_page(abd));
|
|
|
|
abd_verify(abd);
|
|
|
|
abd->abd_flags &= ~ABD_FLAG_OWNER;
|
|
/* Disable this flag since we no longer own the data buffer */
|
|
abd->abd_flags &= ~ABD_FLAG_META;
|
|
|
|
abd_update_linear_stats(abd, ABDSTAT_DECR);
|
|
}
|
|
|
|
|
|
/*
|
|
* Give this ABD ownership of the buffer that it's storing. Can only be used on
|
|
* linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
|
|
* with abd_alloc_linear() which subsequently released ownership of their buf
|
|
* with abd_release_ownership_of_buf().
|
|
*/
|
|
void
|
|
abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
|
|
{
|
|
ASSERT(abd_is_linear(abd));
|
|
ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
|
|
abd_verify(abd);
|
|
|
|
abd->abd_flags |= ABD_FLAG_OWNER;
|
|
if (is_metadata) {
|
|
abd->abd_flags |= ABD_FLAG_META;
|
|
}
|
|
|
|
abd_update_linear_stats(abd, ABDSTAT_INCR);
|
|
}
|
|
|
|
/*
|
|
* Initializes an abd_iter based on whether the abd is a gang ABD
|
|
* or just a single ABD.
|
|
*/
|
|
static inline abd_t *
|
|
abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off)
|
|
{
|
|
abd_t *cabd = NULL;
|
|
|
|
if (abd_is_gang(abd)) {
|
|
cabd = abd_gang_get_offset(abd, &off);
|
|
if (cabd) {
|
|
abd_iter_init(aiter, cabd);
|
|
abd_iter_advance(aiter, off);
|
|
}
|
|
} else {
|
|
abd_iter_init(aiter, abd);
|
|
abd_iter_advance(aiter, off);
|
|
}
|
|
return (cabd);
|
|
}
|
|
|
|
/*
|
|
* Advances an abd_iter. We have to be careful with gang ABD as
|
|
* advancing could mean that we are at the end of a particular ABD and
|
|
* must grab the ABD in the gang ABD's list.
|
|
*/
|
|
static inline abd_t *
|
|
abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter,
|
|
size_t len)
|
|
{
|
|
abd_iter_advance(aiter, len);
|
|
if (abd_is_gang(abd) && abd_iter_at_end(aiter)) {
|
|
ASSERT3P(cabd, !=, NULL);
|
|
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd);
|
|
if (cabd) {
|
|
abd_iter_init(aiter, cabd);
|
|
abd_iter_advance(aiter, 0);
|
|
}
|
|
}
|
|
return (cabd);
|
|
}
|
|
|
|
int
|
|
abd_iterate_func(abd_t *abd, size_t off, size_t size,
|
|
abd_iter_func_t *func, void *private)
|
|
{
|
|
struct abd_iter aiter;
|
|
int ret = 0;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
abd_verify(abd);
|
|
ASSERT3U(off + size, <=, abd->abd_size);
|
|
|
|
boolean_t gang = abd_is_gang(abd);
|
|
abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
|
|
|
|
while (size > 0) {
|
|
/* If we are at the end of the gang ABD we are done */
|
|
if (gang && !c_abd)
|
|
break;
|
|
|
|
abd_iter_map(&aiter);
|
|
|
|
size_t len = MIN(aiter.iter_mapsize, size);
|
|
ASSERT3U(len, >, 0);
|
|
|
|
ret = func(aiter.iter_mapaddr, len, private);
|
|
|
|
abd_iter_unmap(&aiter);
|
|
|
|
if (ret != 0)
|
|
break;
|
|
|
|
size -= len;
|
|
c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
struct buf_arg {
|
|
void *arg_buf;
|
|
};
|
|
|
|
static int
|
|
abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
|
|
{
|
|
struct buf_arg *ba_ptr = private;
|
|
|
|
(void) memcpy(ba_ptr->arg_buf, buf, size);
|
|
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Copy abd to buf. (off is the offset in abd.)
|
|
*/
|
|
void
|
|
abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
|
|
{
|
|
struct buf_arg ba_ptr = { buf };
|
|
|
|
(void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
|
|
&ba_ptr);
|
|
}
|
|
|
|
static int
|
|
abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
|
|
{
|
|
int ret;
|
|
struct buf_arg *ba_ptr = private;
|
|
|
|
ret = memcmp(buf, ba_ptr->arg_buf, size);
|
|
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Compare the contents of abd to buf. (off is the offset in abd.)
|
|
*/
|
|
int
|
|
abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
|
|
{
|
|
struct buf_arg ba_ptr = { (void *) buf };
|
|
|
|
return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
|
|
}
|
|
|
|
static int
|
|
abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
|
|
{
|
|
struct buf_arg *ba_ptr = private;
|
|
|
|
(void) memcpy(buf, ba_ptr->arg_buf, size);
|
|
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Copy from buf to abd. (off is the offset in abd.)
|
|
*/
|
|
void
|
|
abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
|
|
{
|
|
struct buf_arg ba_ptr = { (void *) buf };
|
|
|
|
(void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
|
|
&ba_ptr);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
abd_zero_off_cb(void *buf, size_t size, void *private)
|
|
{
|
|
(void) memset(buf, 0, size);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Zero out the abd from a particular offset to the end.
|
|
*/
|
|
void
|
|
abd_zero_off(abd_t *abd, size_t off, size_t size)
|
|
{
|
|
(void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
|
|
}
|
|
|
|
/*
|
|
* Iterate over two ABDs and call func incrementally on the two ABDs' data in
|
|
* equal-sized chunks (passed to func as raw buffers). func could be called many
|
|
* times during this iteration.
|
|
*/
|
|
int
|
|
abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
|
|
size_t size, abd_iter_func2_t *func, void *private)
|
|
{
|
|
int ret = 0;
|
|
struct abd_iter daiter, saiter;
|
|
boolean_t dabd_is_gang_abd, sabd_is_gang_abd;
|
|
abd_t *c_dabd, *c_sabd;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
abd_verify(dabd);
|
|
abd_verify(sabd);
|
|
|
|
ASSERT3U(doff + size, <=, dabd->abd_size);
|
|
ASSERT3U(soff + size, <=, sabd->abd_size);
|
|
|
|
dabd_is_gang_abd = abd_is_gang(dabd);
|
|
sabd_is_gang_abd = abd_is_gang(sabd);
|
|
c_dabd = abd_init_abd_iter(dabd, &daiter, doff);
|
|
c_sabd = abd_init_abd_iter(sabd, &saiter, soff);
|
|
|
|
while (size > 0) {
|
|
/* if we are at the end of the gang ABD we are done */
|
|
if ((dabd_is_gang_abd && !c_dabd) ||
|
|
(sabd_is_gang_abd && !c_sabd))
|
|
break;
|
|
|
|
abd_iter_map(&daiter);
|
|
abd_iter_map(&saiter);
|
|
|
|
size_t dlen = MIN(daiter.iter_mapsize, size);
|
|
size_t slen = MIN(saiter.iter_mapsize, size);
|
|
size_t len = MIN(dlen, slen);
|
|
ASSERT(dlen > 0 || slen > 0);
|
|
|
|
ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
|
|
private);
|
|
|
|
abd_iter_unmap(&saiter);
|
|
abd_iter_unmap(&daiter);
|
|
|
|
if (ret != 0)
|
|
break;
|
|
|
|
size -= len;
|
|
c_dabd =
|
|
abd_advance_abd_iter(dabd, c_dabd, &daiter, len);
|
|
c_sabd =
|
|
abd_advance_abd_iter(sabd, c_sabd, &saiter, len);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
|
|
{
|
|
(void) memcpy(dbuf, sbuf, size);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Copy from sabd to dabd starting from soff and doff.
|
|
*/
|
|
void
|
|
abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
|
|
{
|
|
(void) abd_iterate_func2(dabd, sabd, doff, soff, size,
|
|
abd_copy_off_cb, NULL);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
|
|
{
|
|
return (memcmp(bufa, bufb, size));
|
|
}
|
|
|
|
/*
|
|
* Compares the contents of two ABDs.
|
|
*/
|
|
int
|
|
abd_cmp(abd_t *dabd, abd_t *sabd)
|
|
{
|
|
ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
|
|
return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
|
|
abd_cmp_cb, NULL));
|
|
}
|
|
|
|
/*
|
|
* Iterate over code ABDs and a data ABD and call @func_raidz_gen.
|
|
*
|
|
* @cabds parity ABDs, must have equal size
|
|
* @dabd data ABD. Can be NULL (in this case @dsize = 0)
|
|
* @func_raidz_gen should be implemented so that its behaviour
|
|
* is the same when taking linear and when taking scatter
|
|
*/
|
|
void
|
|
abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd,
|
|
ssize_t csize, ssize_t dsize, const unsigned parity,
|
|
void (*func_raidz_gen)(void **, const void *, size_t, size_t))
|
|
{
|
|
int i;
|
|
ssize_t len, dlen;
|
|
struct abd_iter caiters[3];
|
|
struct abd_iter daiter = {0};
|
|
void *caddrs[3];
|
|
unsigned long flags __maybe_unused = 0;
|
|
abd_t *c_cabds[3];
|
|
abd_t *c_dabd = NULL;
|
|
boolean_t cabds_is_gang_abd[3];
|
|
boolean_t dabd_is_gang_abd = B_FALSE;
|
|
|
|
ASSERT3U(parity, <=, 3);
|
|
|
|
for (i = 0; i < parity; i++) {
|
|
cabds_is_gang_abd[i] = abd_is_gang(cabds[i]);
|
|
c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], 0);
|
|
}
|
|
|
|
if (dabd) {
|
|
dabd_is_gang_abd = abd_is_gang(dabd);
|
|
c_dabd = abd_init_abd_iter(dabd, &daiter, 0);
|
|
}
|
|
|
|
ASSERT3S(dsize, >=, 0);
|
|
|
|
abd_enter_critical(flags);
|
|
while (csize > 0) {
|
|
/* if we are at the end of the gang ABD we are done */
|
|
if (dabd_is_gang_abd && !c_dabd)
|
|
break;
|
|
|
|
for (i = 0; i < parity; i++) {
|
|
/*
|
|
* If we are at the end of the gang ABD we are
|
|
* done.
|
|
*/
|
|
if (cabds_is_gang_abd[i] && !c_cabds[i])
|
|
break;
|
|
abd_iter_map(&caiters[i]);
|
|
caddrs[i] = caiters[i].iter_mapaddr;
|
|
}
|
|
|
|
len = csize;
|
|
|
|
if (dabd && dsize > 0)
|
|
abd_iter_map(&daiter);
|
|
|
|
switch (parity) {
|
|
case 3:
|
|
len = MIN(caiters[2].iter_mapsize, len);
|
|
/* falls through */
|
|
case 2:
|
|
len = MIN(caiters[1].iter_mapsize, len);
|
|
/* falls through */
|
|
case 1:
|
|
len = MIN(caiters[0].iter_mapsize, len);
|
|
}
|
|
|
|
/* must be progressive */
|
|
ASSERT3S(len, >, 0);
|
|
|
|
if (dabd && dsize > 0) {
|
|
/* this needs precise iter.length */
|
|
len = MIN(daiter.iter_mapsize, len);
|
|
dlen = len;
|
|
} else
|
|
dlen = 0;
|
|
|
|
/* must be progressive */
|
|
ASSERT3S(len, >, 0);
|
|
/*
|
|
* The iterated function likely will not do well if each
|
|
* segment except the last one is not multiple of 512 (raidz).
|
|
*/
|
|
ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
|
|
|
|
func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen);
|
|
|
|
for (i = parity-1; i >= 0; i--) {
|
|
abd_iter_unmap(&caiters[i]);
|
|
c_cabds[i] =
|
|
abd_advance_abd_iter(cabds[i], c_cabds[i],
|
|
&caiters[i], len);
|
|
}
|
|
|
|
if (dabd && dsize > 0) {
|
|
abd_iter_unmap(&daiter);
|
|
c_dabd =
|
|
abd_advance_abd_iter(dabd, c_dabd, &daiter,
|
|
dlen);
|
|
dsize -= dlen;
|
|
}
|
|
|
|
csize -= len;
|
|
|
|
ASSERT3S(dsize, >=, 0);
|
|
ASSERT3S(csize, >=, 0);
|
|
}
|
|
abd_exit_critical(flags);
|
|
}
|
|
|
|
/*
|
|
* Iterate over code ABDs and data reconstruction target ABDs and call
|
|
* @func_raidz_rec. Function maps at most 6 pages atomically.
|
|
*
|
|
* @cabds parity ABDs, must have equal size
|
|
* @tabds rec target ABDs, at most 3
|
|
* @tsize size of data target columns
|
|
* @func_raidz_rec expects syndrome data in target columns. Function
|
|
* reconstructs data and overwrites target columns.
|
|
*/
|
|
void
|
|
abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
|
|
ssize_t tsize, const unsigned parity,
|
|
void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
|
|
const unsigned *mul),
|
|
const unsigned *mul)
|
|
{
|
|
int i;
|
|
ssize_t len;
|
|
struct abd_iter citers[3];
|
|
struct abd_iter xiters[3];
|
|
void *caddrs[3], *xaddrs[3];
|
|
unsigned long flags __maybe_unused = 0;
|
|
boolean_t cabds_is_gang_abd[3];
|
|
boolean_t tabds_is_gang_abd[3];
|
|
abd_t *c_cabds[3];
|
|
abd_t *c_tabds[3];
|
|
|
|
ASSERT3U(parity, <=, 3);
|
|
|
|
for (i = 0; i < parity; i++) {
|
|
cabds_is_gang_abd[i] = abd_is_gang(cabds[i]);
|
|
tabds_is_gang_abd[i] = abd_is_gang(tabds[i]);
|
|
c_cabds[i] =
|
|
abd_init_abd_iter(cabds[i], &citers[i], 0);
|
|
c_tabds[i] =
|
|
abd_init_abd_iter(tabds[i], &xiters[i], 0);
|
|
}
|
|
|
|
abd_enter_critical(flags);
|
|
while (tsize > 0) {
|
|
|
|
for (i = 0; i < parity; i++) {
|
|
/*
|
|
* If we are at the end of the gang ABD we
|
|
* are done.
|
|
*/
|
|
if (cabds_is_gang_abd[i] && !c_cabds[i])
|
|
break;
|
|
if (tabds_is_gang_abd[i] && !c_tabds[i])
|
|
break;
|
|
abd_iter_map(&citers[i]);
|
|
abd_iter_map(&xiters[i]);
|
|
caddrs[i] = citers[i].iter_mapaddr;
|
|
xaddrs[i] = xiters[i].iter_mapaddr;
|
|
}
|
|
|
|
len = tsize;
|
|
switch (parity) {
|
|
case 3:
|
|
len = MIN(xiters[2].iter_mapsize, len);
|
|
len = MIN(citers[2].iter_mapsize, len);
|
|
/* falls through */
|
|
case 2:
|
|
len = MIN(xiters[1].iter_mapsize, len);
|
|
len = MIN(citers[1].iter_mapsize, len);
|
|
/* falls through */
|
|
case 1:
|
|
len = MIN(xiters[0].iter_mapsize, len);
|
|
len = MIN(citers[0].iter_mapsize, len);
|
|
}
|
|
/* must be progressive */
|
|
ASSERT3S(len, >, 0);
|
|
/*
|
|
* The iterated function likely will not do well if each
|
|
* segment except the last one is not multiple of 512 (raidz).
|
|
*/
|
|
ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
|
|
|
|
func_raidz_rec(xaddrs, len, caddrs, mul);
|
|
|
|
for (i = parity-1; i >= 0; i--) {
|
|
abd_iter_unmap(&xiters[i]);
|
|
abd_iter_unmap(&citers[i]);
|
|
c_tabds[i] =
|
|
abd_advance_abd_iter(tabds[i], c_tabds[i],
|
|
&xiters[i], len);
|
|
c_cabds[i] =
|
|
abd_advance_abd_iter(cabds[i], c_cabds[i],
|
|
&citers[i], len);
|
|
}
|
|
|
|
tsize -= len;
|
|
ASSERT3S(tsize, >=, 0);
|
|
}
|
|
abd_exit_critical(flags);
|
|
}
|