mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-27 03:19:35 +03:00
e6cfd633be
3749 zfs event processing should work on R/O root filesystems Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Eric Schrock <eric.schrock@delphix.com> Approved by: Christopher Siden <christopher.siden@delphix.com> References: https://www.illumos.org/issues/3749 https://github.com/illumos/illumos-gate/commit/3cb69f7 Porting notes: - [include/sys/spa_impl.h] -ffe9d38
Add generic errata infrastructure -1421c89
Add visibility in to arc_read - [include/sys/fm/fs/zfs.h] -2668527
Add linux events -6283f55
Support custom build directories and move includes - [module/zfs/spa_config.c] - Updated spa_config_sync() to match illumos with the exception of a Linux specific block. Ported-by: kernelOfTruth kerneloftruth@gmail.com Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
6840 lines
180 KiB
C
6840 lines
180 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2013 by Delphix. All rights reserved.
|
|
* Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* SPA: Storage Pool Allocator
|
|
*
|
|
* This file contains all the routines used when modifying on-disk SPA state.
|
|
* This includes opening, importing, destroying, exporting a pool, and syncing a
|
|
* pool.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fm/fs/zfs.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/unique.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/callb.h>
|
|
#include <sys/systeminfo.h>
|
|
#include <sys/spa_boot.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/dsl_destroy.h>
|
|
#include <sys/zvol.h>
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/bootprops.h>
|
|
#include <sys/callb.h>
|
|
#include <sys/cpupart.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/sysdc.h>
|
|
#include <sys/zone.h>
|
|
#endif /* _KERNEL */
|
|
|
|
#include "zfs_prop.h"
|
|
#include "zfs_comutil.h"
|
|
|
|
/*
|
|
* The interval, in seconds, at which failed configuration cache file writes
|
|
* should be retried.
|
|
*/
|
|
static int zfs_ccw_retry_interval = 300;
|
|
|
|
typedef enum zti_modes {
|
|
ZTI_MODE_FIXED, /* value is # of threads (min 1) */
|
|
ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
|
|
ZTI_MODE_NULL, /* don't create a taskq */
|
|
ZTI_NMODES
|
|
} zti_modes_t;
|
|
|
|
#define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
|
|
#define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
|
|
#define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
|
|
#define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
|
|
|
|
#define ZTI_N(n) ZTI_P(n, 1)
|
|
#define ZTI_ONE ZTI_N(1)
|
|
|
|
typedef struct zio_taskq_info {
|
|
zti_modes_t zti_mode;
|
|
uint_t zti_value;
|
|
uint_t zti_count;
|
|
} zio_taskq_info_t;
|
|
|
|
static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
|
|
"iss", "iss_h", "int", "int_h"
|
|
};
|
|
|
|
/*
|
|
* This table defines the taskq settings for each ZFS I/O type. When
|
|
* initializing a pool, we use this table to create an appropriately sized
|
|
* taskq. Some operations are low volume and therefore have a small, static
|
|
* number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
|
|
* macros. Other operations process a large amount of data; the ZTI_BATCH
|
|
* macro causes us to create a taskq oriented for throughput. Some operations
|
|
* are so high frequency and short-lived that the taskq itself can become a a
|
|
* point of lock contention. The ZTI_P(#, #) macro indicates that we need an
|
|
* additional degree of parallelism specified by the number of threads per-
|
|
* taskq and the number of taskqs; when dispatching an event in this case, the
|
|
* particular taskq is chosen at random.
|
|
*
|
|
* The different taskq priorities are to handle the different contexts (issue
|
|
* and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
|
|
* need to be handled with minimum delay.
|
|
*/
|
|
const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
|
|
/* ISSUE ISSUE_HIGH INTR INTR_HIGH */
|
|
{ ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
|
|
{ ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
|
|
{ ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
|
|
{ ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
|
|
{ ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
|
|
{ ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
|
|
};
|
|
|
|
static void spa_sync_version(void *arg, dmu_tx_t *tx);
|
|
static void spa_sync_props(void *arg, dmu_tx_t *tx);
|
|
static boolean_t spa_has_active_shared_spare(spa_t *spa);
|
|
static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
|
|
spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
|
|
char **ereport);
|
|
static void spa_vdev_resilver_done(spa_t *spa);
|
|
|
|
uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
|
|
id_t zio_taskq_psrset_bind = PS_NONE;
|
|
boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
|
|
uint_t zio_taskq_basedc = 80; /* base duty cycle */
|
|
|
|
boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
|
|
|
|
/*
|
|
* This (illegal) pool name is used when temporarily importing a spa_t in order
|
|
* to get the vdev stats associated with the imported devices.
|
|
*/
|
|
#define TRYIMPORT_NAME "$import"
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA properties routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Add a (source=src, propname=propval) list to an nvlist.
|
|
*/
|
|
static void
|
|
spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
|
|
uint64_t intval, zprop_source_t src)
|
|
{
|
|
const char *propname = zpool_prop_to_name(prop);
|
|
nvlist_t *propval;
|
|
|
|
VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
|
|
|
|
if (strval != NULL)
|
|
VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
|
|
else
|
|
VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
|
|
|
|
VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
|
|
nvlist_free(propval);
|
|
}
|
|
|
|
/*
|
|
* Get property values from the spa configuration.
|
|
*/
|
|
static void
|
|
spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
dsl_pool_t *pool = spa->spa_dsl_pool;
|
|
uint64_t size, alloc, cap, version;
|
|
zprop_source_t src = ZPROP_SRC_NONE;
|
|
spa_config_dirent_t *dp;
|
|
metaslab_class_t *mc = spa_normal_class(spa);
|
|
|
|
ASSERT(MUTEX_HELD(&spa->spa_props_lock));
|
|
|
|
if (rvd != NULL) {
|
|
alloc = metaslab_class_get_alloc(spa_normal_class(spa));
|
|
size = metaslab_class_get_space(spa_normal_class(spa));
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
|
|
size - alloc, src);
|
|
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
|
|
metaslab_class_fragmentation(mc), src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
|
|
metaslab_class_expandable_space(mc), src);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
|
|
(spa_mode(spa) == FREAD), src);
|
|
|
|
cap = (size == 0) ? 0 : (alloc * 100 / size);
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
|
|
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
|
|
ddt_get_pool_dedup_ratio(spa), src);
|
|
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
|
|
rvd->vdev_state, src);
|
|
|
|
version = spa_version(spa);
|
|
if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
|
|
src = ZPROP_SRC_DEFAULT;
|
|
else
|
|
src = ZPROP_SRC_LOCAL;
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
|
|
}
|
|
|
|
if (pool != NULL) {
|
|
/*
|
|
* The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
|
|
* when opening pools before this version freedir will be NULL.
|
|
*/
|
|
if (pool->dp_free_dir != NULL) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
|
|
dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
|
|
src);
|
|
} else {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
|
|
NULL, 0, src);
|
|
}
|
|
|
|
if (pool->dp_leak_dir != NULL) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
|
|
dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
|
|
src);
|
|
} else {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
|
|
NULL, 0, src);
|
|
}
|
|
}
|
|
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
|
|
|
|
if (spa->spa_comment != NULL) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
|
|
0, ZPROP_SRC_LOCAL);
|
|
}
|
|
|
|
if (spa->spa_root != NULL)
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
|
|
0, ZPROP_SRC_LOCAL);
|
|
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
|
|
MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
|
|
} else {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
|
|
SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
|
|
}
|
|
|
|
if ((dp = list_head(&spa->spa_config_list)) != NULL) {
|
|
if (dp->scd_path == NULL) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
|
|
"none", 0, ZPROP_SRC_LOCAL);
|
|
} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
|
|
spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
|
|
dp->scd_path, 0, ZPROP_SRC_LOCAL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get zpool property values.
|
|
*/
|
|
int
|
|
spa_prop_get(spa_t *spa, nvlist_t **nvp)
|
|
{
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
int err;
|
|
|
|
err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
|
|
if (err)
|
|
return (err);
|
|
|
|
mutex_enter(&spa->spa_props_lock);
|
|
|
|
/*
|
|
* Get properties from the spa config.
|
|
*/
|
|
spa_prop_get_config(spa, nvp);
|
|
|
|
/* If no pool property object, no more prop to get. */
|
|
if (mos == NULL || spa->spa_pool_props_object == 0) {
|
|
mutex_exit(&spa->spa_props_lock);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Get properties from the MOS pool property object.
|
|
*/
|
|
for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
|
|
(err = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
uint64_t intval = 0;
|
|
char *strval = NULL;
|
|
zprop_source_t src = ZPROP_SRC_DEFAULT;
|
|
zpool_prop_t prop;
|
|
|
|
if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
|
|
continue;
|
|
|
|
switch (za.za_integer_length) {
|
|
case 8:
|
|
/* integer property */
|
|
if (za.za_first_integer !=
|
|
zpool_prop_default_numeric(prop))
|
|
src = ZPROP_SRC_LOCAL;
|
|
|
|
if (prop == ZPOOL_PROP_BOOTFS) {
|
|
dsl_pool_t *dp;
|
|
dsl_dataset_t *ds = NULL;
|
|
|
|
dp = spa_get_dsl(spa);
|
|
dsl_pool_config_enter(dp, FTAG);
|
|
if ((err = dsl_dataset_hold_obj(dp,
|
|
za.za_first_integer, FTAG, &ds))) {
|
|
dsl_pool_config_exit(dp, FTAG);
|
|
break;
|
|
}
|
|
|
|
strval = kmem_alloc(
|
|
MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
|
|
KM_SLEEP);
|
|
dsl_dataset_name(ds, strval);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
dsl_pool_config_exit(dp, FTAG);
|
|
} else {
|
|
strval = NULL;
|
|
intval = za.za_first_integer;
|
|
}
|
|
|
|
spa_prop_add_list(*nvp, prop, strval, intval, src);
|
|
|
|
if (strval != NULL)
|
|
kmem_free(strval,
|
|
MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
|
|
|
|
break;
|
|
|
|
case 1:
|
|
/* string property */
|
|
strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
|
|
err = zap_lookup(mos, spa->spa_pool_props_object,
|
|
za.za_name, 1, za.za_num_integers, strval);
|
|
if (err) {
|
|
kmem_free(strval, za.za_num_integers);
|
|
break;
|
|
}
|
|
spa_prop_add_list(*nvp, prop, strval, 0, src);
|
|
kmem_free(strval, za.za_num_integers);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
mutex_exit(&spa->spa_props_lock);
|
|
out:
|
|
if (err && err != ENOENT) {
|
|
nvlist_free(*nvp);
|
|
*nvp = NULL;
|
|
return (err);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Validate the given pool properties nvlist and modify the list
|
|
* for the property values to be set.
|
|
*/
|
|
static int
|
|
spa_prop_validate(spa_t *spa, nvlist_t *props)
|
|
{
|
|
nvpair_t *elem;
|
|
int error = 0, reset_bootfs = 0;
|
|
uint64_t objnum = 0;
|
|
boolean_t has_feature = B_FALSE;
|
|
|
|
elem = NULL;
|
|
while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
|
|
uint64_t intval;
|
|
char *strval, *slash, *check, *fname;
|
|
const char *propname = nvpair_name(elem);
|
|
zpool_prop_t prop = zpool_name_to_prop(propname);
|
|
|
|
switch ((int)prop) {
|
|
case ZPROP_INVAL:
|
|
if (!zpool_prop_feature(propname)) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Sanitize the input.
|
|
*/
|
|
if (nvpair_type(elem) != DATA_TYPE_UINT64) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
if (nvpair_value_uint64(elem, &intval) != 0) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
if (intval != 0) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
fname = strchr(propname, '@') + 1;
|
|
if (zfeature_lookup_name(fname, NULL) != 0) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
has_feature = B_TRUE;
|
|
break;
|
|
|
|
case ZPOOL_PROP_VERSION:
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (!error &&
|
|
(intval < spa_version(spa) ||
|
|
intval > SPA_VERSION_BEFORE_FEATURES ||
|
|
has_feature))
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
|
|
case ZPOOL_PROP_DELEGATION:
|
|
case ZPOOL_PROP_AUTOREPLACE:
|
|
case ZPOOL_PROP_LISTSNAPS:
|
|
case ZPOOL_PROP_AUTOEXPAND:
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (!error && intval > 1)
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
|
|
case ZPOOL_PROP_BOOTFS:
|
|
/*
|
|
* If the pool version is less than SPA_VERSION_BOOTFS,
|
|
* or the pool is still being created (version == 0),
|
|
* the bootfs property cannot be set.
|
|
*/
|
|
if (spa_version(spa) < SPA_VERSION_BOOTFS) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure the vdev config is bootable
|
|
*/
|
|
if (!vdev_is_bootable(spa->spa_root_vdev)) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
break;
|
|
}
|
|
|
|
reset_bootfs = 1;
|
|
|
|
error = nvpair_value_string(elem, &strval);
|
|
|
|
if (!error) {
|
|
objset_t *os;
|
|
uint64_t propval;
|
|
|
|
if (strval == NULL || strval[0] == '\0') {
|
|
objnum = zpool_prop_default_numeric(
|
|
ZPOOL_PROP_BOOTFS);
|
|
break;
|
|
}
|
|
|
|
error = dmu_objset_hold(strval, FTAG, &os);
|
|
if (error)
|
|
break;
|
|
|
|
/*
|
|
* Must be ZPL, and its property settings
|
|
* must be supported by GRUB (compression
|
|
* is not gzip, and large blocks are not used).
|
|
*/
|
|
|
|
if (dmu_objset_type(os) != DMU_OST_ZFS) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
} else if ((error =
|
|
dsl_prop_get_int_ds(dmu_objset_ds(os),
|
|
zfs_prop_to_name(ZFS_PROP_COMPRESSION),
|
|
&propval)) == 0 &&
|
|
!BOOTFS_COMPRESS_VALID(propval)) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
} else if ((error =
|
|
dsl_prop_get_int_ds(dmu_objset_ds(os),
|
|
zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
|
|
&propval)) == 0 &&
|
|
propval > SPA_OLD_MAXBLOCKSIZE) {
|
|
error = SET_ERROR(ENOTSUP);
|
|
} else {
|
|
objnum = dmu_objset_id(os);
|
|
}
|
|
dmu_objset_rele(os, FTAG);
|
|
}
|
|
break;
|
|
|
|
case ZPOOL_PROP_FAILUREMODE:
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
|
|
intval > ZIO_FAILURE_MODE_PANIC))
|
|
error = SET_ERROR(EINVAL);
|
|
|
|
/*
|
|
* This is a special case which only occurs when
|
|
* the pool has completely failed. This allows
|
|
* the user to change the in-core failmode property
|
|
* without syncing it out to disk (I/Os might
|
|
* currently be blocked). We do this by returning
|
|
* EIO to the caller (spa_prop_set) to trick it
|
|
* into thinking we encountered a property validation
|
|
* error.
|
|
*/
|
|
if (!error && spa_suspended(spa)) {
|
|
spa->spa_failmode = intval;
|
|
error = SET_ERROR(EIO);
|
|
}
|
|
break;
|
|
|
|
case ZPOOL_PROP_CACHEFILE:
|
|
if ((error = nvpair_value_string(elem, &strval)) != 0)
|
|
break;
|
|
|
|
if (strval[0] == '\0')
|
|
break;
|
|
|
|
if (strcmp(strval, "none") == 0)
|
|
break;
|
|
|
|
if (strval[0] != '/') {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
slash = strrchr(strval, '/');
|
|
ASSERT(slash != NULL);
|
|
|
|
if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
|
|
strcmp(slash, "/..") == 0)
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
|
|
case ZPOOL_PROP_COMMENT:
|
|
if ((error = nvpair_value_string(elem, &strval)) != 0)
|
|
break;
|
|
for (check = strval; *check != '\0'; check++) {
|
|
if (!isprint(*check)) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
check++;
|
|
}
|
|
if (strlen(strval) > ZPROP_MAX_COMMENT)
|
|
error = SET_ERROR(E2BIG);
|
|
break;
|
|
|
|
case ZPOOL_PROP_DEDUPDITTO:
|
|
if (spa_version(spa) < SPA_VERSION_DEDUP)
|
|
error = SET_ERROR(ENOTSUP);
|
|
else
|
|
error = nvpair_value_uint64(elem, &intval);
|
|
if (error == 0 &&
|
|
intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
if (!error && reset_bootfs) {
|
|
error = nvlist_remove(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
|
|
|
|
if (!error) {
|
|
error = nvlist_add_uint64(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
|
|
}
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
|
|
{
|
|
char *cachefile;
|
|
spa_config_dirent_t *dp;
|
|
|
|
if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
|
|
&cachefile) != 0)
|
|
return;
|
|
|
|
dp = kmem_alloc(sizeof (spa_config_dirent_t),
|
|
KM_SLEEP);
|
|
|
|
if (cachefile[0] == '\0')
|
|
dp->scd_path = spa_strdup(spa_config_path);
|
|
else if (strcmp(cachefile, "none") == 0)
|
|
dp->scd_path = NULL;
|
|
else
|
|
dp->scd_path = spa_strdup(cachefile);
|
|
|
|
list_insert_head(&spa->spa_config_list, dp);
|
|
if (need_sync)
|
|
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
|
|
}
|
|
|
|
int
|
|
spa_prop_set(spa_t *spa, nvlist_t *nvp)
|
|
{
|
|
int error;
|
|
nvpair_t *elem = NULL;
|
|
boolean_t need_sync = B_FALSE;
|
|
|
|
if ((error = spa_prop_validate(spa, nvp)) != 0)
|
|
return (error);
|
|
|
|
while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
|
|
zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
|
|
|
|
if (prop == ZPOOL_PROP_CACHEFILE ||
|
|
prop == ZPOOL_PROP_ALTROOT ||
|
|
prop == ZPOOL_PROP_READONLY)
|
|
continue;
|
|
|
|
if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
|
|
uint64_t ver;
|
|
|
|
if (prop == ZPOOL_PROP_VERSION) {
|
|
VERIFY(nvpair_value_uint64(elem, &ver) == 0);
|
|
} else {
|
|
ASSERT(zpool_prop_feature(nvpair_name(elem)));
|
|
ver = SPA_VERSION_FEATURES;
|
|
need_sync = B_TRUE;
|
|
}
|
|
|
|
/* Save time if the version is already set. */
|
|
if (ver == spa_version(spa))
|
|
continue;
|
|
|
|
/*
|
|
* In addition to the pool directory object, we might
|
|
* create the pool properties object, the features for
|
|
* read object, the features for write object, or the
|
|
* feature descriptions object.
|
|
*/
|
|
error = dsl_sync_task(spa->spa_name, NULL,
|
|
spa_sync_version, &ver,
|
|
6, ZFS_SPACE_CHECK_RESERVED);
|
|
if (error)
|
|
return (error);
|
|
continue;
|
|
}
|
|
|
|
need_sync = B_TRUE;
|
|
break;
|
|
}
|
|
|
|
if (need_sync) {
|
|
return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
|
|
nvp, 6, ZFS_SPACE_CHECK_RESERVED));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the bootfs property value is dsobj, clear it.
|
|
*/
|
|
void
|
|
spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
|
|
{
|
|
if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
|
|
VERIFY(zap_remove(spa->spa_meta_objset,
|
|
spa->spa_pool_props_object,
|
|
zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
|
|
spa->spa_bootfs = 0;
|
|
}
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
spa_change_guid_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
uint64_t vdev_state;
|
|
ASSERTV(uint64_t *newguid = arg);
|
|
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
vdev_state = rvd->vdev_state;
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
if (vdev_state != VDEV_STATE_HEALTHY)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
ASSERT3U(spa_guid(spa), !=, *newguid);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
spa_change_guid_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
uint64_t *newguid = arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
uint64_t oldguid;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
oldguid = spa_guid(spa);
|
|
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
rvd->vdev_guid = *newguid;
|
|
rvd->vdev_guid_sum += (*newguid - oldguid);
|
|
vdev_config_dirty(rvd);
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
|
|
oldguid, *newguid);
|
|
}
|
|
|
|
/*
|
|
* Change the GUID for the pool. This is done so that we can later
|
|
* re-import a pool built from a clone of our own vdevs. We will modify
|
|
* the root vdev's guid, our own pool guid, and then mark all of our
|
|
* vdevs dirty. Note that we must make sure that all our vdevs are
|
|
* online when we do this, or else any vdevs that weren't present
|
|
* would be orphaned from our pool. We are also going to issue a
|
|
* sysevent to update any watchers.
|
|
*/
|
|
int
|
|
spa_change_guid(spa_t *spa)
|
|
{
|
|
int error;
|
|
uint64_t guid;
|
|
|
|
mutex_enter(&spa->spa_vdev_top_lock);
|
|
mutex_enter(&spa_namespace_lock);
|
|
guid = spa_generate_guid(NULL);
|
|
|
|
error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
|
|
spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
|
|
|
|
if (error == 0) {
|
|
spa_config_sync(spa, B_FALSE, B_TRUE);
|
|
spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_REGUID);
|
|
}
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
mutex_exit(&spa->spa_vdev_top_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA state manipulation (open/create/destroy/import/export)
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static int
|
|
spa_error_entry_compare(const void *a, const void *b)
|
|
{
|
|
spa_error_entry_t *sa = (spa_error_entry_t *)a;
|
|
spa_error_entry_t *sb = (spa_error_entry_t *)b;
|
|
int ret;
|
|
|
|
ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
|
|
sizeof (zbookmark_phys_t));
|
|
|
|
if (ret < 0)
|
|
return (-1);
|
|
else if (ret > 0)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Utility function which retrieves copies of the current logs and
|
|
* re-initializes them in the process.
|
|
*/
|
|
void
|
|
spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
|
|
|
|
bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
|
|
bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
|
|
|
|
avl_create(&spa->spa_errlist_scrub,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
avl_create(&spa->spa_errlist_last,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
}
|
|
|
|
static void
|
|
spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
|
|
{
|
|
const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
|
|
enum zti_modes mode = ztip->zti_mode;
|
|
uint_t value = ztip->zti_value;
|
|
uint_t count = ztip->zti_count;
|
|
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
|
|
char name[32];
|
|
uint_t i, flags = TASKQ_DYNAMIC;
|
|
boolean_t batch = B_FALSE;
|
|
|
|
if (mode == ZTI_MODE_NULL) {
|
|
tqs->stqs_count = 0;
|
|
tqs->stqs_taskq = NULL;
|
|
return;
|
|
}
|
|
|
|
ASSERT3U(count, >, 0);
|
|
|
|
tqs->stqs_count = count;
|
|
tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
|
|
|
|
switch (mode) {
|
|
case ZTI_MODE_FIXED:
|
|
ASSERT3U(value, >=, 1);
|
|
value = MAX(value, 1);
|
|
break;
|
|
|
|
case ZTI_MODE_BATCH:
|
|
batch = B_TRUE;
|
|
flags |= TASKQ_THREADS_CPU_PCT;
|
|
value = MIN(zio_taskq_batch_pct, 100);
|
|
break;
|
|
|
|
default:
|
|
panic("unrecognized mode for %s_%s taskq (%u:%u) in "
|
|
"spa_activate()",
|
|
zio_type_name[t], zio_taskq_types[q], mode, value);
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
taskq_t *tq;
|
|
|
|
if (count > 1) {
|
|
(void) snprintf(name, sizeof (name), "%s_%s_%u",
|
|
zio_type_name[t], zio_taskq_types[q], i);
|
|
} else {
|
|
(void) snprintf(name, sizeof (name), "%s_%s",
|
|
zio_type_name[t], zio_taskq_types[q]);
|
|
}
|
|
|
|
if (zio_taskq_sysdc && spa->spa_proc != &p0) {
|
|
if (batch)
|
|
flags |= TASKQ_DC_BATCH;
|
|
|
|
tq = taskq_create_sysdc(name, value, 50, INT_MAX,
|
|
spa->spa_proc, zio_taskq_basedc, flags);
|
|
} else {
|
|
pri_t pri = maxclsyspri;
|
|
/*
|
|
* The write issue taskq can be extremely CPU
|
|
* intensive. Run it at slightly less important
|
|
* priority than the other taskqs. Under Linux this
|
|
* means incrementing the priority value on platforms
|
|
* like illumos it should be decremented.
|
|
*/
|
|
if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
|
|
pri++;
|
|
|
|
tq = taskq_create_proc(name, value, pri, 50,
|
|
INT_MAX, spa->spa_proc, flags);
|
|
}
|
|
|
|
tqs->stqs_taskq[i] = tq;
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
|
|
{
|
|
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
|
|
uint_t i;
|
|
|
|
if (tqs->stqs_taskq == NULL) {
|
|
ASSERT3U(tqs->stqs_count, ==, 0);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < tqs->stqs_count; i++) {
|
|
ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
|
|
taskq_destroy(tqs->stqs_taskq[i]);
|
|
}
|
|
|
|
kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
|
|
tqs->stqs_taskq = NULL;
|
|
}
|
|
|
|
/*
|
|
* Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
|
|
* Note that a type may have multiple discrete taskqs to avoid lock contention
|
|
* on the taskq itself. In that case we choose which taskq at random by using
|
|
* the low bits of gethrtime().
|
|
*/
|
|
void
|
|
spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
|
|
task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
|
|
{
|
|
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
|
|
taskq_t *tq;
|
|
|
|
ASSERT3P(tqs->stqs_taskq, !=, NULL);
|
|
ASSERT3U(tqs->stqs_count, !=, 0);
|
|
|
|
if (tqs->stqs_count == 1) {
|
|
tq = tqs->stqs_taskq[0];
|
|
} else {
|
|
tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
|
|
}
|
|
|
|
taskq_dispatch_ent(tq, func, arg, flags, ent);
|
|
}
|
|
|
|
/*
|
|
* Same as spa_taskq_dispatch_ent() but block on the task until completion.
|
|
*/
|
|
void
|
|
spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
|
|
task_func_t *func, void *arg, uint_t flags)
|
|
{
|
|
spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
|
|
taskq_t *tq;
|
|
taskqid_t id;
|
|
|
|
ASSERT3P(tqs->stqs_taskq, !=, NULL);
|
|
ASSERT3U(tqs->stqs_count, !=, 0);
|
|
|
|
if (tqs->stqs_count == 1) {
|
|
tq = tqs->stqs_taskq[0];
|
|
} else {
|
|
tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
|
|
}
|
|
|
|
id = taskq_dispatch(tq, func, arg, flags);
|
|
if (id)
|
|
taskq_wait_id(tq, id);
|
|
}
|
|
|
|
static void
|
|
spa_create_zio_taskqs(spa_t *spa)
|
|
{
|
|
int t, q;
|
|
|
|
for (t = 0; t < ZIO_TYPES; t++) {
|
|
for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
|
|
spa_taskqs_init(spa, t, q);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
|
|
static void
|
|
spa_thread(void *arg)
|
|
{
|
|
callb_cpr_t cprinfo;
|
|
|
|
spa_t *spa = arg;
|
|
user_t *pu = PTOU(curproc);
|
|
|
|
CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
|
|
spa->spa_name);
|
|
|
|
ASSERT(curproc != &p0);
|
|
(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
|
|
"zpool-%s", spa->spa_name);
|
|
(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
|
|
|
|
/* bind this thread to the requested psrset */
|
|
if (zio_taskq_psrset_bind != PS_NONE) {
|
|
pool_lock();
|
|
mutex_enter(&cpu_lock);
|
|
mutex_enter(&pidlock);
|
|
mutex_enter(&curproc->p_lock);
|
|
|
|
if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
|
|
0, NULL, NULL) == 0) {
|
|
curthread->t_bind_pset = zio_taskq_psrset_bind;
|
|
} else {
|
|
cmn_err(CE_WARN,
|
|
"Couldn't bind process for zfs pool \"%s\" to "
|
|
"pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
|
|
}
|
|
|
|
mutex_exit(&curproc->p_lock);
|
|
mutex_exit(&pidlock);
|
|
mutex_exit(&cpu_lock);
|
|
pool_unlock();
|
|
}
|
|
|
|
if (zio_taskq_sysdc) {
|
|
sysdc_thread_enter(curthread, 100, 0);
|
|
}
|
|
|
|
spa->spa_proc = curproc;
|
|
spa->spa_did = curthread->t_did;
|
|
|
|
spa_create_zio_taskqs(spa);
|
|
|
|
mutex_enter(&spa->spa_proc_lock);
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
|
|
|
|
spa->spa_proc_state = SPA_PROC_ACTIVE;
|
|
cv_broadcast(&spa->spa_proc_cv);
|
|
|
|
CALLB_CPR_SAFE_BEGIN(&cprinfo);
|
|
while (spa->spa_proc_state == SPA_PROC_ACTIVE)
|
|
cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
|
|
CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
|
|
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
|
|
spa->spa_proc_state = SPA_PROC_GONE;
|
|
spa->spa_proc = &p0;
|
|
cv_broadcast(&spa->spa_proc_cv);
|
|
CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
|
|
|
|
mutex_enter(&curproc->p_lock);
|
|
lwp_exit();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Activate an uninitialized pool.
|
|
*/
|
|
static void
|
|
spa_activate(spa_t *spa, int mode)
|
|
{
|
|
ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
|
|
|
|
spa->spa_state = POOL_STATE_ACTIVE;
|
|
spa->spa_mode = mode;
|
|
|
|
spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
|
|
spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
|
|
|
|
/* Try to create a covering process */
|
|
mutex_enter(&spa->spa_proc_lock);
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
|
|
ASSERT(spa->spa_proc == &p0);
|
|
spa->spa_did = 0;
|
|
|
|
#ifdef HAVE_SPA_THREAD
|
|
/* Only create a process if we're going to be around a while. */
|
|
if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
|
|
if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
|
|
NULL, 0) == 0) {
|
|
spa->spa_proc_state = SPA_PROC_CREATED;
|
|
while (spa->spa_proc_state == SPA_PROC_CREATED) {
|
|
cv_wait(&spa->spa_proc_cv,
|
|
&spa->spa_proc_lock);
|
|
}
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
|
|
ASSERT(spa->spa_proc != &p0);
|
|
ASSERT(spa->spa_did != 0);
|
|
} else {
|
|
#ifdef _KERNEL
|
|
cmn_err(CE_WARN,
|
|
"Couldn't create process for zfs pool \"%s\"\n",
|
|
spa->spa_name);
|
|
#endif
|
|
}
|
|
}
|
|
#endif /* HAVE_SPA_THREAD */
|
|
mutex_exit(&spa->spa_proc_lock);
|
|
|
|
/* If we didn't create a process, we need to create our taskqs. */
|
|
if (spa->spa_proc == &p0) {
|
|
spa_create_zio_taskqs(spa);
|
|
}
|
|
|
|
list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
|
|
offsetof(vdev_t, vdev_config_dirty_node));
|
|
list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
|
|
offsetof(objset_t, os_evicting_node));
|
|
list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
|
|
offsetof(vdev_t, vdev_state_dirty_node));
|
|
|
|
txg_list_create(&spa->spa_vdev_txg_list,
|
|
offsetof(struct vdev, vdev_txg_node));
|
|
|
|
avl_create(&spa->spa_errlist_scrub,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
avl_create(&spa->spa_errlist_last,
|
|
spa_error_entry_compare, sizeof (spa_error_entry_t),
|
|
offsetof(spa_error_entry_t, se_avl));
|
|
}
|
|
|
|
/*
|
|
* Opposite of spa_activate().
|
|
*/
|
|
static void
|
|
spa_deactivate(spa_t *spa)
|
|
{
|
|
int t, q;
|
|
|
|
ASSERT(spa->spa_sync_on == B_FALSE);
|
|
ASSERT(spa->spa_dsl_pool == NULL);
|
|
ASSERT(spa->spa_root_vdev == NULL);
|
|
ASSERT(spa->spa_async_zio_root == NULL);
|
|
ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
|
|
|
|
spa_evicting_os_wait(spa);
|
|
|
|
txg_list_destroy(&spa->spa_vdev_txg_list);
|
|
|
|
list_destroy(&spa->spa_config_dirty_list);
|
|
list_destroy(&spa->spa_evicting_os_list);
|
|
list_destroy(&spa->spa_state_dirty_list);
|
|
|
|
taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
|
|
|
|
for (t = 0; t < ZIO_TYPES; t++) {
|
|
for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
|
|
spa_taskqs_fini(spa, t, q);
|
|
}
|
|
}
|
|
|
|
metaslab_class_destroy(spa->spa_normal_class);
|
|
spa->spa_normal_class = NULL;
|
|
|
|
metaslab_class_destroy(spa->spa_log_class);
|
|
spa->spa_log_class = NULL;
|
|
|
|
/*
|
|
* If this was part of an import or the open otherwise failed, we may
|
|
* still have errors left in the queues. Empty them just in case.
|
|
*/
|
|
spa_errlog_drain(spa);
|
|
|
|
avl_destroy(&spa->spa_errlist_scrub);
|
|
avl_destroy(&spa->spa_errlist_last);
|
|
|
|
spa->spa_state = POOL_STATE_UNINITIALIZED;
|
|
|
|
mutex_enter(&spa->spa_proc_lock);
|
|
if (spa->spa_proc_state != SPA_PROC_NONE) {
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
|
|
spa->spa_proc_state = SPA_PROC_DEACTIVATE;
|
|
cv_broadcast(&spa->spa_proc_cv);
|
|
while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
|
|
ASSERT(spa->spa_proc != &p0);
|
|
cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
|
|
}
|
|
ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
|
|
spa->spa_proc_state = SPA_PROC_NONE;
|
|
}
|
|
ASSERT(spa->spa_proc == &p0);
|
|
mutex_exit(&spa->spa_proc_lock);
|
|
|
|
/*
|
|
* We want to make sure spa_thread() has actually exited the ZFS
|
|
* module, so that the module can't be unloaded out from underneath
|
|
* it.
|
|
*/
|
|
if (spa->spa_did != 0) {
|
|
thread_join(spa->spa_did);
|
|
spa->spa_did = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Verify a pool configuration, and construct the vdev tree appropriately. This
|
|
* will create all the necessary vdevs in the appropriate layout, with each vdev
|
|
* in the CLOSED state. This will prep the pool before open/creation/import.
|
|
* All vdev validation is done by the vdev_alloc() routine.
|
|
*/
|
|
static int
|
|
spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
|
|
uint_t id, int atype)
|
|
{
|
|
nvlist_t **child;
|
|
uint_t children;
|
|
int error;
|
|
int c;
|
|
|
|
if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
|
|
return (error);
|
|
|
|
if ((*vdp)->vdev_ops->vdev_op_leaf)
|
|
return (0);
|
|
|
|
error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children);
|
|
|
|
if (error == ENOENT)
|
|
return (0);
|
|
|
|
if (error) {
|
|
vdev_free(*vdp);
|
|
*vdp = NULL;
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
for (c = 0; c < children; c++) {
|
|
vdev_t *vd;
|
|
if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
|
|
atype)) != 0) {
|
|
vdev_free(*vdp);
|
|
*vdp = NULL;
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
ASSERT(*vdp != NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Opposite of spa_load().
|
|
*/
|
|
static void
|
|
spa_unload(spa_t *spa)
|
|
{
|
|
int i;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
/*
|
|
* Stop async tasks.
|
|
*/
|
|
spa_async_suspend(spa);
|
|
|
|
/*
|
|
* Stop syncing.
|
|
*/
|
|
if (spa->spa_sync_on) {
|
|
txg_sync_stop(spa->spa_dsl_pool);
|
|
spa->spa_sync_on = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Wait for any outstanding async I/O to complete.
|
|
*/
|
|
if (spa->spa_async_zio_root != NULL) {
|
|
for (i = 0; i < max_ncpus; i++)
|
|
(void) zio_wait(spa->spa_async_zio_root[i]);
|
|
kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
|
|
spa->spa_async_zio_root = NULL;
|
|
}
|
|
|
|
bpobj_close(&spa->spa_deferred_bpobj);
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
/*
|
|
* Close all vdevs.
|
|
*/
|
|
if (spa->spa_root_vdev)
|
|
vdev_free(spa->spa_root_vdev);
|
|
ASSERT(spa->spa_root_vdev == NULL);
|
|
|
|
/*
|
|
* Close the dsl pool.
|
|
*/
|
|
if (spa->spa_dsl_pool) {
|
|
dsl_pool_close(spa->spa_dsl_pool);
|
|
spa->spa_dsl_pool = NULL;
|
|
spa->spa_meta_objset = NULL;
|
|
}
|
|
|
|
ddt_unload(spa);
|
|
|
|
|
|
/*
|
|
* Drop and purge level 2 cache
|
|
*/
|
|
spa_l2cache_drop(spa);
|
|
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++)
|
|
vdev_free(spa->spa_spares.sav_vdevs[i]);
|
|
if (spa->spa_spares.sav_vdevs) {
|
|
kmem_free(spa->spa_spares.sav_vdevs,
|
|
spa->spa_spares.sav_count * sizeof (void *));
|
|
spa->spa_spares.sav_vdevs = NULL;
|
|
}
|
|
if (spa->spa_spares.sav_config) {
|
|
nvlist_free(spa->spa_spares.sav_config);
|
|
spa->spa_spares.sav_config = NULL;
|
|
}
|
|
spa->spa_spares.sav_count = 0;
|
|
|
|
for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
|
|
vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
|
|
vdev_free(spa->spa_l2cache.sav_vdevs[i]);
|
|
}
|
|
if (spa->spa_l2cache.sav_vdevs) {
|
|
kmem_free(spa->spa_l2cache.sav_vdevs,
|
|
spa->spa_l2cache.sav_count * sizeof (void *));
|
|
spa->spa_l2cache.sav_vdevs = NULL;
|
|
}
|
|
if (spa->spa_l2cache.sav_config) {
|
|
nvlist_free(spa->spa_l2cache.sav_config);
|
|
spa->spa_l2cache.sav_config = NULL;
|
|
}
|
|
spa->spa_l2cache.sav_count = 0;
|
|
|
|
spa->spa_async_suspended = 0;
|
|
|
|
if (spa->spa_comment != NULL) {
|
|
spa_strfree(spa->spa_comment);
|
|
spa->spa_comment = NULL;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Load (or re-load) the current list of vdevs describing the active spares for
|
|
* this pool. When this is called, we have some form of basic information in
|
|
* 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
|
|
* then re-generate a more complete list including status information.
|
|
*/
|
|
static void
|
|
spa_load_spares(spa_t *spa)
|
|
{
|
|
nvlist_t **spares;
|
|
uint_t nspares;
|
|
int i;
|
|
vdev_t *vd, *tvd;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
/*
|
|
* First, close and free any existing spare vdevs.
|
|
*/
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++) {
|
|
vd = spa->spa_spares.sav_vdevs[i];
|
|
|
|
/* Undo the call to spa_activate() below */
|
|
if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
|
|
B_FALSE)) != NULL && tvd->vdev_isspare)
|
|
spa_spare_remove(tvd);
|
|
vdev_close(vd);
|
|
vdev_free(vd);
|
|
}
|
|
|
|
if (spa->spa_spares.sav_vdevs)
|
|
kmem_free(spa->spa_spares.sav_vdevs,
|
|
spa->spa_spares.sav_count * sizeof (void *));
|
|
|
|
if (spa->spa_spares.sav_config == NULL)
|
|
nspares = 0;
|
|
else
|
|
VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
|
|
|
|
spa->spa_spares.sav_count = (int)nspares;
|
|
spa->spa_spares.sav_vdevs = NULL;
|
|
|
|
if (nspares == 0)
|
|
return;
|
|
|
|
/*
|
|
* Construct the array of vdevs, opening them to get status in the
|
|
* process. For each spare, there is potentially two different vdev_t
|
|
* structures associated with it: one in the list of spares (used only
|
|
* for basic validation purposes) and one in the active vdev
|
|
* configuration (if it's spared in). During this phase we open and
|
|
* validate each vdev on the spare list. If the vdev also exists in the
|
|
* active configuration, then we also mark this vdev as an active spare.
|
|
*/
|
|
spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++) {
|
|
VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
|
|
VDEV_ALLOC_SPARE) == 0);
|
|
ASSERT(vd != NULL);
|
|
|
|
spa->spa_spares.sav_vdevs[i] = vd;
|
|
|
|
if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
|
|
B_FALSE)) != NULL) {
|
|
if (!tvd->vdev_isspare)
|
|
spa_spare_add(tvd);
|
|
|
|
/*
|
|
* We only mark the spare active if we were successfully
|
|
* able to load the vdev. Otherwise, importing a pool
|
|
* with a bad active spare would result in strange
|
|
* behavior, because multiple pool would think the spare
|
|
* is actively in use.
|
|
*
|
|
* There is a vulnerability here to an equally bizarre
|
|
* circumstance, where a dead active spare is later
|
|
* brought back to life (onlined or otherwise). Given
|
|
* the rarity of this scenario, and the extra complexity
|
|
* it adds, we ignore the possibility.
|
|
*/
|
|
if (!vdev_is_dead(tvd))
|
|
spa_spare_activate(tvd);
|
|
}
|
|
|
|
vd->vdev_top = vd;
|
|
vd->vdev_aux = &spa->spa_spares;
|
|
|
|
if (vdev_open(vd) != 0)
|
|
continue;
|
|
|
|
if (vdev_validate_aux(vd) == 0)
|
|
spa_spare_add(vd);
|
|
}
|
|
|
|
/*
|
|
* Recompute the stashed list of spares, with status information
|
|
* this time.
|
|
*/
|
|
VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
|
|
spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++)
|
|
spares[i] = vdev_config_generate(spa,
|
|
spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++)
|
|
nvlist_free(spares[i]);
|
|
kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
|
|
}
|
|
|
|
/*
|
|
* Load (or re-load) the current list of vdevs describing the active l2cache for
|
|
* this pool. When this is called, we have some form of basic information in
|
|
* 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
|
|
* then re-generate a more complete list including status information.
|
|
* Devices which are already active have their details maintained, and are
|
|
* not re-opened.
|
|
*/
|
|
static void
|
|
spa_load_l2cache(spa_t *spa)
|
|
{
|
|
nvlist_t **l2cache;
|
|
uint_t nl2cache;
|
|
int i, j, oldnvdevs;
|
|
uint64_t guid;
|
|
vdev_t *vd, **oldvdevs, **newvdevs;
|
|
spa_aux_vdev_t *sav = &spa->spa_l2cache;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
if (sav->sav_config != NULL) {
|
|
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
|
|
newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
|
|
} else {
|
|
nl2cache = 0;
|
|
newvdevs = NULL;
|
|
}
|
|
|
|
oldvdevs = sav->sav_vdevs;
|
|
oldnvdevs = sav->sav_count;
|
|
sav->sav_vdevs = NULL;
|
|
sav->sav_count = 0;
|
|
|
|
/*
|
|
* Process new nvlist of vdevs.
|
|
*/
|
|
for (i = 0; i < nl2cache; i++) {
|
|
VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
|
|
&guid) == 0);
|
|
|
|
newvdevs[i] = NULL;
|
|
for (j = 0; j < oldnvdevs; j++) {
|
|
vd = oldvdevs[j];
|
|
if (vd != NULL && guid == vd->vdev_guid) {
|
|
/*
|
|
* Retain previous vdev for add/remove ops.
|
|
*/
|
|
newvdevs[i] = vd;
|
|
oldvdevs[j] = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (newvdevs[i] == NULL) {
|
|
/*
|
|
* Create new vdev
|
|
*/
|
|
VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
|
|
VDEV_ALLOC_L2CACHE) == 0);
|
|
ASSERT(vd != NULL);
|
|
newvdevs[i] = vd;
|
|
|
|
/*
|
|
* Commit this vdev as an l2cache device,
|
|
* even if it fails to open.
|
|
*/
|
|
spa_l2cache_add(vd);
|
|
|
|
vd->vdev_top = vd;
|
|
vd->vdev_aux = sav;
|
|
|
|
spa_l2cache_activate(vd);
|
|
|
|
if (vdev_open(vd) != 0)
|
|
continue;
|
|
|
|
(void) vdev_validate_aux(vd);
|
|
|
|
if (!vdev_is_dead(vd))
|
|
l2arc_add_vdev(spa, vd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Purge vdevs that were dropped
|
|
*/
|
|
for (i = 0; i < oldnvdevs; i++) {
|
|
uint64_t pool;
|
|
|
|
vd = oldvdevs[i];
|
|
if (vd != NULL) {
|
|
ASSERT(vd->vdev_isl2cache);
|
|
|
|
if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
|
|
pool != 0ULL && l2arc_vdev_present(vd))
|
|
l2arc_remove_vdev(vd);
|
|
vdev_clear_stats(vd);
|
|
vdev_free(vd);
|
|
}
|
|
}
|
|
|
|
if (oldvdevs)
|
|
kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
|
|
|
|
if (sav->sav_config == NULL)
|
|
goto out;
|
|
|
|
sav->sav_vdevs = newvdevs;
|
|
sav->sav_count = (int)nl2cache;
|
|
|
|
/*
|
|
* Recompute the stashed list of l2cache devices, with status
|
|
* information this time.
|
|
*/
|
|
VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
|
|
l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
l2cache[i] = vdev_config_generate(spa,
|
|
sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
|
|
out:
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
nvlist_free(l2cache[i]);
|
|
if (sav->sav_count)
|
|
kmem_free(l2cache, sav->sav_count * sizeof (void *));
|
|
}
|
|
|
|
static int
|
|
load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
|
|
{
|
|
dmu_buf_t *db;
|
|
char *packed = NULL;
|
|
size_t nvsize = 0;
|
|
int error;
|
|
*value = NULL;
|
|
|
|
error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
|
|
if (error)
|
|
return (error);
|
|
|
|
nvsize = *(uint64_t *)db->db_data;
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
packed = vmem_alloc(nvsize, KM_SLEEP);
|
|
error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
|
|
DMU_READ_PREFETCH);
|
|
if (error == 0)
|
|
error = nvlist_unpack(packed, nvsize, value, 0);
|
|
vmem_free(packed, nvsize);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Checks to see if the given vdev could not be opened, in which case we post a
|
|
* sysevent to notify the autoreplace code that the device has been removed.
|
|
*/
|
|
static void
|
|
spa_check_removed(vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
spa_check_removed(vd->vdev_child[c]);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
|
|
!vd->vdev_ishole) {
|
|
zfs_ereport_post(FM_EREPORT_RESOURCE_AUTOREPLACE,
|
|
vd->vdev_spa, vd, NULL, 0, 0);
|
|
spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_CHECK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Validate the current config against the MOS config
|
|
*/
|
|
static boolean_t
|
|
spa_config_valid(spa_t *spa, nvlist_t *config)
|
|
{
|
|
vdev_t *mrvd, *rvd = spa->spa_root_vdev;
|
|
nvlist_t *nv;
|
|
int c, i;
|
|
|
|
VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
|
|
|
|
ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
|
|
|
|
/*
|
|
* If we're doing a normal import, then build up any additional
|
|
* diagnostic information about missing devices in this config.
|
|
* We'll pass this up to the user for further processing.
|
|
*/
|
|
if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
|
|
nvlist_t **child, *nv;
|
|
uint64_t idx = 0;
|
|
|
|
child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
|
|
KM_SLEEP);
|
|
VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
vdev_t *mtvd = mrvd->vdev_child[c];
|
|
|
|
if (tvd->vdev_ops == &vdev_missing_ops &&
|
|
mtvd->vdev_ops != &vdev_missing_ops &&
|
|
mtvd->vdev_islog)
|
|
child[idx++] = vdev_config_generate(spa, mtvd,
|
|
B_FALSE, 0);
|
|
}
|
|
|
|
if (idx) {
|
|
VERIFY(nvlist_add_nvlist_array(nv,
|
|
ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
|
|
VERIFY(nvlist_add_nvlist(spa->spa_load_info,
|
|
ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
|
|
|
|
for (i = 0; i < idx; i++)
|
|
nvlist_free(child[i]);
|
|
}
|
|
nvlist_free(nv);
|
|
kmem_free(child, rvd->vdev_children * sizeof (char **));
|
|
}
|
|
|
|
/*
|
|
* Compare the root vdev tree with the information we have
|
|
* from the MOS config (mrvd). Check each top-level vdev
|
|
* with the corresponding MOS config top-level (mtvd).
|
|
*/
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
vdev_t *mtvd = mrvd->vdev_child[c];
|
|
|
|
/*
|
|
* Resolve any "missing" vdevs in the current configuration.
|
|
* If we find that the MOS config has more accurate information
|
|
* about the top-level vdev then use that vdev instead.
|
|
*/
|
|
if (tvd->vdev_ops == &vdev_missing_ops &&
|
|
mtvd->vdev_ops != &vdev_missing_ops) {
|
|
|
|
if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
|
|
continue;
|
|
|
|
/*
|
|
* Device specific actions.
|
|
*/
|
|
if (mtvd->vdev_islog) {
|
|
spa_set_log_state(spa, SPA_LOG_CLEAR);
|
|
} else {
|
|
/*
|
|
* XXX - once we have 'readonly' pool
|
|
* support we should be able to handle
|
|
* missing data devices by transitioning
|
|
* the pool to readonly.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Swap the missing vdev with the data we were
|
|
* able to obtain from the MOS config.
|
|
*/
|
|
vdev_remove_child(rvd, tvd);
|
|
vdev_remove_child(mrvd, mtvd);
|
|
|
|
vdev_add_child(rvd, mtvd);
|
|
vdev_add_child(mrvd, tvd);
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
vdev_load(mtvd);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
vdev_reopen(rvd);
|
|
} else if (mtvd->vdev_islog) {
|
|
/*
|
|
* Load the slog device's state from the MOS config
|
|
* since it's possible that the label does not
|
|
* contain the most up-to-date information.
|
|
*/
|
|
vdev_load_log_state(tvd, mtvd);
|
|
vdev_reopen(tvd);
|
|
}
|
|
}
|
|
vdev_free(mrvd);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
/*
|
|
* Ensure we were able to validate the config.
|
|
*/
|
|
return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
|
|
}
|
|
|
|
/*
|
|
* Check for missing log devices
|
|
*/
|
|
static boolean_t
|
|
spa_check_logs(spa_t *spa)
|
|
{
|
|
boolean_t rv = B_FALSE;
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
|
|
switch (spa->spa_log_state) {
|
|
default:
|
|
break;
|
|
case SPA_LOG_MISSING:
|
|
/* need to recheck in case slog has been restored */
|
|
case SPA_LOG_UNKNOWN:
|
|
rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
|
|
zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
|
|
if (rv)
|
|
spa_set_log_state(spa, SPA_LOG_MISSING);
|
|
break;
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
static boolean_t
|
|
spa_passivate_log(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
boolean_t slog_found = B_FALSE;
|
|
int c;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
if (!spa_has_slogs(spa))
|
|
return (B_FALSE);
|
|
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
if (tvd->vdev_islog) {
|
|
metaslab_group_passivate(mg);
|
|
slog_found = B_TRUE;
|
|
}
|
|
}
|
|
|
|
return (slog_found);
|
|
}
|
|
|
|
static void
|
|
spa_activate_log(spa_t *spa)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
int c;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
if (tvd->vdev_islog)
|
|
metaslab_group_activate(mg);
|
|
}
|
|
}
|
|
|
|
int
|
|
spa_offline_log(spa_t *spa)
|
|
{
|
|
int error;
|
|
|
|
error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
|
|
NULL, DS_FIND_CHILDREN);
|
|
if (error == 0) {
|
|
/*
|
|
* We successfully offlined the log device, sync out the
|
|
* current txg so that the "stubby" block can be removed
|
|
* by zil_sync().
|
|
*/
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
spa_aux_check_removed(spa_aux_vdev_t *sav)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
spa_check_removed(sav->sav_vdevs[i]);
|
|
}
|
|
|
|
void
|
|
spa_claim_notify(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
if (zio->io_error)
|
|
return;
|
|
|
|
mutex_enter(&spa->spa_props_lock); /* any mutex will do */
|
|
if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
|
|
spa->spa_claim_max_txg = zio->io_bp->blk_birth;
|
|
mutex_exit(&spa->spa_props_lock);
|
|
}
|
|
|
|
typedef struct spa_load_error {
|
|
uint64_t sle_meta_count;
|
|
uint64_t sle_data_count;
|
|
} spa_load_error_t;
|
|
|
|
static void
|
|
spa_load_verify_done(zio_t *zio)
|
|
{
|
|
blkptr_t *bp = zio->io_bp;
|
|
spa_load_error_t *sle = zio->io_private;
|
|
dmu_object_type_t type = BP_GET_TYPE(bp);
|
|
int error = zio->io_error;
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
if (error) {
|
|
if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
|
|
type != DMU_OT_INTENT_LOG)
|
|
atomic_add_64(&sle->sle_meta_count, 1);
|
|
else
|
|
atomic_add_64(&sle->sle_data_count, 1);
|
|
}
|
|
zio_data_buf_free(zio->io_data, zio->io_size);
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
spa->spa_scrub_inflight--;
|
|
cv_broadcast(&spa->spa_scrub_io_cv);
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
}
|
|
|
|
/*
|
|
* Maximum number of concurrent scrub i/os to create while verifying
|
|
* a pool while importing it.
|
|
*/
|
|
int spa_load_verify_maxinflight = 10000;
|
|
int spa_load_verify_metadata = B_TRUE;
|
|
int spa_load_verify_data = B_TRUE;
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
|
|
const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
|
|
{
|
|
zio_t *rio;
|
|
size_t size;
|
|
void *data;
|
|
|
|
if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
|
|
return (0);
|
|
/*
|
|
* Note: normally this routine will not be called if
|
|
* spa_load_verify_metadata is not set. However, it may be useful
|
|
* to manually set the flag after the traversal has begun.
|
|
*/
|
|
if (!spa_load_verify_metadata)
|
|
return (0);
|
|
if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
|
|
return (0);
|
|
|
|
rio = arg;
|
|
size = BP_GET_PSIZE(bp);
|
|
data = zio_data_buf_alloc(size);
|
|
|
|
mutex_enter(&spa->spa_scrub_lock);
|
|
while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
|
|
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
|
|
spa->spa_scrub_inflight++;
|
|
mutex_exit(&spa->spa_scrub_lock);
|
|
|
|
zio_nowait(zio_read(rio, spa, bp, data, size,
|
|
spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
|
|
ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
|
|
ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_load_verify(spa_t *spa)
|
|
{
|
|
zio_t *rio;
|
|
spa_load_error_t sle = { 0 };
|
|
zpool_rewind_policy_t policy;
|
|
boolean_t verify_ok = B_FALSE;
|
|
int error = 0;
|
|
|
|
zpool_get_rewind_policy(spa->spa_config, &policy);
|
|
|
|
if (policy.zrp_request & ZPOOL_NEVER_REWIND)
|
|
return (0);
|
|
|
|
rio = zio_root(spa, NULL, &sle,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
|
|
|
|
if (spa_load_verify_metadata) {
|
|
error = traverse_pool(spa, spa->spa_verify_min_txg,
|
|
TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
|
|
spa_load_verify_cb, rio);
|
|
}
|
|
|
|
(void) zio_wait(rio);
|
|
|
|
spa->spa_load_meta_errors = sle.sle_meta_count;
|
|
spa->spa_load_data_errors = sle.sle_data_count;
|
|
|
|
if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
|
|
sle.sle_data_count <= policy.zrp_maxdata) {
|
|
int64_t loss = 0;
|
|
|
|
verify_ok = B_TRUE;
|
|
spa->spa_load_txg = spa->spa_uberblock.ub_txg;
|
|
spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
|
|
|
|
loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
|
|
VERIFY(nvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
|
|
VERIFY(nvlist_add_int64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
|
|
VERIFY(nvlist_add_uint64(spa->spa_load_info,
|
|
ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
|
|
} else {
|
|
spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
|
|
}
|
|
|
|
if (error) {
|
|
if (error != ENXIO && error != EIO)
|
|
error = SET_ERROR(EIO);
|
|
return (error);
|
|
}
|
|
|
|
return (verify_ok ? 0 : EIO);
|
|
}
|
|
|
|
/*
|
|
* Find a value in the pool props object.
|
|
*/
|
|
static void
|
|
spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
|
|
{
|
|
(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
|
|
zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
|
|
}
|
|
|
|
/*
|
|
* Find a value in the pool directory object.
|
|
*/
|
|
static int
|
|
spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
|
|
{
|
|
return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
|
name, sizeof (uint64_t), 1, val));
|
|
}
|
|
|
|
static int
|
|
spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
|
|
{
|
|
vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Fix up config after a partly-completed split. This is done with the
|
|
* ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
|
|
* pool have that entry in their config, but only the splitting one contains
|
|
* a list of all the guids of the vdevs that are being split off.
|
|
*
|
|
* This function determines what to do with that list: either rejoin
|
|
* all the disks to the pool, or complete the splitting process. To attempt
|
|
* the rejoin, each disk that is offlined is marked online again, and
|
|
* we do a reopen() call. If the vdev label for every disk that was
|
|
* marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
|
|
* then we call vdev_split() on each disk, and complete the split.
|
|
*
|
|
* Otherwise we leave the config alone, with all the vdevs in place in
|
|
* the original pool.
|
|
*/
|
|
static void
|
|
spa_try_repair(spa_t *spa, nvlist_t *config)
|
|
{
|
|
uint_t extracted;
|
|
uint64_t *glist;
|
|
uint_t i, gcount;
|
|
nvlist_t *nvl;
|
|
vdev_t **vd;
|
|
boolean_t attempt_reopen;
|
|
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
|
|
return;
|
|
|
|
/* check that the config is complete */
|
|
if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
|
|
&glist, &gcount) != 0)
|
|
return;
|
|
|
|
vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
|
|
|
|
/* attempt to online all the vdevs & validate */
|
|
attempt_reopen = B_TRUE;
|
|
for (i = 0; i < gcount; i++) {
|
|
if (glist[i] == 0) /* vdev is hole */
|
|
continue;
|
|
|
|
vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
|
|
if (vd[i] == NULL) {
|
|
/*
|
|
* Don't bother attempting to reopen the disks;
|
|
* just do the split.
|
|
*/
|
|
attempt_reopen = B_FALSE;
|
|
} else {
|
|
/* attempt to re-online it */
|
|
vd[i]->vdev_offline = B_FALSE;
|
|
}
|
|
}
|
|
|
|
if (attempt_reopen) {
|
|
vdev_reopen(spa->spa_root_vdev);
|
|
|
|
/* check each device to see what state it's in */
|
|
for (extracted = 0, i = 0; i < gcount; i++) {
|
|
if (vd[i] != NULL &&
|
|
vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
|
|
break;
|
|
++extracted;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If every disk has been moved to the new pool, or if we never
|
|
* even attempted to look at them, then we split them off for
|
|
* good.
|
|
*/
|
|
if (!attempt_reopen || gcount == extracted) {
|
|
for (i = 0; i < gcount; i++)
|
|
if (vd[i] != NULL)
|
|
vdev_split(vd[i]);
|
|
vdev_reopen(spa->spa_root_vdev);
|
|
}
|
|
|
|
kmem_free(vd, gcount * sizeof (vdev_t *));
|
|
}
|
|
|
|
static int
|
|
spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
|
|
boolean_t mosconfig)
|
|
{
|
|
nvlist_t *config = spa->spa_config;
|
|
char *ereport = FM_EREPORT_ZFS_POOL;
|
|
char *comment;
|
|
int error;
|
|
uint64_t pool_guid;
|
|
nvlist_t *nvl;
|
|
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
ASSERT(spa->spa_comment == NULL);
|
|
if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
|
|
spa->spa_comment = spa_strdup(comment);
|
|
|
|
/*
|
|
* Versioning wasn't explicitly added to the label until later, so if
|
|
* it's not present treat it as the initial version.
|
|
*/
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
|
|
&spa->spa_ubsync.ub_version) != 0)
|
|
spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
|
|
|
|
(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
|
|
&spa->spa_config_txg);
|
|
|
|
if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
|
|
spa_guid_exists(pool_guid, 0)) {
|
|
error = SET_ERROR(EEXIST);
|
|
} else {
|
|
spa->spa_config_guid = pool_guid;
|
|
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
|
|
&nvl) == 0) {
|
|
VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
|
|
KM_SLEEP) == 0);
|
|
}
|
|
|
|
nvlist_free(spa->spa_load_info);
|
|
spa->spa_load_info = fnvlist_alloc();
|
|
|
|
gethrestime(&spa->spa_loaded_ts);
|
|
error = spa_load_impl(spa, pool_guid, config, state, type,
|
|
mosconfig, &ereport);
|
|
}
|
|
|
|
/*
|
|
* Don't count references from objsets that are already closed
|
|
* and are making their way through the eviction process.
|
|
*/
|
|
spa_evicting_os_wait(spa);
|
|
spa->spa_minref = refcount_count(&spa->spa_refcount);
|
|
if (error) {
|
|
if (error != EEXIST) {
|
|
spa->spa_loaded_ts.tv_sec = 0;
|
|
spa->spa_loaded_ts.tv_nsec = 0;
|
|
}
|
|
if (error != EBADF) {
|
|
zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
|
|
}
|
|
}
|
|
spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
|
|
spa->spa_ena = 0;
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Load an existing storage pool, using the pool's builtin spa_config as a
|
|
* source of configuration information.
|
|
*/
|
|
__attribute__((always_inline))
|
|
static inline int
|
|
spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
|
|
spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
|
|
char **ereport)
|
|
{
|
|
int error = 0;
|
|
nvlist_t *nvroot = NULL;
|
|
nvlist_t *label;
|
|
vdev_t *rvd;
|
|
uberblock_t *ub = &spa->spa_uberblock;
|
|
uint64_t children, config_cache_txg = spa->spa_config_txg;
|
|
int orig_mode = spa->spa_mode;
|
|
int parse, i;
|
|
uint64_t obj;
|
|
boolean_t missing_feat_write = B_FALSE;
|
|
|
|
/*
|
|
* If this is an untrusted config, access the pool in read-only mode.
|
|
* This prevents things like resilvering recently removed devices.
|
|
*/
|
|
if (!mosconfig)
|
|
spa->spa_mode = FREAD;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
spa->spa_load_state = state;
|
|
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
parse = (type == SPA_IMPORT_EXISTING ?
|
|
VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
|
|
|
|
/*
|
|
* Create "The Godfather" zio to hold all async IOs
|
|
*/
|
|
spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0; i < max_ncpus; i++) {
|
|
spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
|
|
ZIO_FLAG_GODFATHER);
|
|
}
|
|
|
|
/*
|
|
* Parse the configuration into a vdev tree. We explicitly set the
|
|
* value that will be returned by spa_version() since parsing the
|
|
* configuration requires knowing the version number.
|
|
*/
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
ASSERT(spa->spa_root_vdev == rvd);
|
|
ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
|
|
ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
|
|
|
|
if (type != SPA_IMPORT_ASSEMBLE) {
|
|
ASSERT(spa_guid(spa) == pool_guid);
|
|
}
|
|
|
|
/*
|
|
* Try to open all vdevs, loading each label in the process.
|
|
*/
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
error = vdev_open(rvd);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* We need to validate the vdev labels against the configuration that
|
|
* we have in hand, which is dependent on the setting of mosconfig. If
|
|
* mosconfig is true then we're validating the vdev labels based on
|
|
* that config. Otherwise, we're validating against the cached config
|
|
* (zpool.cache) that was read when we loaded the zfs module, and then
|
|
* later we will recursively call spa_load() and validate against
|
|
* the vdev config.
|
|
*
|
|
* If we're assembling a new pool that's been split off from an
|
|
* existing pool, the labels haven't yet been updated so we skip
|
|
* validation for now.
|
|
*/
|
|
if (type != SPA_IMPORT_ASSEMBLE) {
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
error = vdev_validate(rvd, mosconfig);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
/*
|
|
* Find the best uberblock.
|
|
*/
|
|
vdev_uberblock_load(rvd, ub, &label);
|
|
|
|
/*
|
|
* If we weren't able to find a single valid uberblock, return failure.
|
|
*/
|
|
if (ub->ub_txg == 0) {
|
|
nvlist_free(label);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
|
|
}
|
|
|
|
/*
|
|
* If the pool has an unsupported version we can't open it.
|
|
*/
|
|
if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
|
|
nvlist_free(label);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
|
|
}
|
|
|
|
if (ub->ub_version >= SPA_VERSION_FEATURES) {
|
|
nvlist_t *features;
|
|
|
|
/*
|
|
* If we weren't able to find what's necessary for reading the
|
|
* MOS in the label, return failure.
|
|
*/
|
|
if (label == NULL || nvlist_lookup_nvlist(label,
|
|
ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
|
|
nvlist_free(label);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
|
|
ENXIO));
|
|
}
|
|
|
|
/*
|
|
* Update our in-core representation with the definitive values
|
|
* from the label.
|
|
*/
|
|
nvlist_free(spa->spa_label_features);
|
|
VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
|
|
}
|
|
|
|
nvlist_free(label);
|
|
|
|
/*
|
|
* Look through entries in the label nvlist's features_for_read. If
|
|
* there is a feature listed there which we don't understand then we
|
|
* cannot open a pool.
|
|
*/
|
|
if (ub->ub_version >= SPA_VERSION_FEATURES) {
|
|
nvlist_t *unsup_feat;
|
|
nvpair_t *nvp;
|
|
|
|
VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
|
|
0);
|
|
|
|
for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
|
|
nvp != NULL;
|
|
nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
|
|
if (!zfeature_is_supported(nvpair_name(nvp))) {
|
|
VERIFY(nvlist_add_string(unsup_feat,
|
|
nvpair_name(nvp), "") == 0);
|
|
}
|
|
}
|
|
|
|
if (!nvlist_empty(unsup_feat)) {
|
|
VERIFY(nvlist_add_nvlist(spa->spa_load_info,
|
|
ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
|
|
nvlist_free(unsup_feat);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
|
|
ENOTSUP));
|
|
}
|
|
|
|
nvlist_free(unsup_feat);
|
|
}
|
|
|
|
/*
|
|
* If the vdev guid sum doesn't match the uberblock, we have an
|
|
* incomplete configuration. We first check to see if the pool
|
|
* is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
|
|
* If it is, defer the vdev_guid_sum check till later so we
|
|
* can handle missing vdevs.
|
|
*/
|
|
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
|
|
&children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
|
|
rvd->vdev_guid_sum != ub->ub_guid_sum)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
|
|
|
|
if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_try_repair(spa, config);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
nvlist_free(spa->spa_config_splitting);
|
|
spa->spa_config_splitting = NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize internal SPA structures.
|
|
*/
|
|
spa->spa_state = POOL_STATE_ACTIVE;
|
|
spa->spa_ubsync = spa->spa_uberblock;
|
|
spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
|
|
TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
|
|
spa->spa_first_txg = spa->spa_last_ubsync_txg ?
|
|
spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
|
|
spa->spa_claim_max_txg = spa->spa_first_txg;
|
|
spa->spa_prev_software_version = ub->ub_software_version;
|
|
|
|
error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
|
|
if (error)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
|
|
|
|
if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
if (spa_version(spa) >= SPA_VERSION_FEATURES) {
|
|
boolean_t missing_feat_read = B_FALSE;
|
|
nvlist_t *unsup_feat, *enabled_feat;
|
|
spa_feature_t i;
|
|
|
|
if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
|
|
&spa->spa_feat_for_read_obj) != 0) {
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
|
|
&spa->spa_feat_for_write_obj) != 0) {
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
|
|
&spa->spa_feat_desc_obj) != 0) {
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
enabled_feat = fnvlist_alloc();
|
|
unsup_feat = fnvlist_alloc();
|
|
|
|
if (!spa_features_check(spa, B_FALSE,
|
|
unsup_feat, enabled_feat))
|
|
missing_feat_read = B_TRUE;
|
|
|
|
if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
|
|
if (!spa_features_check(spa, B_TRUE,
|
|
unsup_feat, enabled_feat)) {
|
|
missing_feat_write = B_TRUE;
|
|
}
|
|
}
|
|
|
|
fnvlist_add_nvlist(spa->spa_load_info,
|
|
ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
|
|
|
|
if (!nvlist_empty(unsup_feat)) {
|
|
fnvlist_add_nvlist(spa->spa_load_info,
|
|
ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
|
|
}
|
|
|
|
fnvlist_free(enabled_feat);
|
|
fnvlist_free(unsup_feat);
|
|
|
|
if (!missing_feat_read) {
|
|
fnvlist_add_boolean(spa->spa_load_info,
|
|
ZPOOL_CONFIG_CAN_RDONLY);
|
|
}
|
|
|
|
/*
|
|
* If the state is SPA_LOAD_TRYIMPORT, our objective is
|
|
* twofold: to determine whether the pool is available for
|
|
* import in read-write mode and (if it is not) whether the
|
|
* pool is available for import in read-only mode. If the pool
|
|
* is available for import in read-write mode, it is displayed
|
|
* as available in userland; if it is not available for import
|
|
* in read-only mode, it is displayed as unavailable in
|
|
* userland. If the pool is available for import in read-only
|
|
* mode but not read-write mode, it is displayed as unavailable
|
|
* in userland with a special note that the pool is actually
|
|
* available for open in read-only mode.
|
|
*
|
|
* As a result, if the state is SPA_LOAD_TRYIMPORT and we are
|
|
* missing a feature for write, we must first determine whether
|
|
* the pool can be opened read-only before returning to
|
|
* userland in order to know whether to display the
|
|
* abovementioned note.
|
|
*/
|
|
if (missing_feat_read || (missing_feat_write &&
|
|
spa_writeable(spa))) {
|
|
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
|
|
ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* Load refcounts for ZFS features from disk into an in-memory
|
|
* cache during SPA initialization.
|
|
*/
|
|
for (i = 0; i < SPA_FEATURES; i++) {
|
|
uint64_t refcount;
|
|
|
|
error = feature_get_refcount_from_disk(spa,
|
|
&spa_feature_table[i], &refcount);
|
|
if (error == 0) {
|
|
spa->spa_feat_refcount_cache[i] = refcount;
|
|
} else if (error == ENOTSUP) {
|
|
spa->spa_feat_refcount_cache[i] =
|
|
SPA_FEATURE_DISABLED;
|
|
} else {
|
|
return (spa_vdev_err(rvd,
|
|
VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
|
|
if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
|
|
&spa->spa_feat_enabled_txg_obj) != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
}
|
|
|
|
spa->spa_is_initializing = B_TRUE;
|
|
error = dsl_pool_open(spa->spa_dsl_pool);
|
|
spa->spa_is_initializing = B_FALSE;
|
|
if (error != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
if (!mosconfig) {
|
|
uint64_t hostid;
|
|
nvlist_t *policy = NULL, *nvconfig;
|
|
|
|
if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
|
|
ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
|
|
char *hostname;
|
|
unsigned long myhostid = 0;
|
|
|
|
VERIFY(nvlist_lookup_string(nvconfig,
|
|
ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
|
|
|
|
#ifdef _KERNEL
|
|
myhostid = zone_get_hostid(NULL);
|
|
#else /* _KERNEL */
|
|
/*
|
|
* We're emulating the system's hostid in userland, so
|
|
* we can't use zone_get_hostid().
|
|
*/
|
|
(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
|
|
#endif /* _KERNEL */
|
|
if (hostid != 0 && myhostid != 0 &&
|
|
hostid != myhostid) {
|
|
nvlist_free(nvconfig);
|
|
cmn_err(CE_WARN, "pool '%s' could not be "
|
|
"loaded as it was last accessed by another "
|
|
"system (host: %s hostid: 0x%lx). See: "
|
|
"http://zfsonlinux.org/msg/ZFS-8000-EY",
|
|
spa_name(spa), hostname,
|
|
(unsigned long)hostid);
|
|
return (SET_ERROR(EBADF));
|
|
}
|
|
}
|
|
if (nvlist_lookup_nvlist(spa->spa_config,
|
|
ZPOOL_REWIND_POLICY, &policy) == 0)
|
|
VERIFY(nvlist_add_nvlist(nvconfig,
|
|
ZPOOL_REWIND_POLICY, policy) == 0);
|
|
|
|
spa_config_set(spa, nvconfig);
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_activate(spa, orig_mode);
|
|
|
|
return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
|
|
}
|
|
|
|
if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
|
|
if (error != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
/*
|
|
* Load the bit that tells us to use the new accounting function
|
|
* (raid-z deflation). If we have an older pool, this will not
|
|
* be present.
|
|
*/
|
|
error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
|
|
&spa->spa_creation_version);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
/*
|
|
* Load the persistent error log. If we have an older pool, this will
|
|
* not be present.
|
|
*/
|
|
error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
|
|
&spa->spa_errlog_scrub);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
/*
|
|
* Load the history object. If we have an older pool, this
|
|
* will not be present.
|
|
*/
|
|
error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
/*
|
|
* If we're assembling the pool from the split-off vdevs of
|
|
* an existing pool, we don't want to attach the spares & cache
|
|
* devices.
|
|
*/
|
|
|
|
/*
|
|
* Load any hot spares for this pool.
|
|
*/
|
|
error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
|
|
ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
|
|
if (load_nvlist(spa, spa->spa_spares.sav_object,
|
|
&spa->spa_spares.sav_config) != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_spares(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
} else if (error == 0) {
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Load any level 2 ARC devices for this pool.
|
|
*/
|
|
error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
|
|
&spa->spa_l2cache.sav_object);
|
|
if (error != 0 && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
|
|
ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
|
|
if (load_nvlist(spa, spa->spa_l2cache.sav_object,
|
|
&spa->spa_l2cache.sav_config) != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_l2cache(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
} else if (error == 0) {
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
|
|
|
|
error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
|
|
if (error && error != ENOENT)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
if (error == 0) {
|
|
uint64_t autoreplace = 0;
|
|
|
|
spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
|
|
spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
|
|
spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
|
|
spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
|
|
spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
|
|
spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
|
|
&spa->spa_dedup_ditto);
|
|
|
|
spa->spa_autoreplace = (autoreplace != 0);
|
|
}
|
|
|
|
/*
|
|
* If the 'autoreplace' property is set, then post a resource notifying
|
|
* the ZFS DE that it should not issue any faults for unopenable
|
|
* devices. We also iterate over the vdevs, and post a sysevent for any
|
|
* unopenable vdevs so that the normal autoreplace handler can take
|
|
* over.
|
|
*/
|
|
if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
|
|
spa_check_removed(spa->spa_root_vdev);
|
|
/*
|
|
* For the import case, this is done in spa_import(), because
|
|
* at this point we're using the spare definitions from
|
|
* the MOS config, not necessarily from the userland config.
|
|
*/
|
|
if (state != SPA_LOAD_IMPORT) {
|
|
spa_aux_check_removed(&spa->spa_spares);
|
|
spa_aux_check_removed(&spa->spa_l2cache);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load the vdev state for all toplevel vdevs.
|
|
*/
|
|
vdev_load(rvd);
|
|
|
|
/*
|
|
* Propagate the leaf DTLs we just loaded all the way up the tree.
|
|
*/
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
/*
|
|
* Load the DDTs (dedup tables).
|
|
*/
|
|
error = ddt_load(spa);
|
|
if (error != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
spa_update_dspace(spa);
|
|
|
|
/*
|
|
* Validate the config, using the MOS config to fill in any
|
|
* information which might be missing. If we fail to validate
|
|
* the config then declare the pool unfit for use. If we're
|
|
* assembling a pool from a split, the log is not transferred
|
|
* over.
|
|
*/
|
|
if (type != SPA_IMPORT_ASSEMBLE) {
|
|
nvlist_t *nvconfig;
|
|
|
|
if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
|
|
|
|
if (!spa_config_valid(spa, nvconfig)) {
|
|
nvlist_free(nvconfig);
|
|
return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
|
|
ENXIO));
|
|
}
|
|
nvlist_free(nvconfig);
|
|
|
|
/*
|
|
* Now that we've validated the config, check the state of the
|
|
* root vdev. If it can't be opened, it indicates one or
|
|
* more toplevel vdevs are faulted.
|
|
*/
|
|
if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
if (spa_writeable(spa) && spa_check_logs(spa)) {
|
|
*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
|
|
return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
|
|
}
|
|
}
|
|
|
|
if (missing_feat_write) {
|
|
ASSERT(state == SPA_LOAD_TRYIMPORT);
|
|
|
|
/*
|
|
* At this point, we know that we can open the pool in
|
|
* read-only mode but not read-write mode. We now have enough
|
|
* information and can return to userland.
|
|
*/
|
|
return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* We've successfully opened the pool, verify that we're ready
|
|
* to start pushing transactions.
|
|
*/
|
|
if (state != SPA_LOAD_TRYIMPORT) {
|
|
if ((error = spa_load_verify(spa)))
|
|
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
|
|
error));
|
|
}
|
|
|
|
if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
|
|
spa->spa_load_max_txg == UINT64_MAX)) {
|
|
dmu_tx_t *tx;
|
|
int need_update = B_FALSE;
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
int c;
|
|
|
|
ASSERT(state != SPA_LOAD_TRYIMPORT);
|
|
|
|
/*
|
|
* Claim log blocks that haven't been committed yet.
|
|
* This must all happen in a single txg.
|
|
* Note: spa_claim_max_txg is updated by spa_claim_notify(),
|
|
* invoked from zil_claim_log_block()'s i/o done callback.
|
|
* Price of rollback is that we abandon the log.
|
|
*/
|
|
spa->spa_claiming = B_TRUE;
|
|
|
|
tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
|
|
(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
|
|
zil_claim, tx, DS_FIND_CHILDREN);
|
|
dmu_tx_commit(tx);
|
|
|
|
spa->spa_claiming = B_FALSE;
|
|
|
|
spa_set_log_state(spa, SPA_LOG_GOOD);
|
|
spa->spa_sync_on = B_TRUE;
|
|
txg_sync_start(spa->spa_dsl_pool);
|
|
|
|
/*
|
|
* Wait for all claims to sync. We sync up to the highest
|
|
* claimed log block birth time so that claimed log blocks
|
|
* don't appear to be from the future. spa_claim_max_txg
|
|
* will have been set for us by either zil_check_log_chain()
|
|
* (invoked from spa_check_logs()) or zil_claim() above.
|
|
*/
|
|
txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
|
|
|
|
/*
|
|
* If the config cache is stale, or we have uninitialized
|
|
* metaslabs (see spa_vdev_add()), then update the config.
|
|
*
|
|
* If this is a verbatim import, trust the current
|
|
* in-core spa_config and update the disk labels.
|
|
*/
|
|
if (config_cache_txg != spa->spa_config_txg ||
|
|
state == SPA_LOAD_IMPORT ||
|
|
state == SPA_LOAD_RECOVER ||
|
|
(spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
|
|
need_update = B_TRUE;
|
|
|
|
for (c = 0; c < rvd->vdev_children; c++)
|
|
if (rvd->vdev_child[c]->vdev_ms_array == 0)
|
|
need_update = B_TRUE;
|
|
|
|
/*
|
|
* Update the config cache asychronously in case we're the
|
|
* root pool, in which case the config cache isn't writable yet.
|
|
*/
|
|
if (need_update)
|
|
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
|
|
|
|
/*
|
|
* Check all DTLs to see if anything needs resilvering.
|
|
*/
|
|
if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
|
|
vdev_resilver_needed(rvd, NULL, NULL))
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER);
|
|
|
|
/*
|
|
* Log the fact that we booted up (so that we can detect if
|
|
* we rebooted in the middle of an operation).
|
|
*/
|
|
spa_history_log_version(spa, "open");
|
|
|
|
/*
|
|
* Delete any inconsistent datasets.
|
|
*/
|
|
(void) dmu_objset_find(spa_name(spa),
|
|
dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
|
|
|
|
/*
|
|
* Clean up any stale temporary dataset userrefs.
|
|
*/
|
|
dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
|
|
{
|
|
int mode = spa->spa_mode;
|
|
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
|
|
spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
|
|
|
|
spa_activate(spa, mode);
|
|
spa_async_suspend(spa);
|
|
|
|
return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
|
|
}
|
|
|
|
/*
|
|
* If spa_load() fails this function will try loading prior txg's. If
|
|
* 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
|
|
* will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
|
|
* function will not rewind the pool and will return the same error as
|
|
* spa_load().
|
|
*/
|
|
static int
|
|
spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
|
|
uint64_t max_request, int rewind_flags)
|
|
{
|
|
nvlist_t *loadinfo = NULL;
|
|
nvlist_t *config = NULL;
|
|
int load_error, rewind_error;
|
|
uint64_t safe_rewind_txg;
|
|
uint64_t min_txg;
|
|
|
|
if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
|
|
spa->spa_load_max_txg = spa->spa_load_txg;
|
|
spa_set_log_state(spa, SPA_LOG_CLEAR);
|
|
} else {
|
|
spa->spa_load_max_txg = max_request;
|
|
if (max_request != UINT64_MAX)
|
|
spa->spa_extreme_rewind = B_TRUE;
|
|
}
|
|
|
|
load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
|
|
mosconfig);
|
|
if (load_error == 0)
|
|
return (0);
|
|
|
|
if (spa->spa_root_vdev != NULL)
|
|
config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
|
|
|
|
spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
|
|
spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
|
|
|
|
if (rewind_flags & ZPOOL_NEVER_REWIND) {
|
|
nvlist_free(config);
|
|
return (load_error);
|
|
}
|
|
|
|
if (state == SPA_LOAD_RECOVER) {
|
|
/* Price of rolling back is discarding txgs, including log */
|
|
spa_set_log_state(spa, SPA_LOG_CLEAR);
|
|
} else {
|
|
/*
|
|
* If we aren't rolling back save the load info from our first
|
|
* import attempt so that we can restore it after attempting
|
|
* to rewind.
|
|
*/
|
|
loadinfo = spa->spa_load_info;
|
|
spa->spa_load_info = fnvlist_alloc();
|
|
}
|
|
|
|
spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
|
|
safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
|
|
min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
|
|
TXG_INITIAL : safe_rewind_txg;
|
|
|
|
/*
|
|
* Continue as long as we're finding errors, we're still within
|
|
* the acceptable rewind range, and we're still finding uberblocks
|
|
*/
|
|
while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
|
|
spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
|
|
if (spa->spa_load_max_txg < safe_rewind_txg)
|
|
spa->spa_extreme_rewind = B_TRUE;
|
|
rewind_error = spa_load_retry(spa, state, mosconfig);
|
|
}
|
|
|
|
spa->spa_extreme_rewind = B_FALSE;
|
|
spa->spa_load_max_txg = UINT64_MAX;
|
|
|
|
if (config && (rewind_error || state != SPA_LOAD_RECOVER))
|
|
spa_config_set(spa, config);
|
|
|
|
if (state == SPA_LOAD_RECOVER) {
|
|
ASSERT3P(loadinfo, ==, NULL);
|
|
return (rewind_error);
|
|
} else {
|
|
/* Store the rewind info as part of the initial load info */
|
|
fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
|
|
spa->spa_load_info);
|
|
|
|
/* Restore the initial load info */
|
|
fnvlist_free(spa->spa_load_info);
|
|
spa->spa_load_info = loadinfo;
|
|
|
|
return (load_error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pool Open/Import
|
|
*
|
|
* The import case is identical to an open except that the configuration is sent
|
|
* down from userland, instead of grabbed from the configuration cache. For the
|
|
* case of an open, the pool configuration will exist in the
|
|
* POOL_STATE_UNINITIALIZED state.
|
|
*
|
|
* The stats information (gen/count/ustats) is used to gather vdev statistics at
|
|
* the same time open the pool, without having to keep around the spa_t in some
|
|
* ambiguous state.
|
|
*/
|
|
static int
|
|
spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
|
|
nvlist_t **config)
|
|
{
|
|
spa_t *spa;
|
|
spa_load_state_t state = SPA_LOAD_OPEN;
|
|
int error;
|
|
int locked = B_FALSE;
|
|
int firstopen = B_FALSE;
|
|
|
|
*spapp = NULL;
|
|
|
|
/*
|
|
* As disgusting as this is, we need to support recursive calls to this
|
|
* function because dsl_dir_open() is called during spa_load(), and ends
|
|
* up calling spa_open() again. The real fix is to figure out how to
|
|
* avoid dsl_dir_open() calling this in the first place.
|
|
*/
|
|
if (mutex_owner(&spa_namespace_lock) != curthread) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
locked = B_TRUE;
|
|
}
|
|
|
|
if ((spa = spa_lookup(pool)) == NULL) {
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
|
|
zpool_rewind_policy_t policy;
|
|
|
|
firstopen = B_TRUE;
|
|
|
|
zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
|
|
&policy);
|
|
if (policy.zrp_request & ZPOOL_DO_REWIND)
|
|
state = SPA_LOAD_RECOVER;
|
|
|
|
spa_activate(spa, spa_mode_global);
|
|
|
|
if (state != SPA_LOAD_RECOVER)
|
|
spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
|
|
|
|
error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
|
|
policy.zrp_request);
|
|
|
|
if (error == EBADF) {
|
|
/*
|
|
* If vdev_validate() returns failure (indicated by
|
|
* EBADF), it indicates that one of the vdevs indicates
|
|
* that the pool has been exported or destroyed. If
|
|
* this is the case, the config cache is out of sync and
|
|
* we should remove the pool from the namespace.
|
|
*/
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_config_sync(spa, B_TRUE, B_TRUE);
|
|
spa_remove(spa);
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
if (error) {
|
|
/*
|
|
* We can't open the pool, but we still have useful
|
|
* information: the state of each vdev after the
|
|
* attempted vdev_open(). Return this to the user.
|
|
*/
|
|
if (config != NULL && spa->spa_config) {
|
|
VERIFY(nvlist_dup(spa->spa_config, config,
|
|
KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist(*config,
|
|
ZPOOL_CONFIG_LOAD_INFO,
|
|
spa->spa_load_info) == 0);
|
|
}
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa->spa_last_open_failed = error;
|
|
if (locked)
|
|
mutex_exit(&spa_namespace_lock);
|
|
*spapp = NULL;
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
spa_open_ref(spa, tag);
|
|
|
|
if (config != NULL)
|
|
*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
|
|
|
|
/*
|
|
* If we've recovered the pool, pass back any information we
|
|
* gathered while doing the load.
|
|
*/
|
|
if (state == SPA_LOAD_RECOVER) {
|
|
VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
|
|
spa->spa_load_info) == 0);
|
|
}
|
|
|
|
if (locked) {
|
|
spa->spa_last_open_failed = 0;
|
|
spa->spa_last_ubsync_txg = 0;
|
|
spa->spa_load_txg = 0;
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
if (firstopen)
|
|
zvol_create_minors(spa->spa_name);
|
|
#endif
|
|
|
|
*spapp = spa;
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
|
|
nvlist_t **config)
|
|
{
|
|
return (spa_open_common(name, spapp, tag, policy, config));
|
|
}
|
|
|
|
int
|
|
spa_open(const char *name, spa_t **spapp, void *tag)
|
|
{
|
|
return (spa_open_common(name, spapp, tag, NULL, NULL));
|
|
}
|
|
|
|
/*
|
|
* Lookup the given spa_t, incrementing the inject count in the process,
|
|
* preventing it from being exported or destroyed.
|
|
*/
|
|
spa_t *
|
|
spa_inject_addref(char *name)
|
|
{
|
|
spa_t *spa;
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
if ((spa = spa_lookup(name)) == NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (NULL);
|
|
}
|
|
spa->spa_inject_ref++;
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (spa);
|
|
}
|
|
|
|
void
|
|
spa_inject_delref(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa->spa_inject_ref--;
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
/*
|
|
* Add spares device information to the nvlist.
|
|
*/
|
|
static void
|
|
spa_add_spares(spa_t *spa, nvlist_t *config)
|
|
{
|
|
nvlist_t **spares;
|
|
uint_t i, nspares;
|
|
nvlist_t *nvroot;
|
|
uint64_t guid;
|
|
vdev_stat_t *vs;
|
|
uint_t vsc;
|
|
uint64_t pool;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
|
|
|
|
if (spa->spa_spares.sav_count == 0)
|
|
return;
|
|
|
|
VERIFY(nvlist_lookup_nvlist(config,
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
|
|
if (nspares != 0) {
|
|
VERIFY(nvlist_add_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
|
|
|
|
/*
|
|
* Go through and find any spares which have since been
|
|
* repurposed as an active spare. If this is the case, update
|
|
* their status appropriately.
|
|
*/
|
|
for (i = 0; i < nspares; i++) {
|
|
VERIFY(nvlist_lookup_uint64(spares[i],
|
|
ZPOOL_CONFIG_GUID, &guid) == 0);
|
|
if (spa_spare_exists(guid, &pool, NULL) &&
|
|
pool != 0ULL) {
|
|
VERIFY(nvlist_lookup_uint64_array(
|
|
spares[i], ZPOOL_CONFIG_VDEV_STATS,
|
|
(uint64_t **)&vs, &vsc) == 0);
|
|
vs->vs_state = VDEV_STATE_CANT_OPEN;
|
|
vs->vs_aux = VDEV_AUX_SPARED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add l2cache device information to the nvlist, including vdev stats.
|
|
*/
|
|
static void
|
|
spa_add_l2cache(spa_t *spa, nvlist_t *config)
|
|
{
|
|
nvlist_t **l2cache;
|
|
uint_t i, j, nl2cache;
|
|
nvlist_t *nvroot;
|
|
uint64_t guid;
|
|
vdev_t *vd;
|
|
vdev_stat_t *vs;
|
|
uint_t vsc;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
|
|
|
|
if (spa->spa_l2cache.sav_count == 0)
|
|
return;
|
|
|
|
VERIFY(nvlist_lookup_nvlist(config,
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
|
|
if (nl2cache != 0) {
|
|
VERIFY(nvlist_add_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(nvroot,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
|
|
|
|
/*
|
|
* Update level 2 cache device stats.
|
|
*/
|
|
|
|
for (i = 0; i < nl2cache; i++) {
|
|
VERIFY(nvlist_lookup_uint64(l2cache[i],
|
|
ZPOOL_CONFIG_GUID, &guid) == 0);
|
|
|
|
vd = NULL;
|
|
for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
|
|
if (guid ==
|
|
spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
|
|
vd = spa->spa_l2cache.sav_vdevs[j];
|
|
break;
|
|
}
|
|
}
|
|
ASSERT(vd != NULL);
|
|
|
|
VERIFY(nvlist_lookup_uint64_array(l2cache[i],
|
|
ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
|
|
== 0);
|
|
vdev_get_stats(vd, vs);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
|
|
{
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
|
|
if (spa->spa_feat_for_read_obj != 0) {
|
|
for (zap_cursor_init(&zc, spa->spa_meta_objset,
|
|
spa->spa_feat_for_read_obj);
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
ASSERT(za.za_integer_length == sizeof (uint64_t) &&
|
|
za.za_num_integers == 1);
|
|
VERIFY0(nvlist_add_uint64(features, za.za_name,
|
|
za.za_first_integer));
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
|
|
if (spa->spa_feat_for_write_obj != 0) {
|
|
for (zap_cursor_init(&zc, spa->spa_meta_objset,
|
|
spa->spa_feat_for_write_obj);
|
|
zap_cursor_retrieve(&zc, &za) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
ASSERT(za.za_integer_length == sizeof (uint64_t) &&
|
|
za.za_num_integers == 1);
|
|
VERIFY0(nvlist_add_uint64(features, za.za_name,
|
|
za.za_first_integer));
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SPA_FEATURES; i++) {
|
|
zfeature_info_t feature = spa_feature_table[i];
|
|
uint64_t refcount;
|
|
|
|
if (feature_get_refcount(spa, &feature, &refcount) != 0)
|
|
continue;
|
|
|
|
VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Store a list of pool features and their reference counts in the
|
|
* config.
|
|
*
|
|
* The first time this is called on a spa, allocate a new nvlist, fetch
|
|
* the pool features and reference counts from disk, then save the list
|
|
* in the spa. In subsequent calls on the same spa use the saved nvlist
|
|
* and refresh its values from the cached reference counts. This
|
|
* ensures we don't block here on I/O on a suspended pool so 'zpool
|
|
* clear' can resume the pool.
|
|
*/
|
|
static void
|
|
spa_add_feature_stats(spa_t *spa, nvlist_t *config)
|
|
{
|
|
nvlist_t *features;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
|
|
|
|
mutex_enter(&spa->spa_feat_stats_lock);
|
|
features = spa->spa_feat_stats;
|
|
|
|
if (features != NULL) {
|
|
spa_feature_stats_from_cache(spa, features);
|
|
} else {
|
|
VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
|
|
spa->spa_feat_stats = features;
|
|
spa_feature_stats_from_disk(spa, features);
|
|
}
|
|
|
|
VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
|
|
features));
|
|
|
|
mutex_exit(&spa->spa_feat_stats_lock);
|
|
}
|
|
|
|
int
|
|
spa_get_stats(const char *name, nvlist_t **config,
|
|
char *altroot, size_t buflen)
|
|
{
|
|
int error;
|
|
spa_t *spa;
|
|
|
|
*config = NULL;
|
|
error = spa_open_common(name, &spa, FTAG, NULL, config);
|
|
|
|
if (spa != NULL) {
|
|
/*
|
|
* This still leaves a window of inconsistency where the spares
|
|
* or l2cache devices could change and the config would be
|
|
* self-inconsistent.
|
|
*/
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
if (*config != NULL) {
|
|
uint64_t loadtimes[2];
|
|
|
|
loadtimes[0] = spa->spa_loaded_ts.tv_sec;
|
|
loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
|
|
VERIFY(nvlist_add_uint64_array(*config,
|
|
ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
|
|
|
|
VERIFY(nvlist_add_uint64(*config,
|
|
ZPOOL_CONFIG_ERRCOUNT,
|
|
spa_get_errlog_size(spa)) == 0);
|
|
|
|
if (spa_suspended(spa))
|
|
VERIFY(nvlist_add_uint64(*config,
|
|
ZPOOL_CONFIG_SUSPENDED,
|
|
spa->spa_failmode) == 0);
|
|
|
|
spa_add_spares(spa, *config);
|
|
spa_add_l2cache(spa, *config);
|
|
spa_add_feature_stats(spa, *config);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We want to get the alternate root even for faulted pools, so we cheat
|
|
* and call spa_lookup() directly.
|
|
*/
|
|
if (altroot) {
|
|
if (spa == NULL) {
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa = spa_lookup(name);
|
|
if (spa)
|
|
spa_altroot(spa, altroot, buflen);
|
|
else
|
|
altroot[0] = '\0';
|
|
spa = NULL;
|
|
mutex_exit(&spa_namespace_lock);
|
|
} else {
|
|
spa_altroot(spa, altroot, buflen);
|
|
}
|
|
}
|
|
|
|
if (spa != NULL) {
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
spa_close(spa, FTAG);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Validate that the auxiliary device array is well formed. We must have an
|
|
* array of nvlists, each which describes a valid leaf vdev. If this is an
|
|
* import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
|
|
* specified, as long as they are well-formed.
|
|
*/
|
|
static int
|
|
spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
|
|
spa_aux_vdev_t *sav, const char *config, uint64_t version,
|
|
vdev_labeltype_t label)
|
|
{
|
|
nvlist_t **dev;
|
|
uint_t i, ndev;
|
|
vdev_t *vd;
|
|
int error;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
/*
|
|
* It's acceptable to have no devs specified.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
|
|
return (0);
|
|
|
|
if (ndev == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* Make sure the pool is formatted with a version that supports this
|
|
* device type.
|
|
*/
|
|
if (spa_version(spa) < version)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* Set the pending device list so we correctly handle device in-use
|
|
* checking.
|
|
*/
|
|
sav->sav_pending = dev;
|
|
sav->sav_npending = ndev;
|
|
|
|
for (i = 0; i < ndev; i++) {
|
|
if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
|
|
mode)) != 0)
|
|
goto out;
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
vdev_free(vd);
|
|
error = SET_ERROR(EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The L2ARC currently only supports disk devices in
|
|
* kernel context. For user-level testing, we allow it.
|
|
*/
|
|
#ifdef _KERNEL
|
|
if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
|
|
strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
|
|
error = SET_ERROR(ENOTBLK);
|
|
vdev_free(vd);
|
|
goto out;
|
|
}
|
|
#endif
|
|
vd->vdev_top = vd;
|
|
|
|
if ((error = vdev_open(vd)) == 0 &&
|
|
(error = vdev_label_init(vd, crtxg, label)) == 0) {
|
|
VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
|
|
vd->vdev_guid) == 0);
|
|
}
|
|
|
|
vdev_free(vd);
|
|
|
|
if (error &&
|
|
(mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
|
|
goto out;
|
|
else
|
|
error = 0;
|
|
}
|
|
|
|
out:
|
|
sav->sav_pending = NULL;
|
|
sav->sav_npending = 0;
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
|
|
&spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
|
|
VDEV_LABEL_SPARE)) != 0) {
|
|
return (error);
|
|
}
|
|
|
|
return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
|
|
&spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
|
|
VDEV_LABEL_L2CACHE));
|
|
}
|
|
|
|
static void
|
|
spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
|
|
const char *config)
|
|
{
|
|
int i;
|
|
|
|
if (sav->sav_config != NULL) {
|
|
nvlist_t **olddevs;
|
|
uint_t oldndevs;
|
|
nvlist_t **newdevs;
|
|
|
|
/*
|
|
* Generate new dev list by concatentating with the
|
|
* current dev list.
|
|
*/
|
|
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
|
|
&olddevs, &oldndevs) == 0);
|
|
|
|
newdevs = kmem_alloc(sizeof (void *) *
|
|
(ndevs + oldndevs), KM_SLEEP);
|
|
for (i = 0; i < oldndevs; i++)
|
|
VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
|
|
KM_SLEEP) == 0);
|
|
for (i = 0; i < ndevs; i++)
|
|
VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
|
|
KM_SLEEP) == 0);
|
|
|
|
VERIFY(nvlist_remove(sav->sav_config, config,
|
|
DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config,
|
|
config, newdevs, ndevs + oldndevs) == 0);
|
|
for (i = 0; i < oldndevs + ndevs; i++)
|
|
nvlist_free(newdevs[i]);
|
|
kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
|
|
} else {
|
|
/*
|
|
* Generate a new dev list.
|
|
*/
|
|
VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
|
|
KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
|
|
devs, ndevs) == 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop and drop level 2 ARC devices
|
|
*/
|
|
void
|
|
spa_l2cache_drop(spa_t *spa)
|
|
{
|
|
vdev_t *vd;
|
|
int i;
|
|
spa_aux_vdev_t *sav = &spa->spa_l2cache;
|
|
|
|
for (i = 0; i < sav->sav_count; i++) {
|
|
uint64_t pool;
|
|
|
|
vd = sav->sav_vdevs[i];
|
|
ASSERT(vd != NULL);
|
|
|
|
if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
|
|
pool != 0ULL && l2arc_vdev_present(vd))
|
|
l2arc_remove_vdev(vd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pool Creation
|
|
*/
|
|
int
|
|
spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
|
|
nvlist_t *zplprops)
|
|
{
|
|
spa_t *spa;
|
|
char *altroot = NULL;
|
|
vdev_t *rvd;
|
|
dsl_pool_t *dp;
|
|
dmu_tx_t *tx;
|
|
int error = 0;
|
|
uint64_t txg = TXG_INITIAL;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t nspares, nl2cache;
|
|
uint64_t version, obj;
|
|
boolean_t has_features;
|
|
nvpair_t *elem;
|
|
int c, i;
|
|
char *poolname;
|
|
nvlist_t *nvl;
|
|
|
|
if (nvlist_lookup_string(props, "tname", &poolname) != 0)
|
|
poolname = (char *)pool;
|
|
|
|
/*
|
|
* If this pool already exists, return failure.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
if (spa_lookup(poolname) != NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(EEXIST));
|
|
}
|
|
|
|
/*
|
|
* Allocate a new spa_t structure.
|
|
*/
|
|
nvl = fnvlist_alloc();
|
|
fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
|
|
(void) nvlist_lookup_string(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
|
|
spa = spa_add(poolname, nvl, altroot);
|
|
fnvlist_free(nvl);
|
|
spa_activate(spa, spa_mode_global);
|
|
|
|
if (props && (error = spa_prop_validate(spa, props))) {
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Temporary pool names should never be written to disk.
|
|
*/
|
|
if (poolname != pool)
|
|
spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
|
|
|
|
has_features = B_FALSE;
|
|
for (elem = nvlist_next_nvpair(props, NULL);
|
|
elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
|
|
if (zpool_prop_feature(nvpair_name(elem)))
|
|
has_features = B_TRUE;
|
|
}
|
|
|
|
if (has_features || nvlist_lookup_uint64(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
|
|
version = SPA_VERSION;
|
|
}
|
|
ASSERT(SPA_VERSION_IS_SUPPORTED(version));
|
|
|
|
spa->spa_first_txg = txg;
|
|
spa->spa_uberblock.ub_txg = txg - 1;
|
|
spa->spa_uberblock.ub_version = version;
|
|
spa->spa_ubsync = spa->spa_uberblock;
|
|
|
|
/*
|
|
* Create "The Godfather" zio to hold all async IOs
|
|
*/
|
|
spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
|
|
KM_SLEEP);
|
|
for (i = 0; i < max_ncpus; i++) {
|
|
spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
|
|
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
|
|
ZIO_FLAG_GODFATHER);
|
|
}
|
|
|
|
/*
|
|
* Create the root vdev.
|
|
*/
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
|
|
|
|
ASSERT(error != 0 || rvd != NULL);
|
|
ASSERT(error != 0 || spa->spa_root_vdev == rvd);
|
|
|
|
if (error == 0 && !zfs_allocatable_devs(nvroot))
|
|
error = SET_ERROR(EINVAL);
|
|
|
|
if (error == 0 &&
|
|
(error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
|
|
(error = spa_validate_aux(spa, nvroot, txg,
|
|
VDEV_ALLOC_ADD)) == 0) {
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_metaslab_set_size(rvd->vdev_child[c]);
|
|
vdev_expand(rvd->vdev_child[c], txg);
|
|
}
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
if (error != 0) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get the list of spares, if specified.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
|
&spares, &nspares) == 0) {
|
|
VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
|
|
KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_spares(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Get the list of level 2 cache devices, if specified.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
|
|
&l2cache, &nl2cache) == 0) {
|
|
VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_l2cache(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
spa->spa_is_initializing = B_TRUE;
|
|
spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
|
|
spa->spa_meta_objset = dp->dp_meta_objset;
|
|
spa->spa_is_initializing = B_FALSE;
|
|
|
|
/*
|
|
* Create DDTs (dedup tables).
|
|
*/
|
|
ddt_create(spa);
|
|
|
|
spa_update_dspace(spa);
|
|
|
|
tx = dmu_tx_create_assigned(dp, txg);
|
|
|
|
/*
|
|
* Create the pool config object.
|
|
*/
|
|
spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
|
|
DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
|
|
DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
|
|
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
|
|
sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add pool config");
|
|
}
|
|
|
|
if (spa_version(spa) >= SPA_VERSION_FEATURES)
|
|
spa_feature_create_zap_objects(spa, tx);
|
|
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
|
|
sizeof (uint64_t), 1, &version, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add pool version");
|
|
}
|
|
|
|
/* Newly created pools with the right version are always deflated. */
|
|
if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
|
|
spa->spa_deflate = TRUE;
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
|
|
sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add deflate");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the deferred-free bpobj. Turn off compression
|
|
* because sync-to-convergence takes longer if the blocksize
|
|
* keeps changing.
|
|
*/
|
|
obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
|
|
dmu_object_set_compress(spa->spa_meta_objset, obj,
|
|
ZIO_COMPRESS_OFF, tx);
|
|
if (zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
|
|
sizeof (uint64_t), 1, &obj, tx) != 0) {
|
|
cmn_err(CE_PANIC, "failed to add bpobj");
|
|
}
|
|
VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
|
|
spa->spa_meta_objset, obj));
|
|
|
|
/*
|
|
* Create the pool's history object.
|
|
*/
|
|
if (version >= SPA_VERSION_ZPOOL_HISTORY)
|
|
spa_history_create_obj(spa, tx);
|
|
|
|
/*
|
|
* Set pool properties.
|
|
*/
|
|
spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
|
|
spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
|
|
spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
|
|
spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
|
|
|
|
if (props != NULL) {
|
|
spa_configfile_set(spa, props, B_FALSE);
|
|
spa_sync_props(props, tx);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
spa->spa_sync_on = B_TRUE;
|
|
txg_sync_start(spa->spa_dsl_pool);
|
|
|
|
/*
|
|
* We explicitly wait for the first transaction to complete so that our
|
|
* bean counters are appropriately updated.
|
|
*/
|
|
txg_wait_synced(spa->spa_dsl_pool, txg);
|
|
|
|
spa_config_sync(spa, B_FALSE, B_TRUE);
|
|
|
|
spa_history_log_version(spa, "create");
|
|
|
|
/*
|
|
* Don't count references from objsets that are already closed
|
|
* and are making their way through the eviction process.
|
|
*/
|
|
spa_evicting_os_wait(spa);
|
|
spa->spa_minref = refcount_count(&spa->spa_refcount);
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
/*
|
|
* Get the root pool information from the root disk, then import the root pool
|
|
* during the system boot up time.
|
|
*/
|
|
extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
|
|
|
|
static nvlist_t *
|
|
spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
|
|
{
|
|
nvlist_t *config;
|
|
nvlist_t *nvtop, *nvroot;
|
|
uint64_t pgid;
|
|
|
|
if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
|
|
return (NULL);
|
|
|
|
/*
|
|
* Add this top-level vdev to the child array.
|
|
*/
|
|
VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&nvtop) == 0);
|
|
VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
&pgid) == 0);
|
|
VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
|
|
|
|
/*
|
|
* Put this pool's top-level vdevs into a root vdev.
|
|
*/
|
|
VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
|
|
VDEV_TYPE_ROOT) == 0);
|
|
VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
|
|
VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
|
|
&nvtop, 1) == 0);
|
|
|
|
/*
|
|
* Replace the existing vdev_tree with the new root vdev in
|
|
* this pool's configuration (remove the old, add the new).
|
|
*/
|
|
VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
|
|
nvlist_free(nvroot);
|
|
return (config);
|
|
}
|
|
|
|
/*
|
|
* Walk the vdev tree and see if we can find a device with "better"
|
|
* configuration. A configuration is "better" if the label on that
|
|
* device has a more recent txg.
|
|
*/
|
|
static void
|
|
spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
|
|
{
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
nvlist_t *label;
|
|
uint64_t label_txg;
|
|
|
|
if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
|
|
&label) != 0)
|
|
return;
|
|
|
|
VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
|
|
&label_txg) == 0);
|
|
|
|
/*
|
|
* Do we have a better boot device?
|
|
*/
|
|
if (label_txg > *txg) {
|
|
*txg = label_txg;
|
|
*avd = vd;
|
|
}
|
|
nvlist_free(label);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Import a root pool.
|
|
*
|
|
* For x86. devpath_list will consist of devid and/or physpath name of
|
|
* the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
|
|
* The GRUB "findroot" command will return the vdev we should boot.
|
|
*
|
|
* For Sparc, devpath_list consists the physpath name of the booting device
|
|
* no matter the rootpool is a single device pool or a mirrored pool.
|
|
* e.g.
|
|
* "/pci@1f,0/ide@d/disk@0,0:a"
|
|
*/
|
|
int
|
|
spa_import_rootpool(char *devpath, char *devid)
|
|
{
|
|
spa_t *spa;
|
|
vdev_t *rvd, *bvd, *avd = NULL;
|
|
nvlist_t *config, *nvtop;
|
|
uint64_t guid, txg;
|
|
char *pname;
|
|
int error;
|
|
|
|
/*
|
|
* Read the label from the boot device and generate a configuration.
|
|
*/
|
|
config = spa_generate_rootconf(devpath, devid, &guid);
|
|
#if defined(_OBP) && defined(_KERNEL)
|
|
if (config == NULL) {
|
|
if (strstr(devpath, "/iscsi/ssd") != NULL) {
|
|
/* iscsi boot */
|
|
get_iscsi_bootpath_phy(devpath);
|
|
config = spa_generate_rootconf(devpath, devid, &guid);
|
|
}
|
|
}
|
|
#endif
|
|
if (config == NULL) {
|
|
cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
|
|
devpath);
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
|
|
VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
|
|
&pname) == 0);
|
|
VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
if ((spa = spa_lookup(pname)) != NULL) {
|
|
/*
|
|
* Remove the existing root pool from the namespace so that we
|
|
* can replace it with the correct config we just read in.
|
|
*/
|
|
spa_remove(spa);
|
|
}
|
|
|
|
spa = spa_add(pname, config, NULL);
|
|
spa->spa_is_root = B_TRUE;
|
|
spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
|
|
|
|
/*
|
|
* Build up a vdev tree based on the boot device's label config.
|
|
*/
|
|
VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&nvtop) == 0);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
|
|
VDEV_ALLOC_ROOTPOOL);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
if (error) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
nvlist_free(config);
|
|
cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
|
|
pname);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Get the boot vdev.
|
|
*/
|
|
if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
|
|
cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
|
|
(u_longlong_t)guid);
|
|
error = SET_ERROR(ENOENT);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Determine if there is a better boot device.
|
|
*/
|
|
avd = bvd;
|
|
spa_alt_rootvdev(rvd, &avd, &txg);
|
|
if (avd != bvd) {
|
|
cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
|
|
"try booting from '%s'", avd->vdev_path);
|
|
error = SET_ERROR(EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the boot device is part of a spare vdev then ensure that
|
|
* we're booting off the active spare.
|
|
*/
|
|
if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
|
|
!bvd->vdev_isspare) {
|
|
cmn_err(CE_NOTE, "The boot device is currently spared. Please "
|
|
"try booting from '%s'",
|
|
bvd->vdev_parent->
|
|
vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
|
|
error = SET_ERROR(EINVAL);
|
|
goto out;
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
vdev_free(rvd);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
nvlist_free(config);
|
|
return (error);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Import a non-root pool into the system.
|
|
*/
|
|
int
|
|
spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
|
|
{
|
|
spa_t *spa;
|
|
char *altroot = NULL;
|
|
spa_load_state_t state = SPA_LOAD_IMPORT;
|
|
zpool_rewind_policy_t policy;
|
|
uint64_t mode = spa_mode_global;
|
|
uint64_t readonly = B_FALSE;
|
|
int error;
|
|
nvlist_t *nvroot;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t nspares, nl2cache;
|
|
|
|
/*
|
|
* If a pool with this name exists, return failure.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
if (spa_lookup(pool) != NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(EEXIST));
|
|
}
|
|
|
|
/*
|
|
* Create and initialize the spa structure.
|
|
*/
|
|
(void) nvlist_lookup_string(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
|
|
(void) nvlist_lookup_uint64(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
|
|
if (readonly)
|
|
mode = FREAD;
|
|
spa = spa_add(pool, config, altroot);
|
|
spa->spa_import_flags = flags;
|
|
|
|
/*
|
|
* Verbatim import - Take a pool and insert it into the namespace
|
|
* as if it had been loaded at boot.
|
|
*/
|
|
if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
|
|
if (props != NULL)
|
|
spa_configfile_set(spa, props, B_FALSE);
|
|
|
|
spa_config_sync(spa, B_FALSE, B_TRUE);
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (0);
|
|
}
|
|
|
|
spa_activate(spa, mode);
|
|
|
|
/*
|
|
* Don't start async tasks until we know everything is healthy.
|
|
*/
|
|
spa_async_suspend(spa);
|
|
|
|
zpool_get_rewind_policy(config, &policy);
|
|
if (policy.zrp_request & ZPOOL_DO_REWIND)
|
|
state = SPA_LOAD_RECOVER;
|
|
|
|
/*
|
|
* Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
|
|
* because the user-supplied config is actually the one to trust when
|
|
* doing an import.
|
|
*/
|
|
if (state != SPA_LOAD_RECOVER)
|
|
spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
|
|
|
|
error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
|
|
policy.zrp_request);
|
|
|
|
/*
|
|
* Propagate anything learned while loading the pool and pass it
|
|
* back to caller (i.e. rewind info, missing devices, etc).
|
|
*/
|
|
VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
|
|
spa->spa_load_info) == 0);
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
/*
|
|
* Toss any existing sparelist, as it doesn't have any validity
|
|
* anymore, and conflicts with spa_has_spare().
|
|
*/
|
|
if (spa->spa_spares.sav_config) {
|
|
nvlist_free(spa->spa_spares.sav_config);
|
|
spa->spa_spares.sav_config = NULL;
|
|
spa_load_spares(spa);
|
|
}
|
|
if (spa->spa_l2cache.sav_config) {
|
|
nvlist_free(spa->spa_l2cache.sav_config);
|
|
spa->spa_l2cache.sav_config = NULL;
|
|
spa_load_l2cache(spa);
|
|
}
|
|
|
|
VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
|
|
&nvroot) == 0);
|
|
if (error == 0)
|
|
error = spa_validate_aux(spa, nvroot, -1ULL,
|
|
VDEV_ALLOC_SPARE);
|
|
if (error == 0)
|
|
error = spa_validate_aux(spa, nvroot, -1ULL,
|
|
VDEV_ALLOC_L2CACHE);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
if (props != NULL)
|
|
spa_configfile_set(spa, props, B_FALSE);
|
|
|
|
if (error != 0 || (props && spa_writeable(spa) &&
|
|
(error = spa_prop_set(spa, props)))) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (error);
|
|
}
|
|
|
|
spa_async_resume(spa);
|
|
|
|
/*
|
|
* Override any spares and level 2 cache devices as specified by
|
|
* the user, as these may have correct device names/devids, etc.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
|
|
&spares, &nspares) == 0) {
|
|
if (spa->spa_spares.sav_config)
|
|
VERIFY(nvlist_remove(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
else
|
|
VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_spares(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
|
|
&l2cache, &nl2cache) == 0) {
|
|
if (spa->spa_l2cache.sav_config)
|
|
VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
else
|
|
VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa_load_l2cache(spa);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Check for any removed devices.
|
|
*/
|
|
if (spa->spa_autoreplace) {
|
|
spa_aux_check_removed(&spa->spa_spares);
|
|
spa_aux_check_removed(&spa->spa_l2cache);
|
|
}
|
|
|
|
if (spa_writeable(spa)) {
|
|
/*
|
|
* Update the config cache to include the newly-imported pool.
|
|
*/
|
|
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
|
|
}
|
|
|
|
/*
|
|
* It's possible that the pool was expanded while it was exported.
|
|
* We kick off an async task to handle this for us.
|
|
*/
|
|
spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
|
|
|
|
mutex_exit(&spa_namespace_lock);
|
|
spa_history_log_version(spa, "import");
|
|
|
|
#ifdef _KERNEL
|
|
zvol_create_minors(pool);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
nvlist_t *
|
|
spa_tryimport(nvlist_t *tryconfig)
|
|
{
|
|
nvlist_t *config = NULL;
|
|
char *poolname;
|
|
spa_t *spa;
|
|
uint64_t state;
|
|
int error;
|
|
|
|
if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
|
|
return (NULL);
|
|
|
|
if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
|
|
return (NULL);
|
|
|
|
/*
|
|
* Create and initialize the spa structure.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
|
|
spa_activate(spa, FREAD);
|
|
|
|
/*
|
|
* Pass off the heavy lifting to spa_load().
|
|
* Pass TRUE for mosconfig because the user-supplied config
|
|
* is actually the one to trust when doing an import.
|
|
*/
|
|
error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
|
|
|
|
/*
|
|
* If 'tryconfig' was at least parsable, return the current config.
|
|
*/
|
|
if (spa->spa_root_vdev != NULL) {
|
|
config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
|
|
VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
|
|
poolname) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
|
state) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
|
|
spa->spa_uberblock.ub_timestamp) == 0);
|
|
VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
|
|
spa->spa_load_info) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
|
|
spa->spa_errata) == 0);
|
|
|
|
/*
|
|
* If the bootfs property exists on this pool then we
|
|
* copy it out so that external consumers can tell which
|
|
* pools are bootable.
|
|
*/
|
|
if ((!error || error == EEXIST) && spa->spa_bootfs) {
|
|
char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
|
|
/*
|
|
* We have to play games with the name since the
|
|
* pool was opened as TRYIMPORT_NAME.
|
|
*/
|
|
if (dsl_dsobj_to_dsname(spa_name(spa),
|
|
spa->spa_bootfs, tmpname) == 0) {
|
|
char *cp;
|
|
char *dsname;
|
|
|
|
dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
|
|
cp = strchr(tmpname, '/');
|
|
if (cp == NULL) {
|
|
(void) strlcpy(dsname, tmpname,
|
|
MAXPATHLEN);
|
|
} else {
|
|
(void) snprintf(dsname, MAXPATHLEN,
|
|
"%s/%s", poolname, ++cp);
|
|
}
|
|
VERIFY(nvlist_add_string(config,
|
|
ZPOOL_CONFIG_BOOTFS, dsname) == 0);
|
|
kmem_free(dsname, MAXPATHLEN);
|
|
}
|
|
kmem_free(tmpname, MAXPATHLEN);
|
|
}
|
|
|
|
/*
|
|
* Add the list of hot spares and level 2 cache devices.
|
|
*/
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
spa_add_spares(spa, config);
|
|
spa_add_l2cache(spa, config);
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
}
|
|
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
spa_remove(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (config);
|
|
}
|
|
|
|
/*
|
|
* Pool export/destroy
|
|
*
|
|
* The act of destroying or exporting a pool is very simple. We make sure there
|
|
* is no more pending I/O and any references to the pool are gone. Then, we
|
|
* update the pool state and sync all the labels to disk, removing the
|
|
* configuration from the cache afterwards. If the 'hardforce' flag is set, then
|
|
* we don't sync the labels or remove the configuration cache.
|
|
*/
|
|
static int
|
|
spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
|
|
boolean_t force, boolean_t hardforce)
|
|
{
|
|
spa_t *spa;
|
|
|
|
if (oldconfig)
|
|
*oldconfig = NULL;
|
|
|
|
if (!(spa_mode_global & FWRITE))
|
|
return (SET_ERROR(EROFS));
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
if ((spa = spa_lookup(pool)) == NULL) {
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
/*
|
|
* Put a hold on the pool, drop the namespace lock, stop async tasks,
|
|
* reacquire the namespace lock, and see if we can export.
|
|
*/
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
spa_async_suspend(spa);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
|
|
goto export_spa;
|
|
/*
|
|
* The pool will be in core if it's openable, in which case we can
|
|
* modify its state. Objsets may be open only because they're dirty,
|
|
* so we have to force it to sync before checking spa_refcnt.
|
|
*/
|
|
if (spa->spa_sync_on) {
|
|
txg_wait_synced(spa->spa_dsl_pool, 0);
|
|
spa_evicting_os_wait(spa);
|
|
}
|
|
|
|
/*
|
|
* A pool cannot be exported or destroyed if there are active
|
|
* references. If we are resetting a pool, allow references by
|
|
* fault injection handlers.
|
|
*/
|
|
if (!spa_refcount_zero(spa) ||
|
|
(spa->spa_inject_ref != 0 &&
|
|
new_state != POOL_STATE_UNINITIALIZED)) {
|
|
spa_async_resume(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(EBUSY));
|
|
}
|
|
|
|
if (spa->spa_sync_on) {
|
|
/*
|
|
* A pool cannot be exported if it has an active shared spare.
|
|
* This is to prevent other pools stealing the active spare
|
|
* from an exported pool. At user's own will, such pool can
|
|
* be forcedly exported.
|
|
*/
|
|
if (!force && new_state == POOL_STATE_EXPORTED &&
|
|
spa_has_active_shared_spare(spa)) {
|
|
spa_async_resume(spa);
|
|
mutex_exit(&spa_namespace_lock);
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
|
|
/*
|
|
* We want this to be reflected on every label,
|
|
* so mark them all dirty. spa_unload() will do the
|
|
* final sync that pushes these changes out.
|
|
*/
|
|
if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
spa->spa_state = new_state;
|
|
spa->spa_final_txg = spa_last_synced_txg(spa) +
|
|
TXG_DEFER_SIZE + 1;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
}
|
|
}
|
|
|
|
export_spa:
|
|
spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_DESTROY);
|
|
|
|
if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
}
|
|
|
|
if (oldconfig && spa->spa_config)
|
|
VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
|
|
|
|
if (new_state != POOL_STATE_UNINITIALIZED) {
|
|
if (!hardforce)
|
|
spa_config_sync(spa, B_TRUE, B_TRUE);
|
|
spa_remove(spa);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Destroy a storage pool.
|
|
*/
|
|
int
|
|
spa_destroy(char *pool)
|
|
{
|
|
return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
|
|
B_FALSE, B_FALSE));
|
|
}
|
|
|
|
/*
|
|
* Export a storage pool.
|
|
*/
|
|
int
|
|
spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
|
|
boolean_t hardforce)
|
|
{
|
|
return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
|
|
force, hardforce));
|
|
}
|
|
|
|
/*
|
|
* Similar to spa_export(), this unloads the spa_t without actually removing it
|
|
* from the namespace in any way.
|
|
*/
|
|
int
|
|
spa_reset(char *pool)
|
|
{
|
|
return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
|
|
B_FALSE, B_FALSE));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Device manipulation
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Add a device to a storage pool.
|
|
*/
|
|
int
|
|
spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
|
|
{
|
|
uint64_t txg, id;
|
|
int error;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *vd, *tvd;
|
|
nvlist_t **spares, **l2cache;
|
|
uint_t nspares, nl2cache;
|
|
int c;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
|
|
VDEV_ALLOC_ADD)) != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, error));
|
|
|
|
spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
|
|
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
|
|
&nspares) != 0)
|
|
nspares = 0;
|
|
|
|
if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
|
|
&nl2cache) != 0)
|
|
nl2cache = 0;
|
|
|
|
if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
|
|
return (spa_vdev_exit(spa, vd, txg, EINVAL));
|
|
|
|
if (vd->vdev_children != 0 &&
|
|
(error = vdev_create(vd, txg, B_FALSE)) != 0)
|
|
return (spa_vdev_exit(spa, vd, txg, error));
|
|
|
|
/*
|
|
* We must validate the spares and l2cache devices after checking the
|
|
* children. Otherwise, vdev_inuse() will blindly overwrite the spare.
|
|
*/
|
|
if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
|
|
return (spa_vdev_exit(spa, vd, txg, error));
|
|
|
|
/*
|
|
* Transfer each new top-level vdev from vd to rvd.
|
|
*/
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
|
|
/*
|
|
* Set the vdev id to the first hole, if one exists.
|
|
*/
|
|
for (id = 0; id < rvd->vdev_children; id++) {
|
|
if (rvd->vdev_child[id]->vdev_ishole) {
|
|
vdev_free(rvd->vdev_child[id]);
|
|
break;
|
|
}
|
|
}
|
|
tvd = vd->vdev_child[c];
|
|
vdev_remove_child(vd, tvd);
|
|
tvd->vdev_id = id;
|
|
vdev_add_child(rvd, tvd);
|
|
vdev_config_dirty(tvd);
|
|
}
|
|
|
|
if (nspares != 0) {
|
|
spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
|
|
ZPOOL_CONFIG_SPARES);
|
|
spa_load_spares(spa);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
}
|
|
|
|
if (nl2cache != 0) {
|
|
spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
|
|
ZPOOL_CONFIG_L2CACHE);
|
|
spa_load_l2cache(spa);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* We have to be careful when adding new vdevs to an existing pool.
|
|
* If other threads start allocating from these vdevs before we
|
|
* sync the config cache, and we lose power, then upon reboot we may
|
|
* fail to open the pool because there are DVAs that the config cache
|
|
* can't translate. Therefore, we first add the vdevs without
|
|
* initializing metaslabs; sync the config cache (via spa_vdev_exit());
|
|
* and then let spa_config_update() initialize the new metaslabs.
|
|
*
|
|
* spa_load() checks for added-but-not-initialized vdevs, so that
|
|
* if we lose power at any point in this sequence, the remaining
|
|
* steps will be completed the next time we load the pool.
|
|
*/
|
|
(void) spa_vdev_exit(spa, vd, txg, 0);
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Attach a device to a mirror. The arguments are the path to any device
|
|
* in the mirror, and the nvroot for the new device. If the path specifies
|
|
* a device that is not mirrored, we automatically insert the mirror vdev.
|
|
*
|
|
* If 'replacing' is specified, the new device is intended to replace the
|
|
* existing device; in this case the two devices are made into their own
|
|
* mirror using the 'replacing' vdev, which is functionally identical to
|
|
* the mirror vdev (it actually reuses all the same ops) but has a few
|
|
* extra rules: you can't attach to it after it's been created, and upon
|
|
* completion of resilvering, the first disk (the one being replaced)
|
|
* is automatically detached.
|
|
*/
|
|
int
|
|
spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
|
|
{
|
|
uint64_t txg, dtl_max_txg;
|
|
vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
|
|
vdev_ops_t *pvops;
|
|
char *oldvdpath, *newvdpath;
|
|
int newvd_isspare;
|
|
int error;
|
|
ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
|
|
|
|
if (oldvd == NULL)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
|
|
|
|
if (!oldvd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
pvd = oldvd->vdev_parent;
|
|
|
|
if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
|
|
VDEV_ALLOC_ATTACH)) != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
|
|
|
|
if (newrootvd->vdev_children != 1)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
|
|
|
|
newvd = newrootvd->vdev_child[0];
|
|
|
|
if (!newvd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
|
|
|
|
if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, error));
|
|
|
|
/*
|
|
* Spares can't replace logs
|
|
*/
|
|
if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
|
|
if (!replacing) {
|
|
/*
|
|
* For attach, the only allowable parent is a mirror or the root
|
|
* vdev.
|
|
*/
|
|
if (pvd->vdev_ops != &vdev_mirror_ops &&
|
|
pvd->vdev_ops != &vdev_root_ops)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
|
|
pvops = &vdev_mirror_ops;
|
|
} else {
|
|
/*
|
|
* Active hot spares can only be replaced by inactive hot
|
|
* spares.
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_spare_ops &&
|
|
oldvd->vdev_isspare &&
|
|
!spa_has_spare(spa, newvd->vdev_guid))
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
|
|
/*
|
|
* If the source is a hot spare, and the parent isn't already a
|
|
* spare, then we want to create a new hot spare. Otherwise, we
|
|
* want to create a replacing vdev. The user is not allowed to
|
|
* attach to a spared vdev child unless the 'isspare' state is
|
|
* the same (spare replaces spare, non-spare replaces
|
|
* non-spare).
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_replacing_ops &&
|
|
spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
} else if (pvd->vdev_ops == &vdev_spare_ops &&
|
|
newvd->vdev_isspare != oldvd->vdev_isspare) {
|
|
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
|
|
}
|
|
|
|
if (newvd->vdev_isspare)
|
|
pvops = &vdev_spare_ops;
|
|
else
|
|
pvops = &vdev_replacing_ops;
|
|
}
|
|
|
|
/*
|
|
* Make sure the new device is big enough.
|
|
*/
|
|
if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
|
|
|
|
/*
|
|
* The new device cannot have a higher alignment requirement
|
|
* than the top-level vdev.
|
|
*/
|
|
if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
|
|
return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
|
|
|
|
/*
|
|
* If this is an in-place replacement, update oldvd's path and devid
|
|
* to make it distinguishable from newvd, and unopenable from now on.
|
|
*/
|
|
if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
|
|
spa_strfree(oldvd->vdev_path);
|
|
oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
|
|
KM_SLEEP);
|
|
(void) sprintf(oldvd->vdev_path, "%s/%s",
|
|
newvd->vdev_path, "old");
|
|
if (oldvd->vdev_devid != NULL) {
|
|
spa_strfree(oldvd->vdev_devid);
|
|
oldvd->vdev_devid = NULL;
|
|
}
|
|
}
|
|
|
|
/* mark the device being resilvered */
|
|
newvd->vdev_resilver_txg = txg;
|
|
|
|
/*
|
|
* If the parent is not a mirror, or if we're replacing, insert the new
|
|
* mirror/replacing/spare vdev above oldvd.
|
|
*/
|
|
if (pvd->vdev_ops != pvops)
|
|
pvd = vdev_add_parent(oldvd, pvops);
|
|
|
|
ASSERT(pvd->vdev_top->vdev_parent == rvd);
|
|
ASSERT(pvd->vdev_ops == pvops);
|
|
ASSERT(oldvd->vdev_parent == pvd);
|
|
|
|
/*
|
|
* Extract the new device from its root and add it to pvd.
|
|
*/
|
|
vdev_remove_child(newrootvd, newvd);
|
|
newvd->vdev_id = pvd->vdev_children;
|
|
newvd->vdev_crtxg = oldvd->vdev_crtxg;
|
|
vdev_add_child(pvd, newvd);
|
|
|
|
tvd = newvd->vdev_top;
|
|
ASSERT(pvd->vdev_top == tvd);
|
|
ASSERT(tvd->vdev_parent == rvd);
|
|
|
|
vdev_config_dirty(tvd);
|
|
|
|
/*
|
|
* Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
|
|
* for any dmu_sync-ed blocks. It will propagate upward when
|
|
* spa_vdev_exit() calls vdev_dtl_reassess().
|
|
*/
|
|
dtl_max_txg = txg + TXG_CONCURRENT_STATES;
|
|
|
|
vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
|
|
dtl_max_txg - TXG_INITIAL);
|
|
|
|
if (newvd->vdev_isspare) {
|
|
spa_spare_activate(newvd);
|
|
spa_event_notify(spa, newvd, FM_EREPORT_ZFS_DEVICE_SPARE);
|
|
}
|
|
|
|
oldvdpath = spa_strdup(oldvd->vdev_path);
|
|
newvdpath = spa_strdup(newvd->vdev_path);
|
|
newvd_isspare = newvd->vdev_isspare;
|
|
|
|
/*
|
|
* Mark newvd's DTL dirty in this txg.
|
|
*/
|
|
vdev_dirty(tvd, VDD_DTL, newvd, txg);
|
|
|
|
/*
|
|
* Schedule the resilver to restart in the future. We do this to
|
|
* ensure that dmu_sync-ed blocks have been stitched into the
|
|
* respective datasets.
|
|
*/
|
|
dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
|
|
|
|
/*
|
|
* Commit the config
|
|
*/
|
|
(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
|
|
|
|
spa_history_log_internal(spa, "vdev attach", NULL,
|
|
"%s vdev=%s %s vdev=%s",
|
|
replacing && newvd_isspare ? "spare in" :
|
|
replacing ? "replace" : "attach", newvdpath,
|
|
replacing ? "for" : "to", oldvdpath);
|
|
|
|
spa_strfree(oldvdpath);
|
|
spa_strfree(newvdpath);
|
|
|
|
if (spa->spa_bootfs)
|
|
spa_event_notify(spa, newvd, FM_EREPORT_ZFS_BOOTFS_VDEV_ATTACH);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Detach a device from a mirror or replacing vdev.
|
|
*
|
|
* If 'replace_done' is specified, only detach if the parent
|
|
* is a replacing vdev.
|
|
*/
|
|
int
|
|
spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
|
|
{
|
|
uint64_t txg;
|
|
int error;
|
|
vdev_t *vd, *pvd, *cvd, *tvd;
|
|
boolean_t unspare = B_FALSE;
|
|
uint64_t unspare_guid = 0;
|
|
char *vdpath;
|
|
int c, t;
|
|
ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
vd = spa_lookup_by_guid(spa, guid, B_FALSE);
|
|
|
|
if (vd == NULL)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
pvd = vd->vdev_parent;
|
|
|
|
/*
|
|
* If the parent/child relationship is not as expected, don't do it.
|
|
* Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
|
|
* vdev that's replacing B with C. The user's intent in replacing
|
|
* is to go from M(A,B) to M(A,C). If the user decides to cancel
|
|
* the replace by detaching C, the expected behavior is to end up
|
|
* M(A,B). But suppose that right after deciding to detach C,
|
|
* the replacement of B completes. We would have M(A,C), and then
|
|
* ask to detach C, which would leave us with just A -- not what
|
|
* the user wanted. To prevent this, we make sure that the
|
|
* parent/child relationship hasn't changed -- in this example,
|
|
* that C's parent is still the replacing vdev R.
|
|
*/
|
|
if (pvd->vdev_guid != pguid && pguid != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
|
|
|
|
/*
|
|
* Only 'replacing' or 'spare' vdevs can be replaced.
|
|
*/
|
|
if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
|
|
pvd->vdev_ops != &vdev_spare_ops)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
|
|
spa_version(spa) >= SPA_VERSION_SPARES);
|
|
|
|
/*
|
|
* Only mirror, replacing, and spare vdevs support detach.
|
|
*/
|
|
if (pvd->vdev_ops != &vdev_replacing_ops &&
|
|
pvd->vdev_ops != &vdev_mirror_ops &&
|
|
pvd->vdev_ops != &vdev_spare_ops)
|
|
return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
|
|
|
|
/*
|
|
* If this device has the only valid copy of some data,
|
|
* we cannot safely detach it.
|
|
*/
|
|
if (vdev_dtl_required(vd))
|
|
return (spa_vdev_exit(spa, NULL, txg, EBUSY));
|
|
|
|
ASSERT(pvd->vdev_children >= 2);
|
|
|
|
/*
|
|
* If we are detaching the second disk from a replacing vdev, then
|
|
* check to see if we changed the original vdev's path to have "/old"
|
|
* at the end in spa_vdev_attach(). If so, undo that change now.
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
|
|
vd->vdev_path != NULL) {
|
|
size_t len = strlen(vd->vdev_path);
|
|
|
|
for (c = 0; c < pvd->vdev_children; c++) {
|
|
cvd = pvd->vdev_child[c];
|
|
|
|
if (cvd == vd || cvd->vdev_path == NULL)
|
|
continue;
|
|
|
|
if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
|
|
strcmp(cvd->vdev_path + len, "/old") == 0) {
|
|
spa_strfree(cvd->vdev_path);
|
|
cvd->vdev_path = spa_strdup(vd->vdev_path);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are detaching the original disk from a spare, then it implies
|
|
* that the spare should become a real disk, and be removed from the
|
|
* active spare list for the pool.
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_spare_ops &&
|
|
vd->vdev_id == 0 &&
|
|
pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
|
|
unspare = B_TRUE;
|
|
|
|
/*
|
|
* Erase the disk labels so the disk can be used for other things.
|
|
* This must be done after all other error cases are handled,
|
|
* but before we disembowel vd (so we can still do I/O to it).
|
|
* But if we can't do it, don't treat the error as fatal --
|
|
* it may be that the unwritability of the disk is the reason
|
|
* it's being detached!
|
|
*/
|
|
error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
|
|
|
|
/*
|
|
* Remove vd from its parent and compact the parent's children.
|
|
*/
|
|
vdev_remove_child(pvd, vd);
|
|
vdev_compact_children(pvd);
|
|
|
|
/*
|
|
* Remember one of the remaining children so we can get tvd below.
|
|
*/
|
|
cvd = pvd->vdev_child[pvd->vdev_children - 1];
|
|
|
|
/*
|
|
* If we need to remove the remaining child from the list of hot spares,
|
|
* do it now, marking the vdev as no longer a spare in the process.
|
|
* We must do this before vdev_remove_parent(), because that can
|
|
* change the GUID if it creates a new toplevel GUID. For a similar
|
|
* reason, we must remove the spare now, in the same txg as the detach;
|
|
* otherwise someone could attach a new sibling, change the GUID, and
|
|
* the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
|
|
*/
|
|
if (unspare) {
|
|
ASSERT(cvd->vdev_isspare);
|
|
spa_spare_remove(cvd);
|
|
unspare_guid = cvd->vdev_guid;
|
|
(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
|
|
cvd->vdev_unspare = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* If the parent mirror/replacing vdev only has one child,
|
|
* the parent is no longer needed. Remove it from the tree.
|
|
*/
|
|
if (pvd->vdev_children == 1) {
|
|
if (pvd->vdev_ops == &vdev_spare_ops)
|
|
cvd->vdev_unspare = B_FALSE;
|
|
vdev_remove_parent(cvd);
|
|
}
|
|
|
|
|
|
/*
|
|
* We don't set tvd until now because the parent we just removed
|
|
* may have been the previous top-level vdev.
|
|
*/
|
|
tvd = cvd->vdev_top;
|
|
ASSERT(tvd->vdev_parent == rvd);
|
|
|
|
/*
|
|
* Reevaluate the parent vdev state.
|
|
*/
|
|
vdev_propagate_state(cvd);
|
|
|
|
/*
|
|
* If the 'autoexpand' property is set on the pool then automatically
|
|
* try to expand the size of the pool. For example if the device we
|
|
* just detached was smaller than the others, it may be possible to
|
|
* add metaslabs (i.e. grow the pool). We need to reopen the vdev
|
|
* first so that we can obtain the updated sizes of the leaf vdevs.
|
|
*/
|
|
if (spa->spa_autoexpand) {
|
|
vdev_reopen(tvd);
|
|
vdev_expand(tvd, txg);
|
|
}
|
|
|
|
vdev_config_dirty(tvd);
|
|
|
|
/*
|
|
* Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
|
|
* vd->vdev_detached is set and free vd's DTL object in syncing context.
|
|
* But first make sure we're not on any *other* txg's DTL list, to
|
|
* prevent vd from being accessed after it's freed.
|
|
*/
|
|
vdpath = spa_strdup(vd->vdev_path);
|
|
for (t = 0; t < TXG_SIZE; t++)
|
|
(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
|
|
vd->vdev_detached = B_TRUE;
|
|
vdev_dirty(tvd, VDD_DTL, vd, txg);
|
|
|
|
spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_REMOVE);
|
|
|
|
/* hang on to the spa before we release the lock */
|
|
spa_open_ref(spa, FTAG);
|
|
|
|
error = spa_vdev_exit(spa, vd, txg, 0);
|
|
|
|
spa_history_log_internal(spa, "detach", NULL,
|
|
"vdev=%s", vdpath);
|
|
spa_strfree(vdpath);
|
|
|
|
/*
|
|
* If this was the removal of the original device in a hot spare vdev,
|
|
* then we want to go through and remove the device from the hot spare
|
|
* list of every other pool.
|
|
*/
|
|
if (unspare) {
|
|
spa_t *altspa = NULL;
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((altspa = spa_next(altspa)) != NULL) {
|
|
if (altspa->spa_state != POOL_STATE_ACTIVE ||
|
|
altspa == spa)
|
|
continue;
|
|
|
|
spa_open_ref(altspa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(altspa, FTAG);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
/* search the rest of the vdevs for spares to remove */
|
|
spa_vdev_resilver_done(spa);
|
|
}
|
|
|
|
/* all done with the spa; OK to release */
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Split a set of devices from their mirrors, and create a new pool from them.
|
|
*/
|
|
int
|
|
spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
|
|
nvlist_t *props, boolean_t exp)
|
|
{
|
|
int error = 0;
|
|
uint64_t txg, *glist;
|
|
spa_t *newspa;
|
|
uint_t c, children, lastlog;
|
|
nvlist_t **child, *nvl, *tmp;
|
|
dmu_tx_t *tx;
|
|
char *altroot = NULL;
|
|
vdev_t *rvd, **vml = NULL; /* vdev modify list */
|
|
boolean_t activate_slog;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
/* clear the log and flush everything up to now */
|
|
activate_slog = spa_passivate_log(spa);
|
|
(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
|
|
error = spa_offline_log(spa);
|
|
txg = spa_vdev_config_enter(spa);
|
|
|
|
if (activate_slog)
|
|
spa_activate_log(spa);
|
|
|
|
if (error != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, error));
|
|
|
|
/* check new spa name before going any further */
|
|
if (spa_lookup(newname) != NULL)
|
|
return (spa_vdev_exit(spa, NULL, txg, EEXIST));
|
|
|
|
/*
|
|
* scan through all the children to ensure they're all mirrors
|
|
*/
|
|
if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
|
|
nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
|
|
&children) != 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
|
|
|
|
/* first, check to ensure we've got the right child count */
|
|
rvd = spa->spa_root_vdev;
|
|
lastlog = 0;
|
|
for (c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *vd = rvd->vdev_child[c];
|
|
|
|
/* don't count the holes & logs as children */
|
|
if (vd->vdev_islog || vd->vdev_ishole) {
|
|
if (lastlog == 0)
|
|
lastlog = c;
|
|
continue;
|
|
}
|
|
|
|
lastlog = 0;
|
|
}
|
|
if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
|
|
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
|
|
|
|
/* next, ensure no spare or cache devices are part of the split */
|
|
if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
|
|
nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
|
|
return (spa_vdev_exit(spa, NULL, txg, EINVAL));
|
|
|
|
vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
|
|
glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
|
|
|
|
/* then, loop over each vdev and validate it */
|
|
for (c = 0; c < children; c++) {
|
|
uint64_t is_hole = 0;
|
|
|
|
(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
|
|
&is_hole);
|
|
|
|
if (is_hole != 0) {
|
|
if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
|
|
spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
|
|
continue;
|
|
} else {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* which disk is going to be split? */
|
|
if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
|
|
&glist[c]) != 0) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
/* look it up in the spa */
|
|
vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
|
|
if (vml[c] == NULL) {
|
|
error = SET_ERROR(ENODEV);
|
|
break;
|
|
}
|
|
|
|
/* make sure there's nothing stopping the split */
|
|
if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
|
|
vml[c]->vdev_islog ||
|
|
vml[c]->vdev_ishole ||
|
|
vml[c]->vdev_isspare ||
|
|
vml[c]->vdev_isl2cache ||
|
|
!vdev_writeable(vml[c]) ||
|
|
vml[c]->vdev_children != 0 ||
|
|
vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
|
|
c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
|
|
error = SET_ERROR(EINVAL);
|
|
break;
|
|
}
|
|
|
|
if (vdev_dtl_required(vml[c])) {
|
|
error = SET_ERROR(EBUSY);
|
|
break;
|
|
}
|
|
|
|
/* we need certain info from the top level */
|
|
VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
|
|
vml[c]->vdev_top->vdev_ms_array) == 0);
|
|
VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
|
|
vml[c]->vdev_top->vdev_ms_shift) == 0);
|
|
VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
|
|
vml[c]->vdev_top->vdev_asize) == 0);
|
|
VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
|
|
vml[c]->vdev_top->vdev_ashift) == 0);
|
|
}
|
|
|
|
if (error != 0) {
|
|
kmem_free(vml, children * sizeof (vdev_t *));
|
|
kmem_free(glist, children * sizeof (uint64_t));
|
|
return (spa_vdev_exit(spa, NULL, txg, error));
|
|
}
|
|
|
|
/* stop writers from using the disks */
|
|
for (c = 0; c < children; c++) {
|
|
if (vml[c] != NULL)
|
|
vml[c]->vdev_offline = B_TRUE;
|
|
}
|
|
vdev_reopen(spa->spa_root_vdev);
|
|
|
|
/*
|
|
* Temporarily record the splitting vdevs in the spa config. This
|
|
* will disappear once the config is regenerated.
|
|
*/
|
|
VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
|
|
glist, children) == 0);
|
|
kmem_free(glist, children * sizeof (uint64_t));
|
|
|
|
mutex_enter(&spa->spa_props_lock);
|
|
VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
|
|
nvl) == 0);
|
|
mutex_exit(&spa->spa_props_lock);
|
|
spa->spa_config_splitting = nvl;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
|
|
/* configure and create the new pool */
|
|
VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
|
|
exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
|
|
spa_version(spa)) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
|
|
spa->spa_config_txg) == 0);
|
|
VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
spa_generate_guid(NULL)) == 0);
|
|
(void) nvlist_lookup_string(props,
|
|
zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
|
|
|
|
/* add the new pool to the namespace */
|
|
newspa = spa_add(newname, config, altroot);
|
|
newspa->spa_config_txg = spa->spa_config_txg;
|
|
spa_set_log_state(newspa, SPA_LOG_CLEAR);
|
|
|
|
/* release the spa config lock, retaining the namespace lock */
|
|
spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
|
|
|
|
if (zio_injection_enabled)
|
|
zio_handle_panic_injection(spa, FTAG, 1);
|
|
|
|
spa_activate(newspa, spa_mode_global);
|
|
spa_async_suspend(newspa);
|
|
|
|
/* create the new pool from the disks of the original pool */
|
|
error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* if that worked, generate a real config for the new pool */
|
|
if (newspa->spa_root_vdev != NULL) {
|
|
VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
|
|
NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
|
|
ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
|
|
spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
|
|
B_TRUE));
|
|
}
|
|
|
|
/* set the props */
|
|
if (props != NULL) {
|
|
spa_configfile_set(newspa, props, B_FALSE);
|
|
error = spa_prop_set(newspa, props);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
/* flush everything */
|
|
txg = spa_vdev_config_enter(newspa);
|
|
vdev_config_dirty(newspa->spa_root_vdev);
|
|
(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
|
|
|
|
if (zio_injection_enabled)
|
|
zio_handle_panic_injection(spa, FTAG, 2);
|
|
|
|
spa_async_resume(newspa);
|
|
|
|
/* finally, update the original pool's config */
|
|
txg = spa_vdev_config_enter(spa);
|
|
tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0)
|
|
dmu_tx_abort(tx);
|
|
for (c = 0; c < children; c++) {
|
|
if (vml[c] != NULL) {
|
|
vdev_split(vml[c]);
|
|
if (error == 0)
|
|
spa_history_log_internal(spa, "detach", tx,
|
|
"vdev=%s", vml[c]->vdev_path);
|
|
vdev_free(vml[c]);
|
|
}
|
|
}
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
spa->spa_config_splitting = NULL;
|
|
nvlist_free(nvl);
|
|
if (error == 0)
|
|
dmu_tx_commit(tx);
|
|
(void) spa_vdev_exit(spa, NULL, txg, 0);
|
|
|
|
if (zio_injection_enabled)
|
|
zio_handle_panic_injection(spa, FTAG, 3);
|
|
|
|
/* split is complete; log a history record */
|
|
spa_history_log_internal(newspa, "split", NULL,
|
|
"from pool %s", spa_name(spa));
|
|
|
|
kmem_free(vml, children * sizeof (vdev_t *));
|
|
|
|
/* if we're not going to mount the filesystems in userland, export */
|
|
if (exp)
|
|
error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
|
|
B_FALSE, B_FALSE);
|
|
|
|
return (error);
|
|
|
|
out:
|
|
spa_unload(newspa);
|
|
spa_deactivate(newspa);
|
|
spa_remove(newspa);
|
|
|
|
txg = spa_vdev_config_enter(spa);
|
|
|
|
/* re-online all offlined disks */
|
|
for (c = 0; c < children; c++) {
|
|
if (vml[c] != NULL)
|
|
vml[c]->vdev_offline = B_FALSE;
|
|
}
|
|
vdev_reopen(spa->spa_root_vdev);
|
|
|
|
nvlist_free(spa->spa_config_splitting);
|
|
spa->spa_config_splitting = NULL;
|
|
(void) spa_vdev_exit(spa, NULL, txg, error);
|
|
|
|
kmem_free(vml, children * sizeof (vdev_t *));
|
|
return (error);
|
|
}
|
|
|
|
static nvlist_t *
|
|
spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
uint64_t guid;
|
|
|
|
VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
|
|
&guid) == 0);
|
|
|
|
if (guid == target_guid)
|
|
return (nvpp[i]);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
|
|
nvlist_t *dev_to_remove)
|
|
{
|
|
nvlist_t **newdev = NULL;
|
|
int i, j;
|
|
|
|
if (count > 1)
|
|
newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
|
|
|
|
for (i = 0, j = 0; i < count; i++) {
|
|
if (dev[i] == dev_to_remove)
|
|
continue;
|
|
VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
|
|
}
|
|
|
|
VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
|
|
VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
|
|
|
|
for (i = 0; i < count - 1; i++)
|
|
nvlist_free(newdev[i]);
|
|
|
|
if (count > 1)
|
|
kmem_free(newdev, (count - 1) * sizeof (void *));
|
|
}
|
|
|
|
/*
|
|
* Evacuate the device.
|
|
*/
|
|
static int
|
|
spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
|
|
{
|
|
uint64_t txg;
|
|
int error = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
/*
|
|
* Evacuate the device. We don't hold the config lock as writer
|
|
* since we need to do I/O but we do keep the
|
|
* spa_namespace_lock held. Once this completes the device
|
|
* should no longer have any blocks allocated on it.
|
|
*/
|
|
if (vd->vdev_islog) {
|
|
if (vd->vdev_stat.vs_alloc != 0)
|
|
error = spa_offline_log(spa);
|
|
} else {
|
|
error = SET_ERROR(ENOTSUP);
|
|
}
|
|
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* The evacuation succeeded. Remove any remaining MOS metadata
|
|
* associated with this vdev, and wait for these changes to sync.
|
|
*/
|
|
ASSERT0(vd->vdev_stat.vs_alloc);
|
|
txg = spa_vdev_config_enter(spa);
|
|
vd->vdev_removing = B_TRUE;
|
|
vdev_dirty_leaves(vd, VDD_DTL, txg);
|
|
vdev_config_dirty(vd);
|
|
spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Complete the removal by cleaning up the namespace.
|
|
*/
|
|
static void
|
|
spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
uint64_t id = vd->vdev_id;
|
|
boolean_t last_vdev = (id == (rvd->vdev_children - 1));
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
/*
|
|
* Only remove any devices which are empty.
|
|
*/
|
|
if (vd->vdev_stat.vs_alloc != 0)
|
|
return;
|
|
|
|
(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
|
|
|
|
if (list_link_active(&vd->vdev_state_dirty_node))
|
|
vdev_state_clean(vd);
|
|
if (list_link_active(&vd->vdev_config_dirty_node))
|
|
vdev_config_clean(vd);
|
|
|
|
vdev_free(vd);
|
|
|
|
if (last_vdev) {
|
|
vdev_compact_children(rvd);
|
|
} else {
|
|
vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
|
|
vdev_add_child(rvd, vd);
|
|
}
|
|
vdev_config_dirty(rvd);
|
|
|
|
/*
|
|
* Reassess the health of our root vdev.
|
|
*/
|
|
vdev_reopen(rvd);
|
|
}
|
|
|
|
/*
|
|
* Remove a device from the pool -
|
|
*
|
|
* Removing a device from the vdev namespace requires several steps
|
|
* and can take a significant amount of time. As a result we use
|
|
* the spa_vdev_config_[enter/exit] functions which allow us to
|
|
* grab and release the spa_config_lock while still holding the namespace
|
|
* lock. During each step the configuration is synced out.
|
|
*
|
|
* Currently, this supports removing only hot spares, slogs, and level 2 ARC
|
|
* devices.
|
|
*/
|
|
int
|
|
spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
|
|
{
|
|
vdev_t *vd;
|
|
metaslab_group_t *mg;
|
|
nvlist_t **spares, **l2cache, *nv;
|
|
uint64_t txg = 0;
|
|
uint_t nspares, nl2cache;
|
|
int error = 0;
|
|
boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
if (!locked)
|
|
txg = spa_vdev_enter(spa);
|
|
|
|
vd = spa_lookup_by_guid(spa, guid, B_FALSE);
|
|
|
|
if (spa->spa_spares.sav_vdevs != NULL &&
|
|
nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
|
|
(nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
|
|
/*
|
|
* Only remove the hot spare if it's not currently in use
|
|
* in this pool.
|
|
*/
|
|
if (vd == NULL || unspare) {
|
|
spa_vdev_remove_aux(spa->spa_spares.sav_config,
|
|
ZPOOL_CONFIG_SPARES, spares, nspares, nv);
|
|
spa_load_spares(spa);
|
|
spa->spa_spares.sav_sync = B_TRUE;
|
|
} else {
|
|
error = SET_ERROR(EBUSY);
|
|
}
|
|
} else if (spa->spa_l2cache.sav_vdevs != NULL &&
|
|
nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
|
|
(nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
|
|
/*
|
|
* Cache devices can always be removed.
|
|
*/
|
|
spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
|
|
spa_load_l2cache(spa);
|
|
spa->spa_l2cache.sav_sync = B_TRUE;
|
|
} else if (vd != NULL && vd->vdev_islog) {
|
|
ASSERT(!locked);
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
mg = vd->vdev_mg;
|
|
|
|
/*
|
|
* Stop allocating from this vdev.
|
|
*/
|
|
metaslab_group_passivate(mg);
|
|
|
|
/*
|
|
* Wait for the youngest allocations and frees to sync,
|
|
* and then wait for the deferral of those frees to finish.
|
|
*/
|
|
spa_vdev_config_exit(spa, NULL,
|
|
txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
|
|
|
|
/*
|
|
* Attempt to evacuate the vdev.
|
|
*/
|
|
error = spa_vdev_remove_evacuate(spa, vd);
|
|
|
|
txg = spa_vdev_config_enter(spa);
|
|
|
|
/*
|
|
* If we couldn't evacuate the vdev, unwind.
|
|
*/
|
|
if (error) {
|
|
metaslab_group_activate(mg);
|
|
return (spa_vdev_exit(spa, NULL, txg, error));
|
|
}
|
|
|
|
/*
|
|
* Clean up the vdev namespace.
|
|
*/
|
|
spa_vdev_remove_from_namespace(spa, vd);
|
|
|
|
} else if (vd != NULL) {
|
|
/*
|
|
* Normal vdevs cannot be removed (yet).
|
|
*/
|
|
error = SET_ERROR(ENOTSUP);
|
|
} else {
|
|
/*
|
|
* There is no vdev of any kind with the specified guid.
|
|
*/
|
|
error = SET_ERROR(ENOENT);
|
|
}
|
|
|
|
if (!locked)
|
|
return (spa_vdev_exit(spa, NULL, txg, error));
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Find any device that's done replacing, or a vdev marked 'unspare' that's
|
|
* currently spared, so we can detach it.
|
|
*/
|
|
static vdev_t *
|
|
spa_vdev_resilver_done_hunt(vdev_t *vd)
|
|
{
|
|
vdev_t *newvd, *oldvd;
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
|
|
if (oldvd != NULL)
|
|
return (oldvd);
|
|
}
|
|
|
|
/*
|
|
* Check for a completed replacement. We always consider the first
|
|
* vdev in the list to be the oldest vdev, and the last one to be
|
|
* the newest (see spa_vdev_attach() for how that works). In
|
|
* the case where the newest vdev is faulted, we will not automatically
|
|
* remove it after a resilver completes. This is OK as it will require
|
|
* user intervention to determine which disk the admin wishes to keep.
|
|
*/
|
|
if (vd->vdev_ops == &vdev_replacing_ops) {
|
|
ASSERT(vd->vdev_children > 1);
|
|
|
|
newvd = vd->vdev_child[vd->vdev_children - 1];
|
|
oldvd = vd->vdev_child[0];
|
|
|
|
if (vdev_dtl_empty(newvd, DTL_MISSING) &&
|
|
vdev_dtl_empty(newvd, DTL_OUTAGE) &&
|
|
!vdev_dtl_required(oldvd))
|
|
return (oldvd);
|
|
}
|
|
|
|
/*
|
|
* Check for a completed resilver with the 'unspare' flag set.
|
|
*/
|
|
if (vd->vdev_ops == &vdev_spare_ops) {
|
|
vdev_t *first = vd->vdev_child[0];
|
|
vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
|
|
|
|
if (last->vdev_unspare) {
|
|
oldvd = first;
|
|
newvd = last;
|
|
} else if (first->vdev_unspare) {
|
|
oldvd = last;
|
|
newvd = first;
|
|
} else {
|
|
oldvd = NULL;
|
|
}
|
|
|
|
if (oldvd != NULL &&
|
|
vdev_dtl_empty(newvd, DTL_MISSING) &&
|
|
vdev_dtl_empty(newvd, DTL_OUTAGE) &&
|
|
!vdev_dtl_required(oldvd))
|
|
return (oldvd);
|
|
|
|
/*
|
|
* If there are more than two spares attached to a disk,
|
|
* and those spares are not required, then we want to
|
|
* attempt to free them up now so that they can be used
|
|
* by other pools. Once we're back down to a single
|
|
* disk+spare, we stop removing them.
|
|
*/
|
|
if (vd->vdev_children > 2) {
|
|
newvd = vd->vdev_child[1];
|
|
|
|
if (newvd->vdev_isspare && last->vdev_isspare &&
|
|
vdev_dtl_empty(last, DTL_MISSING) &&
|
|
vdev_dtl_empty(last, DTL_OUTAGE) &&
|
|
!vdev_dtl_required(newvd))
|
|
return (newvd);
|
|
}
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
spa_vdev_resilver_done(spa_t *spa)
|
|
{
|
|
vdev_t *vd, *pvd, *ppvd;
|
|
uint64_t guid, sguid, pguid, ppguid;
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
|
|
pvd = vd->vdev_parent;
|
|
ppvd = pvd->vdev_parent;
|
|
guid = vd->vdev_guid;
|
|
pguid = pvd->vdev_guid;
|
|
ppguid = ppvd->vdev_guid;
|
|
sguid = 0;
|
|
/*
|
|
* If we have just finished replacing a hot spared device, then
|
|
* we need to detach the parent's first child (the original hot
|
|
* spare) as well.
|
|
*/
|
|
if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
|
|
ppvd->vdev_children == 2) {
|
|
ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
|
|
sguid = ppvd->vdev_child[1]->vdev_guid;
|
|
}
|
|
ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
|
|
return;
|
|
if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
|
|
return;
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Update the stored path or FRU for this vdev.
|
|
*/
|
|
int
|
|
spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
|
|
boolean_t ispath)
|
|
{
|
|
vdev_t *vd;
|
|
boolean_t sync = B_FALSE;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
spa_vdev_state_enter(spa, SCL_ALL);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, ENOENT));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
|
|
|
if (ispath) {
|
|
if (strcmp(value, vd->vdev_path) != 0) {
|
|
spa_strfree(vd->vdev_path);
|
|
vd->vdev_path = spa_strdup(value);
|
|
sync = B_TRUE;
|
|
}
|
|
} else {
|
|
if (vd->vdev_fru == NULL) {
|
|
vd->vdev_fru = spa_strdup(value);
|
|
sync = B_TRUE;
|
|
} else if (strcmp(value, vd->vdev_fru) != 0) {
|
|
spa_strfree(vd->vdev_fru);
|
|
vd->vdev_fru = spa_strdup(value);
|
|
sync = B_TRUE;
|
|
}
|
|
}
|
|
|
|
return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
|
|
}
|
|
|
|
int
|
|
spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
|
|
{
|
|
return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
|
|
}
|
|
|
|
int
|
|
spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
|
|
{
|
|
return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA Scanning
|
|
* ==========================================================================
|
|
*/
|
|
|
|
int
|
|
spa_scan_stop(spa_t *spa)
|
|
{
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
|
|
if (dsl_scan_resilvering(spa->spa_dsl_pool))
|
|
return (SET_ERROR(EBUSY));
|
|
return (dsl_scan_cancel(spa->spa_dsl_pool));
|
|
}
|
|
|
|
int
|
|
spa_scan(spa_t *spa, pool_scan_func_t func)
|
|
{
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
|
|
|
|
if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* If a resilver was requested, but there is no DTL on a
|
|
* writeable leaf device, we have nothing to do.
|
|
*/
|
|
if (func == POOL_SCAN_RESILVER &&
|
|
!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
|
|
return (0);
|
|
}
|
|
|
|
return (dsl_scan(spa->spa_dsl_pool, func));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA async task processing
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static void
|
|
spa_async_remove(spa_t *spa, vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
if (vd->vdev_remove_wanted) {
|
|
vd->vdev_remove_wanted = B_FALSE;
|
|
vd->vdev_delayed_close = B_FALSE;
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
|
|
|
|
/*
|
|
* We want to clear the stats, but we don't want to do a full
|
|
* vdev_clear() as that will cause us to throw away
|
|
* degraded/faulted state as well as attempt to reopen the
|
|
* device, all of which is a waste.
|
|
*/
|
|
vd->vdev_stat.vs_read_errors = 0;
|
|
vd->vdev_stat.vs_write_errors = 0;
|
|
vd->vdev_stat.vs_checksum_errors = 0;
|
|
|
|
vdev_state_dirty(vd->vdev_top);
|
|
}
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
spa_async_remove(spa, vd->vdev_child[c]);
|
|
}
|
|
|
|
static void
|
|
spa_async_probe(spa_t *spa, vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
if (vd->vdev_probe_wanted) {
|
|
vd->vdev_probe_wanted = B_FALSE;
|
|
vdev_reopen(vd); /* vdev_open() does the actual probe */
|
|
}
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
spa_async_probe(spa, vd->vdev_child[c]);
|
|
}
|
|
|
|
static void
|
|
spa_async_autoexpand(spa_t *spa, vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
if (!spa->spa_autoexpand)
|
|
return;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
spa_async_autoexpand(spa, cvd);
|
|
}
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
|
|
return;
|
|
|
|
spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_AUTOEXPAND);
|
|
}
|
|
|
|
static void
|
|
spa_async_thread(spa_t *spa)
|
|
{
|
|
int tasks, i;
|
|
|
|
ASSERT(spa->spa_sync_on);
|
|
|
|
mutex_enter(&spa->spa_async_lock);
|
|
tasks = spa->spa_async_tasks;
|
|
spa->spa_async_tasks = 0;
|
|
mutex_exit(&spa->spa_async_lock);
|
|
|
|
/*
|
|
* See if the config needs to be updated.
|
|
*/
|
|
if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
|
|
uint64_t old_space, new_space;
|
|
|
|
mutex_enter(&spa_namespace_lock);
|
|
old_space = metaslab_class_get_space(spa_normal_class(spa));
|
|
spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
|
|
new_space = metaslab_class_get_space(spa_normal_class(spa));
|
|
mutex_exit(&spa_namespace_lock);
|
|
|
|
/*
|
|
* If the pool grew as a result of the config update,
|
|
* then log an internal history event.
|
|
*/
|
|
if (new_space != old_space) {
|
|
spa_history_log_internal(spa, "vdev online", NULL,
|
|
"pool '%s' size: %llu(+%llu)",
|
|
spa_name(spa), new_space, new_space - old_space);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if any devices need to be marked REMOVED.
|
|
*/
|
|
if (tasks & SPA_ASYNC_REMOVE) {
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
spa_async_remove(spa, spa->spa_root_vdev);
|
|
for (i = 0; i < spa->spa_l2cache.sav_count; i++)
|
|
spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++)
|
|
spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
|
|
(void) spa_vdev_state_exit(spa, NULL, 0);
|
|
}
|
|
|
|
if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
spa_async_autoexpand(spa, spa->spa_root_vdev);
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
}
|
|
|
|
/*
|
|
* See if any devices need to be probed.
|
|
*/
|
|
if (tasks & SPA_ASYNC_PROBE) {
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
spa_async_probe(spa, spa->spa_root_vdev);
|
|
(void) spa_vdev_state_exit(spa, NULL, 0);
|
|
}
|
|
|
|
/*
|
|
* If any devices are done replacing, detach them.
|
|
*/
|
|
if (tasks & SPA_ASYNC_RESILVER_DONE)
|
|
spa_vdev_resilver_done(spa);
|
|
|
|
/*
|
|
* Kick off a resilver.
|
|
*/
|
|
if (tasks & SPA_ASYNC_RESILVER)
|
|
dsl_resilver_restart(spa->spa_dsl_pool, 0);
|
|
|
|
/*
|
|
* Let the world know that we're done.
|
|
*/
|
|
mutex_enter(&spa->spa_async_lock);
|
|
spa->spa_async_thread = NULL;
|
|
cv_broadcast(&spa->spa_async_cv);
|
|
mutex_exit(&spa->spa_async_lock);
|
|
thread_exit();
|
|
}
|
|
|
|
void
|
|
spa_async_suspend(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_async_lock);
|
|
spa->spa_async_suspended++;
|
|
while (spa->spa_async_thread != NULL)
|
|
cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
void
|
|
spa_async_resume(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_async_lock);
|
|
ASSERT(spa->spa_async_suspended != 0);
|
|
spa->spa_async_suspended--;
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
static boolean_t
|
|
spa_async_tasks_pending(spa_t *spa)
|
|
{
|
|
uint_t non_config_tasks;
|
|
uint_t config_task;
|
|
boolean_t config_task_suspended;
|
|
|
|
non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
|
|
config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
|
|
if (spa->spa_ccw_fail_time == 0) {
|
|
config_task_suspended = B_FALSE;
|
|
} else {
|
|
config_task_suspended =
|
|
(gethrtime() - spa->spa_ccw_fail_time) <
|
|
(zfs_ccw_retry_interval * NANOSEC);
|
|
}
|
|
|
|
return (non_config_tasks || (config_task && !config_task_suspended));
|
|
}
|
|
|
|
static void
|
|
spa_async_dispatch(spa_t *spa)
|
|
{
|
|
mutex_enter(&spa->spa_async_lock);
|
|
if (spa_async_tasks_pending(spa) &&
|
|
!spa->spa_async_suspended &&
|
|
spa->spa_async_thread == NULL &&
|
|
rootdir != NULL)
|
|
spa->spa_async_thread = thread_create(NULL, 0,
|
|
spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
void
|
|
spa_async_request(spa_t *spa, int task)
|
|
{
|
|
zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
|
|
mutex_enter(&spa->spa_async_lock);
|
|
spa->spa_async_tasks |= task;
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* SPA syncing routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static int
|
|
bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
bpobj_t *bpo = arg;
|
|
bpobj_enqueue(bpo, bp, tx);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
|
|
{
|
|
zio_t *zio = arg;
|
|
|
|
zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
|
|
zio->io_flags));
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Note: this simple function is not inlined to make it easier to dtrace the
|
|
* amount of time spent syncing frees.
|
|
*/
|
|
static void
|
|
spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
|
|
{
|
|
zio_t *zio = zio_root(spa, NULL, NULL, 0);
|
|
bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
|
|
VERIFY(zio_wait(zio) == 0);
|
|
}
|
|
|
|
/*
|
|
* Note: this simple function is not inlined to make it easier to dtrace the
|
|
* amount of time spent syncing deferred frees.
|
|
*/
|
|
static void
|
|
spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
|
|
{
|
|
zio_t *zio = zio_root(spa, NULL, NULL, 0);
|
|
VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
|
|
spa_free_sync_cb, zio, tx), ==, 0);
|
|
VERIFY0(zio_wait(zio));
|
|
}
|
|
|
|
static void
|
|
spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
|
|
{
|
|
char *packed = NULL;
|
|
size_t bufsize;
|
|
size_t nvsize = 0;
|
|
dmu_buf_t *db;
|
|
|
|
VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
|
|
|
|
/*
|
|
* Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
|
|
* information. This avoids the dmu_buf_will_dirty() path and
|
|
* saves us a pre-read to get data we don't actually care about.
|
|
*/
|
|
bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
|
|
packed = vmem_alloc(bufsize, KM_SLEEP);
|
|
|
|
VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
|
|
KM_SLEEP) == 0);
|
|
bzero(packed + nvsize, bufsize - nvsize);
|
|
|
|
dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
|
|
|
|
vmem_free(packed, bufsize);
|
|
|
|
VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
|
|
dmu_buf_will_dirty(db, tx);
|
|
*(uint64_t *)db->db_data = nvsize;
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
|
|
static void
|
|
spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
|
|
const char *config, const char *entry)
|
|
{
|
|
nvlist_t *nvroot;
|
|
nvlist_t **list;
|
|
int i;
|
|
|
|
if (!sav->sav_sync)
|
|
return;
|
|
|
|
/*
|
|
* Update the MOS nvlist describing the list of available devices.
|
|
* spa_validate_aux() will have already made sure this nvlist is
|
|
* valid and the vdevs are labeled appropriately.
|
|
*/
|
|
if (sav->sav_object == 0) {
|
|
sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
|
|
DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
|
|
sizeof (uint64_t), tx);
|
|
VERIFY(zap_update(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
|
|
&sav->sav_object, tx) == 0);
|
|
}
|
|
|
|
VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
if (sav->sav_count == 0) {
|
|
VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
|
|
} else {
|
|
list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
|
|
B_FALSE, VDEV_CONFIG_L2CACHE);
|
|
VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
|
|
sav->sav_count) == 0);
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
nvlist_free(list[i]);
|
|
kmem_free(list, sav->sav_count * sizeof (void *));
|
|
}
|
|
|
|
spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
|
|
nvlist_free(nvroot);
|
|
|
|
sav->sav_sync = B_FALSE;
|
|
}
|
|
|
|
static void
|
|
spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
|
|
{
|
|
nvlist_t *config;
|
|
|
|
if (list_is_empty(&spa->spa_config_dirty_list))
|
|
return;
|
|
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
|
|
config = spa_config_generate(spa, spa->spa_root_vdev,
|
|
dmu_tx_get_txg(tx), B_FALSE);
|
|
|
|
/*
|
|
* If we're upgrading the spa version then make sure that
|
|
* the config object gets updated with the correct version.
|
|
*/
|
|
if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
|
|
fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
|
|
spa->spa_uberblock.ub_version);
|
|
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
if (spa->spa_config_syncing)
|
|
nvlist_free(spa->spa_config_syncing);
|
|
spa->spa_config_syncing = config;
|
|
|
|
spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
|
|
}
|
|
|
|
static void
|
|
spa_sync_version(void *arg, dmu_tx_t *tx)
|
|
{
|
|
uint64_t *versionp = arg;
|
|
uint64_t version = *versionp;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
|
|
/*
|
|
* Setting the version is special cased when first creating the pool.
|
|
*/
|
|
ASSERT(tx->tx_txg != TXG_INITIAL);
|
|
|
|
ASSERT(SPA_VERSION_IS_SUPPORTED(version));
|
|
ASSERT(version >= spa_version(spa));
|
|
|
|
spa->spa_uberblock.ub_version = version;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
spa_history_log_internal(spa, "set", tx, "version=%lld", version);
|
|
}
|
|
|
|
/*
|
|
* Set zpool properties.
|
|
*/
|
|
static void
|
|
spa_sync_props(void *arg, dmu_tx_t *tx)
|
|
{
|
|
nvlist_t *nvp = arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
nvpair_t *elem = NULL;
|
|
|
|
mutex_enter(&spa->spa_props_lock);
|
|
|
|
while ((elem = nvlist_next_nvpair(nvp, elem))) {
|
|
uint64_t intval;
|
|
char *strval, *fname;
|
|
zpool_prop_t prop;
|
|
const char *propname;
|
|
zprop_type_t proptype;
|
|
spa_feature_t fid;
|
|
|
|
prop = zpool_name_to_prop(nvpair_name(elem));
|
|
switch ((int)prop) {
|
|
case ZPROP_INVAL:
|
|
/*
|
|
* We checked this earlier in spa_prop_validate().
|
|
*/
|
|
ASSERT(zpool_prop_feature(nvpair_name(elem)));
|
|
|
|
fname = strchr(nvpair_name(elem), '@') + 1;
|
|
VERIFY0(zfeature_lookup_name(fname, &fid));
|
|
|
|
spa_feature_enable(spa, fid, tx);
|
|
spa_history_log_internal(spa, "set", tx,
|
|
"%s=enabled", nvpair_name(elem));
|
|
break;
|
|
|
|
case ZPOOL_PROP_VERSION:
|
|
intval = fnvpair_value_uint64(elem);
|
|
/*
|
|
* The version is synced seperatly before other
|
|
* properties and should be correct by now.
|
|
*/
|
|
ASSERT3U(spa_version(spa), >=, intval);
|
|
break;
|
|
|
|
case ZPOOL_PROP_ALTROOT:
|
|
/*
|
|
* 'altroot' is a non-persistent property. It should
|
|
* have been set temporarily at creation or import time.
|
|
*/
|
|
ASSERT(spa->spa_root != NULL);
|
|
break;
|
|
|
|
case ZPOOL_PROP_READONLY:
|
|
case ZPOOL_PROP_CACHEFILE:
|
|
/*
|
|
* 'readonly' and 'cachefile' are also non-persisitent
|
|
* properties.
|
|
*/
|
|
break;
|
|
case ZPOOL_PROP_COMMENT:
|
|
strval = fnvpair_value_string(elem);
|
|
if (spa->spa_comment != NULL)
|
|
spa_strfree(spa->spa_comment);
|
|
spa->spa_comment = spa_strdup(strval);
|
|
/*
|
|
* We need to dirty the configuration on all the vdevs
|
|
* so that their labels get updated. It's unnecessary
|
|
* to do this for pool creation since the vdev's
|
|
* configuratoin has already been dirtied.
|
|
*/
|
|
if (tx->tx_txg != TXG_INITIAL)
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
spa_history_log_internal(spa, "set", tx,
|
|
"%s=%s", nvpair_name(elem), strval);
|
|
break;
|
|
default:
|
|
/*
|
|
* Set pool property values in the poolprops mos object.
|
|
*/
|
|
if (spa->spa_pool_props_object == 0) {
|
|
spa->spa_pool_props_object =
|
|
zap_create_link(mos, DMU_OT_POOL_PROPS,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
|
|
tx);
|
|
}
|
|
|
|
/* normalize the property name */
|
|
propname = zpool_prop_to_name(prop);
|
|
proptype = zpool_prop_get_type(prop);
|
|
|
|
if (nvpair_type(elem) == DATA_TYPE_STRING) {
|
|
ASSERT(proptype == PROP_TYPE_STRING);
|
|
strval = fnvpair_value_string(elem);
|
|
VERIFY0(zap_update(mos,
|
|
spa->spa_pool_props_object, propname,
|
|
1, strlen(strval) + 1, strval, tx));
|
|
spa_history_log_internal(spa, "set", tx,
|
|
"%s=%s", nvpair_name(elem), strval);
|
|
} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
|
|
intval = fnvpair_value_uint64(elem);
|
|
|
|
if (proptype == PROP_TYPE_INDEX) {
|
|
const char *unused;
|
|
VERIFY0(zpool_prop_index_to_string(
|
|
prop, intval, &unused));
|
|
}
|
|
VERIFY0(zap_update(mos,
|
|
spa->spa_pool_props_object, propname,
|
|
8, 1, &intval, tx));
|
|
spa_history_log_internal(spa, "set", tx,
|
|
"%s=%lld", nvpair_name(elem), intval);
|
|
} else {
|
|
ASSERT(0); /* not allowed */
|
|
}
|
|
|
|
switch (prop) {
|
|
case ZPOOL_PROP_DELEGATION:
|
|
spa->spa_delegation = intval;
|
|
break;
|
|
case ZPOOL_PROP_BOOTFS:
|
|
spa->spa_bootfs = intval;
|
|
break;
|
|
case ZPOOL_PROP_FAILUREMODE:
|
|
spa->spa_failmode = intval;
|
|
break;
|
|
case ZPOOL_PROP_AUTOEXPAND:
|
|
spa->spa_autoexpand = intval;
|
|
if (tx->tx_txg != TXG_INITIAL)
|
|
spa_async_request(spa,
|
|
SPA_ASYNC_AUTOEXPAND);
|
|
break;
|
|
case ZPOOL_PROP_DEDUPDITTO:
|
|
spa->spa_dedup_ditto = intval;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
mutex_exit(&spa->spa_props_lock);
|
|
}
|
|
|
|
/*
|
|
* Perform one-time upgrade on-disk changes. spa_version() does not
|
|
* reflect the new version this txg, so there must be no changes this
|
|
* txg to anything that the upgrade code depends on after it executes.
|
|
* Therefore this must be called after dsl_pool_sync() does the sync
|
|
* tasks.
|
|
*/
|
|
static void
|
|
spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
|
|
{
|
|
dsl_pool_t *dp = spa->spa_dsl_pool;
|
|
|
|
ASSERT(spa->spa_sync_pass == 1);
|
|
|
|
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
|
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
|
|
dsl_pool_create_origin(dp, tx);
|
|
|
|
/* Keeping the origin open increases spa_minref */
|
|
spa->spa_minref += 3;
|
|
}
|
|
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
|
|
dsl_pool_upgrade_clones(dp, tx);
|
|
}
|
|
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
|
|
dsl_pool_upgrade_dir_clones(dp, tx);
|
|
|
|
/* Keeping the freedir open increases spa_minref */
|
|
spa->spa_minref += 3;
|
|
}
|
|
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
|
|
spa_feature_create_zap_objects(spa, tx);
|
|
}
|
|
|
|
/*
|
|
* LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
|
|
* when possibility to use lz4 compression for metadata was added
|
|
* Old pools that have this feature enabled must be upgraded to have
|
|
* this feature active
|
|
*/
|
|
if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
|
|
boolean_t lz4_en = spa_feature_is_enabled(spa,
|
|
SPA_FEATURE_LZ4_COMPRESS);
|
|
boolean_t lz4_ac = spa_feature_is_active(spa,
|
|
SPA_FEATURE_LZ4_COMPRESS);
|
|
|
|
if (lz4_en && !lz4_ac)
|
|
spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
|
|
}
|
|
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Sync the specified transaction group. New blocks may be dirtied as
|
|
* part of the process, so we iterate until it converges.
|
|
*/
|
|
void
|
|
spa_sync(spa_t *spa, uint64_t txg)
|
|
{
|
|
dsl_pool_t *dp = spa->spa_dsl_pool;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *vd;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
int c;
|
|
|
|
VERIFY(spa_writeable(spa));
|
|
|
|
/*
|
|
* Lock out configuration changes.
|
|
*/
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
spa->spa_syncing_txg = txg;
|
|
spa->spa_sync_pass = 0;
|
|
|
|
/*
|
|
* If there are any pending vdev state changes, convert them
|
|
* into config changes that go out with this transaction group.
|
|
*/
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
while (list_head(&spa->spa_state_dirty_list) != NULL) {
|
|
/*
|
|
* We need the write lock here because, for aux vdevs,
|
|
* calling vdev_config_dirty() modifies sav_config.
|
|
* This is ugly and will become unnecessary when we
|
|
* eliminate the aux vdev wart by integrating all vdevs
|
|
* into the root vdev tree.
|
|
*/
|
|
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
|
|
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
|
|
while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
|
|
vdev_state_clean(vd);
|
|
vdev_config_dirty(vd);
|
|
}
|
|
spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
|
|
spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
|
|
}
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
tx = dmu_tx_create_assigned(dp, txg);
|
|
|
|
spa->spa_sync_starttime = gethrtime();
|
|
taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
|
|
spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
|
|
spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
|
|
NSEC_TO_TICK(spa->spa_deadman_synctime));
|
|
|
|
/*
|
|
* If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
|
|
* set spa_deflate if we have no raid-z vdevs.
|
|
*/
|
|
if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
|
|
spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
|
|
int i;
|
|
|
|
for (i = 0; i < rvd->vdev_children; i++) {
|
|
vd = rvd->vdev_child[i];
|
|
if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
|
|
break;
|
|
}
|
|
if (i == rvd->vdev_children) {
|
|
spa->spa_deflate = TRUE;
|
|
VERIFY(0 == zap_add(spa->spa_meta_objset,
|
|
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
|
|
sizeof (uint64_t), 1, &spa->spa_deflate, tx));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Iterate to convergence.
|
|
*/
|
|
do {
|
|
int pass = ++spa->spa_sync_pass;
|
|
|
|
spa_sync_config_object(spa, tx);
|
|
spa_sync_aux_dev(spa, &spa->spa_spares, tx,
|
|
ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
|
|
spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
|
|
ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
|
|
spa_errlog_sync(spa, txg);
|
|
dsl_pool_sync(dp, txg);
|
|
|
|
if (pass < zfs_sync_pass_deferred_free) {
|
|
spa_sync_frees(spa, free_bpl, tx);
|
|
} else {
|
|
/*
|
|
* We can not defer frees in pass 1, because
|
|
* we sync the deferred frees later in pass 1.
|
|
*/
|
|
ASSERT3U(pass, >, 1);
|
|
bplist_iterate(free_bpl, bpobj_enqueue_cb,
|
|
&spa->spa_deferred_bpobj, tx);
|
|
}
|
|
|
|
ddt_sync(spa, txg);
|
|
dsl_scan_sync(dp, tx);
|
|
|
|
while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
|
|
vdev_sync(vd, txg);
|
|
|
|
if (pass == 1) {
|
|
spa_sync_upgrades(spa, tx);
|
|
ASSERT3U(txg, >=,
|
|
spa->spa_uberblock.ub_rootbp.blk_birth);
|
|
/*
|
|
* Note: We need to check if the MOS is dirty
|
|
* because we could have marked the MOS dirty
|
|
* without updating the uberblock (e.g. if we
|
|
* have sync tasks but no dirty user data). We
|
|
* need to check the uberblock's rootbp because
|
|
* it is updated if we have synced out dirty
|
|
* data (though in this case the MOS will most
|
|
* likely also be dirty due to second order
|
|
* effects, we don't want to rely on that here).
|
|
*/
|
|
if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
|
|
!dmu_objset_is_dirty(mos, txg)) {
|
|
/*
|
|
* Nothing changed on the first pass,
|
|
* therefore this TXG is a no-op. Avoid
|
|
* syncing deferred frees, so that we
|
|
* can keep this TXG as a no-op.
|
|
*/
|
|
ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
|
|
txg));
|
|
ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
|
|
ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
|
|
break;
|
|
}
|
|
spa_sync_deferred_frees(spa, tx);
|
|
}
|
|
|
|
} while (dmu_objset_is_dirty(mos, txg));
|
|
|
|
/*
|
|
* Rewrite the vdev configuration (which includes the uberblock)
|
|
* to commit the transaction group.
|
|
*
|
|
* If there are no dirty vdevs, we sync the uberblock to a few
|
|
* random top-level vdevs that are known to be visible in the
|
|
* config cache (see spa_vdev_add() for a complete description).
|
|
* If there *are* dirty vdevs, sync the uberblock to all vdevs.
|
|
*/
|
|
for (;;) {
|
|
/*
|
|
* We hold SCL_STATE to prevent vdev open/close/etc.
|
|
* while we're attempting to write the vdev labels.
|
|
*/
|
|
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
|
|
|
if (list_is_empty(&spa->spa_config_dirty_list)) {
|
|
vdev_t *svd[SPA_DVAS_PER_BP];
|
|
int svdcount = 0;
|
|
int children = rvd->vdev_children;
|
|
int c0 = spa_get_random(children);
|
|
|
|
for (c = 0; c < children; c++) {
|
|
vd = rvd->vdev_child[(c0 + c) % children];
|
|
if (vd->vdev_ms_array == 0 || vd->vdev_islog)
|
|
continue;
|
|
svd[svdcount++] = vd;
|
|
if (svdcount == SPA_DVAS_PER_BP)
|
|
break;
|
|
}
|
|
error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
|
|
if (error != 0)
|
|
error = vdev_config_sync(svd, svdcount, txg,
|
|
B_TRUE);
|
|
} else {
|
|
error = vdev_config_sync(rvd->vdev_child,
|
|
rvd->vdev_children, txg, B_FALSE);
|
|
if (error != 0)
|
|
error = vdev_config_sync(rvd->vdev_child,
|
|
rvd->vdev_children, txg, B_TRUE);
|
|
}
|
|
|
|
if (error == 0)
|
|
spa->spa_last_synced_guid = rvd->vdev_guid;
|
|
|
|
spa_config_exit(spa, SCL_STATE, FTAG);
|
|
|
|
if (error == 0)
|
|
break;
|
|
zio_suspend(spa, NULL);
|
|
zio_resume_wait(spa);
|
|
}
|
|
dmu_tx_commit(tx);
|
|
|
|
taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
|
|
spa->spa_deadman_tqid = 0;
|
|
|
|
/*
|
|
* Clear the dirty config list.
|
|
*/
|
|
while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
|
|
vdev_config_clean(vd);
|
|
|
|
/*
|
|
* Now that the new config has synced transactionally,
|
|
* let it become visible to the config cache.
|
|
*/
|
|
if (spa->spa_config_syncing != NULL) {
|
|
spa_config_set(spa, spa->spa_config_syncing);
|
|
spa->spa_config_txg = txg;
|
|
spa->spa_config_syncing = NULL;
|
|
}
|
|
|
|
spa->spa_ubsync = spa->spa_uberblock;
|
|
|
|
dsl_pool_sync_done(dp, txg);
|
|
|
|
/*
|
|
* Update usable space statistics.
|
|
*/
|
|
while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
|
|
vdev_sync_done(vd, txg);
|
|
|
|
spa_update_dspace(spa);
|
|
|
|
/*
|
|
* It had better be the case that we didn't dirty anything
|
|
* since vdev_config_sync().
|
|
*/
|
|
ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
|
|
ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
|
|
ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
|
|
|
|
spa->spa_sync_pass = 0;
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
|
|
spa_handle_ignored_writes(spa);
|
|
|
|
/*
|
|
* If any async tasks have been requested, kick them off.
|
|
*/
|
|
spa_async_dispatch(spa);
|
|
}
|
|
|
|
/*
|
|
* Sync all pools. We don't want to hold the namespace lock across these
|
|
* operations, so we take a reference on the spa_t and drop the lock during the
|
|
* sync.
|
|
*/
|
|
void
|
|
spa_sync_allpools(void)
|
|
{
|
|
spa_t *spa = NULL;
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(spa)) != NULL) {
|
|
if (spa_state(spa) != POOL_STATE_ACTIVE ||
|
|
!spa_writeable(spa) || spa_suspended(spa))
|
|
continue;
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Miscellaneous routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Remove all pools in the system.
|
|
*/
|
|
void
|
|
spa_evict_all(void)
|
|
{
|
|
spa_t *spa;
|
|
|
|
/*
|
|
* Remove all cached state. All pools should be closed now,
|
|
* so every spa in the AVL tree should be unreferenced.
|
|
*/
|
|
mutex_enter(&spa_namespace_lock);
|
|
while ((spa = spa_next(NULL)) != NULL) {
|
|
/*
|
|
* Stop async tasks. The async thread may need to detach
|
|
* a device that's been replaced, which requires grabbing
|
|
* spa_namespace_lock, so we must drop it here.
|
|
*/
|
|
spa_open_ref(spa, FTAG);
|
|
mutex_exit(&spa_namespace_lock);
|
|
spa_async_suspend(spa);
|
|
mutex_enter(&spa_namespace_lock);
|
|
spa_close(spa, FTAG);
|
|
|
|
if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
|
|
spa_unload(spa);
|
|
spa_deactivate(spa);
|
|
}
|
|
spa_remove(spa);
|
|
}
|
|
mutex_exit(&spa_namespace_lock);
|
|
}
|
|
|
|
vdev_t *
|
|
spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
|
|
{
|
|
vdev_t *vd;
|
|
int i;
|
|
|
|
if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
|
|
return (vd);
|
|
|
|
if (aux) {
|
|
for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
|
|
vd = spa->spa_l2cache.sav_vdevs[i];
|
|
if (vd->vdev_guid == guid)
|
|
return (vd);
|
|
}
|
|
|
|
for (i = 0; i < spa->spa_spares.sav_count; i++) {
|
|
vd = spa->spa_spares.sav_vdevs[i];
|
|
if (vd->vdev_guid == guid)
|
|
return (vd);
|
|
}
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
void
|
|
spa_upgrade(spa_t *spa, uint64_t version)
|
|
{
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
|
|
|
|
/*
|
|
* This should only be called for a non-faulted pool, and since a
|
|
* future version would result in an unopenable pool, this shouldn't be
|
|
* possible.
|
|
*/
|
|
ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
|
|
ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
|
|
|
|
spa->spa_uberblock.ub_version = version;
|
|
vdev_config_dirty(spa->spa_root_vdev);
|
|
|
|
spa_config_exit(spa, SCL_ALL, FTAG);
|
|
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
}
|
|
|
|
boolean_t
|
|
spa_has_spare(spa_t *spa, uint64_t guid)
|
|
{
|
|
int i;
|
|
uint64_t spareguid;
|
|
spa_aux_vdev_t *sav = &spa->spa_spares;
|
|
|
|
for (i = 0; i < sav->sav_count; i++)
|
|
if (sav->sav_vdevs[i]->vdev_guid == guid)
|
|
return (B_TRUE);
|
|
|
|
for (i = 0; i < sav->sav_npending; i++) {
|
|
if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
|
|
&spareguid) == 0 && spareguid == guid)
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Check if a pool has an active shared spare device.
|
|
* Note: reference count of an active spare is 2, as a spare and as a replace
|
|
*/
|
|
static boolean_t
|
|
spa_has_active_shared_spare(spa_t *spa)
|
|
{
|
|
int i, refcnt;
|
|
uint64_t pool;
|
|
spa_aux_vdev_t *sav = &spa->spa_spares;
|
|
|
|
for (i = 0; i < sav->sav_count; i++) {
|
|
if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
|
|
&refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
|
|
refcnt > 2)
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Post a FM_EREPORT_ZFS_* event from sys/fm/fs/zfs.h. The payload will be
|
|
* filled in from the spa and (optionally) the vdev. This doesn't do anything
|
|
* in the userland libzpool, as we don't want consumers to misinterpret ztest
|
|
* or zdb as real changes.
|
|
*/
|
|
void
|
|
spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
|
|
{
|
|
#ifdef _KERNEL
|
|
zfs_ereport_post(name, spa, vd, NULL, 0, 0);
|
|
#endif
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
/* state manipulation functions */
|
|
EXPORT_SYMBOL(spa_open);
|
|
EXPORT_SYMBOL(spa_open_rewind);
|
|
EXPORT_SYMBOL(spa_get_stats);
|
|
EXPORT_SYMBOL(spa_create);
|
|
EXPORT_SYMBOL(spa_import_rootpool);
|
|
EXPORT_SYMBOL(spa_import);
|
|
EXPORT_SYMBOL(spa_tryimport);
|
|
EXPORT_SYMBOL(spa_destroy);
|
|
EXPORT_SYMBOL(spa_export);
|
|
EXPORT_SYMBOL(spa_reset);
|
|
EXPORT_SYMBOL(spa_async_request);
|
|
EXPORT_SYMBOL(spa_async_suspend);
|
|
EXPORT_SYMBOL(spa_async_resume);
|
|
EXPORT_SYMBOL(spa_inject_addref);
|
|
EXPORT_SYMBOL(spa_inject_delref);
|
|
EXPORT_SYMBOL(spa_scan_stat_init);
|
|
EXPORT_SYMBOL(spa_scan_get_stats);
|
|
|
|
/* device maniion */
|
|
EXPORT_SYMBOL(spa_vdev_add);
|
|
EXPORT_SYMBOL(spa_vdev_attach);
|
|
EXPORT_SYMBOL(spa_vdev_detach);
|
|
EXPORT_SYMBOL(spa_vdev_remove);
|
|
EXPORT_SYMBOL(spa_vdev_setpath);
|
|
EXPORT_SYMBOL(spa_vdev_setfru);
|
|
EXPORT_SYMBOL(spa_vdev_split_mirror);
|
|
|
|
/* spare statech is global across all pools) */
|
|
EXPORT_SYMBOL(spa_spare_add);
|
|
EXPORT_SYMBOL(spa_spare_remove);
|
|
EXPORT_SYMBOL(spa_spare_exists);
|
|
EXPORT_SYMBOL(spa_spare_activate);
|
|
|
|
/* L2ARC statech is global across all pools) */
|
|
EXPORT_SYMBOL(spa_l2cache_add);
|
|
EXPORT_SYMBOL(spa_l2cache_remove);
|
|
EXPORT_SYMBOL(spa_l2cache_exists);
|
|
EXPORT_SYMBOL(spa_l2cache_activate);
|
|
EXPORT_SYMBOL(spa_l2cache_drop);
|
|
|
|
/* scanning */
|
|
EXPORT_SYMBOL(spa_scan);
|
|
EXPORT_SYMBOL(spa_scan_stop);
|
|
|
|
/* spa syncing */
|
|
EXPORT_SYMBOL(spa_sync); /* only for DMU use */
|
|
EXPORT_SYMBOL(spa_sync_allpools);
|
|
|
|
/* properties */
|
|
EXPORT_SYMBOL(spa_prop_set);
|
|
EXPORT_SYMBOL(spa_prop_get);
|
|
EXPORT_SYMBOL(spa_prop_clear_bootfs);
|
|
|
|
/* asynchronous event notification */
|
|
EXPORT_SYMBOL(spa_event_notify);
|
|
#endif
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
module_param(spa_load_verify_maxinflight, int, 0644);
|
|
MODULE_PARM_DESC(spa_load_verify_maxinflight,
|
|
"Max concurrent traversal I/Os while verifying pool during import -X");
|
|
|
|
module_param(spa_load_verify_metadata, int, 0644);
|
|
MODULE_PARM_DESC(spa_load_verify_metadata,
|
|
"Set to traverse metadata on pool import");
|
|
|
|
module_param(spa_load_verify_data, int, 0644);
|
|
MODULE_PARM_DESC(spa_load_verify_data,
|
|
"Set to traverse data on pool import");
|
|
|
|
module_param(zio_taskq_batch_pct, uint, 0444);
|
|
MODULE_PARM_DESC(zio_taskq_batch_pct,
|
|
"Percentage of CPUs to run an IO worker thread");
|
|
|
|
#endif
|