mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-22 07:56:36 +03:00
27d96d2254
Renamed to avoid conflicting with refcount.h when a different implementation is already provided by the platform. Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matt Macy <mmacy@FreeBSD.org> Closes #10620
1106 lines
32 KiB
C
1106 lines
32 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
/*
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/space_map.h>
|
|
#include <sys/zfeature.h>
|
|
|
|
/*
|
|
* Note on space map block size:
|
|
*
|
|
* The data for a given space map can be kept on blocks of any size.
|
|
* Larger blocks entail fewer I/O operations, but they also cause the
|
|
* DMU to keep more data in-core, and also to waste more I/O bandwidth
|
|
* when only a few blocks have changed since the last transaction group.
|
|
*/
|
|
|
|
/*
|
|
* Enabled whenever we want to stress test the use of double-word
|
|
* space map entries.
|
|
*/
|
|
boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;
|
|
|
|
/*
|
|
* Override the default indirect block size of 128K, instead use 16K for
|
|
* spacemaps (2^14 bytes). This dramatically reduces write inflation since
|
|
* appending to a spacemap typically has to write one data block (4KB) and one
|
|
* or two indirect blocks (16K-32K, rather than 128K).
|
|
*/
|
|
int space_map_ibs = 14;
|
|
|
|
boolean_t
|
|
sm_entry_is_debug(uint64_t e)
|
|
{
|
|
return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
|
|
}
|
|
|
|
boolean_t
|
|
sm_entry_is_single_word(uint64_t e)
|
|
{
|
|
uint8_t prefix = SM_PREFIX_DECODE(e);
|
|
return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
|
|
}
|
|
|
|
boolean_t
|
|
sm_entry_is_double_word(uint64_t e)
|
|
{
|
|
return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
|
|
}
|
|
|
|
/*
|
|
* Iterate through the space map, invoking the callback on each (non-debug)
|
|
* space map entry. Stop after reading 'end' bytes of the space map.
|
|
*/
|
|
int
|
|
space_map_iterate(space_map_t *sm, uint64_t end, sm_cb_t callback, void *arg)
|
|
{
|
|
uint64_t blksz = sm->sm_blksz;
|
|
|
|
ASSERT3U(blksz, !=, 0);
|
|
ASSERT3U(end, <=, space_map_length(sm));
|
|
ASSERT0(P2PHASE(end, sizeof (uint64_t)));
|
|
|
|
dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, end,
|
|
ZIO_PRIORITY_SYNC_READ);
|
|
|
|
int error = 0;
|
|
uint64_t txg = 0, sync_pass = 0;
|
|
for (uint64_t block_base = 0; block_base < end && error == 0;
|
|
block_base += blksz) {
|
|
dmu_buf_t *db;
|
|
error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
|
|
block_base, FTAG, &db, DMU_READ_PREFETCH);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
uint64_t *block_start = db->db_data;
|
|
uint64_t block_length = MIN(end - block_base, blksz);
|
|
uint64_t *block_end = block_start +
|
|
(block_length / sizeof (uint64_t));
|
|
|
|
VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
|
|
VERIFY3U(block_length, !=, 0);
|
|
ASSERT3U(blksz, ==, db->db_size);
|
|
|
|
for (uint64_t *block_cursor = block_start;
|
|
block_cursor < block_end && error == 0; block_cursor++) {
|
|
uint64_t e = *block_cursor;
|
|
|
|
if (sm_entry_is_debug(e)) {
|
|
/*
|
|
* Debug entries are only needed to record the
|
|
* current TXG and sync pass if available.
|
|
*
|
|
* Note though that sometimes there can be
|
|
* debug entries that are used as padding
|
|
* at the end of space map blocks in-order
|
|
* to not split a double-word entry in the
|
|
* middle between two blocks. These entries
|
|
* have their TXG field set to 0 and we
|
|
* skip them without recording the TXG.
|
|
* [see comment in space_map_write_seg()]
|
|
*/
|
|
uint64_t e_txg = SM_DEBUG_TXG_DECODE(e);
|
|
if (e_txg != 0) {
|
|
txg = e_txg;
|
|
sync_pass = SM_DEBUG_SYNCPASS_DECODE(e);
|
|
} else {
|
|
ASSERT0(SM_DEBUG_SYNCPASS_DECODE(e));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
uint64_t raw_offset, raw_run, vdev_id;
|
|
maptype_t type;
|
|
if (sm_entry_is_single_word(e)) {
|
|
type = SM_TYPE_DECODE(e);
|
|
vdev_id = SM_NO_VDEVID;
|
|
raw_offset = SM_OFFSET_DECODE(e);
|
|
raw_run = SM_RUN_DECODE(e);
|
|
} else {
|
|
/* it is a two-word entry */
|
|
ASSERT(sm_entry_is_double_word(e));
|
|
raw_run = SM2_RUN_DECODE(e);
|
|
vdev_id = SM2_VDEV_DECODE(e);
|
|
|
|
/* move on to the second word */
|
|
block_cursor++;
|
|
e = *block_cursor;
|
|
VERIFY3P(block_cursor, <=, block_end);
|
|
|
|
type = SM2_TYPE_DECODE(e);
|
|
raw_offset = SM2_OFFSET_DECODE(e);
|
|
}
|
|
|
|
uint64_t entry_offset = (raw_offset << sm->sm_shift) +
|
|
sm->sm_start;
|
|
uint64_t entry_run = raw_run << sm->sm_shift;
|
|
|
|
VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
|
|
VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
|
|
ASSERT3U(entry_offset, >=, sm->sm_start);
|
|
ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
|
|
ASSERT3U(entry_run, <=, sm->sm_size);
|
|
ASSERT3U(entry_offset + entry_run, <=,
|
|
sm->sm_start + sm->sm_size);
|
|
|
|
space_map_entry_t sme = {
|
|
.sme_type = type,
|
|
.sme_vdev = vdev_id,
|
|
.sme_offset = entry_offset,
|
|
.sme_run = entry_run,
|
|
.sme_txg = txg,
|
|
.sme_sync_pass = sync_pass
|
|
};
|
|
error = callback(&sme, arg);
|
|
}
|
|
dmu_buf_rele(db, FTAG);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Reads the entries from the last block of the space map into
|
|
* buf in reverse order. Populates nwords with number of words
|
|
* in the last block.
|
|
*
|
|
* Refer to block comment within space_map_incremental_destroy()
|
|
* to understand why this function is needed.
|
|
*/
|
|
static int
|
|
space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
|
|
uint64_t bufsz, uint64_t *nwords)
|
|
{
|
|
int error = 0;
|
|
dmu_buf_t *db;
|
|
|
|
/*
|
|
* Find the offset of the last word in the space map and use
|
|
* that to read the last block of the space map with
|
|
* dmu_buf_hold().
|
|
*/
|
|
uint64_t last_word_offset =
|
|
sm->sm_phys->smp_length - sizeof (uint64_t);
|
|
error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
|
|
FTAG, &db, DMU_READ_NO_PREFETCH);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
ASSERT3U(sm->sm_object, ==, db->db_object);
|
|
ASSERT3U(sm->sm_blksz, ==, db->db_size);
|
|
ASSERT3U(bufsz, >=, db->db_size);
|
|
ASSERT(nwords != NULL);
|
|
|
|
uint64_t *words = db->db_data;
|
|
*nwords =
|
|
(sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
|
|
|
|
ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));
|
|
|
|
uint64_t n = *nwords;
|
|
uint64_t j = n - 1;
|
|
for (uint64_t i = 0; i < n; i++) {
|
|
uint64_t entry = words[i];
|
|
if (sm_entry_is_double_word(entry)) {
|
|
/*
|
|
* Since we are populating the buffer backwards
|
|
* we have to be extra careful and add the two
|
|
* words of the double-word entry in the right
|
|
* order.
|
|
*/
|
|
ASSERT3U(j, >, 0);
|
|
buf[j - 1] = entry;
|
|
|
|
i++;
|
|
ASSERT3U(i, <, n);
|
|
entry = words[i];
|
|
buf[j] = entry;
|
|
j -= 2;
|
|
} else {
|
|
ASSERT(sm_entry_is_debug(entry) ||
|
|
sm_entry_is_single_word(entry));
|
|
buf[j] = entry;
|
|
j--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assert that we wrote backwards all the
|
|
* way to the beginning of the buffer.
|
|
*/
|
|
ASSERT3S(j, ==, -1);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Note: This function performs destructive actions - specifically
|
|
* it deletes entries from the end of the space map. Thus, callers
|
|
* should ensure that they are holding the appropriate locks for
|
|
* the space map that they provide.
|
|
*/
|
|
int
|
|
space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
|
|
dmu_tx_t *tx)
|
|
{
|
|
uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
|
|
uint64_t *buf = zio_buf_alloc(bufsz);
|
|
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
|
|
/*
|
|
* Ideally we would want to iterate from the beginning of the
|
|
* space map to the end in incremental steps. The issue with this
|
|
* approach is that we don't have any field on-disk that points
|
|
* us where to start between each step. We could try zeroing out
|
|
* entries that we've destroyed, but this doesn't work either as
|
|
* an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
|
|
*
|
|
* As a result, we destroy its entries incrementally starting from
|
|
* the end after applying the callback to each of them.
|
|
*
|
|
* The problem with this approach is that we cannot literally
|
|
* iterate through the words in the space map backwards as we
|
|
* can't distinguish two-word space map entries from their second
|
|
* word. Thus we do the following:
|
|
*
|
|
* 1] We get all the entries from the last block of the space map
|
|
* and put them into a buffer in reverse order. This way the
|
|
* last entry comes first in the buffer, the second to last is
|
|
* second, etc.
|
|
* 2] We iterate through the entries in the buffer and we apply
|
|
* the callback to each one. As we move from entry to entry we
|
|
* we decrease the size of the space map, deleting effectively
|
|
* each entry.
|
|
* 3] If there are no more entries in the space map or the callback
|
|
* returns a value other than 0, we stop iterating over the
|
|
* space map. If there are entries remaining and the callback
|
|
* returned 0, we go back to step [1].
|
|
*/
|
|
int error = 0;
|
|
while (space_map_length(sm) > 0 && error == 0) {
|
|
uint64_t nwords = 0;
|
|
error = space_map_reversed_last_block_entries(sm, buf, bufsz,
|
|
&nwords);
|
|
if (error != 0)
|
|
break;
|
|
|
|
ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));
|
|
|
|
for (uint64_t i = 0; i < nwords; i++) {
|
|
uint64_t e = buf[i];
|
|
|
|
if (sm_entry_is_debug(e)) {
|
|
sm->sm_phys->smp_length -= sizeof (uint64_t);
|
|
continue;
|
|
}
|
|
|
|
int words = 1;
|
|
uint64_t raw_offset, raw_run, vdev_id;
|
|
maptype_t type;
|
|
if (sm_entry_is_single_word(e)) {
|
|
type = SM_TYPE_DECODE(e);
|
|
vdev_id = SM_NO_VDEVID;
|
|
raw_offset = SM_OFFSET_DECODE(e);
|
|
raw_run = SM_RUN_DECODE(e);
|
|
} else {
|
|
ASSERT(sm_entry_is_double_word(e));
|
|
words = 2;
|
|
|
|
raw_run = SM2_RUN_DECODE(e);
|
|
vdev_id = SM2_VDEV_DECODE(e);
|
|
|
|
/* move to the second word */
|
|
i++;
|
|
e = buf[i];
|
|
|
|
ASSERT3P(i, <=, nwords);
|
|
|
|
type = SM2_TYPE_DECODE(e);
|
|
raw_offset = SM2_OFFSET_DECODE(e);
|
|
}
|
|
|
|
uint64_t entry_offset =
|
|
(raw_offset << sm->sm_shift) + sm->sm_start;
|
|
uint64_t entry_run = raw_run << sm->sm_shift;
|
|
|
|
VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
|
|
VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
|
|
VERIFY3U(entry_offset, >=, sm->sm_start);
|
|
VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
|
|
VERIFY3U(entry_run, <=, sm->sm_size);
|
|
VERIFY3U(entry_offset + entry_run, <=,
|
|
sm->sm_start + sm->sm_size);
|
|
|
|
space_map_entry_t sme = {
|
|
.sme_type = type,
|
|
.sme_vdev = vdev_id,
|
|
.sme_offset = entry_offset,
|
|
.sme_run = entry_run
|
|
};
|
|
error = callback(&sme, arg);
|
|
if (error != 0)
|
|
break;
|
|
|
|
if (type == SM_ALLOC)
|
|
sm->sm_phys->smp_alloc -= entry_run;
|
|
else
|
|
sm->sm_phys->smp_alloc += entry_run;
|
|
sm->sm_phys->smp_length -= words * sizeof (uint64_t);
|
|
}
|
|
}
|
|
|
|
if (space_map_length(sm) == 0) {
|
|
ASSERT0(error);
|
|
ASSERT0(space_map_allocated(sm));
|
|
}
|
|
|
|
zio_buf_free(buf, bufsz);
|
|
return (error);
|
|
}
|
|
|
|
typedef struct space_map_load_arg {
|
|
space_map_t *smla_sm;
|
|
range_tree_t *smla_rt;
|
|
maptype_t smla_type;
|
|
} space_map_load_arg_t;
|
|
|
|
static int
|
|
space_map_load_callback(space_map_entry_t *sme, void *arg)
|
|
{
|
|
space_map_load_arg_t *smla = arg;
|
|
if (sme->sme_type == smla->smla_type) {
|
|
VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=,
|
|
smla->smla_sm->sm_size);
|
|
range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run);
|
|
} else {
|
|
range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Load the spacemap into the rangetree, like space_map_load. But only
|
|
* read the first 'length' bytes of the spacemap.
|
|
*/
|
|
int
|
|
space_map_load_length(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
|
|
uint64_t length)
|
|
{
|
|
space_map_load_arg_t smla;
|
|
|
|
VERIFY0(range_tree_space(rt));
|
|
|
|
if (maptype == SM_FREE)
|
|
range_tree_add(rt, sm->sm_start, sm->sm_size);
|
|
|
|
smla.smla_rt = rt;
|
|
smla.smla_sm = sm;
|
|
smla.smla_type = maptype;
|
|
int err = space_map_iterate(sm, length,
|
|
space_map_load_callback, &smla);
|
|
|
|
if (err != 0)
|
|
range_tree_vacate(rt, NULL, NULL);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Load the space map disk into the specified range tree. Segments of maptype
|
|
* are added to the range tree, other segment types are removed.
|
|
*/
|
|
int
|
|
space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
|
|
{
|
|
return (space_map_load_length(sm, rt, maptype, space_map_length(sm)));
|
|
}
|
|
|
|
void
|
|
space_map_histogram_clear(space_map_t *sm)
|
|
{
|
|
if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
|
|
return;
|
|
|
|
bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
|
|
}
|
|
|
|
boolean_t
|
|
space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
|
|
{
|
|
/*
|
|
* Verify that the in-core range tree does not have any
|
|
* ranges smaller than our sm_shift size.
|
|
*/
|
|
for (int i = 0; i < sm->sm_shift; i++) {
|
|
if (rt->rt_histogram[i] != 0)
|
|
return (B_FALSE);
|
|
}
|
|
return (B_TRUE);
|
|
}
|
|
|
|
void
|
|
space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
|
|
{
|
|
int idx = 0;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
VERIFY3U(space_map_object(sm), !=, 0);
|
|
|
|
if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
|
|
return;
|
|
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
|
|
ASSERT(space_map_histogram_verify(sm, rt));
|
|
/*
|
|
* Transfer the content of the range tree histogram to the space
|
|
* map histogram. The space map histogram contains 32 buckets ranging
|
|
* between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
|
|
* however, can represent ranges from 2^0 to 2^63. Since the space
|
|
* map only cares about allocatable blocks (minimum of sm_shift) we
|
|
* can safely ignore all ranges in the range tree smaller than sm_shift.
|
|
*/
|
|
for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
|
|
/*
|
|
* Since the largest histogram bucket in the space map is
|
|
* 2^(32+sm_shift-1), we need to normalize the values in
|
|
* the range tree for any bucket larger than that size. For
|
|
* example given an sm_shift of 9, ranges larger than 2^40
|
|
* would get normalized as if they were 1TB ranges. Assume
|
|
* the range tree had a count of 5 in the 2^44 (16TB) bucket,
|
|
* the calculation below would normalize this to 5 * 2^4 (16).
|
|
*/
|
|
ASSERT3U(i, >=, idx + sm->sm_shift);
|
|
sm->sm_phys->smp_histogram[idx] +=
|
|
rt->rt_histogram[i] << (i - idx - sm->sm_shift);
|
|
|
|
/*
|
|
* Increment the space map's index as long as we haven't
|
|
* reached the maximum bucket size. Accumulate all ranges
|
|
* larger than the max bucket size into the last bucket.
|
|
*/
|
|
if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
|
|
ASSERT3U(idx + sm->sm_shift, ==, i);
|
|
idx++;
|
|
ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
|
|
uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
|
|
SM_DEBUG_ACTION_ENCODE(maptype) |
|
|
SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
|
|
SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
|
|
|
|
dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_length,
|
|
sizeof (dentry), &dentry, tx);
|
|
|
|
sm->sm_phys->smp_length += sizeof (dentry);
|
|
}
|
|
|
|
/*
|
|
* Writes one or more entries given a segment.
|
|
*
|
|
* Note: The function may release the dbuf from the pointer initially
|
|
* passed to it, and return a different dbuf. Also, the space map's
|
|
* dbuf must be dirty for the changes in sm_phys to take effect.
|
|
*/
|
|
static void
|
|
space_map_write_seg(space_map_t *sm, uint64_t rstart, uint64_t rend,
|
|
maptype_t maptype, uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp,
|
|
void *tag, dmu_tx_t *tx)
|
|
{
|
|
ASSERT3U(words, !=, 0);
|
|
ASSERT3U(words, <=, 2);
|
|
|
|
/* ensure the vdev_id can be represented by the space map */
|
|
ASSERT3U(vdev_id, <=, SM_NO_VDEVID);
|
|
|
|
/*
|
|
* if this is a single word entry, ensure that no vdev was
|
|
* specified.
|
|
*/
|
|
IMPLY(words == 1, vdev_id == SM_NO_VDEVID);
|
|
|
|
dmu_buf_t *db = *dbp;
|
|
ASSERT3U(db->db_size, ==, sm->sm_blksz);
|
|
|
|
uint64_t *block_base = db->db_data;
|
|
uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
|
|
uint64_t *block_cursor = block_base +
|
|
(sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
|
|
|
|
ASSERT3P(block_cursor, <=, block_end);
|
|
|
|
uint64_t size = (rend - rstart) >> sm->sm_shift;
|
|
uint64_t start = (rstart - sm->sm_start) >> sm->sm_shift;
|
|
uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;
|
|
|
|
ASSERT3U(rstart, >=, sm->sm_start);
|
|
ASSERT3U(rstart, <, sm->sm_start + sm->sm_size);
|
|
ASSERT3U(rend - rstart, <=, sm->sm_size);
|
|
ASSERT3U(rend, <=, sm->sm_start + sm->sm_size);
|
|
|
|
while (size != 0) {
|
|
ASSERT3P(block_cursor, <=, block_end);
|
|
|
|
/*
|
|
* If we are at the end of this block, flush it and start
|
|
* writing again from the beginning.
|
|
*/
|
|
if (block_cursor == block_end) {
|
|
dmu_buf_rele(db, tag);
|
|
|
|
uint64_t next_word_offset = sm->sm_phys->smp_length;
|
|
VERIFY0(dmu_buf_hold(sm->sm_os,
|
|
space_map_object(sm), next_word_offset,
|
|
tag, &db, DMU_READ_PREFETCH));
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
/* update caller's dbuf */
|
|
*dbp = db;
|
|
|
|
ASSERT3U(db->db_size, ==, sm->sm_blksz);
|
|
|
|
block_base = db->db_data;
|
|
block_cursor = block_base;
|
|
block_end = block_base +
|
|
(db->db_size / sizeof (uint64_t));
|
|
}
|
|
|
|
/*
|
|
* If we are writing a two-word entry and we only have one
|
|
* word left on this block, just pad it with an empty debug
|
|
* entry and write the two-word entry in the next block.
|
|
*/
|
|
uint64_t *next_entry = block_cursor + 1;
|
|
if (next_entry == block_end && words > 1) {
|
|
ASSERT3U(words, ==, 2);
|
|
*block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
|
|
SM_DEBUG_ACTION_ENCODE(0) |
|
|
SM_DEBUG_SYNCPASS_ENCODE(0) |
|
|
SM_DEBUG_TXG_ENCODE(0);
|
|
block_cursor++;
|
|
sm->sm_phys->smp_length += sizeof (uint64_t);
|
|
ASSERT3P(block_cursor, ==, block_end);
|
|
continue;
|
|
}
|
|
|
|
uint64_t run_len = MIN(size, run_max);
|
|
switch (words) {
|
|
case 1:
|
|
*block_cursor = SM_OFFSET_ENCODE(start) |
|
|
SM_TYPE_ENCODE(maptype) |
|
|
SM_RUN_ENCODE(run_len);
|
|
block_cursor++;
|
|
break;
|
|
case 2:
|
|
/* write the first word of the entry */
|
|
*block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
|
|
SM2_RUN_ENCODE(run_len) |
|
|
SM2_VDEV_ENCODE(vdev_id);
|
|
block_cursor++;
|
|
|
|
/* move on to the second word of the entry */
|
|
ASSERT3P(block_cursor, <, block_end);
|
|
*block_cursor = SM2_TYPE_ENCODE(maptype) |
|
|
SM2_OFFSET_ENCODE(start);
|
|
block_cursor++;
|
|
break;
|
|
default:
|
|
panic("%d-word space map entries are not supported",
|
|
words);
|
|
break;
|
|
}
|
|
sm->sm_phys->smp_length += words * sizeof (uint64_t);
|
|
|
|
start += run_len;
|
|
size -= run_len;
|
|
}
|
|
ASSERT0(size);
|
|
|
|
}
|
|
|
|
/*
|
|
* Note: The space map's dbuf must be dirty for the changes in sm_phys to
|
|
* take effect.
|
|
*/
|
|
static void
|
|
space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
|
|
uint64_t vdev_id, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = tx->tx_pool->dp_spa;
|
|
dmu_buf_t *db;
|
|
|
|
space_map_write_intro_debug(sm, maptype, tx);
|
|
|
|
#ifdef ZFS_DEBUG
|
|
/*
|
|
* We do this right after we write the intro debug entry
|
|
* because the estimate does not take it into account.
|
|
*/
|
|
uint64_t initial_objsize = sm->sm_phys->smp_length;
|
|
uint64_t estimated_growth =
|
|
space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
|
|
uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
|
|
#endif
|
|
|
|
/*
|
|
* Find the offset right after the last word in the space map
|
|
* and use that to get a hold of the last block, so we can
|
|
* start appending to it.
|
|
*/
|
|
uint64_t next_word_offset = sm->sm_phys->smp_length;
|
|
VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
|
|
next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
|
|
ASSERT3U(db->db_size, ==, sm->sm_blksz);
|
|
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
zfs_btree_t *t = &rt->rt_root;
|
|
zfs_btree_index_t where;
|
|
for (range_seg_t *rs = zfs_btree_first(t, &where); rs != NULL;
|
|
rs = zfs_btree_next(t, &where, &where)) {
|
|
uint64_t offset = (rs_get_start(rs, rt) - sm->sm_start) >>
|
|
sm->sm_shift;
|
|
uint64_t length = (rs_get_end(rs, rt) - rs_get_start(rs, rt)) >>
|
|
sm->sm_shift;
|
|
uint8_t words = 1;
|
|
|
|
/*
|
|
* We only write two-word entries when both of the following
|
|
* are true:
|
|
*
|
|
* [1] The feature is enabled.
|
|
* [2] The offset or run is too big for a single-word entry,
|
|
* or the vdev_id is set (meaning not equal to
|
|
* SM_NO_VDEVID).
|
|
*
|
|
* Note that for purposes of testing we've added the case that
|
|
* we write two-word entries occasionally when the feature is
|
|
* enabled and zfs_force_some_double_word_sm_entries has been
|
|
* set.
|
|
*/
|
|
if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
|
|
(offset >= (1ULL << SM_OFFSET_BITS) ||
|
|
length > SM_RUN_MAX ||
|
|
vdev_id != SM_NO_VDEVID ||
|
|
(zfs_force_some_double_word_sm_entries &&
|
|
spa_get_random(100) == 0)))
|
|
words = 2;
|
|
|
|
space_map_write_seg(sm, rs_get_start(rs, rt), rs_get_end(rs,
|
|
rt), maptype, vdev_id, words, &db, FTAG, tx);
|
|
}
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
#ifdef ZFS_DEBUG
|
|
/*
|
|
* We expect our estimation to be based on the worst case
|
|
* scenario [see comment in space_map_estimate_optimal_size()].
|
|
* Therefore we expect the actual objsize to be equal or less
|
|
* than whatever we estimated it to be.
|
|
*/
|
|
ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_length);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Note: This function manipulates the state of the given space map but
|
|
* does not hold any locks implicitly. Thus the caller is responsible
|
|
* for synchronizing writes to the space map.
|
|
*/
|
|
void
|
|
space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
|
|
uint64_t vdev_id, dmu_tx_t *tx)
|
|
{
|
|
ASSERT(dsl_pool_sync_context(dmu_objset_pool(sm->sm_os)));
|
|
VERIFY3U(space_map_object(sm), !=, 0);
|
|
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
|
|
/*
|
|
* This field is no longer necessary since the in-core space map
|
|
* now contains the object number but is maintained for backwards
|
|
* compatibility.
|
|
*/
|
|
sm->sm_phys->smp_object = sm->sm_object;
|
|
|
|
if (range_tree_is_empty(rt)) {
|
|
VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
|
|
return;
|
|
}
|
|
|
|
if (maptype == SM_ALLOC)
|
|
sm->sm_phys->smp_alloc += range_tree_space(rt);
|
|
else
|
|
sm->sm_phys->smp_alloc -= range_tree_space(rt);
|
|
|
|
uint64_t nodes = zfs_btree_numnodes(&rt->rt_root);
|
|
uint64_t rt_space = range_tree_space(rt);
|
|
|
|
space_map_write_impl(sm, rt, maptype, vdev_id, tx);
|
|
|
|
/*
|
|
* Ensure that the space_map's accounting wasn't changed
|
|
* while we were in the middle of writing it out.
|
|
*/
|
|
VERIFY3U(nodes, ==, zfs_btree_numnodes(&rt->rt_root));
|
|
VERIFY3U(range_tree_space(rt), ==, rt_space);
|
|
}
|
|
|
|
static int
|
|
space_map_open_impl(space_map_t *sm)
|
|
{
|
|
int error;
|
|
u_longlong_t blocks;
|
|
|
|
error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
|
|
if (error)
|
|
return (error);
|
|
|
|
dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
|
|
sm->sm_phys = sm->sm_dbuf->db_data;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
|
|
uint64_t start, uint64_t size, uint8_t shift)
|
|
{
|
|
space_map_t *sm;
|
|
int error;
|
|
|
|
ASSERT(*smp == NULL);
|
|
ASSERT(os != NULL);
|
|
ASSERT(object != 0);
|
|
|
|
sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);
|
|
|
|
sm->sm_start = start;
|
|
sm->sm_size = size;
|
|
sm->sm_shift = shift;
|
|
sm->sm_os = os;
|
|
sm->sm_object = object;
|
|
sm->sm_blksz = 0;
|
|
sm->sm_dbuf = NULL;
|
|
sm->sm_phys = NULL;
|
|
|
|
error = space_map_open_impl(sm);
|
|
if (error != 0) {
|
|
space_map_close(sm);
|
|
return (error);
|
|
}
|
|
*smp = sm;
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
space_map_close(space_map_t *sm)
|
|
{
|
|
if (sm == NULL)
|
|
return;
|
|
|
|
if (sm->sm_dbuf != NULL)
|
|
dmu_buf_rele(sm->sm_dbuf, sm);
|
|
sm->sm_dbuf = NULL;
|
|
sm->sm_phys = NULL;
|
|
|
|
kmem_free(sm, sizeof (*sm));
|
|
}
|
|
|
|
void
|
|
space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
|
|
{
|
|
objset_t *os = sm->sm_os;
|
|
spa_t *spa = dmu_objset_spa(os);
|
|
dmu_object_info_t doi;
|
|
|
|
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
|
|
|
|
dmu_object_info_from_db(sm->sm_dbuf, &doi);
|
|
|
|
/*
|
|
* If the space map has the wrong bonus size (because
|
|
* SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
|
|
* the wrong block size (because space_map_blksz has changed),
|
|
* free and re-allocate its object with the updated sizes.
|
|
*
|
|
* Otherwise, just truncate the current object.
|
|
*/
|
|
if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
|
|
doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
|
|
doi.doi_data_block_size != blocksize ||
|
|
doi.doi_metadata_block_size != 1 << space_map_ibs) {
|
|
zfs_dbgmsg("txg %llu, spa %s, sm %px, reallocating "
|
|
"object[%llu]: old bonus %u, old blocksz %u",
|
|
dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
|
|
doi.doi_bonus_size, doi.doi_data_block_size);
|
|
|
|
space_map_free(sm, tx);
|
|
dmu_buf_rele(sm->sm_dbuf, sm);
|
|
|
|
sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
|
|
VERIFY0(space_map_open_impl(sm));
|
|
} else {
|
|
VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
|
|
|
|
/*
|
|
* If the spacemap is reallocated, its histogram
|
|
* will be reset. Do the same in the common case so that
|
|
* bugs related to the uncommon case do not go unnoticed.
|
|
*/
|
|
bzero(sm->sm_phys->smp_histogram,
|
|
sizeof (sm->sm_phys->smp_histogram));
|
|
}
|
|
|
|
dmu_buf_will_dirty(sm->sm_dbuf, tx);
|
|
sm->sm_phys->smp_length = 0;
|
|
sm->sm_phys->smp_alloc = 0;
|
|
}
|
|
|
|
uint64_t
|
|
space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = dmu_objset_spa(os);
|
|
uint64_t object;
|
|
int bonuslen;
|
|
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
|
|
spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
|
|
bonuslen = sizeof (space_map_phys_t);
|
|
ASSERT3U(bonuslen, <=, dmu_bonus_max());
|
|
} else {
|
|
bonuslen = SPACE_MAP_SIZE_V0;
|
|
}
|
|
|
|
object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize,
|
|
space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
|
|
|
|
return (object);
|
|
}
|
|
|
|
void
|
|
space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = dmu_objset_spa(os);
|
|
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
|
|
dmu_object_info_t doi;
|
|
|
|
VERIFY0(dmu_object_info(os, smobj, &doi));
|
|
if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
|
|
spa_feature_decr(spa,
|
|
SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
|
|
}
|
|
}
|
|
|
|
VERIFY0(dmu_object_free(os, smobj, tx));
|
|
}
|
|
|
|
void
|
|
space_map_free(space_map_t *sm, dmu_tx_t *tx)
|
|
{
|
|
if (sm == NULL)
|
|
return;
|
|
|
|
space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
|
|
sm->sm_object = 0;
|
|
}
|
|
|
|
/*
|
|
* Given a range tree, it makes a worst-case estimate of how much
|
|
* space would the tree's segments take if they were written to
|
|
* the given space map.
|
|
*/
|
|
uint64_t
|
|
space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt,
|
|
uint64_t vdev_id)
|
|
{
|
|
spa_t *spa = dmu_objset_spa(sm->sm_os);
|
|
uint64_t shift = sm->sm_shift;
|
|
uint64_t *histogram = rt->rt_histogram;
|
|
uint64_t entries_for_seg = 0;
|
|
|
|
/*
|
|
* In order to get a quick estimate of the optimal size that this
|
|
* range tree would have on-disk as a space map, we iterate through
|
|
* its histogram buckets instead of iterating through its nodes.
|
|
*
|
|
* Note that this is a highest-bound/worst-case estimate for the
|
|
* following reasons:
|
|
*
|
|
* 1] We assume that we always add a debug padding for each block
|
|
* we write and we also assume that we start at the last word
|
|
* of a block attempting to write a two-word entry.
|
|
* 2] Rounding up errors due to the way segments are distributed
|
|
* in the buckets of the range tree's histogram.
|
|
* 3] The activation of zfs_force_some_double_word_sm_entries
|
|
* (tunable) when testing.
|
|
*
|
|
* = Math and Rounding Errors =
|
|
*
|
|
* rt_histogram[i] bucket of a range tree represents the number
|
|
* of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
|
|
* that, we want to divide the buckets into groups: Buckets that
|
|
* can be represented using a single-word entry, ones that can
|
|
* be represented with a double-word entry, and ones that can
|
|
* only be represented with multiple two-word entries.
|
|
*
|
|
* [Note that if the new encoding feature is not enabled there
|
|
* are only two groups: single-word entry buckets and multiple
|
|
* single-word entry buckets. The information below assumes
|
|
* two-word entries enabled, but it can easily applied when
|
|
* the feature is not enabled]
|
|
*
|
|
* To find the highest bucket that can be represented with a
|
|
* single-word entry we look at the maximum run that such entry
|
|
* can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
|
|
* the run of a space map entry is shifted by sm_shift, thus we
|
|
* add it to the exponent]. This way, excluding the value of the
|
|
* maximum run that can be represented by a single-word entry,
|
|
* all runs that are smaller exist in buckets 0 to
|
|
* SM_RUN_BITS + shift - 1.
|
|
*
|
|
* To find the highest bucket that can be represented with a
|
|
* double-word entry, we follow the same approach. Finally, any
|
|
* bucket higher than that are represented with multiple two-word
|
|
* entries. To be more specific, if the highest bucket whose
|
|
* segments can be represented with a single two-word entry is X,
|
|
* then bucket X+1 will need 2 two-word entries for each of its
|
|
* segments, X+2 will need 4, X+3 will need 8, ...etc.
|
|
*
|
|
* With all of the above we make our estimation based on bucket
|
|
* groups. There is a rounding error though. As we mentioned in
|
|
* the example with the one-word entry, the maximum run that can
|
|
* be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
|
|
* not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
|
|
* that length fall into the next bucket (and bucket group) where
|
|
* we start counting two-word entries and this is one more reason
|
|
* why the estimated size may end up being bigger than the actual
|
|
* size written.
|
|
*/
|
|
uint64_t size = 0;
|
|
uint64_t idx = 0;
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
|
|
(vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {
|
|
|
|
/*
|
|
* If we are trying to force some double word entries just
|
|
* assume the worst-case of every single word entry being
|
|
* written as a double word entry.
|
|
*/
|
|
uint64_t entry_size =
|
|
(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
|
|
zfs_force_some_double_word_sm_entries) ?
|
|
(2 * sizeof (uint64_t)) : sizeof (uint64_t);
|
|
|
|
uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
|
|
for (; idx <= single_entry_max_bucket; idx++)
|
|
size += histogram[idx] * entry_size;
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
|
|
for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
|
|
ASSERT3U(idx, >=, single_entry_max_bucket);
|
|
entries_for_seg =
|
|
1ULL << (idx - single_entry_max_bucket);
|
|
size += histogram[idx] *
|
|
entries_for_seg * entry_size;
|
|
}
|
|
return (size);
|
|
}
|
|
}
|
|
|
|
ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));
|
|
|
|
uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
|
|
for (; idx <= double_entry_max_bucket; idx++)
|
|
size += histogram[idx] * 2 * sizeof (uint64_t);
|
|
|
|
for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
|
|
ASSERT3U(idx, >=, double_entry_max_bucket);
|
|
entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
|
|
size += histogram[idx] *
|
|
entries_for_seg * 2 * sizeof (uint64_t);
|
|
}
|
|
|
|
/*
|
|
* Assume the worst case where we start with the padding at the end
|
|
* of the current block and we add an extra padding entry at the end
|
|
* of all subsequent blocks.
|
|
*/
|
|
size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);
|
|
|
|
return (size);
|
|
}
|
|
|
|
uint64_t
|
|
space_map_object(space_map_t *sm)
|
|
{
|
|
return (sm != NULL ? sm->sm_object : 0);
|
|
}
|
|
|
|
int64_t
|
|
space_map_allocated(space_map_t *sm)
|
|
{
|
|
return (sm != NULL ? sm->sm_phys->smp_alloc : 0);
|
|
}
|
|
|
|
uint64_t
|
|
space_map_length(space_map_t *sm)
|
|
{
|
|
return (sm != NULL ? sm->sm_phys->smp_length : 0);
|
|
}
|
|
|
|
uint64_t
|
|
space_map_nblocks(space_map_t *sm)
|
|
{
|
|
if (sm == NULL)
|
|
return (0);
|
|
return (DIV_ROUND_UP(space_map_length(sm), sm->sm_blksz));
|
|
}
|