mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 03:09:34 +03:00
1b939560be
UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Tim Chase <tim@chase2k.com> Reviewed-by: Matt Ahrens <mahrens@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com> Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com> Contributions-by: Tim Chase <tim@chase2k.com> Contributions-by: Chunwei Chen <tuxoko@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #8419 Closes #598
735 lines
21 KiB
C
735 lines
21 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2016 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/dmu_tx.h>
|
|
|
|
/*
|
|
* Value that is written to disk during initialization.
|
|
*/
|
|
#ifdef _ILP32
|
|
unsigned long zfs_initialize_value = 0xdeadbeefUL;
|
|
#else
|
|
unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
|
|
#endif
|
|
|
|
/* maximum number of I/Os outstanding per leaf vdev */
|
|
int zfs_initialize_limit = 1;
|
|
|
|
/* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
|
|
uint64_t zfs_initialize_chunk_size = 1024 * 1024;
|
|
|
|
static boolean_t
|
|
vdev_initialize_should_stop(vdev_t *vd)
|
|
{
|
|
return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
|
|
vd->vdev_detached || vd->vdev_top->vdev_removing);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
/*
|
|
* We pass in the guid instead of the vdev_t since the vdev may
|
|
* have been freed prior to the sync task being processed. This
|
|
* happens when a vdev is detached as we call spa_config_vdev_exit(),
|
|
* stop the initializing thread, schedule the sync task, and free
|
|
* the vdev. Later when the scheduled sync task is invoked, it would
|
|
* find that the vdev has been freed.
|
|
*/
|
|
uint64_t guid = *(uint64_t *)arg;
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
kmem_free(arg, sizeof (uint64_t));
|
|
|
|
vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
|
|
if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
|
|
return;
|
|
|
|
uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
|
|
vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
|
|
|
|
VERIFY(vd->vdev_leaf_zap != 0);
|
|
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
|
|
if (last_offset > 0) {
|
|
vd->vdev_initialize_last_offset = last_offset;
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
|
|
sizeof (last_offset), 1, &last_offset, tx));
|
|
}
|
|
if (vd->vdev_initialize_action_time > 0) {
|
|
uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
|
|
1, &val, tx));
|
|
}
|
|
|
|
uint64_t initialize_state = vd->vdev_initialize_state;
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
|
|
&initialize_state, tx));
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
if (new_state == vd->vdev_initialize_state)
|
|
return;
|
|
|
|
/*
|
|
* Copy the vd's guid, this will be freed by the sync task.
|
|
*/
|
|
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
|
|
*guid = vd->vdev_guid;
|
|
|
|
/*
|
|
* If we're suspending, then preserving the original start time.
|
|
*/
|
|
if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
|
|
vd->vdev_initialize_action_time = gethrestime_sec();
|
|
}
|
|
vd->vdev_initialize_state = new_state;
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
|
|
guid, 2, ZFS_SPACE_CHECK_NONE, tx);
|
|
|
|
switch (new_state) {
|
|
case VDEV_INITIALIZE_ACTIVE:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s activated", vd->vdev_path);
|
|
break;
|
|
case VDEV_INITIALIZE_SUSPENDED:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s suspended", vd->vdev_path);
|
|
break;
|
|
case VDEV_INITIALIZE_CANCELED:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s canceled", vd->vdev_path);
|
|
break;
|
|
case VDEV_INITIALIZE_COMPLETE:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s complete", vd->vdev_path);
|
|
break;
|
|
default:
|
|
panic("invalid state %llu", (unsigned long long)new_state);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_cb(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
|
|
/*
|
|
* The I/O failed because the vdev was unavailable; roll the
|
|
* last offset back. (This works because spa_sync waits on
|
|
* spa_txg_zio before it runs sync tasks.)
|
|
*/
|
|
uint64_t *off =
|
|
&vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
|
|
*off = MIN(*off, zio->io_offset);
|
|
} else {
|
|
/*
|
|
* Since initializing is best-effort, we ignore I/O errors and
|
|
* rely on vdev_probe to determine if the errors are more
|
|
* critical.
|
|
*/
|
|
if (zio->io_error != 0)
|
|
vd->vdev_stat.vs_initialize_errors++;
|
|
|
|
vd->vdev_initialize_bytes_done += zio->io_orig_size;
|
|
}
|
|
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
|
|
vd->vdev_initialize_inflight--;
|
|
cv_broadcast(&vd->vdev_initialize_io_cv);
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
|
}
|
|
|
|
/* Takes care of physical writing and limiting # of concurrent ZIOs. */
|
|
static int
|
|
vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
/* Limit inflight initializing I/Os */
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
|
|
cv_wait(&vd->vdev_initialize_io_cv,
|
|
&vd->vdev_initialize_io_lock);
|
|
}
|
|
vd->vdev_initialize_inflight++;
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
|
|
spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
|
|
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
|
|
*guid = vd->vdev_guid;
|
|
|
|
/* This is the first write of this txg. */
|
|
dsl_sync_task_nowait(spa_get_dsl(spa),
|
|
vdev_initialize_zap_update_sync, guid, 2,
|
|
ZFS_SPACE_CHECK_RESERVED, tx);
|
|
}
|
|
|
|
/*
|
|
* We know the vdev struct will still be around since all
|
|
* consumers of vdev_free must stop the initialization first.
|
|
*/
|
|
if (vdev_initialize_should_stop(vd)) {
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
|
|
vd->vdev_initialize_inflight--;
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
dmu_tx_commit(tx);
|
|
return (SET_ERROR(EINTR));
|
|
}
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
|
|
zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
|
|
size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
|
|
ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
|
|
/* vdev_initialize_cb releases SCL_STATE_ALL */
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Callback to fill each ABD chunk with zfs_initialize_value. len must be
|
|
* divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
|
|
* allocation will guarantee these for us.
|
|
*/
|
|
/* ARGSUSED */
|
|
static int
|
|
vdev_initialize_block_fill(void *buf, size_t len, void *unused)
|
|
{
|
|
ASSERT0(len % sizeof (uint64_t));
|
|
#ifdef _ILP32
|
|
for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
|
|
*(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
|
|
}
|
|
#else
|
|
for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
|
|
*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
|
|
}
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
static abd_t *
|
|
vdev_initialize_block_alloc(void)
|
|
{
|
|
/* Allocate ABD for filler data */
|
|
abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
|
|
|
|
ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
|
|
(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
|
|
vdev_initialize_block_fill, NULL);
|
|
|
|
return (data);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_block_free(abd_t *data)
|
|
{
|
|
abd_free(data);
|
|
}
|
|
|
|
static int
|
|
vdev_initialize_ranges(vdev_t *vd, abd_t *data)
|
|
{
|
|
avl_tree_t *rt = &vd->vdev_initialize_tree->rt_root;
|
|
|
|
for (range_seg_t *rs = avl_first(rt); rs != NULL;
|
|
rs = AVL_NEXT(rt, rs)) {
|
|
uint64_t size = rs->rs_end - rs->rs_start;
|
|
|
|
/* Split range into legally-sized physical chunks */
|
|
uint64_t writes_required =
|
|
((size - 1) / zfs_initialize_chunk_size) + 1;
|
|
|
|
for (uint64_t w = 0; w < writes_required; w++) {
|
|
int error;
|
|
|
|
error = vdev_initialize_write(vd,
|
|
VDEV_LABEL_START_SIZE + rs->rs_start +
|
|
(w * zfs_initialize_chunk_size),
|
|
MIN(size - (w * zfs_initialize_chunk_size),
|
|
zfs_initialize_chunk_size), data);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_calculate_progress(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
|
|
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
|
|
ASSERT(vd->vdev_leaf_zap != 0);
|
|
|
|
vd->vdev_initialize_bytes_est = 0;
|
|
vd->vdev_initialize_bytes_done = 0;
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
|
|
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
uint64_t ms_free = msp->ms_size -
|
|
metaslab_allocated_space(msp);
|
|
|
|
if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
|
|
ms_free /= vd->vdev_top->vdev_children;
|
|
|
|
/*
|
|
* Convert the metaslab range to a physical range
|
|
* on our vdev. We use this to determine if we are
|
|
* in the middle of this metaslab range.
|
|
*/
|
|
range_seg_t logical_rs, physical_rs;
|
|
logical_rs.rs_start = msp->ms_start;
|
|
logical_rs.rs_end = msp->ms_start + msp->ms_size;
|
|
vdev_xlate(vd, &logical_rs, &physical_rs);
|
|
|
|
if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
|
|
vd->vdev_initialize_bytes_est += ms_free;
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
} else if (vd->vdev_initialize_last_offset >
|
|
physical_rs.rs_end) {
|
|
vd->vdev_initialize_bytes_done += ms_free;
|
|
vd->vdev_initialize_bytes_est += ms_free;
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we get here, we're in the middle of initializing this
|
|
* metaslab. Load it and walk the free tree for more accurate
|
|
* progress estimation.
|
|
*/
|
|
VERIFY0(metaslab_load(msp));
|
|
|
|
for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root);
|
|
rs; rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
|
|
logical_rs.rs_start = rs->rs_start;
|
|
logical_rs.rs_end = rs->rs_end;
|
|
vdev_xlate(vd, &logical_rs, &physical_rs);
|
|
|
|
uint64_t size = physical_rs.rs_end -
|
|
physical_rs.rs_start;
|
|
vd->vdev_initialize_bytes_est += size;
|
|
if (vd->vdev_initialize_last_offset >
|
|
physical_rs.rs_end) {
|
|
vd->vdev_initialize_bytes_done += size;
|
|
} else if (vd->vdev_initialize_last_offset >
|
|
physical_rs.rs_start &&
|
|
vd->vdev_initialize_last_offset <
|
|
physical_rs.rs_end) {
|
|
vd->vdev_initialize_bytes_done +=
|
|
vd->vdev_initialize_last_offset -
|
|
physical_rs.rs_start;
|
|
}
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vdev_initialize_load(vdev_t *vd)
|
|
{
|
|
int err = 0;
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
|
|
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
|
|
ASSERT(vd->vdev_leaf_zap != 0);
|
|
|
|
if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
|
|
vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
|
|
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
|
|
sizeof (vd->vdev_initialize_last_offset), 1,
|
|
&vd->vdev_initialize_last_offset);
|
|
if (err == ENOENT) {
|
|
vd->vdev_initialize_last_offset = 0;
|
|
err = 0;
|
|
}
|
|
}
|
|
|
|
vdev_initialize_calculate_progress(vd);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Convert the logical range into a physical range and add it to our
|
|
* avl tree.
|
|
*/
|
|
void
|
|
vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
vdev_t *vd = arg;
|
|
range_seg_t logical_rs, physical_rs;
|
|
logical_rs.rs_start = start;
|
|
logical_rs.rs_end = start + size;
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
vdev_xlate(vd, &logical_rs, &physical_rs);
|
|
|
|
IMPLY(vd->vdev_top == vd,
|
|
logical_rs.rs_start == physical_rs.rs_start);
|
|
IMPLY(vd->vdev_top == vd,
|
|
logical_rs.rs_end == physical_rs.rs_end);
|
|
|
|
/* Only add segments that we have not visited yet */
|
|
if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
|
|
return;
|
|
|
|
/* Pick up where we left off mid-range. */
|
|
if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
|
|
zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
|
|
"(%llu, %llu)", vd->vdev_path,
|
|
(u_longlong_t)physical_rs.rs_start,
|
|
(u_longlong_t)physical_rs.rs_end,
|
|
(u_longlong_t)vd->vdev_initialize_last_offset,
|
|
(u_longlong_t)physical_rs.rs_end);
|
|
ASSERT3U(physical_rs.rs_end, >,
|
|
vd->vdev_initialize_last_offset);
|
|
physical_rs.rs_start = vd->vdev_initialize_last_offset;
|
|
}
|
|
ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
|
|
|
|
/*
|
|
* With raidz, it's possible that the logical range does not live on
|
|
* this leaf vdev. We only add the physical range to this vdev's if it
|
|
* has a length greater than 0.
|
|
*/
|
|
if (physical_rs.rs_end > physical_rs.rs_start) {
|
|
range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
|
|
physical_rs.rs_end - physical_rs.rs_start);
|
|
} else {
|
|
ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_thread(void *arg)
|
|
{
|
|
vdev_t *vd = arg;
|
|
spa_t *spa = vd->vdev_spa;
|
|
int error = 0;
|
|
uint64_t ms_count = 0;
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
vd->vdev_initialize_last_offset = 0;
|
|
VERIFY0(vdev_initialize_load(vd));
|
|
|
|
abd_t *deadbeef = vdev_initialize_block_alloc();
|
|
|
|
vd->vdev_initialize_tree = range_tree_create(NULL, NULL);
|
|
|
|
for (uint64_t i = 0; !vd->vdev_detached &&
|
|
i < vd->vdev_top->vdev_ms_count; i++) {
|
|
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
|
|
|
|
/*
|
|
* If we've expanded the top-level vdev or it's our
|
|
* first pass, calculate our progress.
|
|
*/
|
|
if (vd->vdev_top->vdev_ms_count != ms_count) {
|
|
vdev_initialize_calculate_progress(vd);
|
|
ms_count = vd->vdev_top->vdev_ms_count;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
metaslab_disable(msp);
|
|
mutex_enter(&msp->ms_lock);
|
|
VERIFY0(metaslab_load(msp));
|
|
|
|
range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
|
|
vd);
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
error = vdev_initialize_ranges(vd, deadbeef);
|
|
metaslab_enable(msp, B_TRUE);
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
while (vd->vdev_initialize_inflight > 0) {
|
|
cv_wait(&vd->vdev_initialize_io_cv,
|
|
&vd->vdev_initialize_io_lock);
|
|
}
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
range_tree_destroy(vd->vdev_initialize_tree);
|
|
vdev_initialize_block_free(deadbeef);
|
|
vd->vdev_initialize_tree = NULL;
|
|
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
|
|
vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
|
|
}
|
|
ASSERT(vd->vdev_initialize_thread != NULL ||
|
|
vd->vdev_initialize_inflight == 0);
|
|
|
|
/*
|
|
* Drop the vdev_initialize_lock while we sync out the
|
|
* txg since it's possible that a device might be trying to
|
|
* come online and must check to see if it needs to restart an
|
|
* initialization. That thread will be holding the spa_config_lock
|
|
* which would prevent the txg_wait_synced from completing.
|
|
*/
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
vd->vdev_initialize_thread = NULL;
|
|
cv_broadcast(&vd->vdev_initialize_cv);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
}
|
|
|
|
/*
|
|
* Initiates a device. Caller must hold vdev_initialize_lock.
|
|
* Device must be a leaf and not already be initializing.
|
|
*/
|
|
void
|
|
vdev_initialize(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
|
|
ASSERT(!vd->vdev_detached);
|
|
ASSERT(!vd->vdev_initialize_exit_wanted);
|
|
ASSERT(!vd->vdev_top->vdev_removing);
|
|
|
|
vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
|
|
vd->vdev_initialize_thread = thread_create(NULL, 0,
|
|
vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
|
|
}
|
|
|
|
/*
|
|
* Wait for the initialize thread to be terminated (cancelled or stopped).
|
|
*/
|
|
static void
|
|
vdev_initialize_stop_wait_impl(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
|
|
while (vd->vdev_initialize_thread != NULL)
|
|
cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
|
|
|
|
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
|
|
vd->vdev_initialize_exit_wanted = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Wait for vdev initialize threads which were either to cleanly exit.
|
|
*/
|
|
void
|
|
vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
|
|
{
|
|
vdev_t *vd;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
while ((vd = list_remove_head(vd_list)) != NULL) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
vdev_initialize_stop_wait_impl(vd);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop initializing a device, with the resultant initialing state being
|
|
* tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
|
|
* a list_t is provided the stopping vdev is inserted in to the list. Callers
|
|
* are then required to call vdev_initialize_stop_wait() to block for all the
|
|
* initialization threads to exit. The caller must hold vdev_initialize_lock
|
|
* and must not be writing to the spa config, as the initializing thread may
|
|
* try to enter the config as a reader before exiting.
|
|
*/
|
|
void
|
|
vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
|
|
list_t *vd_list)
|
|
{
|
|
ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
/*
|
|
* Allow cancel requests to proceed even if the initialize thread
|
|
* has stopped.
|
|
*/
|
|
if (vd->vdev_initialize_thread == NULL &&
|
|
tgt_state != VDEV_INITIALIZE_CANCELED) {
|
|
return;
|
|
}
|
|
|
|
vdev_initialize_change_state(vd, tgt_state);
|
|
vd->vdev_initialize_exit_wanted = B_TRUE;
|
|
|
|
if (vd_list == NULL) {
|
|
vdev_initialize_stop_wait_impl(vd);
|
|
} else {
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
list_insert_tail(vd_list, vd);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
|
|
list_t *vd_list)
|
|
{
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
vdev_initialize_stop(vd, tgt_state, vd_list);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
return;
|
|
}
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
|
|
vd_list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convenience function to stop initializing of a vdev tree and set all
|
|
* initialize thread pointers to NULL.
|
|
*/
|
|
void
|
|
vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
list_t vd_list;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
list_create(&vd_list, sizeof (vdev_t),
|
|
offsetof(vdev_t, vdev_initialize_node));
|
|
|
|
vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
|
|
vdev_initialize_stop_wait(spa, &vd_list);
|
|
|
|
if (vd->vdev_spa->spa_sync_on) {
|
|
/* Make sure that our state has been synced to disk */
|
|
txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
|
|
}
|
|
|
|
list_destroy(&vd_list);
|
|
}
|
|
|
|
void
|
|
vdev_initialize_restart(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
|
|
|
|
if (vd->vdev_leaf_zap != 0) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
uint64_t initialize_state = VDEV_INITIALIZE_NONE;
|
|
int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
|
|
sizeof (initialize_state), 1, &initialize_state);
|
|
ASSERT(err == 0 || err == ENOENT);
|
|
vd->vdev_initialize_state = initialize_state;
|
|
|
|
uint64_t timestamp = 0;
|
|
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
|
|
sizeof (timestamp), 1, ×tamp);
|
|
ASSERT(err == 0 || err == ENOENT);
|
|
vd->vdev_initialize_action_time = (time_t)timestamp;
|
|
|
|
if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
|
|
vd->vdev_offline) {
|
|
/* load progress for reporting, but don't resume */
|
|
VERIFY0(vdev_initialize_load(vd));
|
|
} else if (vd->vdev_initialize_state ==
|
|
VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
|
|
!vd->vdev_top->vdev_removing &&
|
|
vd->vdev_initialize_thread == NULL) {
|
|
vdev_initialize(vd);
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
}
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
vdev_initialize_restart(vd->vdev_child[i]);
|
|
}
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
EXPORT_SYMBOL(vdev_initialize);
|
|
EXPORT_SYMBOL(vdev_initialize_stop);
|
|
EXPORT_SYMBOL(vdev_initialize_stop_all);
|
|
EXPORT_SYMBOL(vdev_initialize_stop_wait);
|
|
EXPORT_SYMBOL(vdev_initialize_restart);
|
|
|
|
/* CSTYLED */
|
|
module_param(zfs_initialize_value, ulong, 0644);
|
|
MODULE_PARM_DESC(zfs_initialize_value,
|
|
"Value written during zpool initialize");
|
|
#endif
|