mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 11:19:32 +03:00
86dd0fd922
The vdev queue layer may require a small number of buffers when attempting to create aggregate I/O requests. Rather than attempting to allocate them from the global zio buffers, which is slow under memory pressure, it makes sense to pre-allocate them because... 1) These buffers are short lived. They are only required for the life of a single I/O at which point they can be used by the next I/O. 2) The maximum number of concurrent buffers needed by a vdev is small. It's roughly limited by the zfs_vdev_max_pending tunable which defaults to 10. By keeping a small list of these buffer per-vdev we can ensure one is always available when we need it. This significantly reduces contention on the vq->vq_lock, because we no longer need to perform a slow allocation under this lock. This is particularly important when memory is already low on the system. It would probably be wise to extend the use of these buffers beyond aggregate I/O and in to the raidz implementation. The inability to quickly allocate buffer for the parity stripes could result in similiar problems. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
463 lines
12 KiB
C
463 lines
12 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/avl.h>
|
|
|
|
/*
|
|
* These tunables are for performance analysis.
|
|
*/
|
|
/*
|
|
* zfs_vdev_max_pending is the maximum number of i/os concurrently
|
|
* pending to each device. zfs_vdev_min_pending is the initial number
|
|
* of i/os pending to each device (before it starts ramping up to
|
|
* max_pending).
|
|
*/
|
|
int zfs_vdev_max_pending = 10;
|
|
int zfs_vdev_min_pending = 4;
|
|
|
|
/* deadline = pri + ddi_get_lbolt64() >> time_shift) */
|
|
int zfs_vdev_time_shift = 6;
|
|
|
|
/* exponential I/O issue ramp-up rate */
|
|
int zfs_vdev_ramp_rate = 2;
|
|
|
|
/*
|
|
* To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
|
|
* For read I/Os, we also aggregate across small adjacency gaps; for writes
|
|
* we include spans of optional I/Os to aid aggregation at the disk even when
|
|
* they aren't able to help us aggregate at this level.
|
|
*/
|
|
int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
|
|
int zfs_vdev_read_gap_limit = 32 << 10;
|
|
int zfs_vdev_write_gap_limit = 4 << 10;
|
|
|
|
/*
|
|
* Virtual device vector for disk I/O scheduling.
|
|
*/
|
|
int
|
|
vdev_queue_deadline_compare(const void *x1, const void *x2)
|
|
{
|
|
const zio_t *z1 = x1;
|
|
const zio_t *z2 = x2;
|
|
|
|
if (z1->io_deadline < z2->io_deadline)
|
|
return (-1);
|
|
if (z1->io_deadline > z2->io_deadline)
|
|
return (1);
|
|
|
|
if (z1->io_offset < z2->io_offset)
|
|
return (-1);
|
|
if (z1->io_offset > z2->io_offset)
|
|
return (1);
|
|
|
|
if (z1 < z2)
|
|
return (-1);
|
|
if (z1 > z2)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vdev_queue_offset_compare(const void *x1, const void *x2)
|
|
{
|
|
const zio_t *z1 = x1;
|
|
const zio_t *z2 = x2;
|
|
|
|
if (z1->io_offset < z2->io_offset)
|
|
return (-1);
|
|
if (z1->io_offset > z2->io_offset)
|
|
return (1);
|
|
|
|
if (z1 < z2)
|
|
return (-1);
|
|
if (z1 > z2)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vdev_queue_init(vdev_t *vd)
|
|
{
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
int i;
|
|
|
|
mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
|
|
sizeof (zio_t), offsetof(struct zio, io_deadline_node));
|
|
|
|
avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
|
|
sizeof (zio_t), offsetof(struct zio, io_offset_node));
|
|
|
|
avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
|
|
sizeof (zio_t), offsetof(struct zio, io_offset_node));
|
|
|
|
avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
|
|
sizeof (zio_t), offsetof(struct zio, io_offset_node));
|
|
|
|
/*
|
|
* A list of buffers which can be used for aggregate I/O, this
|
|
* avoids the need to allocate them on demand when memory is low.
|
|
*/
|
|
list_create(&vq->vq_io_list, sizeof (vdev_io_t),
|
|
offsetof(vdev_io_t, vi_node));
|
|
|
|
for (i = 0; i < zfs_vdev_max_pending; i++)
|
|
list_insert_tail(&vq->vq_io_list, zio_vdev_alloc());
|
|
}
|
|
|
|
void
|
|
vdev_queue_fini(vdev_t *vd)
|
|
{
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
vdev_io_t *vi;
|
|
|
|
avl_destroy(&vq->vq_deadline_tree);
|
|
avl_destroy(&vq->vq_read_tree);
|
|
avl_destroy(&vq->vq_write_tree);
|
|
avl_destroy(&vq->vq_pending_tree);
|
|
|
|
while ((vi = list_head(&vq->vq_io_list)) != NULL) {
|
|
list_remove(&vq->vq_io_list, vi);
|
|
zio_vdev_free(vi);
|
|
}
|
|
|
|
list_destroy(&vq->vq_io_list);
|
|
|
|
mutex_destroy(&vq->vq_lock);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
avl_add(&vq->vq_deadline_tree, zio);
|
|
avl_add(zio->io_vdev_tree, zio);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
avl_remove(&vq->vq_deadline_tree, zio);
|
|
avl_remove(zio->io_vdev_tree, zio);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_agg_io_done(zio_t *aio)
|
|
{
|
|
vdev_queue_t *vq = &aio->io_vd->vdev_queue;
|
|
vdev_io_t *vi = aio->io_data;
|
|
zio_t *pio;
|
|
|
|
while ((pio = zio_walk_parents(aio)) != NULL)
|
|
if (aio->io_type == ZIO_TYPE_READ)
|
|
bcopy((char *)aio->io_data + (pio->io_offset -
|
|
aio->io_offset), pio->io_data, pio->io_size);
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
list_insert_tail(&vq->vq_io_list, vi);
|
|
mutex_exit(&vq->vq_lock);
|
|
}
|
|
|
|
/*
|
|
* Compute the range spanned by two i/os, which is the endpoint of the last
|
|
* (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
|
|
* Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
|
|
* thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
|
|
*/
|
|
#define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
|
|
#define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
|
|
|
|
static zio_t *
|
|
vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
|
|
{
|
|
zio_t *fio, *lio, *aio, *dio, *nio, *mio;
|
|
avl_tree_t *t;
|
|
vdev_io_t *vi;
|
|
int flags;
|
|
uint64_t maxspan = zfs_vdev_aggregation_limit;
|
|
uint64_t maxgap;
|
|
int stretch;
|
|
|
|
again:
|
|
ASSERT(MUTEX_HELD(&vq->vq_lock));
|
|
|
|
if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
|
|
avl_numnodes(&vq->vq_deadline_tree) == 0)
|
|
return (NULL);
|
|
|
|
fio = lio = avl_first(&vq->vq_deadline_tree);
|
|
|
|
t = fio->io_vdev_tree;
|
|
flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
|
|
maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
|
|
|
|
vi = list_head(&vq->vq_io_list);
|
|
if (vi == NULL) {
|
|
vi = zio_vdev_alloc();
|
|
list_insert_head(&vq->vq_io_list, vi);
|
|
}
|
|
|
|
if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
|
|
/*
|
|
* We can aggregate I/Os that are sufficiently adjacent and of
|
|
* the same flavor, as expressed by the AGG_INHERIT flags.
|
|
* The latter requirement is necessary so that certain
|
|
* attributes of the I/O, such as whether it's a normal I/O
|
|
* or a scrub/resilver, can be preserved in the aggregate.
|
|
* We can include optional I/Os, but don't allow them
|
|
* to begin a range as they add no benefit in that situation.
|
|
*/
|
|
|
|
/*
|
|
* We keep track of the last non-optional I/O.
|
|
*/
|
|
mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
|
|
|
|
/*
|
|
* Walk backwards through sufficiently contiguous I/Os
|
|
* recording the last non-option I/O.
|
|
*/
|
|
while ((dio = AVL_PREV(t, fio)) != NULL &&
|
|
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
|
|
IO_SPAN(dio, lio) <= maxspan &&
|
|
IO_GAP(dio, fio) <= maxgap) {
|
|
fio = dio;
|
|
if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
|
|
mio = fio;
|
|
}
|
|
|
|
/*
|
|
* Skip any initial optional I/Os.
|
|
*/
|
|
while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
|
|
fio = AVL_NEXT(t, fio);
|
|
ASSERT(fio != NULL);
|
|
}
|
|
|
|
/*
|
|
* Walk forward through sufficiently contiguous I/Os.
|
|
*/
|
|
while ((dio = AVL_NEXT(t, lio)) != NULL &&
|
|
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
|
|
IO_SPAN(fio, dio) <= maxspan &&
|
|
IO_GAP(lio, dio) <= maxgap) {
|
|
lio = dio;
|
|
if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
|
|
mio = lio;
|
|
}
|
|
|
|
/*
|
|
* Now that we've established the range of the I/O aggregation
|
|
* we must decide what to do with trailing optional I/Os.
|
|
* For reads, there's nothing to do. While we are unable to
|
|
* aggregate further, it's possible that a trailing optional
|
|
* I/O would allow the underlying device to aggregate with
|
|
* subsequent I/Os. We must therefore determine if the next
|
|
* non-optional I/O is close enough to make aggregation
|
|
* worthwhile.
|
|
*/
|
|
stretch = B_FALSE;
|
|
if (t != &vq->vq_read_tree && mio != NULL) {
|
|
nio = lio;
|
|
while ((dio = AVL_NEXT(t, nio)) != NULL &&
|
|
IO_GAP(nio, dio) == 0 &&
|
|
IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
|
|
nio = dio;
|
|
if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
|
|
stretch = B_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (stretch) {
|
|
/* This may be a no-op. */
|
|
VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
|
|
dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
|
|
} else {
|
|
while (lio != mio && lio != fio) {
|
|
ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
|
|
lio = AVL_PREV(t, lio);
|
|
ASSERT(lio != NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (fio != lio) {
|
|
uint64_t size = IO_SPAN(fio, lio);
|
|
ASSERT(size <= zfs_vdev_aggregation_limit);
|
|
ASSERT(vi != NULL);
|
|
|
|
aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
|
|
vi, size, fio->io_type, ZIO_PRIORITY_AGG,
|
|
flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
|
|
vdev_queue_agg_io_done, NULL);
|
|
|
|
nio = fio;
|
|
do {
|
|
dio = nio;
|
|
nio = AVL_NEXT(t, dio);
|
|
ASSERT(dio->io_type == aio->io_type);
|
|
ASSERT(dio->io_vdev_tree == t);
|
|
|
|
if (dio->io_flags & ZIO_FLAG_NODATA) {
|
|
ASSERT(dio->io_type == ZIO_TYPE_WRITE);
|
|
bzero((char *)aio->io_data + (dio->io_offset -
|
|
aio->io_offset), dio->io_size);
|
|
} else if (dio->io_type == ZIO_TYPE_WRITE) {
|
|
bcopy(dio->io_data, (char *)aio->io_data +
|
|
(dio->io_offset - aio->io_offset),
|
|
dio->io_size);
|
|
}
|
|
|
|
zio_add_child(dio, aio);
|
|
vdev_queue_io_remove(vq, dio);
|
|
zio_vdev_io_bypass(dio);
|
|
zio_execute(dio);
|
|
} while (dio != lio);
|
|
|
|
avl_add(&vq->vq_pending_tree, aio);
|
|
list_remove(&vq->vq_io_list, vi);
|
|
|
|
return (aio);
|
|
}
|
|
|
|
ASSERT(fio->io_vdev_tree == t);
|
|
vdev_queue_io_remove(vq, fio);
|
|
|
|
/*
|
|
* If the I/O is or was optional and therefore has no data, we need to
|
|
* simply discard it. We need to drop the vdev queue's lock to avoid a
|
|
* deadlock that we could encounter since this I/O will complete
|
|
* immediately.
|
|
*/
|
|
if (fio->io_flags & ZIO_FLAG_NODATA) {
|
|
mutex_exit(&vq->vq_lock);
|
|
zio_vdev_io_bypass(fio);
|
|
zio_execute(fio);
|
|
mutex_enter(&vq->vq_lock);
|
|
goto again;
|
|
}
|
|
|
|
avl_add(&vq->vq_pending_tree, fio);
|
|
|
|
return (fio);
|
|
}
|
|
|
|
zio_t *
|
|
vdev_queue_io(zio_t *zio)
|
|
{
|
|
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
|
|
zio_t *nio;
|
|
|
|
ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
|
|
|
|
if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
|
|
return (zio);
|
|
|
|
zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
zio->io_vdev_tree = &vq->vq_read_tree;
|
|
else
|
|
zio->io_vdev_tree = &vq->vq_write_tree;
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
|
|
zio->io_deadline = (ddi_get_lbolt64() >> zfs_vdev_time_shift) +
|
|
zio->io_priority;
|
|
|
|
vdev_queue_io_add(vq, zio);
|
|
|
|
nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
|
|
|
|
mutex_exit(&vq->vq_lock);
|
|
|
|
if (nio == NULL)
|
|
return (NULL);
|
|
|
|
if (nio->io_done == vdev_queue_agg_io_done) {
|
|
zio_nowait(nio);
|
|
return (NULL);
|
|
}
|
|
|
|
return (nio);
|
|
}
|
|
|
|
void
|
|
vdev_queue_io_done(zio_t *zio)
|
|
{
|
|
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
|
|
int i;
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
|
|
avl_remove(&vq->vq_pending_tree, zio);
|
|
|
|
for (i = 0; i < zfs_vdev_ramp_rate; i++) {
|
|
zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
|
|
if (nio == NULL)
|
|
break;
|
|
mutex_exit(&vq->vq_lock);
|
|
if (nio->io_done == vdev_queue_agg_io_done) {
|
|
zio_nowait(nio);
|
|
} else {
|
|
zio_vdev_io_reissue(nio);
|
|
zio_execute(nio);
|
|
}
|
|
mutex_enter(&vq->vq_lock);
|
|
}
|
|
|
|
mutex_exit(&vq->vq_lock);
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
module_param(zfs_vdev_max_pending, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_max_pending, "Max pending per-vdev I/Os");
|
|
|
|
module_param(zfs_vdev_min_pending, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_min_pending, "Min pending per-vdev I/Os");
|
|
|
|
module_param(zfs_vdev_aggregation_limit, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Max vdev I/O aggregation size");
|
|
|
|
module_param(zfs_vdev_time_shift, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_time_shift, "Deadline time shift for vdev I/O");
|
|
|
|
module_param(zfs_vdev_ramp_rate, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_ramp_rate, "Exponential I/O issue ramp-up rate");
|
|
|
|
module_param(zfs_vdev_read_gap_limit, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_read_gap_limit, "Aggregate read I/O over gap");
|
|
|
|
module_param(zfs_vdev_write_gap_limit, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_write_gap_limit, "Aggregate write I/O over gap");
|
|
#endif
|