mirror_zfs/contrib/coverity/model.c
Richard Yao eb1ed2a66b Coverity Model Update
When reviewing Clang Static Analyzer reports against a branch that had
experimental header changes based on the Coverity model file to inform
it that KM_SLEEP allocations cannot return NULL, I found a report saying
that a KM_PUSHPAGE allocation returned NULL. The actual implementation
does not return NULL unless KM_NOSLEEP has been passed, so we backport
the correction from the experimental header changes to the Coverity
model.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #14210
2022-11-29 10:00:56 -08:00

655 lines
11 KiB
C

/*
* Coverity Scan model
* https://scan.coverity.com/models
*
* This is a modeling file for Coverity Scan.
* Modeling helps to avoid false positives.
*
* - Modeling doesn't need full structs and typedefs. Rudimentary structs
* and similar types are sufficient.
* - An uninitialized local pointer is not an error. It signifies that the
* variable could be either NULL or have some data.
*
* Coverity Scan doesn't pick up modifications automatically. The model file
* must be uploaded by an admin in the analysis settings.
*
* Some of this initially cribbed from:
*
* https://github.com/kees/coverity-linux/blob/trunk/model.c
*
* The below model was based on the original model by Brian Behlendorf for the
* original zfsonlinux/zfs repository. Some inspiration was taken from
* kees/coverity-linux, specifically involving memory copies.
*/
#include <stdarg.h>
#define KM_NOSLEEP 0x0001 /* cannot block for memory; may fail */
#define UMEM_DEFAULT 0x0000 /* normal -- may fail */
#define UMEM_NOFAIL 0x0100 /* Never fails */
#define NULL (0)
typedef enum {
B_FALSE = 0,
B_TRUE = 1
} boolean_t;
typedef unsigned int uint_t;
int condition0, condition1;
int
ddi_copyin(const void *from, void *to, size_t len, int flags)
{
(void) flags;
__coverity_negative_sink__(len);
__coverity_tainted_data_argument__(from);
__coverity_tainted_data_argument__(to);
__coverity_writeall__(to);
}
void *
memset(void *dst, int c, size_t len)
{
__coverity_negative_sink__(len);
if (c == 0)
__coverity_writeall0__(dst);
else
__coverity_writeall__(dst);
return (dst);
}
void *
memmove(void *dst, void *src, size_t len)
{
int first = ((char *)src)[0];
int last = ((char *)src)[len-1];
__coverity_negative_sink__(len);
__coverity_writeall__(dst);
return (dst);
}
void *
memcpy(void *dst, void *src, size_t len)
{
int first = ((char *)src)[0];
int last = ((char *)src)[len-1];
__coverity_negative_sink__(len);
__coverity_writeall__(dst);
return (dst);
}
void *
umem_alloc_aligned(size_t size, size_t align, int kmflags)
{
__coverity_negative_sink__(size);
__coverity_negative_sink__(align);
if (((UMEM_NOFAIL & kmflags) == UMEM_NOFAIL) || condition0) {
void *buf = __coverity_alloc__(size);
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "umem_free");
return (buf);
}
return (NULL);
}
void *
umem_alloc(size_t size, int kmflags)
{
__coverity_negative_sink__(size);
if (((UMEM_NOFAIL & kmflags) == UMEM_NOFAIL) || condition0) {
void *buf = __coverity_alloc__(size);
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "umem_free");
return (buf);
}
return (NULL);
}
void *
umem_zalloc(size_t size, int kmflags)
{
__coverity_negative_sink__(size);
if (((UMEM_NOFAIL & kmflags) == UMEM_NOFAIL) || condition0) {
void *buf = __coverity_alloc__(size);
__coverity_writeall0__(buf);
__coverity_mark_as_afm_allocated__(buf, "umem_free");
return (buf);
}
return (NULL);
}
void
umem_free(void *buf, size_t size)
{
__coverity_negative_sink__(size);
__coverity_free__(buf);
}
typedef struct {} umem_cache_t;
void *
umem_cache_alloc(umem_cache_t *skc, int flags)
{
(void) skc;
if (condition1)
__coverity_sleep__();
if (((UMEM_NOFAIL & flags) == UMEM_NOFAIL) || condition0) {
void *buf = __coverity_alloc_nosize__();
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "umem_cache_free");
return (buf);
}
return (NULL);
}
void
umem_cache_free(umem_cache_t *skc, void *obj)
{
(void) skc;
__coverity_free__(obj);
}
void *
spl_kmem_alloc(size_t sz, int fl, const char *func, int line)
{
(void) func;
(void) line;
__coverity_negative_sink__(sz);
if (condition1)
__coverity_sleep__();
if (((fl & KM_NOSLEEP) != KM_NOSLEEP) || condition0) {
void *buf = __coverity_alloc__(sz);
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "spl_kmem_free");
return (buf);
}
return (NULL);
}
void *
spl_kmem_zalloc(size_t sz, int fl, const char *func, int line)
{
(void) func;
(void) line;
__coverity_negative_sink__(sz);
if (condition1)
__coverity_sleep__();
if (((fl & KM_NOSLEEP) != KM_NOSLEEP) || condition0) {
void *buf = __coverity_alloc__(sz);
__coverity_writeall0__(buf);
__coverity_mark_as_afm_allocated__(buf, "spl_kmem_free");
return (buf);
}
return (NULL);
}
void
spl_kmem_free(const void *ptr, size_t sz)
{
__coverity_negative_sink__(sz);
__coverity_free__(ptr);
}
char *
kmem_vasprintf(const char *fmt, va_list ap)
{
char *buf = __coverity_alloc_nosize__();
(void) ap;
__coverity_string_null_sink__(fmt);
__coverity_string_size_sink__(fmt);
__coverity_writeall__(buf);
__coverity_mark_as_afm_allocated__(buf, "kmem_strfree");
return (buf);
}
char *
kmem_asprintf(const char *fmt, ...)
{
char *buf = __coverity_alloc_nosize__();
__coverity_string_null_sink__(fmt);
__coverity_string_size_sink__(fmt);
__coverity_writeall__(buf);
__coverity_mark_as_afm_allocated__(buf, "kmem_strfree");
return (buf);
}
char *
kmem_strdup(const char *str)
{
char *buf = __coverity_alloc_nosize__();
__coverity_string_null_sink__(str);
__coverity_string_size_sink__(str);
__coverity_writeall__(buf);
__coverity_mark_as_afm_allocated__(buf, "kmem_strfree");
return (buf);
}
void
kmem_strfree(char *str)
{
__coverity_free__(str);
}
void *
spl_vmem_alloc(size_t sz, int fl, const char *func, int line)
{
(void) func;
(void) line;
__coverity_negative_sink__(sz);
if (condition1)
__coverity_sleep__();
if (((fl & KM_NOSLEEP) != KM_NOSLEEP) || condition0) {
void *buf = __coverity_alloc__(sz);
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "spl_vmem_free");
return (buf);
}
return (NULL);
}
void *
spl_vmem_zalloc(size_t sz, int fl, const char *func, int line)
{
(void) func;
(void) line;
if (condition1)
__coverity_sleep__();
if (((fl & KM_NOSLEEP) != KM_NOSLEEP) || condition0) {
void *buf = __coverity_alloc__(sz);
__coverity_writeall0__(buf);
__coverity_mark_as_afm_allocated__(buf, "spl_vmem_free");
return (buf);
}
return (NULL);
}
void
spl_vmem_free(const void *ptr, size_t sz)
{
__coverity_negative_sink__(sz);
__coverity_free__(ptr);
}
typedef struct {} spl_kmem_cache_t;
void *
spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
{
(void) skc;
if (condition1)
__coverity_sleep__();
if ((flags == 0) || condition0) {
void *buf = __coverity_alloc_nosize__();
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "spl_kmem_cache_free");
return (buf);
}
}
void
spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
{
(void) skc;
__coverity_free__(obj);
}
typedef struct {} zfsvfs_t;
int
zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
{
(void) osname;
(void) readonly;
if (condition1)
__coverity_sleep__();
if (condition0) {
*zfvp = __coverity_alloc_nosize__();
__coverity_writeall__(*zfvp);
return (0);
}
return (1);
}
void
zfsvfs_free(zfsvfs_t *zfsvfs)
{
__coverity_free__(zfsvfs);
}
typedef struct {} nvlist_t;
int
nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
{
(void) nvflag;
if (condition1)
__coverity_sleep__();
if ((kmflag == 0) || condition0) {
*nvlp = __coverity_alloc_nosize__();
__coverity_mark_as_afm_allocated__(*nvlp, "nvlist_free");
__coverity_writeall__(*nvlp);
return (0);
}
return (-1);
}
int
nvlist_dup(const nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
{
nvlist_t read = *nvl;
if (condition1)
__coverity_sleep__();
if ((kmflag == 0) || condition0) {
nvlist_t *nvl = __coverity_alloc_nosize__();
__coverity_mark_as_afm_allocated__(nvl, "nvlist_free");
__coverity_writeall__(nvl);
*nvlp = nvl;
return (0);
}
return (-1);
}
void
nvlist_free(nvlist_t *nvl)
{
__coverity_free__(nvl);
}
int
nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
int kmflag)
{
(void) nvl;
(void) encoding;
if (*bufp == NULL) {
if (condition1)
__coverity_sleep__();
if ((kmflag == 0) || condition0) {
char *buf = __coverity_alloc_nosize__();
__coverity_writeall__(buf);
/*
* We cannot use __coverity_mark_as_afm_allocated__()
* because the free function varies between the kernel
* and userspace.
*/
*bufp = buf;
return (0);
}
return (-1);
}
/*
* Unfortunately, errors from the buffer being too small are not
* possible to model, so we assume success.
*/
__coverity_negative_sink__(*buflen);
__coverity_writeall__(*bufp);
return (0);
}
int
nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
{
__coverity_negative_sink__(buflen);
if (condition1)
__coverity_sleep__();
if ((kmflag == 0) || condition0) {
nvlist_t *nvl = __coverity_alloc_nosize__();
__coverity_mark_as_afm_allocated__(nvl, "nvlist_free");
__coverity_writeall__(nvl);
*nvlp = nvl;
int first = buf[0];
int last = buf[buflen-1];
return (0);
}
return (-1);
}
void *
malloc(size_t size)
{
void *buf = __coverity_alloc__(size);
if (condition1)
__coverity_sleep__();
__coverity_negative_sink__(size);
__coverity_mark_as_uninitialized_buffer__(buf);
__coverity_mark_as_afm_allocated__(buf, "free");
return (buf);
}
void *
calloc(size_t nmemb, size_t size)
{
void *buf = __coverity_alloc__(size * nmemb);
if (condition1)
__coverity_sleep__();
__coverity_negative_sink__(size);
__coverity_writeall0__(buf);
__coverity_mark_as_afm_allocated__(buf, "free");
return (buf);
}
void
free(void *buf)
{
__coverity_free__(buf);
}
int
sched_yield(void)
{
__coverity_sleep__();
}
typedef struct {} kmutex_t;
typedef struct {} krwlock_t;
typedef int krw_t;
/*
* Coverty reportedly does not support macros, so this only works for
* userspace.
*/
void
mutex_enter(kmutex_t *mp)
{
if (condition0)
__coverity_sleep__();
__coverity_exclusive_lock_acquire__(mp);
}
int
mutex_tryenter(kmutex_t *mp)
{
if (condition0) {
__coverity_exclusive_lock_acquire__(mp);
return (1);
}
return (0);
}
void
mutex_exit(kmutex_t *mp)
{
__coverity_exclusive_lock_release__(mp);
}
void
rw_enter(krwlock_t *rwlp, krw_t rw)
{
(void) rw;
if (condition0)
__coverity_sleep__();
__coverity_recursive_lock_acquire__(rwlp);
}
void
rw_exit(krwlock_t *rwlp)
{
__coverity_recursive_lock_release__(rwlp);
}
int
rw_tryenter(krwlock_t *rwlp, krw_t rw)
{
if (condition0) {
__coverity_recursive_lock_acquire__(rwlp);
return (1);
}
return (0);
}
/* Thus, we fallback to the Linux kernel locks */
struct {} mutex;
struct {} rw_semaphore;
void
mutex_lock(struct mutex *lock)
{
if (condition0) {
__coverity_sleep__();
}
__coverity_exclusive_lock_acquire__(lock);
}
void
mutex_unlock(struct mutex *lock)
{
__coverity_exclusive_lock_release__(lock);
}
void
down_read(struct rw_semaphore *sem)
{
if (condition0) {
__coverity_sleep__();
}
__coverity_recursive_lock_acquire__(sem);
}
void
down_write(struct rw_semaphore *sem)
{
if (condition0) {
__coverity_sleep__();
}
__coverity_recursive_lock_acquire__(sem);
}
int
down_read_trylock(struct rw_semaphore *sem)
{
if (condition0) {
__coverity_recursive_lock_acquire__(sem);
return (1);
}
return (0);
}
int
down_write_trylock(struct rw_semaphore *sem)
{
if (condition0) {
__coverity_recursive_lock_acquire__(sem);
return (1);
}
return (0);
}
void
up_read(struct rw_semaphore *sem)
{
__coverity_recursive_lock_release__(sem);
}
void
up_write(struct rw_semaphore *sem)
{
__coverity_recursive_lock_release__(sem);
}
int
__cond_resched(void)
{
if (condition0) {
__coverity_sleep__();
}
}