mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-18 18:31:00 +03:00
1d3ba0bf01
The commit replaces all findings of the link: http://www.opensolaris.org/os/licensing with this one: https://opensource.org/licenses/CDDL-1.0 Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de> Closes #13619
411 lines
12 KiB
C
411 lines
12 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
|
|
/* All Rights Reserved */
|
|
|
|
|
|
/*
|
|
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#ifndef _SYS_SYSMACROS_H
|
|
#define _SYS_SYSMACROS_H
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/isa_defs.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/zone.h>
|
|
#include <sys/condvar.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/*
|
|
* Some macros for units conversion
|
|
*/
|
|
/*
|
|
* Disk blocks (sectors) and bytes.
|
|
*/
|
|
#define dtob(DD) ((DD) << DEV_BSHIFT)
|
|
#define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
|
|
#define btodt(BB) ((BB) >> DEV_BSHIFT)
|
|
#define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
|
|
|
|
/* common macros */
|
|
#ifndef MIN
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
#endif
|
|
#ifndef MAX
|
|
#define MAX(a, b) ((a) < (b) ? (b) : (a))
|
|
#endif
|
|
#ifndef ABS
|
|
#define ABS(a) ((a) < 0 ? -(a) : (a))
|
|
#endif
|
|
#ifndef SIGNOF
|
|
#define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0)
|
|
#endif
|
|
#ifndef ARRAY_SIZE
|
|
#define ARRAY_SIZE(a) (sizeof (a) / sizeof (a[0]))
|
|
#endif
|
|
#ifndef DIV_ROUND_UP
|
|
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
|
|
#endif
|
|
|
|
#ifdef _STANDALONE
|
|
#define boot_ncpus 1
|
|
#else /* _STANDALONE */
|
|
#define boot_ncpus mp_ncpus
|
|
#endif /* _STANDALONE */
|
|
#define kpreempt_disable() critical_enter()
|
|
#define kpreempt_enable() critical_exit()
|
|
#define CPU_SEQID curcpu
|
|
#define CPU_SEQID_UNSTABLE curcpu
|
|
#define is_system_labeled() 0
|
|
/*
|
|
* Convert a single byte to/from binary-coded decimal (BCD).
|
|
*/
|
|
extern unsigned char byte_to_bcd[256];
|
|
extern unsigned char bcd_to_byte[256];
|
|
|
|
#define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff]
|
|
#define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff]
|
|
|
|
/*
|
|
* WARNING: The device number macros defined here should not be used by device
|
|
* drivers or user software. Device drivers should use the device functions
|
|
* defined in the DDI/DKI interface (see also ddi.h). Application software
|
|
* should make use of the library routines available in makedev(3). A set of
|
|
* new device macros are provided to operate on the expanded device number
|
|
* format supported in SVR4. Macro versions of the DDI device functions are
|
|
* provided for use by kernel proper routines only. Macro routines bmajor(),
|
|
* major(), minor(), emajor(), eminor(), and makedev() will be removed or
|
|
* their definitions changed at the next major release following SVR4.
|
|
*/
|
|
|
|
#define O_BITSMAJOR 7 /* # of SVR3 major device bits */
|
|
#define O_BITSMINOR 8 /* # of SVR3 minor device bits */
|
|
#define O_MAXMAJ 0x7f /* SVR3 max major value */
|
|
#define O_MAXMIN 0xff /* SVR3 max minor value */
|
|
|
|
|
|
#define L_BITSMAJOR32 14 /* # of SVR4 major device bits */
|
|
#define L_BITSMINOR32 18 /* # of SVR4 minor device bits */
|
|
#define L_MAXMAJ32 0x3fff /* SVR4 max major value */
|
|
#define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */
|
|
/* For 3b2 hardware devices the minor is */
|
|
/* restricted to 256 (0-255) */
|
|
|
|
#ifdef _LP64
|
|
#define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */
|
|
#define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */
|
|
#define L_MAXMAJ 0xfffffffful /* max major value */
|
|
#define L_MAXMIN 0xfffffffful /* max minor value */
|
|
#else
|
|
#define L_BITSMAJOR L_BITSMAJOR32
|
|
#define L_BITSMINOR L_BITSMINOR32
|
|
#define L_MAXMAJ L_MAXMAJ32
|
|
#define L_MAXMIN L_MAXMIN32
|
|
#endif
|
|
|
|
/*
|
|
* These are versions of the kernel routines for compressing and
|
|
* expanding long device numbers that don't return errors.
|
|
*/
|
|
#if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
|
|
|
|
#define DEVCMPL(x) (x)
|
|
#define DEVEXPL(x) (x)
|
|
|
|
#else
|
|
|
|
#define DEVCMPL(x) \
|
|
(dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
|
|
((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
|
|
((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
|
|
|
|
#define DEVEXPL(x) \
|
|
(((x) == NODEV32) ? NODEV : \
|
|
makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
|
|
|
|
#endif /* L_BITSMAJOR32 ... */
|
|
|
|
/* convert to old (SVR3.2) dev format */
|
|
|
|
#define cmpdev(x) \
|
|
(o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
|
|
((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
|
|
((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
|
|
|
|
/* convert to new (SVR4) dev format */
|
|
|
|
#define expdev(x) \
|
|
(dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
|
|
((x) & O_MAXMIN))
|
|
|
|
/*
|
|
* Macro for checking power of 2 address alignment.
|
|
*/
|
|
#define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
|
|
|
|
/*
|
|
* Macros for counting and rounding.
|
|
*/
|
|
#define howmany(x, y) (((x)+((y)-1))/(y))
|
|
#define roundup(x, y) ((((x)+((y)-1))/(y))*(y))
|
|
|
|
/*
|
|
* Macro to determine if value is a power of 2
|
|
*/
|
|
#define ISP2(x) (((x) & ((x) - 1)) == 0)
|
|
|
|
/*
|
|
* Macros for various sorts of alignment and rounding. The "align" must
|
|
* be a power of 2. Often times it is a block, sector, or page.
|
|
*/
|
|
|
|
/*
|
|
* return x rounded down to an align boundary
|
|
* eg, P2ALIGN(1200, 1024) == 1024 (1*align)
|
|
* eg, P2ALIGN(1024, 1024) == 1024 (1*align)
|
|
* eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
|
|
* eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
|
|
*/
|
|
#define P2ALIGN(x, align) ((x) & -(align))
|
|
|
|
/*
|
|
* return x % (mod) align
|
|
* eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
|
|
* eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
|
|
*/
|
|
#define P2PHASE(x, align) ((x) & ((align) - 1))
|
|
|
|
/*
|
|
* return how much space is left in this block (but if it's perfectly
|
|
* aligned, return 0).
|
|
* eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
|
|
* eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
|
|
*/
|
|
#define P2NPHASE(x, align) (-(x) & ((align) - 1))
|
|
|
|
/*
|
|
* return x rounded up to an align boundary
|
|
* eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
|
|
* eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
|
|
*/
|
|
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
|
|
|
|
/*
|
|
* return the ending address of the block that x is in
|
|
* eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
|
|
* eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
|
|
*/
|
|
#define P2END(x, align) (-(~(x) & -(align)))
|
|
|
|
/*
|
|
* return x rounded up to the next phase (offset) within align.
|
|
* phase should be < align.
|
|
* eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
|
|
* eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
|
|
*/
|
|
#define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align)))
|
|
|
|
/*
|
|
* return TRUE if adding len to off would cause it to cross an align
|
|
* boundary.
|
|
* eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
|
|
* eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
|
|
*/
|
|
#define P2BOUNDARY(off, len, align) \
|
|
(((off) ^ ((off) + (len) - 1)) > (align) - 1)
|
|
|
|
/*
|
|
* Return TRUE if they have the same highest bit set.
|
|
* eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
|
|
* eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
|
|
*/
|
|
#define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y)))
|
|
|
|
/*
|
|
* Typed version of the P2* macros. These macros should be used to ensure
|
|
* that the result is correctly calculated based on the data type of (x),
|
|
* which is passed in as the last argument, regardless of the data
|
|
* type of the alignment. For example, if (x) is of type uint64_t,
|
|
* and we want to round it up to a page boundary using "PAGESIZE" as
|
|
* the alignment, we can do either
|
|
* P2ROUNDUP(x, (uint64_t)PAGESIZE)
|
|
* or
|
|
* P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
|
|
*/
|
|
#define P2ALIGN_TYPED(x, align, type) \
|
|
((type)(x) & -(type)(align))
|
|
#define P2PHASE_TYPED(x, align, type) \
|
|
((type)(x) & ((type)(align) - 1))
|
|
#define P2NPHASE_TYPED(x, align, type) \
|
|
(-(type)(x) & ((type)(align) - 1))
|
|
#define P2ROUNDUP_TYPED(x, align, type) \
|
|
(-(-(type)(x) & -(type)(align)))
|
|
#define P2END_TYPED(x, align, type) \
|
|
(-(~(type)(x) & -(type)(align)))
|
|
#define P2PHASEUP_TYPED(x, align, phase, type) \
|
|
((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
|
|
#define P2CROSS_TYPED(x, y, align, type) \
|
|
(((type)(x) ^ (type)(y)) > (type)(align) - 1)
|
|
#define P2SAMEHIGHBIT_TYPED(x, y, type) \
|
|
(((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
|
|
|
|
/*
|
|
* Macros to atomically increment/decrement a variable. mutex and var
|
|
* must be pointers.
|
|
*/
|
|
#define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
|
|
#define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
|
|
|
|
/*
|
|
* Macros to declare bitfields - the order in the parameter list is
|
|
* Low to High - that is, declare bit 0 first. We only support 8-bit bitfields
|
|
* because if a field crosses a byte boundary it's not likely to be meaningful
|
|
* without reassembly in its nonnative endianness.
|
|
*/
|
|
#if defined(_BIT_FIELDS_LTOH)
|
|
#define DECL_BITFIELD2(_a, _b) \
|
|
uint8_t _a, _b
|
|
#define DECL_BITFIELD3(_a, _b, _c) \
|
|
uint8_t _a, _b, _c
|
|
#define DECL_BITFIELD4(_a, _b, _c, _d) \
|
|
uint8_t _a, _b, _c, _d
|
|
#define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
|
|
uint8_t _a, _b, _c, _d, _e
|
|
#define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
|
|
uint8_t _a, _b, _c, _d, _e, _f
|
|
#define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
|
|
uint8_t _a, _b, _c, _d, _e, _f, _g
|
|
#define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
|
|
uint8_t _a, _b, _c, _d, _e, _f, _g, _h
|
|
#elif defined(_BIT_FIELDS_HTOL)
|
|
#define DECL_BITFIELD2(_a, _b) \
|
|
uint8_t _b, _a
|
|
#define DECL_BITFIELD3(_a, _b, _c) \
|
|
uint8_t _c, _b, _a
|
|
#define DECL_BITFIELD4(_a, _b, _c, _d) \
|
|
uint8_t _d, _c, _b, _a
|
|
#define DECL_BITFIELD5(_a, _b, _c, _d, _e) \
|
|
uint8_t _e, _d, _c, _b, _a
|
|
#define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \
|
|
uint8_t _f, _e, _d, _c, _b, _a
|
|
#define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \
|
|
uint8_t _g, _f, _e, _d, _c, _b, _a
|
|
#define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \
|
|
uint8_t _h, _g, _f, _e, _d, _c, _b, _a
|
|
#else
|
|
#error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
|
|
#endif /* _BIT_FIELDS_LTOH */
|
|
|
|
#if !defined(_KMEMUSER) && !defined(offsetof)
|
|
|
|
/* avoid any possibility of clashing with <stddef.h> version */
|
|
|
|
#define offsetof(type, field) __offsetof(type, field)
|
|
#endif
|
|
|
|
/*
|
|
* Find highest one bit set.
|
|
* Returns bit number + 1 of highest bit that is set, otherwise returns 0.
|
|
* High order bit is 31 (or 63 in _LP64 kernel).
|
|
*/
|
|
static __inline int
|
|
highbit(ulong_t i)
|
|
{
|
|
#if defined(HAVE_INLINE_FLSL)
|
|
return (flsl(i));
|
|
#else
|
|
int h = 1;
|
|
|
|
if (i == 0)
|
|
return (0);
|
|
#ifdef _LP64
|
|
if (i & 0xffffffff00000000ul) {
|
|
h += 32; i >>= 32;
|
|
}
|
|
#endif
|
|
if (i & 0xffff0000) {
|
|
h += 16; i >>= 16;
|
|
}
|
|
if (i & 0xff00) {
|
|
h += 8; i >>= 8;
|
|
}
|
|
if (i & 0xf0) {
|
|
h += 4; i >>= 4;
|
|
}
|
|
if (i & 0xc) {
|
|
h += 2; i >>= 2;
|
|
}
|
|
if (i & 0x2) {
|
|
h += 1;
|
|
}
|
|
return (h);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Find highest one bit set.
|
|
* Returns bit number + 1 of highest bit that is set, otherwise returns 0.
|
|
*/
|
|
static __inline int
|
|
highbit64(uint64_t i)
|
|
{
|
|
#if defined(HAVE_INLINE_FLSLL)
|
|
return (flsll(i));
|
|
#else
|
|
int h = 1;
|
|
|
|
if (i == 0)
|
|
return (0);
|
|
if (i & 0xffffffff00000000ULL) {
|
|
h += 32; i >>= 32;
|
|
}
|
|
if (i & 0xffff0000) {
|
|
h += 16; i >>= 16;
|
|
}
|
|
if (i & 0xff00) {
|
|
h += 8; i >>= 8;
|
|
}
|
|
if (i & 0xf0) {
|
|
h += 4; i >>= 4;
|
|
}
|
|
if (i & 0xc) {
|
|
h += 2; i >>= 2;
|
|
}
|
|
if (i & 0x2) {
|
|
h += 1;
|
|
}
|
|
return (h);
|
|
#endif
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _SYS_SYSMACROS_H */
|