mirror_zfs/module/os/linux/zfs/arc_os.c
Rob Norris 03b84099d9 linux 6.7 compat: rework shrinker setup for heap allocations
6.7 changes the shrinker API such that shrinkers must be allocated
dynamically by the kernel. To accomodate this, this commit reworks
spl_register_shrinker() to do something similar against earlier kernels.

Signed-off-by: Rob Norris <robn@despairlabs.com>
Sponsored-by: https://github.com/sponsors/robn
2023-12-21 11:03:08 -08:00

497 lines
14 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, Joyent, Inc.
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
* Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
* Copyright 2017 Nexenta Systems, Inc. All rights reserved.
*/
#include <sys/spa.h>
#include <sys/zio.h>
#include <sys/spa_impl.h>
#include <sys/zio_compress.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_context.h>
#include <sys/arc.h>
#include <sys/zfs_refcount.h>
#include <sys/vdev.h>
#include <sys/vdev_trim.h>
#include <sys/vdev_impl.h>
#include <sys/dsl_pool.h>
#include <sys/multilist.h>
#include <sys/abd.h>
#include <sys/zil.h>
#include <sys/fm/fs/zfs.h>
#ifdef _KERNEL
#include <sys/shrinker.h>
#include <sys/vmsystm.h>
#include <sys/zpl.h>
#include <linux/page_compat.h>
#include <linux/notifier.h>
#include <linux/memory.h>
#endif
#include <sys/callb.h>
#include <sys/kstat.h>
#include <sys/zthr.h>
#include <zfs_fletcher.h>
#include <sys/arc_impl.h>
#include <sys/trace_zfs.h>
#include <sys/aggsum.h>
/*
* This is a limit on how many pages the ARC shrinker makes available for
* eviction in response to one page allocation attempt. Note that in
* practice, the kernel's shrinker can ask us to evict up to about 4x this
* for one allocation attempt.
*
* The default limit of 10,000 (in practice, 160MB per allocation attempt
* with 4K pages) limits the amount of time spent attempting to reclaim ARC
* memory to less than 100ms per allocation attempt, even with a small
* average compressed block size of ~8KB.
*
* See also the comment in arc_shrinker_count().
* Set to 0 to disable limit.
*/
int zfs_arc_shrinker_limit = 10000;
#ifdef CONFIG_MEMORY_HOTPLUG
static struct notifier_block arc_hotplug_callback_mem_nb;
#endif
/*
* Return a default max arc size based on the amount of physical memory.
*/
uint64_t
arc_default_max(uint64_t min, uint64_t allmem)
{
/* Default to 1/2 of all memory. */
return (MAX(allmem / 2, min));
}
#ifdef _KERNEL
/*
* Return maximum amount of memory that we could possibly use. Reduced
* to half of all memory in user space which is primarily used for testing.
*/
uint64_t
arc_all_memory(void)
{
#ifdef CONFIG_HIGHMEM
return (ptob(zfs_totalram_pages - zfs_totalhigh_pages));
#else
return (ptob(zfs_totalram_pages));
#endif /* CONFIG_HIGHMEM */
}
/*
* Return the amount of memory that is considered free. In user space
* which is primarily used for testing we pretend that free memory ranges
* from 0-20% of all memory.
*/
uint64_t
arc_free_memory(void)
{
#ifdef CONFIG_HIGHMEM
struct sysinfo si;
si_meminfo(&si);
return (ptob(si.freeram - si.freehigh));
#else
return (ptob(nr_free_pages() +
nr_inactive_file_pages()));
#endif /* CONFIG_HIGHMEM */
}
/*
* Return the amount of memory that can be consumed before reclaim will be
* needed. Positive if there is sufficient free memory, negative indicates
* the amount of memory that needs to be freed up.
*/
int64_t
arc_available_memory(void)
{
return (arc_free_memory() - arc_sys_free);
}
static uint64_t
arc_evictable_memory(void)
{
int64_t asize = aggsum_value(&arc_sums.arcstat_size);
uint64_t arc_clean =
zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
/*
* Scale reported evictable memory in proportion to page cache, cap
* at specified min/max.
*/
uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
min = MAX(arc_c_min, MIN(arc_c_max, min));
if (arc_dirty >= min)
return (arc_clean);
return (MAX((int64_t)asize - (int64_t)min, 0));
}
/*
* The _count() function returns the number of free-able objects.
* The _scan() function returns the number of objects that were freed.
*/
static unsigned long
arc_shrinker_count(struct shrinker *shrink, struct shrink_control *sc)
{
/*
* __GFP_FS won't be set if we are called from ZFS code (see
* kmem_flags_convert(), which removes it). To avoid a deadlock, we
* don't allow evicting in this case. We return 0 rather than
* SHRINK_STOP so that the shrinker logic doesn't accumulate a
* deficit against us.
*/
if (!(sc->gfp_mask & __GFP_FS)) {
return (0);
}
/*
* This code is reached in the "direct reclaim" case, where the
* kernel (outside ZFS) is trying to allocate a page, and the system
* is low on memory.
*
* The kernel's shrinker code doesn't understand how many pages the
* ARC's callback actually frees, so it may ask the ARC to shrink a
* lot for one page allocation. This is problematic because it may
* take a long time, thus delaying the page allocation, and because
* it may force the ARC to unnecessarily shrink very small.
*
* Therefore, we limit the amount of data that we say is evictable,
* which limits the amount that the shrinker will ask us to evict for
* one page allocation attempt.
*
* In practice, we may be asked to shrink 4x the limit to satisfy one
* page allocation, before the kernel's shrinker code gives up on us.
* When that happens, we rely on the kernel code to find the pages
* that we freed before invoking the OOM killer. This happens in
* __alloc_pages_slowpath(), which retries and finds the pages we
* freed when it calls get_page_from_freelist().
*
* See also the comment above zfs_arc_shrinker_limit.
*/
int64_t limit = zfs_arc_shrinker_limit != 0 ?
zfs_arc_shrinker_limit : INT64_MAX;
return (MIN(limit, btop((int64_t)arc_evictable_memory())));
}
static unsigned long
arc_shrinker_scan(struct shrinker *shrink, struct shrink_control *sc)
{
ASSERT((sc->gfp_mask & __GFP_FS) != 0);
/* The arc is considered warm once reclaim has occurred */
if (unlikely(arc_warm == B_FALSE))
arc_warm = B_TRUE;
/*
* Evict the requested number of pages by reducing arc_c and waiting
* for the requested amount of data to be evicted.
*/
arc_reduce_target_size(ptob(sc->nr_to_scan));
arc_wait_for_eviction(ptob(sc->nr_to_scan), B_FALSE);
if (current->reclaim_state != NULL)
#ifdef HAVE_RECLAIM_STATE_RECLAIMED
current->reclaim_state->reclaimed += sc->nr_to_scan;
#else
current->reclaim_state->reclaimed_slab += sc->nr_to_scan;
#endif
/*
* We are experiencing memory pressure which the arc_evict_zthr was
* unable to keep up with. Set arc_no_grow to briefly pause arc
* growth to avoid compounding the memory pressure.
*/
arc_no_grow = B_TRUE;
/*
* When direct reclaim is observed it usually indicates a rapid
* increase in memory pressure. This occurs because the kswapd
* threads were unable to asynchronously keep enough free memory
* available.
*/
if (current_is_kswapd()) {
ARCSTAT_BUMP(arcstat_memory_indirect_count);
} else {
ARCSTAT_BUMP(arcstat_memory_direct_count);
}
return (sc->nr_to_scan);
}
static struct shrinker *arc_shrinker = NULL;
int
arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
{
uint64_t free_memory = arc_free_memory();
if (free_memory > arc_all_memory() * arc_lotsfree_percent / 100)
return (0);
if (txg > spa->spa_lowmem_last_txg) {
spa->spa_lowmem_last_txg = txg;
spa->spa_lowmem_page_load = 0;
}
/*
* If we are in pageout, we know that memory is already tight,
* the arc is already going to be evicting, so we just want to
* continue to let page writes occur as quickly as possible.
*/
if (current_is_kswapd()) {
if (spa->spa_lowmem_page_load >
MAX(arc_sys_free / 4, free_memory) / 4) {
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
return (SET_ERROR(ERESTART));
}
/* Note: reserve is inflated, so we deflate */
atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
return (0);
} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
/* memory is low, delay before restarting */
ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
return (SET_ERROR(EAGAIN));
}
spa->spa_lowmem_page_load = 0;
return (0);
}
static void
arc_set_sys_free(uint64_t allmem)
{
/*
* The ARC tries to keep at least this much memory available for the
* system. This gives the ARC time to shrink in response to memory
* pressure, before running completely out of memory and invoking the
* direct-reclaim ARC shrinker.
*
* This should be more than twice high_wmark_pages(), so that
* arc_wait_for_eviction() will wait until at least the
* high_wmark_pages() are free (see arc_evict_state_impl()).
*
* Note: Even when the system is very low on memory, the kernel's
* shrinker code may only ask for one "batch" of pages (512KB) to be
* evicted. If concurrent allocations consume these pages, there may
* still be insufficient free pages, and the OOM killer takes action.
*
* By setting arc_sys_free large enough, and having
* arc_wait_for_eviction() wait until there is at least arc_sys_free/2
* free memory, it is much less likely that concurrent allocations can
* consume all the memory that was evicted before checking for
* OOM.
*
* It's hard to iterate the zones from a linux kernel module, which
* makes it difficult to determine the watermark dynamically. Instead
* we compute the maximum high watermark for this system, based
* on the amount of memory, assuming default parameters on Linux kernel
* 5.3.
*/
/*
* Base wmark_low is 4 * the square root of Kbytes of RAM.
*/
long wmark = 4 * int_sqrt(allmem/1024) * 1024;
/*
* Clamp to between 128K and 64MB.
*/
wmark = MAX(wmark, 128 * 1024);
wmark = MIN(wmark, 64 * 1024 * 1024);
/*
* watermark_boost can increase the wmark by up to 150%.
*/
wmark += wmark * 150 / 100;
/*
* arc_sys_free needs to be more than 2x the watermark, because
* arc_wait_for_eviction() waits for half of arc_sys_free. Bump this up
* to 3x to ensure we're above it.
*/
arc_sys_free = wmark * 3 + allmem / 32;
}
void
arc_lowmem_init(void)
{
uint64_t allmem = arc_all_memory();
/*
* Register a shrinker to support synchronous (direct) memory
* reclaim from the arc. This is done to prevent kswapd from
* swapping out pages when it is preferable to shrink the arc.
*/
arc_shrinker = spl_register_shrinker("zfs-arc-shrinker",
arc_shrinker_count, arc_shrinker_scan, DEFAULT_SEEKS);
VERIFY(arc_shrinker);
arc_set_sys_free(allmem);
}
void
arc_lowmem_fini(void)
{
spl_unregister_shrinker(arc_shrinker);
arc_shrinker = NULL;
}
int
param_set_arc_u64(const char *buf, zfs_kernel_param_t *kp)
{
int error;
error = spl_param_set_u64(buf, kp);
if (error < 0)
return (SET_ERROR(error));
arc_tuning_update(B_TRUE);
return (0);
}
int
param_set_arc_min(const char *buf, zfs_kernel_param_t *kp)
{
return (param_set_arc_u64(buf, kp));
}
int
param_set_arc_max(const char *buf, zfs_kernel_param_t *kp)
{
return (param_set_arc_u64(buf, kp));
}
int
param_set_arc_int(const char *buf, zfs_kernel_param_t *kp)
{
int error;
error = param_set_int(buf, kp);
if (error < 0)
return (SET_ERROR(error));
arc_tuning_update(B_TRUE);
return (0);
}
#ifdef CONFIG_MEMORY_HOTPLUG
static int
arc_hotplug_callback(struct notifier_block *self, unsigned long action,
void *arg)
{
(void) self, (void) arg;
uint64_t allmem = arc_all_memory();
if (action != MEM_ONLINE)
return (NOTIFY_OK);
arc_set_limits(allmem);
#ifdef __LP64__
if (zfs_dirty_data_max_max == 0)
zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
allmem * zfs_dirty_data_max_max_percent / 100);
#else
if (zfs_dirty_data_max_max == 0)
zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
allmem * zfs_dirty_data_max_max_percent / 100);
#endif
arc_set_sys_free(allmem);
return (NOTIFY_OK);
}
#endif
void
arc_register_hotplug(void)
{
#ifdef CONFIG_MEMORY_HOTPLUG
arc_hotplug_callback_mem_nb.notifier_call = arc_hotplug_callback;
/* There is no significance to the value 100 */
arc_hotplug_callback_mem_nb.priority = 100;
register_memory_notifier(&arc_hotplug_callback_mem_nb);
#endif
}
void
arc_unregister_hotplug(void)
{
#ifdef CONFIG_MEMORY_HOTPLUG
unregister_memory_notifier(&arc_hotplug_callback_mem_nb);
#endif
}
#else /* _KERNEL */
int64_t
arc_available_memory(void)
{
int64_t lowest = INT64_MAX;
/* Every 100 calls, free a small amount */
if (random_in_range(100) == 0)
lowest = -1024;
return (lowest);
}
int
arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
{
(void) spa, (void) reserve, (void) txg;
return (0);
}
uint64_t
arc_all_memory(void)
{
return (ptob(physmem) / 2);
}
uint64_t
arc_free_memory(void)
{
return (random_in_range(arc_all_memory() * 20 / 100));
}
void
arc_register_hotplug(void)
{
}
void
arc_unregister_hotplug(void)
{
}
#endif /* _KERNEL */
ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, shrinker_limit, INT, ZMOD_RW,
"Limit on number of pages that ARC shrinker can reclaim at once");