mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-15 04:30:33 +03:00
a10e552b99
Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
6561 lines
180 KiB
C
6561 lines
180 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2021 by Delphix. All rights reserved.
|
|
* Copyright 2017 Nexenta Systems, Inc.
|
|
* Copyright (c) 2014 Integros [integros.com]
|
|
* Copyright 2016 Toomas Soome <tsoome@me.com>
|
|
* Copyright 2017 Joyent, Inc.
|
|
* Copyright (c) 2017, Intel Corporation.
|
|
* Copyright (c) 2019, Datto Inc. All rights reserved.
|
|
* Copyright (c) 2021, Klara Inc.
|
|
* Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fm/fs/zfs.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/bpobj.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/vdev_rebuild.h>
|
|
#include <sys/vdev_draid.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/space_map.h>
|
|
#include <sys/space_reftree.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/vdev_raidz.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/vdev_initialize.h>
|
|
#include <sys/vdev_trim.h>
|
|
#include <sys/vdev_raidz.h>
|
|
#include <sys/zvol.h>
|
|
#include <sys/zfs_ratelimit.h>
|
|
#include "zfs_prop.h"
|
|
|
|
/*
|
|
* One metaslab from each (normal-class) vdev is used by the ZIL. These are
|
|
* called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
|
|
* part of the spa_embedded_log_class. The metaslab with the most free space
|
|
* in each vdev is selected for this purpose when the pool is opened (or a
|
|
* vdev is added). See vdev_metaslab_init().
|
|
*
|
|
* Log blocks can be allocated from the following locations. Each one is tried
|
|
* in order until the allocation succeeds:
|
|
* 1. dedicated log vdevs, aka "slog" (spa_log_class)
|
|
* 2. embedded slog metaslabs (spa_embedded_log_class)
|
|
* 3. other metaslabs in normal vdevs (spa_normal_class)
|
|
*
|
|
* zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
|
|
* than this number of metaslabs in the vdev. This ensures that we don't set
|
|
* aside an unreasonable amount of space for the ZIL. If set to less than
|
|
* 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
|
|
* (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
|
|
*/
|
|
static uint_t zfs_embedded_slog_min_ms = 64;
|
|
|
|
/* default target for number of metaslabs per top-level vdev */
|
|
static uint_t zfs_vdev_default_ms_count = 200;
|
|
|
|
/* minimum number of metaslabs per top-level vdev */
|
|
static uint_t zfs_vdev_min_ms_count = 16;
|
|
|
|
/* practical upper limit of total metaslabs per top-level vdev */
|
|
static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
|
|
|
|
/* lower limit for metaslab size (512M) */
|
|
static uint_t zfs_vdev_default_ms_shift = 29;
|
|
|
|
/* upper limit for metaslab size (16G) */
|
|
static uint_t zfs_vdev_max_ms_shift = 34;
|
|
|
|
int vdev_validate_skip = B_FALSE;
|
|
|
|
/*
|
|
* Since the DTL space map of a vdev is not expected to have a lot of
|
|
* entries, we default its block size to 4K.
|
|
*/
|
|
int zfs_vdev_dtl_sm_blksz = (1 << 12);
|
|
|
|
/*
|
|
* Rate limit slow IO (delay) events to this many per second.
|
|
*/
|
|
static unsigned int zfs_slow_io_events_per_second = 20;
|
|
|
|
/*
|
|
* Rate limit deadman "hung IO" events to this many per second.
|
|
*/
|
|
static unsigned int zfs_deadman_events_per_second = 1;
|
|
|
|
/*
|
|
* Rate limit direct write IO verify failures to this many per scond.
|
|
*/
|
|
static unsigned int zfs_dio_write_verify_events_per_second = 20;
|
|
|
|
/*
|
|
* Rate limit checksum events after this many checksum errors per second.
|
|
*/
|
|
static unsigned int zfs_checksum_events_per_second = 20;
|
|
|
|
/*
|
|
* Ignore errors during scrub/resilver. Allows to work around resilver
|
|
* upon import when there are pool errors.
|
|
*/
|
|
static int zfs_scan_ignore_errors = 0;
|
|
|
|
/*
|
|
* vdev-wide space maps that have lots of entries written to them at
|
|
* the end of each transaction can benefit from a higher I/O bandwidth
|
|
* (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
|
|
*/
|
|
int zfs_vdev_standard_sm_blksz = (1 << 17);
|
|
|
|
/*
|
|
* Tunable parameter for debugging or performance analysis. Setting this
|
|
* will cause pool corruption on power loss if a volatile out-of-order
|
|
* write cache is enabled.
|
|
*/
|
|
int zfs_nocacheflush = 0;
|
|
|
|
/*
|
|
* Maximum and minimum ashift values that can be automatically set based on
|
|
* vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
|
|
* is higher than the maximum value, it is intentionally limited here to not
|
|
* excessively impact pool space efficiency. Higher ashift values may still
|
|
* be forced by vdev logical ashift or by user via ashift property, but won't
|
|
* be set automatically as a performance optimization.
|
|
*/
|
|
uint_t zfs_vdev_max_auto_ashift = 14;
|
|
uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
|
|
|
|
/*
|
|
* VDEV checksum verification for Direct I/O writes. This is neccessary for
|
|
* Linux, because anonymous pages can not be placed under write protection
|
|
* during Direct I/O writes.
|
|
*/
|
|
#if !defined(__FreeBSD__)
|
|
uint_t zfs_vdev_direct_write_verify = 1;
|
|
#else
|
|
uint_t zfs_vdev_direct_write_verify = 0;
|
|
#endif
|
|
|
|
void
|
|
vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
|
|
{
|
|
va_list adx;
|
|
char buf[256];
|
|
|
|
va_start(adx, fmt);
|
|
(void) vsnprintf(buf, sizeof (buf), fmt, adx);
|
|
va_end(adx);
|
|
|
|
if (vd->vdev_path != NULL) {
|
|
zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
|
|
vd->vdev_path, buf);
|
|
} else {
|
|
zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
|
|
vd->vdev_ops->vdev_op_type,
|
|
(u_longlong_t)vd->vdev_id,
|
|
(u_longlong_t)vd->vdev_guid, buf);
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
|
|
{
|
|
char state[20];
|
|
|
|
if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
|
|
zfs_dbgmsg("%*svdev %llu: %s", indent, "",
|
|
(u_longlong_t)vd->vdev_id,
|
|
vd->vdev_ops->vdev_op_type);
|
|
return;
|
|
}
|
|
|
|
switch (vd->vdev_state) {
|
|
case VDEV_STATE_UNKNOWN:
|
|
(void) snprintf(state, sizeof (state), "unknown");
|
|
break;
|
|
case VDEV_STATE_CLOSED:
|
|
(void) snprintf(state, sizeof (state), "closed");
|
|
break;
|
|
case VDEV_STATE_OFFLINE:
|
|
(void) snprintf(state, sizeof (state), "offline");
|
|
break;
|
|
case VDEV_STATE_REMOVED:
|
|
(void) snprintf(state, sizeof (state), "removed");
|
|
break;
|
|
case VDEV_STATE_CANT_OPEN:
|
|
(void) snprintf(state, sizeof (state), "can't open");
|
|
break;
|
|
case VDEV_STATE_FAULTED:
|
|
(void) snprintf(state, sizeof (state), "faulted");
|
|
break;
|
|
case VDEV_STATE_DEGRADED:
|
|
(void) snprintf(state, sizeof (state), "degraded");
|
|
break;
|
|
case VDEV_STATE_HEALTHY:
|
|
(void) snprintf(state, sizeof (state), "healthy");
|
|
break;
|
|
default:
|
|
(void) snprintf(state, sizeof (state), "<state %u>",
|
|
(uint_t)vd->vdev_state);
|
|
}
|
|
|
|
zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
|
|
"", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
|
|
vd->vdev_islog ? " (log)" : "",
|
|
(u_longlong_t)vd->vdev_guid,
|
|
vd->vdev_path ? vd->vdev_path : "N/A", state);
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++)
|
|
vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
|
|
}
|
|
|
|
/*
|
|
* Virtual device management.
|
|
*/
|
|
|
|
static vdev_ops_t *const vdev_ops_table[] = {
|
|
&vdev_root_ops,
|
|
&vdev_raidz_ops,
|
|
&vdev_draid_ops,
|
|
&vdev_draid_spare_ops,
|
|
&vdev_mirror_ops,
|
|
&vdev_replacing_ops,
|
|
&vdev_spare_ops,
|
|
&vdev_disk_ops,
|
|
&vdev_file_ops,
|
|
&vdev_missing_ops,
|
|
&vdev_hole_ops,
|
|
&vdev_indirect_ops,
|
|
NULL
|
|
};
|
|
|
|
/*
|
|
* Given a vdev type, return the appropriate ops vector.
|
|
*/
|
|
static vdev_ops_t *
|
|
vdev_getops(const char *type)
|
|
{
|
|
vdev_ops_t *ops, *const *opspp;
|
|
|
|
for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
|
|
if (strcmp(ops->vdev_op_type, type) == 0)
|
|
break;
|
|
|
|
return (ops);
|
|
}
|
|
|
|
/*
|
|
* Given a vdev and a metaslab class, find which metaslab group we're
|
|
* interested in. All vdevs may belong to two different metaslab classes.
|
|
* Dedicated slog devices use only the primary metaslab group, rather than a
|
|
* separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
|
|
*/
|
|
metaslab_group_t *
|
|
vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
|
|
{
|
|
if (mc == spa_embedded_log_class(vd->vdev_spa) &&
|
|
vd->vdev_log_mg != NULL)
|
|
return (vd->vdev_log_mg);
|
|
else
|
|
return (vd->vdev_mg);
|
|
}
|
|
|
|
void
|
|
vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
|
|
range_seg64_t *physical_rs, range_seg64_t *remain_rs)
|
|
{
|
|
(void) vd, (void) remain_rs;
|
|
|
|
physical_rs->rs_start = logical_rs->rs_start;
|
|
physical_rs->rs_end = logical_rs->rs_end;
|
|
}
|
|
|
|
/*
|
|
* Derive the enumerated allocation bias from string input.
|
|
* String origin is either the per-vdev zap or zpool(8).
|
|
*/
|
|
static vdev_alloc_bias_t
|
|
vdev_derive_alloc_bias(const char *bias)
|
|
{
|
|
vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
|
|
|
|
if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
|
|
alloc_bias = VDEV_BIAS_LOG;
|
|
else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
|
|
alloc_bias = VDEV_BIAS_SPECIAL;
|
|
else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
|
|
alloc_bias = VDEV_BIAS_DEDUP;
|
|
|
|
return (alloc_bias);
|
|
}
|
|
|
|
/*
|
|
* Default asize function: return the MAX of psize with the asize of
|
|
* all children. This is what's used by anything other than RAID-Z.
|
|
*/
|
|
uint64_t
|
|
vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
|
|
{
|
|
uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
|
|
uint64_t csize;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
|
|
asize = MAX(asize, csize);
|
|
}
|
|
|
|
return (asize);
|
|
}
|
|
|
|
uint64_t
|
|
vdev_default_min_asize(vdev_t *vd)
|
|
{
|
|
return (vd->vdev_min_asize);
|
|
}
|
|
|
|
/*
|
|
* Get the minimum allocatable size. We define the allocatable size as
|
|
* the vdev's asize rounded to the nearest metaslab. This allows us to
|
|
* replace or attach devices which don't have the same physical size but
|
|
* can still satisfy the same number of allocations.
|
|
*/
|
|
uint64_t
|
|
vdev_get_min_asize(vdev_t *vd)
|
|
{
|
|
vdev_t *pvd = vd->vdev_parent;
|
|
|
|
/*
|
|
* If our parent is NULL (inactive spare or cache) or is the root,
|
|
* just return our own asize.
|
|
*/
|
|
if (pvd == NULL)
|
|
return (vd->vdev_asize);
|
|
|
|
/*
|
|
* The top-level vdev just returns the allocatable size rounded
|
|
* to the nearest metaslab.
|
|
*/
|
|
if (vd == vd->vdev_top)
|
|
return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
|
|
uint64_t));
|
|
|
|
return (pvd->vdev_ops->vdev_op_min_asize(pvd));
|
|
}
|
|
|
|
void
|
|
vdev_set_min_asize(vdev_t *vd)
|
|
{
|
|
vd->vdev_min_asize = vdev_get_min_asize(vd);
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_set_min_asize(vd->vdev_child[c]);
|
|
}
|
|
|
|
/*
|
|
* Get the minimal allocation size for the top-level vdev.
|
|
*/
|
|
uint64_t
|
|
vdev_get_min_alloc(vdev_t *vd)
|
|
{
|
|
uint64_t min_alloc = 1ULL << vd->vdev_ashift;
|
|
|
|
if (vd->vdev_ops->vdev_op_min_alloc != NULL)
|
|
min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
|
|
|
|
return (min_alloc);
|
|
}
|
|
|
|
/*
|
|
* Get the parity level for a top-level vdev.
|
|
*/
|
|
uint64_t
|
|
vdev_get_nparity(vdev_t *vd)
|
|
{
|
|
uint64_t nparity = 0;
|
|
|
|
if (vd->vdev_ops->vdev_op_nparity != NULL)
|
|
nparity = vd->vdev_ops->vdev_op_nparity(vd);
|
|
|
|
return (nparity);
|
|
}
|
|
|
|
static int
|
|
vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
uint64_t objid;
|
|
int err;
|
|
|
|
if (vd->vdev_root_zap != 0) {
|
|
objid = vd->vdev_root_zap;
|
|
} else if (vd->vdev_top_zap != 0) {
|
|
objid = vd->vdev_top_zap;
|
|
} else if (vd->vdev_leaf_zap != 0) {
|
|
objid = vd->vdev_leaf_zap;
|
|
} else {
|
|
return (EINVAL);
|
|
}
|
|
|
|
err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
|
|
sizeof (uint64_t), 1, value);
|
|
|
|
if (err == ENOENT)
|
|
*value = vdev_prop_default_numeric(prop);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Get the number of data disks for a top-level vdev.
|
|
*/
|
|
uint64_t
|
|
vdev_get_ndisks(vdev_t *vd)
|
|
{
|
|
uint64_t ndisks = 1;
|
|
|
|
if (vd->vdev_ops->vdev_op_ndisks != NULL)
|
|
ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
|
|
|
|
return (ndisks);
|
|
}
|
|
|
|
vdev_t *
|
|
vdev_lookup_top(spa_t *spa, uint64_t vdev)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
|
|
|
|
if (vdev < rvd->vdev_children) {
|
|
ASSERT(rvd->vdev_child[vdev] != NULL);
|
|
return (rvd->vdev_child[vdev]);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
vdev_t *
|
|
vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
|
|
{
|
|
vdev_t *mvd;
|
|
|
|
if (vd->vdev_guid == guid)
|
|
return (vd);
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
|
|
NULL)
|
|
return (mvd);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
vdev_count_leaves_impl(vdev_t *vd)
|
|
{
|
|
int n = 0;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
return (1);
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
n += vdev_count_leaves_impl(vd->vdev_child[c]);
|
|
|
|
return (n);
|
|
}
|
|
|
|
int
|
|
vdev_count_leaves(spa_t *spa)
|
|
{
|
|
int rc;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
rc = vdev_count_leaves_impl(spa->spa_root_vdev);
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
void
|
|
vdev_add_child(vdev_t *pvd, vdev_t *cvd)
|
|
{
|
|
size_t oldsize, newsize;
|
|
uint64_t id = cvd->vdev_id;
|
|
vdev_t **newchild;
|
|
|
|
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
ASSERT(cvd->vdev_parent == NULL);
|
|
|
|
cvd->vdev_parent = pvd;
|
|
|
|
if (pvd == NULL)
|
|
return;
|
|
|
|
ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
|
|
|
|
oldsize = pvd->vdev_children * sizeof (vdev_t *);
|
|
pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
|
|
newsize = pvd->vdev_children * sizeof (vdev_t *);
|
|
|
|
newchild = kmem_alloc(newsize, KM_SLEEP);
|
|
if (pvd->vdev_child != NULL) {
|
|
memcpy(newchild, pvd->vdev_child, oldsize);
|
|
kmem_free(pvd->vdev_child, oldsize);
|
|
}
|
|
|
|
pvd->vdev_child = newchild;
|
|
pvd->vdev_child[id] = cvd;
|
|
|
|
cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
|
|
ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
|
|
|
|
/*
|
|
* Walk up all ancestors to update guid sum.
|
|
*/
|
|
for (; pvd != NULL; pvd = pvd->vdev_parent)
|
|
pvd->vdev_guid_sum += cvd->vdev_guid_sum;
|
|
|
|
if (cvd->vdev_ops->vdev_op_leaf) {
|
|
list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
|
|
cvd->vdev_spa->spa_leaf_list_gen++;
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
|
|
{
|
|
int c;
|
|
uint_t id = cvd->vdev_id;
|
|
|
|
ASSERT(cvd->vdev_parent == pvd);
|
|
|
|
if (pvd == NULL)
|
|
return;
|
|
|
|
ASSERT(id < pvd->vdev_children);
|
|
ASSERT(pvd->vdev_child[id] == cvd);
|
|
|
|
pvd->vdev_child[id] = NULL;
|
|
cvd->vdev_parent = NULL;
|
|
|
|
for (c = 0; c < pvd->vdev_children; c++)
|
|
if (pvd->vdev_child[c])
|
|
break;
|
|
|
|
if (c == pvd->vdev_children) {
|
|
kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
|
|
pvd->vdev_child = NULL;
|
|
pvd->vdev_children = 0;
|
|
}
|
|
|
|
if (cvd->vdev_ops->vdev_op_leaf) {
|
|
spa_t *spa = cvd->vdev_spa;
|
|
list_remove(&spa->spa_leaf_list, cvd);
|
|
spa->spa_leaf_list_gen++;
|
|
}
|
|
|
|
/*
|
|
* Walk up all ancestors to update guid sum.
|
|
*/
|
|
for (; pvd != NULL; pvd = pvd->vdev_parent)
|
|
pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
|
|
}
|
|
|
|
/*
|
|
* Remove any holes in the child array.
|
|
*/
|
|
void
|
|
vdev_compact_children(vdev_t *pvd)
|
|
{
|
|
vdev_t **newchild, *cvd;
|
|
int oldc = pvd->vdev_children;
|
|
int newc;
|
|
|
|
ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
if (oldc == 0)
|
|
return;
|
|
|
|
for (int c = newc = 0; c < oldc; c++)
|
|
if (pvd->vdev_child[c])
|
|
newc++;
|
|
|
|
if (newc > 0) {
|
|
newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
|
|
|
|
for (int c = newc = 0; c < oldc; c++) {
|
|
if ((cvd = pvd->vdev_child[c]) != NULL) {
|
|
newchild[newc] = cvd;
|
|
cvd->vdev_id = newc++;
|
|
}
|
|
}
|
|
} else {
|
|
newchild = NULL;
|
|
}
|
|
|
|
kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
|
|
pvd->vdev_child = newchild;
|
|
pvd->vdev_children = newc;
|
|
}
|
|
|
|
/*
|
|
* Allocate and minimally initialize a vdev_t.
|
|
*/
|
|
vdev_t *
|
|
vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
|
|
{
|
|
vdev_t *vd;
|
|
vdev_indirect_config_t *vic;
|
|
|
|
vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
|
|
vic = &vd->vdev_indirect_config;
|
|
|
|
if (spa->spa_root_vdev == NULL) {
|
|
ASSERT(ops == &vdev_root_ops);
|
|
spa->spa_root_vdev = vd;
|
|
spa->spa_load_guid = spa_generate_guid(NULL);
|
|
}
|
|
|
|
if (guid == 0 && ops != &vdev_hole_ops) {
|
|
if (spa->spa_root_vdev == vd) {
|
|
/*
|
|
* The root vdev's guid will also be the pool guid,
|
|
* which must be unique among all pools.
|
|
*/
|
|
guid = spa_generate_guid(NULL);
|
|
} else {
|
|
/*
|
|
* Any other vdev's guid must be unique within the pool.
|
|
*/
|
|
guid = spa_generate_guid(spa);
|
|
}
|
|
ASSERT(!spa_guid_exists(spa_guid(spa), guid));
|
|
}
|
|
|
|
vd->vdev_spa = spa;
|
|
vd->vdev_id = id;
|
|
vd->vdev_guid = guid;
|
|
vd->vdev_guid_sum = guid;
|
|
vd->vdev_ops = ops;
|
|
vd->vdev_state = VDEV_STATE_CLOSED;
|
|
vd->vdev_ishole = (ops == &vdev_hole_ops);
|
|
vic->vic_prev_indirect_vdev = UINT64_MAX;
|
|
|
|
rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
|
|
mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
|
|
0, 0);
|
|
|
|
/*
|
|
* Initialize rate limit structs for events. We rate limit ZIO delay
|
|
* and checksum events so that we don't overwhelm ZED with thousands
|
|
* of events when a disk is acting up.
|
|
*/
|
|
zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
|
|
1);
|
|
zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
|
|
1);
|
|
zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
|
|
&zfs_dio_write_verify_events_per_second, 1);
|
|
zfs_ratelimit_init(&vd->vdev_checksum_rl,
|
|
&zfs_checksum_events_per_second, 1);
|
|
|
|
/*
|
|
* Default Thresholds for tuning ZED
|
|
*/
|
|
vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
|
|
vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
|
|
vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
|
|
vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
|
|
vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
|
|
vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
|
|
|
|
list_link_init(&vd->vdev_config_dirty_node);
|
|
list_link_init(&vd->vdev_state_dirty_node);
|
|
list_link_init(&vd->vdev_initialize_node);
|
|
list_link_init(&vd->vdev_leaf_node);
|
|
list_link_init(&vd->vdev_trim_node);
|
|
|
|
mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
|
|
mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
for (int t = 0; t < DTL_TYPES; t++) {
|
|
vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
|
|
0);
|
|
}
|
|
|
|
txg_list_create(&vd->vdev_ms_list, spa,
|
|
offsetof(struct metaslab, ms_txg_node));
|
|
txg_list_create(&vd->vdev_dtl_list, spa,
|
|
offsetof(struct vdev, vdev_dtl_node));
|
|
vd->vdev_stat.vs_timestamp = gethrtime();
|
|
vdev_queue_init(vd);
|
|
|
|
return (vd);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new vdev. The 'alloctype' is used to control whether we are
|
|
* creating a new vdev or loading an existing one - the behavior is slightly
|
|
* different for each case.
|
|
*/
|
|
int
|
|
vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
|
|
int alloctype)
|
|
{
|
|
vdev_ops_t *ops;
|
|
const char *type;
|
|
uint64_t guid = 0, islog;
|
|
vdev_t *vd;
|
|
vdev_indirect_config_t *vic;
|
|
const char *tmp = NULL;
|
|
int rc;
|
|
vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
|
|
boolean_t top_level = (parent && !parent->vdev_parent);
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if ((ops = vdev_getops(type)) == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* If this is a load, get the vdev guid from the nvlist.
|
|
* Otherwise, vdev_alloc_common() will generate one for us.
|
|
*/
|
|
if (alloctype == VDEV_ALLOC_LOAD) {
|
|
uint64_t label_id;
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
|
|
label_id != id)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
} else if (alloctype == VDEV_ALLOC_SPARE) {
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
} else if (alloctype == VDEV_ALLOC_L2CACHE) {
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* The first allocated vdev must be of type 'root'.
|
|
*/
|
|
if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* Determine whether we're a log vdev.
|
|
*/
|
|
islog = 0;
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
|
|
if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (top_level && alloctype == VDEV_ALLOC_ADD) {
|
|
const char *bias;
|
|
|
|
/*
|
|
* If creating a top-level vdev, check for allocation
|
|
* classes input.
|
|
*/
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
|
|
&bias) == 0) {
|
|
alloc_bias = vdev_derive_alloc_bias(bias);
|
|
|
|
/* spa_vdev_add() expects feature to be enabled */
|
|
if (spa->spa_load_state != SPA_LOAD_CREATE &&
|
|
!spa_feature_is_enabled(spa,
|
|
SPA_FEATURE_ALLOCATION_CLASSES)) {
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
}
|
|
|
|
/* spa_vdev_add() expects feature to be enabled */
|
|
if (ops == &vdev_draid_ops &&
|
|
spa->spa_load_state != SPA_LOAD_CREATE &&
|
|
!spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the vdev specific data. This is done before calling
|
|
* vdev_alloc_common() since it may fail and this simplifies the
|
|
* error reporting and cleanup code paths.
|
|
*/
|
|
void *tsd = NULL;
|
|
if (ops->vdev_op_init != NULL) {
|
|
rc = ops->vdev_op_init(spa, nv, &tsd);
|
|
if (rc != 0) {
|
|
return (rc);
|
|
}
|
|
}
|
|
|
|
vd = vdev_alloc_common(spa, id, guid, ops);
|
|
vd->vdev_tsd = tsd;
|
|
vd->vdev_islog = islog;
|
|
|
|
if (top_level && alloc_bias != VDEV_BIAS_NONE)
|
|
vd->vdev_alloc_bias = alloc_bias;
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
|
|
vd->vdev_path = spa_strdup(tmp);
|
|
|
|
/*
|
|
* ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
|
|
* fault on a vdev and want it to persist across imports (like with
|
|
* zpool offline -f).
|
|
*/
|
|
rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
|
|
if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
|
|
vd->vdev_faulted = 1;
|
|
vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
|
|
}
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
|
|
vd->vdev_devid = spa_strdup(tmp);
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
|
|
vd->vdev_physpath = spa_strdup(tmp);
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
|
|
&tmp) == 0)
|
|
vd->vdev_enc_sysfs_path = spa_strdup(tmp);
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
|
|
vd->vdev_fru = spa_strdup(tmp);
|
|
|
|
/*
|
|
* Set the whole_disk property. If it's not specified, leave the value
|
|
* as -1.
|
|
*/
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
|
|
&vd->vdev_wholedisk) != 0)
|
|
vd->vdev_wholedisk = -1ULL;
|
|
|
|
vic = &vd->vdev_indirect_config;
|
|
|
|
ASSERT0(vic->vic_mapping_object);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
|
|
&vic->vic_mapping_object);
|
|
ASSERT0(vic->vic_births_object);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
|
|
&vic->vic_births_object);
|
|
ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
|
|
&vic->vic_prev_indirect_vdev);
|
|
|
|
/*
|
|
* Look for the 'not present' flag. This will only be set if the device
|
|
* was not present at the time of import.
|
|
*/
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
|
|
&vd->vdev_not_present);
|
|
|
|
/*
|
|
* Get the alignment requirement. Ignore pool ashift for vdev
|
|
* attach case.
|
|
*/
|
|
if (alloctype != VDEV_ALLOC_ATTACH) {
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
|
|
&vd->vdev_ashift);
|
|
} else {
|
|
vd->vdev_attaching = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Retrieve the vdev creation time.
|
|
*/
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
|
|
&vd->vdev_crtxg);
|
|
|
|
if (vd->vdev_ops == &vdev_root_ops &&
|
|
(alloctype == VDEV_ALLOC_LOAD ||
|
|
alloctype == VDEV_ALLOC_SPLIT ||
|
|
alloctype == VDEV_ALLOC_ROOTPOOL)) {
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
|
|
&vd->vdev_root_zap);
|
|
}
|
|
|
|
/*
|
|
* If we're a top-level vdev, try to load the allocation parameters.
|
|
*/
|
|
if (top_level &&
|
|
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
|
|
&vd->vdev_ms_array);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
|
|
&vd->vdev_ms_shift);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
|
|
&vd->vdev_asize);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
|
|
&vd->vdev_noalloc);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
|
|
&vd->vdev_removing);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
|
|
&vd->vdev_top_zap);
|
|
vd->vdev_rz_expanding = nvlist_exists(nv,
|
|
ZPOOL_CONFIG_RAIDZ_EXPANDING);
|
|
} else {
|
|
ASSERT0(vd->vdev_top_zap);
|
|
}
|
|
|
|
if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
|
|
ASSERT(alloctype == VDEV_ALLOC_LOAD ||
|
|
alloctype == VDEV_ALLOC_ADD ||
|
|
alloctype == VDEV_ALLOC_SPLIT ||
|
|
alloctype == VDEV_ALLOC_ROOTPOOL);
|
|
/* Note: metaslab_group_create() is now deferred */
|
|
}
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
|
|
(void) nvlist_lookup_uint64(nv,
|
|
ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
|
|
} else {
|
|
ASSERT0(vd->vdev_leaf_zap);
|
|
}
|
|
|
|
/*
|
|
* If we're a leaf vdev, try to load the DTL object and other state.
|
|
*/
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
|
|
alloctype == VDEV_ALLOC_ROOTPOOL)) {
|
|
if (alloctype == VDEV_ALLOC_LOAD) {
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
|
|
&vd->vdev_dtl_object);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
|
|
&vd->vdev_unspare);
|
|
}
|
|
|
|
if (alloctype == VDEV_ALLOC_ROOTPOOL) {
|
|
uint64_t spare = 0;
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
|
|
&spare) == 0 && spare)
|
|
spa_spare_add(vd);
|
|
}
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
|
|
&vd->vdev_offline);
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
|
|
&vd->vdev_resilver_txg);
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
|
|
&vd->vdev_rebuild_txg);
|
|
|
|
if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
|
|
vdev_defer_resilver(vd);
|
|
|
|
/*
|
|
* In general, when importing a pool we want to ignore the
|
|
* persistent fault state, as the diagnosis made on another
|
|
* system may not be valid in the current context. The only
|
|
* exception is if we forced a vdev to a persistently faulted
|
|
* state with 'zpool offline -f'. The persistent fault will
|
|
* remain across imports until cleared.
|
|
*
|
|
* Local vdevs will remain in the faulted state.
|
|
*/
|
|
if (spa_load_state(spa) == SPA_LOAD_OPEN ||
|
|
spa_load_state(spa) == SPA_LOAD_IMPORT) {
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
|
|
&vd->vdev_faulted);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
|
|
&vd->vdev_degraded);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
|
|
&vd->vdev_removed);
|
|
|
|
if (vd->vdev_faulted || vd->vdev_degraded) {
|
|
const char *aux;
|
|
|
|
vd->vdev_label_aux =
|
|
VDEV_AUX_ERR_EXCEEDED;
|
|
if (nvlist_lookup_string(nv,
|
|
ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
|
|
strcmp(aux, "external") == 0)
|
|
vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
|
|
else
|
|
vd->vdev_faulted = 0ULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add ourselves to the parent's list of children.
|
|
*/
|
|
vdev_add_child(parent, vd);
|
|
|
|
*vdp = vd;
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vdev_free(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
|
|
ASSERT3P(vd->vdev_trim_thread, ==, NULL);
|
|
ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
|
|
ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
|
|
|
|
/*
|
|
* Scan queues are normally destroyed at the end of a scan. If the
|
|
* queue exists here, that implies the vdev is being removed while
|
|
* the scan is still running.
|
|
*/
|
|
if (vd->vdev_scan_io_queue != NULL) {
|
|
mutex_enter(&vd->vdev_scan_io_queue_lock);
|
|
dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
|
|
vd->vdev_scan_io_queue = NULL;
|
|
mutex_exit(&vd->vdev_scan_io_queue_lock);
|
|
}
|
|
|
|
/*
|
|
* vdev_free() implies closing the vdev first. This is simpler than
|
|
* trying to ensure complicated semantics for all callers.
|
|
*/
|
|
vdev_close(vd);
|
|
|
|
ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
|
|
ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
|
|
|
|
/*
|
|
* Free all children.
|
|
*/
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_free(vd->vdev_child[c]);
|
|
|
|
ASSERT(vd->vdev_child == NULL);
|
|
ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
|
|
|
|
if (vd->vdev_ops->vdev_op_fini != NULL)
|
|
vd->vdev_ops->vdev_op_fini(vd);
|
|
|
|
/*
|
|
* Discard allocation state.
|
|
*/
|
|
if (vd->vdev_mg != NULL) {
|
|
vdev_metaslab_fini(vd);
|
|
metaslab_group_destroy(vd->vdev_mg);
|
|
vd->vdev_mg = NULL;
|
|
}
|
|
if (vd->vdev_log_mg != NULL) {
|
|
ASSERT0(vd->vdev_ms_count);
|
|
metaslab_group_destroy(vd->vdev_log_mg);
|
|
vd->vdev_log_mg = NULL;
|
|
}
|
|
|
|
ASSERT0(vd->vdev_stat.vs_space);
|
|
ASSERT0(vd->vdev_stat.vs_dspace);
|
|
ASSERT0(vd->vdev_stat.vs_alloc);
|
|
|
|
/*
|
|
* Remove this vdev from its parent's child list.
|
|
*/
|
|
vdev_remove_child(vd->vdev_parent, vd);
|
|
|
|
ASSERT(vd->vdev_parent == NULL);
|
|
ASSERT(!list_link_active(&vd->vdev_leaf_node));
|
|
|
|
/*
|
|
* Clean up vdev structure.
|
|
*/
|
|
vdev_queue_fini(vd);
|
|
|
|
if (vd->vdev_path)
|
|
spa_strfree(vd->vdev_path);
|
|
if (vd->vdev_devid)
|
|
spa_strfree(vd->vdev_devid);
|
|
if (vd->vdev_physpath)
|
|
spa_strfree(vd->vdev_physpath);
|
|
|
|
if (vd->vdev_enc_sysfs_path)
|
|
spa_strfree(vd->vdev_enc_sysfs_path);
|
|
|
|
if (vd->vdev_fru)
|
|
spa_strfree(vd->vdev_fru);
|
|
|
|
if (vd->vdev_isspare)
|
|
spa_spare_remove(vd);
|
|
if (vd->vdev_isl2cache)
|
|
spa_l2cache_remove(vd);
|
|
|
|
txg_list_destroy(&vd->vdev_ms_list);
|
|
txg_list_destroy(&vd->vdev_dtl_list);
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
space_map_close(vd->vdev_dtl_sm);
|
|
for (int t = 0; t < DTL_TYPES; t++) {
|
|
range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
|
|
range_tree_destroy(vd->vdev_dtl[t]);
|
|
}
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
EQUIV(vd->vdev_indirect_births != NULL,
|
|
vd->vdev_indirect_mapping != NULL);
|
|
if (vd->vdev_indirect_births != NULL) {
|
|
vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
|
|
vdev_indirect_births_close(vd->vdev_indirect_births);
|
|
}
|
|
|
|
if (vd->vdev_obsolete_sm != NULL) {
|
|
ASSERT(vd->vdev_removing ||
|
|
vd->vdev_ops == &vdev_indirect_ops);
|
|
space_map_close(vd->vdev_obsolete_sm);
|
|
vd->vdev_obsolete_sm = NULL;
|
|
}
|
|
range_tree_destroy(vd->vdev_obsolete_segments);
|
|
rw_destroy(&vd->vdev_indirect_rwlock);
|
|
mutex_destroy(&vd->vdev_obsolete_lock);
|
|
|
|
mutex_destroy(&vd->vdev_dtl_lock);
|
|
mutex_destroy(&vd->vdev_stat_lock);
|
|
mutex_destroy(&vd->vdev_probe_lock);
|
|
mutex_destroy(&vd->vdev_scan_io_queue_lock);
|
|
|
|
mutex_destroy(&vd->vdev_initialize_lock);
|
|
mutex_destroy(&vd->vdev_initialize_io_lock);
|
|
cv_destroy(&vd->vdev_initialize_io_cv);
|
|
cv_destroy(&vd->vdev_initialize_cv);
|
|
|
|
mutex_destroy(&vd->vdev_trim_lock);
|
|
mutex_destroy(&vd->vdev_autotrim_lock);
|
|
mutex_destroy(&vd->vdev_trim_io_lock);
|
|
cv_destroy(&vd->vdev_trim_cv);
|
|
cv_destroy(&vd->vdev_autotrim_cv);
|
|
cv_destroy(&vd->vdev_autotrim_kick_cv);
|
|
cv_destroy(&vd->vdev_trim_io_cv);
|
|
|
|
mutex_destroy(&vd->vdev_rebuild_lock);
|
|
cv_destroy(&vd->vdev_rebuild_cv);
|
|
|
|
zfs_ratelimit_fini(&vd->vdev_delay_rl);
|
|
zfs_ratelimit_fini(&vd->vdev_deadman_rl);
|
|
zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
|
|
zfs_ratelimit_fini(&vd->vdev_checksum_rl);
|
|
|
|
if (vd == spa->spa_root_vdev)
|
|
spa->spa_root_vdev = NULL;
|
|
|
|
kmem_free(vd, sizeof (vdev_t));
|
|
}
|
|
|
|
/*
|
|
* Transfer top-level vdev state from svd to tvd.
|
|
*/
|
|
static void
|
|
vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
|
|
{
|
|
spa_t *spa = svd->vdev_spa;
|
|
metaslab_t *msp;
|
|
vdev_t *vd;
|
|
int t;
|
|
|
|
ASSERT(tvd == tvd->vdev_top);
|
|
|
|
tvd->vdev_ms_array = svd->vdev_ms_array;
|
|
tvd->vdev_ms_shift = svd->vdev_ms_shift;
|
|
tvd->vdev_ms_count = svd->vdev_ms_count;
|
|
tvd->vdev_top_zap = svd->vdev_top_zap;
|
|
|
|
svd->vdev_ms_array = 0;
|
|
svd->vdev_ms_shift = 0;
|
|
svd->vdev_ms_count = 0;
|
|
svd->vdev_top_zap = 0;
|
|
|
|
if (tvd->vdev_mg)
|
|
ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
|
|
if (tvd->vdev_log_mg)
|
|
ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
|
|
tvd->vdev_mg = svd->vdev_mg;
|
|
tvd->vdev_log_mg = svd->vdev_log_mg;
|
|
tvd->vdev_ms = svd->vdev_ms;
|
|
|
|
svd->vdev_mg = NULL;
|
|
svd->vdev_log_mg = NULL;
|
|
svd->vdev_ms = NULL;
|
|
|
|
if (tvd->vdev_mg != NULL)
|
|
tvd->vdev_mg->mg_vd = tvd;
|
|
if (tvd->vdev_log_mg != NULL)
|
|
tvd->vdev_log_mg->mg_vd = tvd;
|
|
|
|
tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
|
|
svd->vdev_checkpoint_sm = NULL;
|
|
|
|
tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
|
|
svd->vdev_alloc_bias = VDEV_BIAS_NONE;
|
|
|
|
tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
|
|
tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
|
|
tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
|
|
|
|
svd->vdev_stat.vs_alloc = 0;
|
|
svd->vdev_stat.vs_space = 0;
|
|
svd->vdev_stat.vs_dspace = 0;
|
|
|
|
/*
|
|
* State which may be set on a top-level vdev that's in the
|
|
* process of being removed.
|
|
*/
|
|
ASSERT0(tvd->vdev_indirect_config.vic_births_object);
|
|
ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
|
|
ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
|
|
ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
|
|
ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
|
|
ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
|
|
ASSERT0(tvd->vdev_noalloc);
|
|
ASSERT0(tvd->vdev_removing);
|
|
ASSERT0(tvd->vdev_rebuilding);
|
|
tvd->vdev_noalloc = svd->vdev_noalloc;
|
|
tvd->vdev_removing = svd->vdev_removing;
|
|
tvd->vdev_rebuilding = svd->vdev_rebuilding;
|
|
tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
|
|
tvd->vdev_indirect_config = svd->vdev_indirect_config;
|
|
tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
|
|
tvd->vdev_indirect_births = svd->vdev_indirect_births;
|
|
range_tree_swap(&svd->vdev_obsolete_segments,
|
|
&tvd->vdev_obsolete_segments);
|
|
tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
|
|
svd->vdev_indirect_config.vic_mapping_object = 0;
|
|
svd->vdev_indirect_config.vic_births_object = 0;
|
|
svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
|
|
svd->vdev_indirect_mapping = NULL;
|
|
svd->vdev_indirect_births = NULL;
|
|
svd->vdev_obsolete_sm = NULL;
|
|
svd->vdev_noalloc = 0;
|
|
svd->vdev_removing = 0;
|
|
svd->vdev_rebuilding = 0;
|
|
|
|
for (t = 0; t < TXG_SIZE; t++) {
|
|
while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
|
|
(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
|
|
while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
|
|
(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
|
|
if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
|
|
(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
|
|
}
|
|
|
|
if (list_link_active(&svd->vdev_config_dirty_node)) {
|
|
vdev_config_clean(svd);
|
|
vdev_config_dirty(tvd);
|
|
}
|
|
|
|
if (list_link_active(&svd->vdev_state_dirty_node)) {
|
|
vdev_state_clean(svd);
|
|
vdev_state_dirty(tvd);
|
|
}
|
|
|
|
tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
|
|
svd->vdev_deflate_ratio = 0;
|
|
|
|
tvd->vdev_islog = svd->vdev_islog;
|
|
svd->vdev_islog = 0;
|
|
|
|
dsl_scan_io_queue_vdev_xfer(svd, tvd);
|
|
}
|
|
|
|
static void
|
|
vdev_top_update(vdev_t *tvd, vdev_t *vd)
|
|
{
|
|
if (vd == NULL)
|
|
return;
|
|
|
|
vd->vdev_top = tvd;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_top_update(tvd, vd->vdev_child[c]);
|
|
}
|
|
|
|
/*
|
|
* Add a mirror/replacing vdev above an existing vdev. There is no need to
|
|
* call .vdev_op_init() since mirror/replacing vdevs do not have private state.
|
|
*/
|
|
vdev_t *
|
|
vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
|
|
{
|
|
spa_t *spa = cvd->vdev_spa;
|
|
vdev_t *pvd = cvd->vdev_parent;
|
|
vdev_t *mvd;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
|
|
|
|
mvd->vdev_asize = cvd->vdev_asize;
|
|
mvd->vdev_min_asize = cvd->vdev_min_asize;
|
|
mvd->vdev_max_asize = cvd->vdev_max_asize;
|
|
mvd->vdev_psize = cvd->vdev_psize;
|
|
mvd->vdev_ashift = cvd->vdev_ashift;
|
|
mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
|
|
mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
|
|
mvd->vdev_state = cvd->vdev_state;
|
|
mvd->vdev_crtxg = cvd->vdev_crtxg;
|
|
|
|
vdev_remove_child(pvd, cvd);
|
|
vdev_add_child(pvd, mvd);
|
|
cvd->vdev_id = mvd->vdev_children;
|
|
vdev_add_child(mvd, cvd);
|
|
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
|
|
|
|
if (mvd == mvd->vdev_top)
|
|
vdev_top_transfer(cvd, mvd);
|
|
|
|
return (mvd);
|
|
}
|
|
|
|
/*
|
|
* Remove a 1-way mirror/replacing vdev from the tree.
|
|
*/
|
|
void
|
|
vdev_remove_parent(vdev_t *cvd)
|
|
{
|
|
vdev_t *mvd = cvd->vdev_parent;
|
|
vdev_t *pvd = mvd->vdev_parent;
|
|
|
|
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
ASSERT(mvd->vdev_children == 1);
|
|
ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
|
|
mvd->vdev_ops == &vdev_replacing_ops ||
|
|
mvd->vdev_ops == &vdev_spare_ops);
|
|
cvd->vdev_ashift = mvd->vdev_ashift;
|
|
cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
|
|
cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
|
|
vdev_remove_child(mvd, cvd);
|
|
vdev_remove_child(pvd, mvd);
|
|
|
|
/*
|
|
* If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
|
|
* Otherwise, we could have detached an offline device, and when we
|
|
* go to import the pool we'll think we have two top-level vdevs,
|
|
* instead of a different version of the same top-level vdev.
|
|
*/
|
|
if (mvd->vdev_top == mvd) {
|
|
uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
|
|
cvd->vdev_orig_guid = cvd->vdev_guid;
|
|
cvd->vdev_guid += guid_delta;
|
|
cvd->vdev_guid_sum += guid_delta;
|
|
|
|
/*
|
|
* If pool not set for autoexpand, we need to also preserve
|
|
* mvd's asize to prevent automatic expansion of cvd.
|
|
* Otherwise if we are adjusting the mirror by attaching and
|
|
* detaching children of non-uniform sizes, the mirror could
|
|
* autoexpand, unexpectedly requiring larger devices to
|
|
* re-establish the mirror.
|
|
*/
|
|
if (!cvd->vdev_spa->spa_autoexpand)
|
|
cvd->vdev_asize = mvd->vdev_asize;
|
|
}
|
|
cvd->vdev_id = mvd->vdev_id;
|
|
vdev_add_child(pvd, cvd);
|
|
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
|
|
|
|
if (cvd == cvd->vdev_top)
|
|
vdev_top_transfer(mvd, cvd);
|
|
|
|
ASSERT(mvd->vdev_children == 0);
|
|
vdev_free(mvd);
|
|
}
|
|
|
|
/*
|
|
* Choose GCD for spa_gcd_alloc.
|
|
*/
|
|
static uint64_t
|
|
vdev_gcd(uint64_t a, uint64_t b)
|
|
{
|
|
while (b != 0) {
|
|
uint64_t t = b;
|
|
b = a % b;
|
|
a = t;
|
|
}
|
|
return (a);
|
|
}
|
|
|
|
/*
|
|
* Set spa_min_alloc and spa_gcd_alloc.
|
|
*/
|
|
static void
|
|
vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
|
|
{
|
|
if (min_alloc < spa->spa_min_alloc)
|
|
spa->spa_min_alloc = min_alloc;
|
|
if (spa->spa_gcd_alloc == INT_MAX) {
|
|
spa->spa_gcd_alloc = min_alloc;
|
|
} else {
|
|
spa->spa_gcd_alloc = vdev_gcd(min_alloc,
|
|
spa->spa_gcd_alloc);
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_metaslab_group_create(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
/*
|
|
* metaslab_group_create was delayed until allocation bias was available
|
|
*/
|
|
if (vd->vdev_mg == NULL) {
|
|
metaslab_class_t *mc;
|
|
|
|
if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
|
|
vd->vdev_alloc_bias = VDEV_BIAS_LOG;
|
|
|
|
ASSERT3U(vd->vdev_islog, ==,
|
|
(vd->vdev_alloc_bias == VDEV_BIAS_LOG));
|
|
|
|
switch (vd->vdev_alloc_bias) {
|
|
case VDEV_BIAS_LOG:
|
|
mc = spa_log_class(spa);
|
|
break;
|
|
case VDEV_BIAS_SPECIAL:
|
|
mc = spa_special_class(spa);
|
|
break;
|
|
case VDEV_BIAS_DEDUP:
|
|
mc = spa_dedup_class(spa);
|
|
break;
|
|
default:
|
|
mc = spa_normal_class(spa);
|
|
}
|
|
|
|
vd->vdev_mg = metaslab_group_create(mc, vd,
|
|
spa->spa_alloc_count);
|
|
|
|
if (!vd->vdev_islog) {
|
|
vd->vdev_log_mg = metaslab_group_create(
|
|
spa_embedded_log_class(spa), vd, 1);
|
|
}
|
|
|
|
/*
|
|
* The spa ashift min/max only apply for the normal metaslab
|
|
* class. Class destination is late binding so ashift boundary
|
|
* setting had to wait until now.
|
|
*/
|
|
if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
|
|
mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
|
|
if (vd->vdev_ashift > spa->spa_max_ashift)
|
|
spa->spa_max_ashift = vd->vdev_ashift;
|
|
if (vd->vdev_ashift < spa->spa_min_ashift)
|
|
spa->spa_min_ashift = vd->vdev_ashift;
|
|
|
|
uint64_t min_alloc = vdev_get_min_alloc(vd);
|
|
vdev_spa_set_alloc(spa, min_alloc);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
vdev_metaslab_init(vdev_t *vd, uint64_t txg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t oldc = vd->vdev_ms_count;
|
|
uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
|
|
metaslab_t **mspp;
|
|
int error;
|
|
boolean_t expanding = (oldc != 0);
|
|
|
|
ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
/*
|
|
* This vdev is not being allocated from yet or is a hole.
|
|
*/
|
|
if (vd->vdev_ms_shift == 0)
|
|
return (0);
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
ASSERT(oldc <= newc);
|
|
|
|
mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
|
|
|
|
if (expanding) {
|
|
memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
|
|
vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
|
|
}
|
|
|
|
vd->vdev_ms = mspp;
|
|
vd->vdev_ms_count = newc;
|
|
|
|
for (uint64_t m = oldc; m < newc; m++) {
|
|
uint64_t object = 0;
|
|
/*
|
|
* vdev_ms_array may be 0 if we are creating the "fake"
|
|
* metaslabs for an indirect vdev for zdb's leak detection.
|
|
* See zdb_leak_init().
|
|
*/
|
|
if (txg == 0 && vd->vdev_ms_array != 0) {
|
|
error = dmu_read(spa->spa_meta_objset,
|
|
vd->vdev_ms_array,
|
|
m * sizeof (uint64_t), sizeof (uint64_t), &object,
|
|
DMU_READ_PREFETCH);
|
|
if (error != 0) {
|
|
vdev_dbgmsg(vd, "unable to read the metaslab "
|
|
"array [error=%d]", error);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
error = metaslab_init(vd->vdev_mg, m, object, txg,
|
|
&(vd->vdev_ms[m]));
|
|
if (error != 0) {
|
|
vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
|
|
error);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the emptiest metaslab on the vdev and mark it for use for
|
|
* embedded slog by moving it from the regular to the log metaslab
|
|
* group.
|
|
*/
|
|
if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
|
|
vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
|
|
avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
|
|
uint64_t slog_msid = 0;
|
|
uint64_t smallest = UINT64_MAX;
|
|
|
|
/*
|
|
* Note, we only search the new metaslabs, because the old
|
|
* (pre-existing) ones may be active (e.g. have non-empty
|
|
* range_tree's), and we don't move them to the new
|
|
* metaslab_t.
|
|
*/
|
|
for (uint64_t m = oldc; m < newc; m++) {
|
|
uint64_t alloc =
|
|
space_map_allocated(vd->vdev_ms[m]->ms_sm);
|
|
if (alloc < smallest) {
|
|
slog_msid = m;
|
|
smallest = alloc;
|
|
}
|
|
}
|
|
metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
|
|
/*
|
|
* The metaslab was marked as dirty at the end of
|
|
* metaslab_init(). Remove it from the dirty list so that we
|
|
* can uninitialize and reinitialize it to the new class.
|
|
*/
|
|
if (txg != 0) {
|
|
(void) txg_list_remove_this(&vd->vdev_ms_list,
|
|
slog_ms, txg);
|
|
}
|
|
uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
|
|
metaslab_fini(slog_ms);
|
|
VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
|
|
&vd->vdev_ms[slog_msid]));
|
|
}
|
|
|
|
if (txg == 0)
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
|
|
|
|
/*
|
|
* If the vdev is marked as non-allocating then don't
|
|
* activate the metaslabs since we want to ensure that
|
|
* no allocations are performed on this device.
|
|
*/
|
|
if (vd->vdev_noalloc) {
|
|
/* track non-allocating vdev space */
|
|
spa->spa_nonallocating_dspace += spa_deflate(spa) ?
|
|
vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
|
|
} else if (!expanding) {
|
|
metaslab_group_activate(vd->vdev_mg);
|
|
if (vd->vdev_log_mg != NULL)
|
|
metaslab_group_activate(vd->vdev_log_mg);
|
|
}
|
|
|
|
if (txg == 0)
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vdev_metaslab_fini(vdev_t *vd)
|
|
{
|
|
if (vd->vdev_checkpoint_sm != NULL) {
|
|
ASSERT(spa_feature_is_active(vd->vdev_spa,
|
|
SPA_FEATURE_POOL_CHECKPOINT));
|
|
space_map_close(vd->vdev_checkpoint_sm);
|
|
/*
|
|
* Even though we close the space map, we need to set its
|
|
* pointer to NULL. The reason is that vdev_metaslab_fini()
|
|
* may be called multiple times for certain operations
|
|
* (i.e. when destroying a pool) so we need to ensure that
|
|
* this clause never executes twice. This logic is similar
|
|
* to the one used for the vdev_ms clause below.
|
|
*/
|
|
vd->vdev_checkpoint_sm = NULL;
|
|
}
|
|
|
|
if (vd->vdev_ms != NULL) {
|
|
metaslab_group_t *mg = vd->vdev_mg;
|
|
|
|
metaslab_group_passivate(mg);
|
|
if (vd->vdev_log_mg != NULL) {
|
|
ASSERT(!vd->vdev_islog);
|
|
metaslab_group_passivate(vd->vdev_log_mg);
|
|
}
|
|
|
|
uint64_t count = vd->vdev_ms_count;
|
|
for (uint64_t m = 0; m < count; m++) {
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
if (msp != NULL)
|
|
metaslab_fini(msp);
|
|
}
|
|
vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
|
|
vd->vdev_ms = NULL;
|
|
vd->vdev_ms_count = 0;
|
|
|
|
for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
ASSERT0(mg->mg_histogram[i]);
|
|
if (vd->vdev_log_mg != NULL)
|
|
ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
|
|
}
|
|
}
|
|
ASSERT0(vd->vdev_ms_count);
|
|
}
|
|
|
|
typedef struct vdev_probe_stats {
|
|
boolean_t vps_readable;
|
|
boolean_t vps_writeable;
|
|
boolean_t vps_zio_done_probe;
|
|
int vps_flags;
|
|
} vdev_probe_stats_t;
|
|
|
|
static void
|
|
vdev_probe_done(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
vdev_t *vd = zio->io_vd;
|
|
vdev_probe_stats_t *vps = zio->io_private;
|
|
|
|
ASSERT(vd->vdev_probe_zio != NULL);
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ) {
|
|
if (zio->io_error == 0)
|
|
vps->vps_readable = 1;
|
|
if (zio->io_error == 0 && spa_writeable(spa)) {
|
|
zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
|
|
zio->io_offset, zio->io_size, zio->io_abd,
|
|
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
|
|
ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
|
|
} else {
|
|
abd_free(zio->io_abd);
|
|
}
|
|
} else if (zio->io_type == ZIO_TYPE_WRITE) {
|
|
if (zio->io_error == 0)
|
|
vps->vps_writeable = 1;
|
|
abd_free(zio->io_abd);
|
|
} else if (zio->io_type == ZIO_TYPE_NULL) {
|
|
zio_t *pio;
|
|
zio_link_t *zl;
|
|
|
|
vd->vdev_cant_read |= !vps->vps_readable;
|
|
vd->vdev_cant_write |= !vps->vps_writeable;
|
|
vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
|
|
vd->vdev_cant_read, vd->vdev_cant_write);
|
|
|
|
if (vdev_readable(vd) &&
|
|
(vdev_writeable(vd) || !spa_writeable(spa))) {
|
|
zio->io_error = 0;
|
|
} else {
|
|
ASSERT(zio->io_error != 0);
|
|
vdev_dbgmsg(vd, "failed probe");
|
|
(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
|
|
spa, vd, NULL, NULL, 0);
|
|
zio->io_error = SET_ERROR(ENXIO);
|
|
|
|
/*
|
|
* If this probe was initiated from zio pipeline, then
|
|
* change the state in a spa_async_request. Probes that
|
|
* were initiated from a vdev_open can change the state
|
|
* as part of the open call.
|
|
*/
|
|
if (vps->vps_zio_done_probe) {
|
|
vd->vdev_fault_wanted = B_TRUE;
|
|
spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
|
|
}
|
|
}
|
|
|
|
mutex_enter(&vd->vdev_probe_lock);
|
|
ASSERT(vd->vdev_probe_zio == zio);
|
|
vd->vdev_probe_zio = NULL;
|
|
mutex_exit(&vd->vdev_probe_lock);
|
|
|
|
zl = NULL;
|
|
while ((pio = zio_walk_parents(zio, &zl)) != NULL)
|
|
if (!vdev_accessible(vd, pio))
|
|
pio->io_error = SET_ERROR(ENXIO);
|
|
|
|
kmem_free(vps, sizeof (*vps));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine whether this device is accessible.
|
|
*
|
|
* Read and write to several known locations: the pad regions of each
|
|
* vdev label but the first, which we leave alone in case it contains
|
|
* a VTOC.
|
|
*/
|
|
zio_t *
|
|
vdev_probe(vdev_t *vd, zio_t *zio)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_probe_stats_t *vps = NULL;
|
|
zio_t *pio;
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
/*
|
|
* Don't probe the probe.
|
|
*/
|
|
if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
|
|
return (NULL);
|
|
|
|
/*
|
|
* To prevent 'probe storms' when a device fails, we create
|
|
* just one probe i/o at a time. All zios that want to probe
|
|
* this vdev will become parents of the probe io.
|
|
*/
|
|
mutex_enter(&vd->vdev_probe_lock);
|
|
|
|
if ((pio = vd->vdev_probe_zio) == NULL) {
|
|
vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
|
|
|
|
vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
|
|
ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
|
|
vps->vps_zio_done_probe = (zio != NULL);
|
|
|
|
if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
|
|
/*
|
|
* vdev_cant_read and vdev_cant_write can only
|
|
* transition from TRUE to FALSE when we have the
|
|
* SCL_ZIO lock as writer; otherwise they can only
|
|
* transition from FALSE to TRUE. This ensures that
|
|
* any zio looking at these values can assume that
|
|
* failures persist for the life of the I/O. That's
|
|
* important because when a device has intermittent
|
|
* connectivity problems, we want to ensure that
|
|
* they're ascribed to the device (ENXIO) and not
|
|
* the zio (EIO).
|
|
*
|
|
* Since we hold SCL_ZIO as writer here, clear both
|
|
* values so the probe can reevaluate from first
|
|
* principles.
|
|
*/
|
|
vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
|
|
vd->vdev_cant_read = B_FALSE;
|
|
vd->vdev_cant_write = B_FALSE;
|
|
}
|
|
|
|
vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
|
|
vdev_probe_done, vps,
|
|
vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
}
|
|
|
|
if (zio != NULL)
|
|
zio_add_child(zio, pio);
|
|
|
|
mutex_exit(&vd->vdev_probe_lock);
|
|
|
|
if (vps == NULL) {
|
|
ASSERT(zio != NULL);
|
|
return (NULL);
|
|
}
|
|
|
|
for (int l = 1; l < VDEV_LABELS; l++) {
|
|
zio_nowait(zio_read_phys(pio, vd,
|
|
vdev_label_offset(vd->vdev_psize, l,
|
|
offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
|
|
abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
|
|
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
|
|
ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
|
|
}
|
|
|
|
if (zio == NULL)
|
|
return (pio);
|
|
|
|
zio_nowait(pio);
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
vdev_load_child(void *arg)
|
|
{
|
|
vdev_t *vd = arg;
|
|
|
|
vd->vdev_load_error = vdev_load(vd);
|
|
}
|
|
|
|
static void
|
|
vdev_open_child(void *arg)
|
|
{
|
|
vdev_t *vd = arg;
|
|
|
|
vd->vdev_open_thread = curthread;
|
|
vd->vdev_open_error = vdev_open(vd);
|
|
vd->vdev_open_thread = NULL;
|
|
}
|
|
|
|
static boolean_t
|
|
vdev_uses_zvols(vdev_t *vd)
|
|
{
|
|
#ifdef _KERNEL
|
|
if (zvol_is_zvol(vd->vdev_path))
|
|
return (B_TRUE);
|
|
#endif
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
if (vdev_uses_zvols(vd->vdev_child[c]))
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Returns B_TRUE if the passed child should be opened.
|
|
*/
|
|
static boolean_t
|
|
vdev_default_open_children_func(vdev_t *vd)
|
|
{
|
|
(void) vd;
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Open the requested child vdevs. If any of the leaf vdevs are using
|
|
* a ZFS volume then do the opens in a single thread. This avoids a
|
|
* deadlock when the current thread is holding the spa_namespace_lock.
|
|
*/
|
|
static void
|
|
vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
|
|
{
|
|
int children = vd->vdev_children;
|
|
|
|
taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
|
|
children, children, TASKQ_PREPOPULATE);
|
|
vd->vdev_nonrot = B_TRUE;
|
|
|
|
for (int c = 0; c < children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
if (open_func(cvd) == B_FALSE)
|
|
continue;
|
|
|
|
if (tq == NULL || vdev_uses_zvols(vd)) {
|
|
cvd->vdev_open_error = vdev_open(cvd);
|
|
} else {
|
|
VERIFY(taskq_dispatch(tq, vdev_open_child,
|
|
cvd, TQ_SLEEP) != TASKQID_INVALID);
|
|
}
|
|
|
|
vd->vdev_nonrot &= cvd->vdev_nonrot;
|
|
}
|
|
|
|
if (tq != NULL) {
|
|
taskq_wait(tq);
|
|
taskq_destroy(tq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Open all child vdevs.
|
|
*/
|
|
void
|
|
vdev_open_children(vdev_t *vd)
|
|
{
|
|
vdev_open_children_impl(vd, vdev_default_open_children_func);
|
|
}
|
|
|
|
/*
|
|
* Conditionally open a subset of child vdevs.
|
|
*/
|
|
void
|
|
vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
|
|
{
|
|
vdev_open_children_impl(vd, open_func);
|
|
}
|
|
|
|
/*
|
|
* Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17)
|
|
* because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE
|
|
* changed, this algorithm can not change, otherwise it would inconsistently
|
|
* account for existing bp's. We also hard-code txg 0 for the same reason
|
|
* since expanded RAIDZ vdevs can use a different asize for different birth
|
|
* txg's.
|
|
*/
|
|
static void
|
|
vdev_set_deflate_ratio(vdev_t *vd)
|
|
{
|
|
if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
|
|
vd->vdev_deflate_ratio = (1 << 17) /
|
|
(vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
|
|
SPA_MINBLOCKSHIFT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Choose the best of two ashifts, preferring one between logical ashift
|
|
* (absolute minimum) and administrator defined maximum, otherwise take
|
|
* the biggest of the two.
|
|
*/
|
|
uint64_t
|
|
vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
|
|
{
|
|
if (a > logical && a <= zfs_vdev_max_auto_ashift) {
|
|
if (b <= logical || b > zfs_vdev_max_auto_ashift)
|
|
return (a);
|
|
else
|
|
return (MAX(a, b));
|
|
} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
|
|
return (MAX(a, b));
|
|
return (b);
|
|
}
|
|
|
|
/*
|
|
* Maximize performance by inflating the configured ashift for top level
|
|
* vdevs to be as close to the physical ashift as possible while maintaining
|
|
* administrator defined limits and ensuring it doesn't go below the
|
|
* logical ashift.
|
|
*/
|
|
static void
|
|
vdev_ashift_optimize(vdev_t *vd)
|
|
{
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
if (vd->vdev_ashift < vd->vdev_physical_ashift &&
|
|
vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
|
|
vd->vdev_ashift = MIN(
|
|
MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
|
|
MAX(zfs_vdev_min_auto_ashift,
|
|
vd->vdev_physical_ashift));
|
|
} else {
|
|
/*
|
|
* If the logical and physical ashifts are the same, then
|
|
* we ensure that the top-level vdev's ashift is not smaller
|
|
* than our minimum ashift value. For the unusual case
|
|
* where logical ashift > physical ashift, we can't cap
|
|
* the calculated ashift based on max ashift as that
|
|
* would cause failures.
|
|
* We still check if we need to increase it to match
|
|
* the min ashift.
|
|
*/
|
|
vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
|
|
vd->vdev_ashift);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare a virtual device for access.
|
|
*/
|
|
int
|
|
vdev_open(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
int error;
|
|
uint64_t osize = 0;
|
|
uint64_t max_osize = 0;
|
|
uint64_t asize, max_asize, psize;
|
|
uint64_t logical_ashift = 0;
|
|
uint64_t physical_ashift = 0;
|
|
|
|
ASSERT(vd->vdev_open_thread == curthread ||
|
|
spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
|
|
vd->vdev_state == VDEV_STATE_CANT_OPEN ||
|
|
vd->vdev_state == VDEV_STATE_OFFLINE);
|
|
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
|
|
vd->vdev_cant_read = B_FALSE;
|
|
vd->vdev_cant_write = B_FALSE;
|
|
vd->vdev_fault_wanted = B_FALSE;
|
|
vd->vdev_min_asize = vdev_get_min_asize(vd);
|
|
|
|
/*
|
|
* If this vdev is not removed, check its fault status. If it's
|
|
* faulted, bail out of the open.
|
|
*/
|
|
if (!vd->vdev_removed && vd->vdev_faulted) {
|
|
ASSERT(vd->vdev_children == 0);
|
|
ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
|
|
vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
|
|
vd->vdev_label_aux);
|
|
return (SET_ERROR(ENXIO));
|
|
} else if (vd->vdev_offline) {
|
|
ASSERT(vd->vdev_children == 0);
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
|
|
&logical_ashift, &physical_ashift);
|
|
|
|
/* Keep the device in removed state if unplugged */
|
|
if (error == ENOENT && vd->vdev_removed) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
|
|
VDEV_AUX_NONE);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Physical volume size should never be larger than its max size, unless
|
|
* the disk has shrunk while we were reading it or the device is buggy
|
|
* or damaged: either way it's not safe for use, bail out of the open.
|
|
*/
|
|
if (osize > max_osize) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_OPEN_FAILED);
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
/*
|
|
* Reset the vdev_reopening flag so that we actually close
|
|
* the vdev on error.
|
|
*/
|
|
vd->vdev_reopening = B_FALSE;
|
|
if (zio_injection_enabled && error == 0)
|
|
error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
|
|
|
|
if (error) {
|
|
if (vd->vdev_removed &&
|
|
vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
|
|
vd->vdev_removed = B_FALSE;
|
|
|
|
if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
|
|
vd->vdev_stat.vs_aux);
|
|
} else {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
vd->vdev_stat.vs_aux);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
vd->vdev_removed = B_FALSE;
|
|
|
|
/*
|
|
* Recheck the faulted flag now that we have confirmed that
|
|
* the vdev is accessible. If we're faulted, bail.
|
|
*/
|
|
if (vd->vdev_faulted) {
|
|
ASSERT(vd->vdev_children == 0);
|
|
ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
|
|
vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
|
|
vd->vdev_label_aux);
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
if (vd->vdev_degraded) {
|
|
ASSERT(vd->vdev_children == 0);
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
|
|
VDEV_AUX_ERR_EXCEEDED);
|
|
} else {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
|
|
}
|
|
|
|
/*
|
|
* For hole or missing vdevs we just return success.
|
|
*/
|
|
if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
|
|
return (0);
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
|
|
VDEV_AUX_NONE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
|
|
max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
|
|
|
|
if (vd->vdev_children == 0) {
|
|
if (osize < SPA_MINDEVSIZE) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_TOO_SMALL);
|
|
return (SET_ERROR(EOVERFLOW));
|
|
}
|
|
psize = osize;
|
|
asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
|
|
max_asize = max_osize - (VDEV_LABEL_START_SIZE +
|
|
VDEV_LABEL_END_SIZE);
|
|
} else {
|
|
if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
|
|
(VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_TOO_SMALL);
|
|
return (SET_ERROR(EOVERFLOW));
|
|
}
|
|
psize = 0;
|
|
asize = osize;
|
|
max_asize = max_osize;
|
|
}
|
|
|
|
/*
|
|
* If the vdev was expanded, record this so that we can re-create the
|
|
* uberblock rings in labels {2,3}, during the next sync.
|
|
*/
|
|
if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
|
|
vd->vdev_copy_uberblocks = B_TRUE;
|
|
|
|
vd->vdev_psize = psize;
|
|
|
|
/*
|
|
* Make sure the allocatable size hasn't shrunk too much.
|
|
*/
|
|
if (asize < vd->vdev_min_asize) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_BAD_LABEL);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* We can always set the logical/physical ashift members since
|
|
* their values are only used to calculate the vdev_ashift when
|
|
* the device is first added to the config. These values should
|
|
* not be used for anything else since they may change whenever
|
|
* the device is reopened and we don't store them in the label.
|
|
*/
|
|
vd->vdev_physical_ashift =
|
|
MAX(physical_ashift, vd->vdev_physical_ashift);
|
|
vd->vdev_logical_ashift = MAX(logical_ashift,
|
|
vd->vdev_logical_ashift);
|
|
|
|
if (vd->vdev_asize == 0) {
|
|
/*
|
|
* This is the first-ever open, so use the computed values.
|
|
* For compatibility, a different ashift can be requested.
|
|
*/
|
|
vd->vdev_asize = asize;
|
|
vd->vdev_max_asize = max_asize;
|
|
|
|
/*
|
|
* If the vdev_ashift was not overridden at creation time,
|
|
* then set it the logical ashift and optimize the ashift.
|
|
*/
|
|
if (vd->vdev_ashift == 0) {
|
|
vd->vdev_ashift = vd->vdev_logical_ashift;
|
|
|
|
if (vd->vdev_logical_ashift > ASHIFT_MAX) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_ASHIFT_TOO_BIG);
|
|
return (SET_ERROR(EDOM));
|
|
}
|
|
|
|
if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
|
|
vdev_ashift_optimize(vd);
|
|
vd->vdev_attaching = B_FALSE;
|
|
}
|
|
if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
|
|
vd->vdev_ashift > ASHIFT_MAX)) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_BAD_ASHIFT);
|
|
return (SET_ERROR(EDOM));
|
|
}
|
|
} else {
|
|
/*
|
|
* Make sure the alignment required hasn't increased.
|
|
*/
|
|
if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
|
|
vd->vdev_ops->vdev_op_leaf) {
|
|
(void) zfs_ereport_post(
|
|
FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
|
|
spa, vd, NULL, NULL, 0);
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_BAD_LABEL);
|
|
return (SET_ERROR(EDOM));
|
|
}
|
|
vd->vdev_max_asize = max_asize;
|
|
}
|
|
|
|
/*
|
|
* If all children are healthy we update asize if either:
|
|
* The asize has increased, due to a device expansion caused by dynamic
|
|
* LUN growth or vdev replacement, and automatic expansion is enabled;
|
|
* making the additional space available.
|
|
*
|
|
* The asize has decreased, due to a device shrink usually caused by a
|
|
* vdev replace with a smaller device. This ensures that calculations
|
|
* based of max_asize and asize e.g. esize are always valid. It's safe
|
|
* to do this as we've already validated that asize is greater than
|
|
* vdev_min_asize.
|
|
*/
|
|
if (vd->vdev_state == VDEV_STATE_HEALTHY &&
|
|
((asize > vd->vdev_asize &&
|
|
(vd->vdev_expanding || spa->spa_autoexpand)) ||
|
|
(asize < vd->vdev_asize)))
|
|
vd->vdev_asize = asize;
|
|
|
|
vdev_set_min_asize(vd);
|
|
|
|
/*
|
|
* Ensure we can issue some IO before declaring the
|
|
* vdev open for business.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(error = zio_wait(vdev_probe(vd, NULL))) != 0) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
|
|
VDEV_AUX_ERR_EXCEEDED);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Track the minimum allocation size.
|
|
*/
|
|
if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
|
|
vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
|
|
uint64_t min_alloc = vdev_get_min_alloc(vd);
|
|
vdev_spa_set_alloc(spa, min_alloc);
|
|
}
|
|
|
|
/*
|
|
* If this is a leaf vdev, assess whether a resilver is needed.
|
|
* But don't do this if we are doing a reopen for a scrub, since
|
|
* this would just restart the scrub we are already doing.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
|
|
dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_validate_child(void *arg)
|
|
{
|
|
vdev_t *vd = arg;
|
|
|
|
vd->vdev_validate_thread = curthread;
|
|
vd->vdev_validate_error = vdev_validate(vd);
|
|
vd->vdev_validate_thread = NULL;
|
|
}
|
|
|
|
/*
|
|
* Called once the vdevs are all opened, this routine validates the label
|
|
* contents. This needs to be done before vdev_load() so that we don't
|
|
* inadvertently do repair I/Os to the wrong device.
|
|
*
|
|
* This function will only return failure if one of the vdevs indicates that it
|
|
* has since been destroyed or exported. This is only possible if
|
|
* /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
|
|
* will be updated but the function will return 0.
|
|
*/
|
|
int
|
|
vdev_validate(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
taskq_t *tq = NULL;
|
|
nvlist_t *label;
|
|
uint64_t guid = 0, aux_guid = 0, top_guid;
|
|
uint64_t state;
|
|
nvlist_t *nvl;
|
|
uint64_t txg;
|
|
int children = vd->vdev_children;
|
|
|
|
if (vdev_validate_skip)
|
|
return (0);
|
|
|
|
if (children > 0) {
|
|
tq = taskq_create("vdev_validate", children, minclsyspri,
|
|
children, children, TASKQ_PREPOPULATE);
|
|
}
|
|
|
|
for (uint64_t c = 0; c < children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
if (tq == NULL || vdev_uses_zvols(cvd)) {
|
|
vdev_validate_child(cvd);
|
|
} else {
|
|
VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
|
|
TQ_SLEEP) != TASKQID_INVALID);
|
|
}
|
|
}
|
|
if (tq != NULL) {
|
|
taskq_wait(tq);
|
|
taskq_destroy(tq);
|
|
}
|
|
for (int c = 0; c < children; c++) {
|
|
int error = vd->vdev_child[c]->vdev_validate_error;
|
|
|
|
if (error != 0)
|
|
return (SET_ERROR(EBADF));
|
|
}
|
|
|
|
|
|
/*
|
|
* If the device has already failed, or was marked offline, don't do
|
|
* any further validation. Otherwise, label I/O will fail and we will
|
|
* overwrite the previous state.
|
|
*/
|
|
if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
|
|
return (0);
|
|
|
|
/*
|
|
* If we are performing an extreme rewind, we allow for a label that
|
|
* was modified at a point after the current txg.
|
|
* If config lock is not held do not check for the txg. spa_sync could
|
|
* be updating the vdev's label before updating spa_last_synced_txg.
|
|
*/
|
|
if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
|
|
spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
|
|
txg = UINT64_MAX;
|
|
else
|
|
txg = spa_last_synced_txg(spa);
|
|
|
|
if ((label = vdev_label_read_config(vd, txg)) == NULL) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_BAD_LABEL);
|
|
vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
|
|
"txg %llu", (u_longlong_t)txg);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine if this vdev has been split off into another
|
|
* pool. If so, then refuse to open it.
|
|
*/
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
|
|
&aux_guid) == 0 && aux_guid == spa_guid(spa)) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_SPLIT_POOL);
|
|
nvlist_free(label);
|
|
vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
|
|
return (0);
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
|
|
ZPOOL_CONFIG_POOL_GUID);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If config is not trusted then ignore the spa guid check. This is
|
|
* necessary because if the machine crashed during a re-guid the new
|
|
* guid might have been written to all of the vdev labels, but not the
|
|
* cached config. The check will be performed again once we have the
|
|
* trusted config from the MOS.
|
|
*/
|
|
if (spa->spa_trust_config && guid != spa_guid(spa)) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
|
|
"match config (%llu != %llu)", (u_longlong_t)guid,
|
|
(u_longlong_t)spa_guid(spa));
|
|
return (0);
|
|
}
|
|
|
|
if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
|
|
!= 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
|
|
&aux_guid) != 0)
|
|
aux_guid = 0;
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
|
|
ZPOOL_CONFIG_GUID);
|
|
return (0);
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
|
|
!= 0) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
|
|
ZPOOL_CONFIG_TOP_GUID);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If this vdev just became a top-level vdev because its sibling was
|
|
* detached, it will have adopted the parent's vdev guid -- but the
|
|
* label may or may not be on disk yet. Fortunately, either version
|
|
* of the label will have the same top guid, so if we're a top-level
|
|
* vdev, we can safely compare to that instead.
|
|
* However, if the config comes from a cachefile that failed to update
|
|
* after the detach, a top-level vdev will appear as a non top-level
|
|
* vdev in the config. Also relax the constraints if we perform an
|
|
* extreme rewind.
|
|
*
|
|
* If we split this vdev off instead, then we also check the
|
|
* original pool's guid. We don't want to consider the vdev
|
|
* corrupt if it is partway through a split operation.
|
|
*/
|
|
if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
|
|
boolean_t mismatch = B_FALSE;
|
|
if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
|
|
if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
|
|
mismatch = B_TRUE;
|
|
} else {
|
|
if (vd->vdev_guid != top_guid &&
|
|
vd->vdev_top->vdev_guid != guid)
|
|
mismatch = B_TRUE;
|
|
}
|
|
|
|
if (mismatch) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
vdev_dbgmsg(vd, "vdev_validate: config guid "
|
|
"doesn't match label guid");
|
|
vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
|
|
(u_longlong_t)vd->vdev_guid,
|
|
(u_longlong_t)vd->vdev_top->vdev_guid);
|
|
vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
|
|
"aux_guid %llu", (u_longlong_t)guid,
|
|
(u_longlong_t)top_guid, (u_longlong_t)aux_guid);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
|
|
ZPOOL_CONFIG_POOL_STATE);
|
|
return (0);
|
|
}
|
|
|
|
nvlist_free(label);
|
|
|
|
/*
|
|
* If this is a verbatim import, no need to check the
|
|
* state of the pool.
|
|
*/
|
|
if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
|
|
spa_load_state(spa) == SPA_LOAD_OPEN &&
|
|
state != POOL_STATE_ACTIVE) {
|
|
vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
|
|
"for spa %s", (u_longlong_t)state, spa->spa_name);
|
|
return (SET_ERROR(EBADF));
|
|
}
|
|
|
|
/*
|
|
* If we were able to open and validate a vdev that was
|
|
* previously marked permanently unavailable, clear that state
|
|
* now.
|
|
*/
|
|
if (vd->vdev_not_present)
|
|
vd->vdev_not_present = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
|
|
{
|
|
if (svd != NULL && *dvd != NULL) {
|
|
if (strcmp(svd, *dvd) != 0) {
|
|
zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
|
|
"from '%s' to '%s'", (u_longlong_t)guid, prefix,
|
|
*dvd, svd);
|
|
spa_strfree(*dvd);
|
|
*dvd = spa_strdup(svd);
|
|
}
|
|
} else if (svd != NULL) {
|
|
*dvd = spa_strdup(svd);
|
|
zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
|
|
(u_longlong_t)guid, *dvd);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
|
|
{
|
|
char *old, *new;
|
|
|
|
vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
|
|
dvd->vdev_guid);
|
|
|
|
vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
|
|
dvd->vdev_guid);
|
|
|
|
vdev_update_path("vdev_physpath", svd->vdev_physpath,
|
|
&dvd->vdev_physpath, dvd->vdev_guid);
|
|
|
|
/*
|
|
* Our enclosure sysfs path may have changed between imports
|
|
*/
|
|
old = dvd->vdev_enc_sysfs_path;
|
|
new = svd->vdev_enc_sysfs_path;
|
|
if ((old != NULL && new == NULL) ||
|
|
(old == NULL && new != NULL) ||
|
|
((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
|
|
zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
|
|
"changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
|
|
old, new);
|
|
|
|
if (dvd->vdev_enc_sysfs_path)
|
|
spa_strfree(dvd->vdev_enc_sysfs_path);
|
|
|
|
if (svd->vdev_enc_sysfs_path) {
|
|
dvd->vdev_enc_sysfs_path = spa_strdup(
|
|
svd->vdev_enc_sysfs_path);
|
|
} else {
|
|
dvd->vdev_enc_sysfs_path = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Recursively copy vdev paths from one vdev to another. Source and destination
|
|
* vdev trees must have same geometry otherwise return error. Intended to copy
|
|
* paths from userland config into MOS config.
|
|
*/
|
|
int
|
|
vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
|
|
{
|
|
if ((svd->vdev_ops == &vdev_missing_ops) ||
|
|
(svd->vdev_ishole && dvd->vdev_ishole) ||
|
|
(dvd->vdev_ops == &vdev_indirect_ops))
|
|
return (0);
|
|
|
|
if (svd->vdev_ops != dvd->vdev_ops) {
|
|
vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
|
|
svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (svd->vdev_guid != dvd->vdev_guid) {
|
|
vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
|
|
"%llu)", (u_longlong_t)svd->vdev_guid,
|
|
(u_longlong_t)dvd->vdev_guid);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (svd->vdev_children != dvd->vdev_children) {
|
|
vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
|
|
"%llu != %llu", (u_longlong_t)svd->vdev_children,
|
|
(u_longlong_t)dvd->vdev_children);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
for (uint64_t i = 0; i < svd->vdev_children; i++) {
|
|
int error = vdev_copy_path_strict(svd->vdev_child[i],
|
|
dvd->vdev_child[i]);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
if (svd->vdev_ops->vdev_op_leaf)
|
|
vdev_copy_path_impl(svd, dvd);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
|
|
{
|
|
ASSERT(stvd->vdev_top == stvd);
|
|
ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
|
|
|
|
for (uint64_t i = 0; i < dvd->vdev_children; i++) {
|
|
vdev_copy_path_search(stvd, dvd->vdev_child[i]);
|
|
}
|
|
|
|
if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
|
|
return;
|
|
|
|
/*
|
|
* The idea here is that while a vdev can shift positions within
|
|
* a top vdev (when replacing, attaching mirror, etc.) it cannot
|
|
* step outside of it.
|
|
*/
|
|
vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
|
|
|
|
if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
|
|
return;
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
vdev_copy_path_impl(vd, dvd);
|
|
}
|
|
|
|
/*
|
|
* Recursively copy vdev paths from one root vdev to another. Source and
|
|
* destination vdev trees may differ in geometry. For each destination leaf
|
|
* vdev, search a vdev with the same guid and top vdev id in the source.
|
|
* Intended to copy paths from userland config into MOS config.
|
|
*/
|
|
void
|
|
vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
|
|
{
|
|
uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
|
|
ASSERT(srvd->vdev_ops == &vdev_root_ops);
|
|
ASSERT(drvd->vdev_ops == &vdev_root_ops);
|
|
|
|
for (uint64_t i = 0; i < children; i++) {
|
|
vdev_copy_path_search(srvd->vdev_child[i],
|
|
drvd->vdev_child[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Close a virtual device.
|
|
*/
|
|
void
|
|
vdev_close(vdev_t *vd)
|
|
{
|
|
vdev_t *pvd = vd->vdev_parent;
|
|
spa_t *spa __maybe_unused = vd->vdev_spa;
|
|
|
|
ASSERT(vd != NULL);
|
|
ASSERT(vd->vdev_open_thread == curthread ||
|
|
spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
/*
|
|
* If our parent is reopening, then we are as well, unless we are
|
|
* going offline.
|
|
*/
|
|
if (pvd != NULL && pvd->vdev_reopening)
|
|
vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
|
|
|
|
vd->vdev_ops->vdev_op_close(vd);
|
|
|
|
/*
|
|
* We record the previous state before we close it, so that if we are
|
|
* doing a reopen(), we don't generate FMA ereports if we notice that
|
|
* it's still faulted.
|
|
*/
|
|
vd->vdev_prevstate = vd->vdev_state;
|
|
|
|
if (vd->vdev_offline)
|
|
vd->vdev_state = VDEV_STATE_OFFLINE;
|
|
else
|
|
vd->vdev_state = VDEV_STATE_CLOSED;
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
|
|
}
|
|
|
|
void
|
|
vdev_hold(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(spa_is_root(spa));
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
|
|
return;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_hold(vd->vdev_child[c]);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
|
|
vd->vdev_ops->vdev_op_hold(vd);
|
|
}
|
|
|
|
void
|
|
vdev_rele(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_is_root(vd->vdev_spa));
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_rele(vd->vdev_child[c]);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
|
|
vd->vdev_ops->vdev_op_rele(vd);
|
|
}
|
|
|
|
/*
|
|
* Reopen all interior vdevs and any unopened leaves. We don't actually
|
|
* reopen leaf vdevs which had previously been opened as they might deadlock
|
|
* on the spa_config_lock. Instead we only obtain the leaf's physical size.
|
|
* If the leaf has never been opened then open it, as usual.
|
|
*/
|
|
void
|
|
vdev_reopen(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
/* set the reopening flag unless we're taking the vdev offline */
|
|
vd->vdev_reopening = !vd->vdev_offline;
|
|
vdev_close(vd);
|
|
(void) vdev_open(vd);
|
|
|
|
/*
|
|
* Call vdev_validate() here to make sure we have the same device.
|
|
* Otherwise, a device with an invalid label could be successfully
|
|
* opened in response to vdev_reopen().
|
|
*/
|
|
if (vd->vdev_aux) {
|
|
(void) vdev_validate_aux(vd);
|
|
if (vdev_readable(vd) && vdev_writeable(vd) &&
|
|
vd->vdev_aux == &spa->spa_l2cache) {
|
|
/*
|
|
* In case the vdev is present we should evict all ARC
|
|
* buffers and pointers to log blocks and reclaim their
|
|
* space before restoring its contents to L2ARC.
|
|
*/
|
|
if (l2arc_vdev_present(vd)) {
|
|
l2arc_rebuild_vdev(vd, B_TRUE);
|
|
} else {
|
|
l2arc_add_vdev(spa, vd);
|
|
}
|
|
spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
|
|
spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
|
|
}
|
|
} else {
|
|
(void) vdev_validate(vd);
|
|
}
|
|
|
|
/*
|
|
* Recheck if resilver is still needed and cancel any
|
|
* scheduled resilver if resilver is unneeded.
|
|
*/
|
|
if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
|
|
spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
|
|
mutex_enter(&spa->spa_async_lock);
|
|
spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
|
|
mutex_exit(&spa->spa_async_lock);
|
|
}
|
|
|
|
/*
|
|
* Reassess parent vdev's health.
|
|
*/
|
|
vdev_propagate_state(vd);
|
|
}
|
|
|
|
int
|
|
vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Normally, partial opens (e.g. of a mirror) are allowed.
|
|
* For a create, however, we want to fail the request if
|
|
* there are any components we can't open.
|
|
*/
|
|
error = vdev_open(vd);
|
|
|
|
if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
|
|
vdev_close(vd);
|
|
return (error ? error : SET_ERROR(ENXIO));
|
|
}
|
|
|
|
/*
|
|
* Recursively load DTLs and initialize all labels.
|
|
*/
|
|
if ((error = vdev_dtl_load(vd)) != 0 ||
|
|
(error = vdev_label_init(vd, txg, isreplacing ?
|
|
VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
|
|
vdev_close(vd);
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vdev_metaslab_set_size(vdev_t *vd)
|
|
{
|
|
uint64_t asize = vd->vdev_asize;
|
|
uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
|
|
uint64_t ms_shift;
|
|
|
|
/*
|
|
* There are two dimensions to the metaslab sizing calculation:
|
|
* the size of the metaslab and the count of metaslabs per vdev.
|
|
*
|
|
* The default values used below are a good balance between memory
|
|
* usage (larger metaslab size means more memory needed for loaded
|
|
* metaslabs; more metaslabs means more memory needed for the
|
|
* metaslab_t structs), metaslab load time (larger metaslabs take
|
|
* longer to load), and metaslab sync time (more metaslabs means
|
|
* more time spent syncing all of them).
|
|
*
|
|
* In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
|
|
* The range of the dimensions are as follows:
|
|
*
|
|
* 2^29 <= ms_size <= 2^34
|
|
* 16 <= ms_count <= 131,072
|
|
*
|
|
* On the lower end of vdev sizes, we aim for metaslabs sizes of
|
|
* at least 512MB (2^29) to minimize fragmentation effects when
|
|
* testing with smaller devices. However, the count constraint
|
|
* of at least 16 metaslabs will override this minimum size goal.
|
|
*
|
|
* On the upper end of vdev sizes, we aim for a maximum metaslab
|
|
* size of 16GB. However, we will cap the total count to 2^17
|
|
* metaslabs to keep our memory footprint in check and let the
|
|
* metaslab size grow from there if that limit is hit.
|
|
*
|
|
* The net effect of applying above constrains is summarized below.
|
|
*
|
|
* vdev size metaslab count
|
|
* --------------|-----------------
|
|
* < 8GB ~16
|
|
* 8GB - 100GB one per 512MB
|
|
* 100GB - 3TB ~200
|
|
* 3TB - 2PB one per 16GB
|
|
* > 2PB ~131,072
|
|
* --------------------------------
|
|
*
|
|
* Finally, note that all of the above calculate the initial
|
|
* number of metaslabs. Expanding a top-level vdev will result
|
|
* in additional metaslabs being allocated making it possible
|
|
* to exceed the zfs_vdev_ms_count_limit.
|
|
*/
|
|
|
|
if (ms_count < zfs_vdev_min_ms_count)
|
|
ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
|
|
else if (ms_count > zfs_vdev_default_ms_count)
|
|
ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
|
|
else
|
|
ms_shift = zfs_vdev_default_ms_shift;
|
|
|
|
if (ms_shift < SPA_MAXBLOCKSHIFT) {
|
|
ms_shift = SPA_MAXBLOCKSHIFT;
|
|
} else if (ms_shift > zfs_vdev_max_ms_shift) {
|
|
ms_shift = zfs_vdev_max_ms_shift;
|
|
/* cap the total count to constrain memory footprint */
|
|
if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
|
|
ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
|
|
}
|
|
|
|
vd->vdev_ms_shift = ms_shift;
|
|
ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
|
|
}
|
|
|
|
void
|
|
vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
|
|
{
|
|
ASSERT(vd == vd->vdev_top);
|
|
/* indirect vdevs don't have metaslabs or dtls */
|
|
ASSERT(vdev_is_concrete(vd) || flags == 0);
|
|
ASSERT(ISP2(flags));
|
|
ASSERT(spa_writeable(vd->vdev_spa));
|
|
|
|
if (flags & VDD_METASLAB)
|
|
(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
|
|
|
|
if (flags & VDD_DTL)
|
|
(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
|
|
|
|
(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
|
|
}
|
|
|
|
void
|
|
vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
|
|
{
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
vdev_dirty(vd->vdev_top, flags, vd, txg);
|
|
}
|
|
|
|
/*
|
|
* DTLs.
|
|
*
|
|
* A vdev's DTL (dirty time log) is the set of transaction groups for which
|
|
* the vdev has less than perfect replication. There are four kinds of DTL:
|
|
*
|
|
* DTL_MISSING: txgs for which the vdev has no valid copies of the data
|
|
*
|
|
* DTL_PARTIAL: txgs for which data is available, but not fully replicated
|
|
*
|
|
* DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
|
|
* scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
|
|
* txgs that was scrubbed.
|
|
*
|
|
* DTL_OUTAGE: txgs which cannot currently be read, whether due to
|
|
* persistent errors or just some device being offline.
|
|
* Unlike the other three, the DTL_OUTAGE map is not generally
|
|
* maintained; it's only computed when needed, typically to
|
|
* determine whether a device can be detached.
|
|
*
|
|
* For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
|
|
* either has the data or it doesn't.
|
|
*
|
|
* For interior vdevs such as mirror and RAID-Z the picture is more complex.
|
|
* A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
|
|
* if any child is less than fully replicated, then so is its parent.
|
|
* A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
|
|
* comprising only those txgs which appear in 'maxfaults' or more children;
|
|
* those are the txgs we don't have enough replication to read. For example,
|
|
* double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
|
|
* thus, its DTL_MISSING consists of the set of txgs that appear in more than
|
|
* two child DTL_MISSING maps.
|
|
*
|
|
* It should be clear from the above that to compute the DTLs and outage maps
|
|
* for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
|
|
* Therefore, that is all we keep on disk. When loading the pool, or after
|
|
* a configuration change, we generate all other DTLs from first principles.
|
|
*/
|
|
void
|
|
vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
|
|
{
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
|
|
|
ASSERT(t < DTL_TYPES);
|
|
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
|
|
ASSERT(spa_writeable(vd->vdev_spa));
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
if (!range_tree_contains(rt, txg, size))
|
|
range_tree_add(rt, txg, size);
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
|
|
{
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
|
boolean_t dirty = B_FALSE;
|
|
|
|
ASSERT(t < DTL_TYPES);
|
|
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
|
|
|
|
/*
|
|
* While we are loading the pool, the DTLs have not been loaded yet.
|
|
* This isn't a problem but it can result in devices being tried
|
|
* which are known to not have the data. In which case, the import
|
|
* is relying on the checksum to ensure that we get the right data.
|
|
* Note that while importing we are only reading the MOS, which is
|
|
* always checksummed.
|
|
*/
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
if (!range_tree_is_empty(rt))
|
|
dirty = range_tree_contains(rt, txg, size);
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
return (dirty);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
|
|
{
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
|
boolean_t empty;
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
empty = range_tree_is_empty(rt);
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
return (empty);
|
|
}
|
|
|
|
/*
|
|
* Check if the txg falls within the range which must be
|
|
* resilvered. DVAs outside this range can always be skipped.
|
|
*/
|
|
boolean_t
|
|
vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
|
|
uint64_t phys_birth)
|
|
{
|
|
(void) dva, (void) psize;
|
|
|
|
/* Set by sequential resilver. */
|
|
if (phys_birth == TXG_UNKNOWN)
|
|
return (B_TRUE);
|
|
|
|
return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
|
|
}
|
|
|
|
/*
|
|
* Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
|
|
*/
|
|
boolean_t
|
|
vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
|
|
uint64_t phys_birth)
|
|
{
|
|
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
|
|
|
|
if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
|
|
vd->vdev_ops->vdev_op_leaf)
|
|
return (B_TRUE);
|
|
|
|
return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
|
|
phys_birth));
|
|
}
|
|
|
|
/*
|
|
* Returns the lowest txg in the DTL range.
|
|
*/
|
|
static uint64_t
|
|
vdev_dtl_min(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
|
|
ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
|
|
ASSERT0(vd->vdev_children);
|
|
|
|
return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
|
|
}
|
|
|
|
/*
|
|
* Returns the highest txg in the DTL.
|
|
*/
|
|
static uint64_t
|
|
vdev_dtl_max(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
|
|
ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
|
|
ASSERT0(vd->vdev_children);
|
|
|
|
return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
|
|
}
|
|
|
|
/*
|
|
* Determine if a resilvering vdev should remove any DTL entries from
|
|
* its range. If the vdev was resilvering for the entire duration of the
|
|
* scan then it should excise that range from its DTLs. Otherwise, this
|
|
* vdev is considered partially resilvered and should leave its DTL
|
|
* entries intact. The comment in vdev_dtl_reassess() describes how we
|
|
* excise the DTLs.
|
|
*/
|
|
static boolean_t
|
|
vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
|
|
{
|
|
ASSERT0(vd->vdev_children);
|
|
|
|
if (vd->vdev_state < VDEV_STATE_DEGRADED)
|
|
return (B_FALSE);
|
|
|
|
if (vd->vdev_resilver_deferred)
|
|
return (B_FALSE);
|
|
|
|
if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
|
|
return (B_TRUE);
|
|
|
|
if (rebuild_done) {
|
|
vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
|
|
/* Rebuild not initiated by attach */
|
|
if (vd->vdev_rebuild_txg == 0)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* When a rebuild completes without error then all missing data
|
|
* up to the rebuild max txg has been reconstructed and the DTL
|
|
* is eligible for excision.
|
|
*/
|
|
if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
|
|
vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
|
|
ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
|
|
ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
|
|
ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
|
|
return (B_TRUE);
|
|
}
|
|
} else {
|
|
dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
|
|
dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
|
|
|
|
/* Resilver not initiated by attach */
|
|
if (vd->vdev_resilver_txg == 0)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* When a resilver is initiated the scan will assign the
|
|
* scn_max_txg value to the highest txg value that exists
|
|
* in all DTLs. If this device's max DTL is not part of this
|
|
* scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
|
|
* then it is not eligible for excision.
|
|
*/
|
|
if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
|
|
ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
|
|
ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
|
|
ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Reassess DTLs after a config change or scrub completion. If txg == 0 no
|
|
* write operations will be issued to the pool.
|
|
*/
|
|
void
|
|
vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
|
|
boolean_t scrub_done, boolean_t rebuild_done)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
avl_tree_t reftree;
|
|
int minref;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_dtl_reassess(vd->vdev_child[c], txg,
|
|
scrub_txg, scrub_done, rebuild_done);
|
|
|
|
if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
|
|
return;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
|
|
vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
|
|
boolean_t check_excise = B_FALSE;
|
|
boolean_t wasempty = B_TRUE;
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
|
|
/*
|
|
* If requested, pretend the scan or rebuild completed cleanly.
|
|
*/
|
|
if (zfs_scan_ignore_errors) {
|
|
if (scn != NULL)
|
|
scn->scn_phys.scn_errors = 0;
|
|
if (vr != NULL)
|
|
vr->vr_rebuild_phys.vrp_errors = 0;
|
|
}
|
|
|
|
if (scrub_txg != 0 &&
|
|
!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
|
|
wasempty = B_FALSE;
|
|
zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
|
|
"dtl:%llu/%llu errors:%llu",
|
|
(u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
|
|
(u_longlong_t)scrub_txg, spa->spa_scrub_started,
|
|
(u_longlong_t)vdev_dtl_min(vd),
|
|
(u_longlong_t)vdev_dtl_max(vd),
|
|
(u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
|
|
}
|
|
|
|
/*
|
|
* If we've completed a scrub/resilver or a rebuild cleanly
|
|
* then determine if this vdev should remove any DTLs. We
|
|
* only want to excise regions on vdevs that were available
|
|
* during the entire duration of this scan.
|
|
*/
|
|
if (rebuild_done &&
|
|
vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
|
|
check_excise = B_TRUE;
|
|
} else {
|
|
if (spa->spa_scrub_started ||
|
|
(scn != NULL && scn->scn_phys.scn_errors == 0)) {
|
|
check_excise = B_TRUE;
|
|
}
|
|
}
|
|
|
|
if (scrub_txg && check_excise &&
|
|
vdev_dtl_should_excise(vd, rebuild_done)) {
|
|
/*
|
|
* We completed a scrub, resilver or rebuild up to
|
|
* scrub_txg. If we did it without rebooting, then
|
|
* the scrub dtl will be valid, so excise the old
|
|
* region and fold in the scrub dtl. Otherwise,
|
|
* leave the dtl as-is if there was an error.
|
|
*
|
|
* There's little trick here: to excise the beginning
|
|
* of the DTL_MISSING map, we put it into a reference
|
|
* tree and then add a segment with refcnt -1 that
|
|
* covers the range [0, scrub_txg). This means
|
|
* that each txg in that range has refcnt -1 or 0.
|
|
* We then add DTL_SCRUB with a refcnt of 2, so that
|
|
* entries in the range [0, scrub_txg) will have a
|
|
* positive refcnt -- either 1 or 2. We then convert
|
|
* the reference tree into the new DTL_MISSING map.
|
|
*/
|
|
space_reftree_create(&reftree);
|
|
space_reftree_add_map(&reftree,
|
|
vd->vdev_dtl[DTL_MISSING], 1);
|
|
space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
|
|
space_reftree_add_map(&reftree,
|
|
vd->vdev_dtl[DTL_SCRUB], 2);
|
|
space_reftree_generate_map(&reftree,
|
|
vd->vdev_dtl[DTL_MISSING], 1);
|
|
space_reftree_destroy(&reftree);
|
|
|
|
if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
|
|
zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
|
|
(u_longlong_t)vdev_dtl_min(vd),
|
|
(u_longlong_t)vdev_dtl_max(vd));
|
|
} else if (!wasempty) {
|
|
zfs_dbgmsg("DTL_MISSING is now empty");
|
|
}
|
|
}
|
|
range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
|
|
range_tree_walk(vd->vdev_dtl[DTL_MISSING],
|
|
range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
|
|
if (scrub_done)
|
|
range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
|
|
range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
|
|
if (!vdev_readable(vd))
|
|
range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
|
|
else
|
|
range_tree_walk(vd->vdev_dtl[DTL_MISSING],
|
|
range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
|
|
|
|
/*
|
|
* If the vdev was resilvering or rebuilding and no longer
|
|
* has any DTLs then reset the appropriate flag and dirty
|
|
* the top level so that we persist the change.
|
|
*/
|
|
if (txg != 0 &&
|
|
range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
|
|
range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
|
|
if (vd->vdev_rebuild_txg != 0) {
|
|
vd->vdev_rebuild_txg = 0;
|
|
vdev_config_dirty(vd->vdev_top);
|
|
} else if (vd->vdev_resilver_txg != 0) {
|
|
vd->vdev_resilver_txg = 0;
|
|
vdev_config_dirty(vd->vdev_top);
|
|
}
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
if (txg != 0)
|
|
vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
|
|
} else {
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
for (int t = 0; t < DTL_TYPES; t++) {
|
|
/* account for child's outage in parent's missing map */
|
|
int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
|
|
if (t == DTL_SCRUB) {
|
|
/* leaf vdevs only */
|
|
continue;
|
|
}
|
|
if (t == DTL_PARTIAL) {
|
|
/* i.e. non-zero */
|
|
minref = 1;
|
|
} else if (vdev_get_nparity(vd) != 0) {
|
|
/* RAIDZ, DRAID */
|
|
minref = vdev_get_nparity(vd) + 1;
|
|
} else {
|
|
/* any kind of mirror */
|
|
minref = vd->vdev_children;
|
|
}
|
|
space_reftree_create(&reftree);
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
mutex_enter(&cvd->vdev_dtl_lock);
|
|
space_reftree_add_map(&reftree,
|
|
cvd->vdev_dtl[s], 1);
|
|
mutex_exit(&cvd->vdev_dtl_lock);
|
|
}
|
|
space_reftree_generate_map(&reftree,
|
|
vd->vdev_dtl[t], minref);
|
|
space_reftree_destroy(&reftree);
|
|
}
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
}
|
|
|
|
if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
|
|
raidz_dtl_reassessed(vd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Iterate over all the vdevs except spare, and post kobj events
|
|
*/
|
|
void
|
|
vdev_post_kobj_evt(vdev_t *vd)
|
|
{
|
|
if (vd->vdev_ops->vdev_op_kobj_evt_post &&
|
|
vd->vdev_kobj_flag == B_FALSE) {
|
|
vd->vdev_kobj_flag = B_TRUE;
|
|
vd->vdev_ops->vdev_op_kobj_evt_post(vd);
|
|
}
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_post_kobj_evt(vd->vdev_child[c]);
|
|
}
|
|
|
|
/*
|
|
* Iterate over all the vdevs except spare, and clear kobj events
|
|
*/
|
|
void
|
|
vdev_clear_kobj_evt(vdev_t *vd)
|
|
{
|
|
vd->vdev_kobj_flag = B_FALSE;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_clear_kobj_evt(vd->vdev_child[c]);
|
|
}
|
|
|
|
int
|
|
vdev_dtl_load(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
range_tree_t *rt;
|
|
int error = 0;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
/*
|
|
* If the dtl cannot be sync'd there is no need to open it.
|
|
*/
|
|
if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
|
|
return (0);
|
|
|
|
error = space_map_open(&vd->vdev_dtl_sm, mos,
|
|
vd->vdev_dtl_object, 0, -1ULL, 0);
|
|
if (error)
|
|
return (error);
|
|
ASSERT(vd->vdev_dtl_sm != NULL);
|
|
|
|
rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
|
|
error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
|
|
if (error == 0) {
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
range_tree_walk(rt, range_tree_add,
|
|
vd->vdev_dtl[DTL_MISSING]);
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
}
|
|
|
|
range_tree_vacate(rt, NULL, NULL);
|
|
range_tree_destroy(rt);
|
|
|
|
return (error);
|
|
}
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
error = vdev_dtl_load(vd->vdev_child[c]);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
|
|
const char *string;
|
|
|
|
ASSERT(alloc_bias != VDEV_BIAS_NONE);
|
|
|
|
string =
|
|
(alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
|
|
(alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
|
|
(alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
|
|
|
|
ASSERT(string != NULL);
|
|
VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
|
|
1, strlen(string) + 1, string, tx));
|
|
|
|
if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
|
|
spa_activate_allocation_classes(spa, tx);
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
|
|
VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
|
|
zapobj, tx));
|
|
}
|
|
|
|
uint64_t
|
|
vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
|
|
DMU_OT_NONE, 0, tx);
|
|
|
|
ASSERT(zap != 0);
|
|
VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
|
|
zap, tx));
|
|
|
|
return (zap);
|
|
}
|
|
|
|
void
|
|
vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
|
|
{
|
|
if (vd->vdev_ops != &vdev_hole_ops &&
|
|
vd->vdev_ops != &vdev_missing_ops &&
|
|
vd->vdev_ops != &vdev_root_ops &&
|
|
!vd->vdev_top->vdev_removing) {
|
|
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
|
|
vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
|
|
}
|
|
if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
|
|
vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
|
|
if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
|
|
vdev_zap_allocation_data(vd, tx);
|
|
}
|
|
}
|
|
if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
|
|
spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
|
|
if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
|
|
spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
|
|
vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
|
|
}
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
vdev_construct_zaps(vd->vdev_child[i], tx);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_dtl_sync(vdev_t *vd, uint64_t txg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
range_tree_t *rtsync;
|
|
dmu_tx_t *tx;
|
|
uint64_t object = space_map_object(vd->vdev_dtl_sm);
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
|
|
|
|
if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
space_map_free(vd->vdev_dtl_sm, tx);
|
|
space_map_close(vd->vdev_dtl_sm);
|
|
vd->vdev_dtl_sm = NULL;
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
/*
|
|
* We only destroy the leaf ZAP for detached leaves or for
|
|
* removed log devices. Removed data devices handle leaf ZAP
|
|
* cleanup later, once cancellation is no longer possible.
|
|
*/
|
|
if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
|
|
vd->vdev_top->vdev_islog)) {
|
|
vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
|
|
vd->vdev_leaf_zap = 0;
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
return;
|
|
}
|
|
|
|
if (vd->vdev_dtl_sm == NULL) {
|
|
uint64_t new_object;
|
|
|
|
new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
|
|
VERIFY3U(new_object, !=, 0);
|
|
|
|
VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
|
|
0, -1ULL, 0));
|
|
ASSERT(vd->vdev_dtl_sm != NULL);
|
|
}
|
|
|
|
rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
range_tree_walk(rt, range_tree_add, rtsync);
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
|
|
space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
|
|
range_tree_vacate(rtsync, NULL, NULL);
|
|
|
|
range_tree_destroy(rtsync);
|
|
|
|
/*
|
|
* If the object for the space map has changed then dirty
|
|
* the top level so that we update the config.
|
|
*/
|
|
if (object != space_map_object(vd->vdev_dtl_sm)) {
|
|
vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
|
|
"new object %llu", (u_longlong_t)txg, spa_name(spa),
|
|
(u_longlong_t)object,
|
|
(u_longlong_t)space_map_object(vd->vdev_dtl_sm));
|
|
vdev_config_dirty(vd->vdev_top);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
/*
|
|
* Determine whether the specified vdev can be offlined/detached/removed
|
|
* without losing data.
|
|
*/
|
|
boolean_t
|
|
vdev_dtl_required(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *tvd = vd->vdev_top;
|
|
uint8_t cant_read = vd->vdev_cant_read;
|
|
boolean_t required;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
if (vd == spa->spa_root_vdev || vd == tvd)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* Temporarily mark the device as unreadable, and then determine
|
|
* whether this results in any DTL outages in the top-level vdev.
|
|
* If not, we can safely offline/detach/remove the device.
|
|
*/
|
|
vd->vdev_cant_read = B_TRUE;
|
|
vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
|
|
required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
|
|
vd->vdev_cant_read = cant_read;
|
|
vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
|
|
|
|
if (!required && zio_injection_enabled) {
|
|
required = !!zio_handle_device_injection(vd, NULL,
|
|
SET_ERROR(ECHILD));
|
|
}
|
|
|
|
return (required);
|
|
}
|
|
|
|
/*
|
|
* Determine if resilver is needed, and if so the txg range.
|
|
*/
|
|
boolean_t
|
|
vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
|
|
{
|
|
boolean_t needed = B_FALSE;
|
|
uint64_t thismin = UINT64_MAX;
|
|
uint64_t thismax = 0;
|
|
|
|
if (vd->vdev_children == 0) {
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
|
|
vdev_writeable(vd)) {
|
|
|
|
thismin = vdev_dtl_min(vd);
|
|
thismax = vdev_dtl_max(vd);
|
|
needed = B_TRUE;
|
|
}
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
} else {
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
uint64_t cmin, cmax;
|
|
|
|
if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
|
|
thismin = MIN(thismin, cmin);
|
|
thismax = MAX(thismax, cmax);
|
|
needed = B_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (needed && minp) {
|
|
*minp = thismin;
|
|
*maxp = thismax;
|
|
}
|
|
return (needed);
|
|
}
|
|
|
|
/*
|
|
* Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
|
|
* will contain either the checkpoint spacemap object or zero if none exists.
|
|
* All other errors are returned to the caller.
|
|
*/
|
|
int
|
|
vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
|
|
{
|
|
ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
|
|
|
|
if (vd->vdev_top_zap == 0) {
|
|
*sm_obj = 0;
|
|
return (0);
|
|
}
|
|
|
|
int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
|
|
if (error == ENOENT) {
|
|
*sm_obj = 0;
|
|
error = 0;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
vdev_load(vdev_t *vd)
|
|
{
|
|
int children = vd->vdev_children;
|
|
int error = 0;
|
|
taskq_t *tq = NULL;
|
|
|
|
/*
|
|
* It's only worthwhile to use the taskq for the root vdev, because the
|
|
* slow part is metaslab_init, and that only happens for top-level
|
|
* vdevs.
|
|
*/
|
|
if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
|
|
tq = taskq_create("vdev_load", children, minclsyspri,
|
|
children, children, TASKQ_PREPOPULATE);
|
|
}
|
|
|
|
/*
|
|
* Recursively load all children.
|
|
*/
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
if (tq == NULL || vdev_uses_zvols(cvd)) {
|
|
cvd->vdev_load_error = vdev_load(cvd);
|
|
} else {
|
|
VERIFY(taskq_dispatch(tq, vdev_load_child,
|
|
cvd, TQ_SLEEP) != TASKQID_INVALID);
|
|
}
|
|
}
|
|
|
|
if (tq != NULL) {
|
|
taskq_wait(tq);
|
|
taskq_destroy(tq);
|
|
}
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
int error = vd->vdev_child[c]->vdev_load_error;
|
|
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
vdev_set_deflate_ratio(vd);
|
|
|
|
if (vd->vdev_ops == &vdev_raidz_ops) {
|
|
error = vdev_raidz_load(vd);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* On spa_load path, grab the allocation bias from our zap
|
|
*/
|
|
if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
|
|
spa_t *spa = vd->vdev_spa;
|
|
char bias_str[64];
|
|
|
|
error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
|
|
bias_str);
|
|
if (error == 0) {
|
|
ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
|
|
vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
|
|
} else if (error != ENOENT) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
|
|
"failed [error=%d]",
|
|
(u_longlong_t)vd->vdev_top_zap, error);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t failfast;
|
|
|
|
error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
|
|
vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
|
|
1, &failfast);
|
|
if (error == 0) {
|
|
vd->vdev_failfast = failfast & 1;
|
|
} else if (error == ENOENT) {
|
|
vd->vdev_failfast = vdev_prop_default_numeric(
|
|
VDEV_PROP_FAILFAST);
|
|
} else {
|
|
vdev_dbgmsg(vd,
|
|
"vdev_load: zap_lookup(top_zap=%llu) "
|
|
"failed [error=%d]",
|
|
(u_longlong_t)vd->vdev_top_zap, error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load any rebuild state from the top-level vdev zap.
|
|
*/
|
|
if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
|
|
error = vdev_rebuild_load(vd);
|
|
if (error && error != ENOTSUP) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
|
|
"failed [error=%d]", error);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
|
|
uint64_t zapobj;
|
|
|
|
if (vd->vdev_top_zap != 0)
|
|
zapobj = vd->vdev_top_zap;
|
|
else
|
|
zapobj = vd->vdev_leaf_zap;
|
|
|
|
error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
|
|
&vd->vdev_checksum_n);
|
|
if (error && error != ENOENT)
|
|
vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
|
|
"failed [error=%d]", (u_longlong_t)zapobj, error);
|
|
|
|
error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
|
|
&vd->vdev_checksum_t);
|
|
if (error && error != ENOENT)
|
|
vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
|
|
"failed [error=%d]", (u_longlong_t)zapobj, error);
|
|
|
|
error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
|
|
&vd->vdev_io_n);
|
|
if (error && error != ENOENT)
|
|
vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
|
|
"failed [error=%d]", (u_longlong_t)zapobj, error);
|
|
|
|
error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
|
|
&vd->vdev_io_t);
|
|
if (error && error != ENOENT)
|
|
vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
|
|
"failed [error=%d]", (u_longlong_t)zapobj, error);
|
|
|
|
error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
|
|
&vd->vdev_slow_io_n);
|
|
if (error && error != ENOENT)
|
|
vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
|
|
"failed [error=%d]", (u_longlong_t)zapobj, error);
|
|
|
|
error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
|
|
&vd->vdev_slow_io_t);
|
|
if (error && error != ENOENT)
|
|
vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
|
|
"failed [error=%d]", (u_longlong_t)zapobj, error);
|
|
}
|
|
|
|
/*
|
|
* If this is a top-level vdev, initialize its metaslabs.
|
|
*/
|
|
if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
|
|
vdev_metaslab_group_create(vd);
|
|
|
|
if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
|
|
"asize=%llu", (u_longlong_t)vd->vdev_ashift,
|
|
(u_longlong_t)vd->vdev_asize);
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
error = vdev_metaslab_init(vd, 0);
|
|
if (error != 0) {
|
|
vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
|
|
"[error=%d]", error);
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
return (error);
|
|
}
|
|
|
|
uint64_t checkpoint_sm_obj;
|
|
error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
|
|
if (error == 0 && checkpoint_sm_obj != 0) {
|
|
objset_t *mos = spa_meta_objset(vd->vdev_spa);
|
|
ASSERT(vd->vdev_asize != 0);
|
|
ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
|
|
|
|
error = space_map_open(&vd->vdev_checkpoint_sm,
|
|
mos, checkpoint_sm_obj, 0, vd->vdev_asize,
|
|
vd->vdev_ashift);
|
|
if (error != 0) {
|
|
vdev_dbgmsg(vd, "vdev_load: space_map_open "
|
|
"failed for checkpoint spacemap (obj %llu) "
|
|
"[error=%d]",
|
|
(u_longlong_t)checkpoint_sm_obj, error);
|
|
return (error);
|
|
}
|
|
ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
|
|
|
|
/*
|
|
* Since the checkpoint_sm contains free entries
|
|
* exclusively we can use space_map_allocated() to
|
|
* indicate the cumulative checkpointed space that
|
|
* has been freed.
|
|
*/
|
|
vd->vdev_stat.vs_checkpoint_space =
|
|
-space_map_allocated(vd->vdev_checkpoint_sm);
|
|
vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
|
|
vd->vdev_stat.vs_checkpoint_space;
|
|
} else if (error != 0) {
|
|
vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
|
|
"checkpoint space map object from vdev ZAP "
|
|
"[error=%d]", error);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is a leaf vdev, load its DTL.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
|
|
"[error=%d]", error);
|
|
return (error);
|
|
}
|
|
|
|
uint64_t obsolete_sm_object;
|
|
error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
|
|
if (error == 0 && obsolete_sm_object != 0) {
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
ASSERT(vd->vdev_asize != 0);
|
|
ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
|
|
|
|
if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
|
|
obsolete_sm_object, 0, vd->vdev_asize, 0))) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
|
|
"obsolete spacemap (obj %llu) [error=%d]",
|
|
(u_longlong_t)obsolete_sm_object, error);
|
|
return (error);
|
|
}
|
|
} else if (error != 0) {
|
|
vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
|
|
"space map object from vdev ZAP [error=%d]", error);
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The special vdev case is used for hot spares and l2cache devices. Its
|
|
* sole purpose it to set the vdev state for the associated vdev. To do this,
|
|
* we make sure that we can open the underlying device, then try to read the
|
|
* label, and make sure that the label is sane and that it hasn't been
|
|
* repurposed to another pool.
|
|
*/
|
|
int
|
|
vdev_validate_aux(vdev_t *vd)
|
|
{
|
|
nvlist_t *label;
|
|
uint64_t guid, version;
|
|
uint64_t state;
|
|
|
|
if (!vdev_readable(vd))
|
|
return (0);
|
|
|
|
if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
return (-1);
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
|
|
!SPA_VERSION_IS_SUPPORTED(version) ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
|
|
guid != vd->vdev_guid ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* We don't actually check the pool state here. If it's in fact in
|
|
* use by another pool, we update this fact on the fly when requested.
|
|
*/
|
|
nvlist_free(label);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
|
|
{
|
|
objset_t *mos = spa_meta_objset(vd->vdev_spa);
|
|
|
|
if (vd->vdev_top_zap == 0)
|
|
return;
|
|
|
|
uint64_t object = 0;
|
|
int err = zap_lookup(mos, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
|
|
if (err == ENOENT)
|
|
return;
|
|
VERIFY0(err);
|
|
|
|
VERIFY0(dmu_object_free(mos, object, tx));
|
|
VERIFY0(zap_remove(mos, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
|
|
}
|
|
|
|
/*
|
|
* Free the objects used to store this vdev's spacemaps, and the array
|
|
* that points to them.
|
|
*/
|
|
void
|
|
vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
|
|
{
|
|
if (vd->vdev_ms_array == 0)
|
|
return;
|
|
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
|
|
size_t array_bytes = array_count * sizeof (uint64_t);
|
|
uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
|
|
VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
|
|
array_bytes, smobj_array, 0));
|
|
|
|
for (uint64_t i = 0; i < array_count; i++) {
|
|
uint64_t smobj = smobj_array[i];
|
|
if (smobj == 0)
|
|
continue;
|
|
|
|
space_map_free_obj(mos, smobj, tx);
|
|
}
|
|
|
|
kmem_free(smobj_array, array_bytes);
|
|
VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
|
|
vdev_destroy_ms_flush_data(vd, tx);
|
|
vd->vdev_ms_array = 0;
|
|
}
|
|
|
|
static void
|
|
vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(vd->vdev_islog);
|
|
ASSERT(vd == vd->vdev_top);
|
|
ASSERT3U(txg, ==, spa_syncing_txg(spa));
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
|
|
|
|
vdev_destroy_spacemaps(vd, tx);
|
|
if (vd->vdev_top_zap != 0) {
|
|
vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
|
|
vd->vdev_top_zap = 0;
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
void
|
|
vdev_sync_done(vdev_t *vd, uint64_t txg)
|
|
{
|
|
metaslab_t *msp;
|
|
boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
|
|
!= NULL)
|
|
metaslab_sync_done(msp, txg);
|
|
|
|
if (reassess) {
|
|
metaslab_sync_reassess(vd->vdev_mg);
|
|
if (vd->vdev_log_mg != NULL)
|
|
metaslab_sync_reassess(vd->vdev_log_mg);
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_sync(vdev_t *vd, uint64_t txg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *lvd;
|
|
metaslab_t *msp;
|
|
|
|
ASSERT3U(txg, ==, spa->spa_syncing_txg);
|
|
dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
|
|
if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
|
|
ASSERT(vd->vdev_removing ||
|
|
vd->vdev_ops == &vdev_indirect_ops);
|
|
|
|
vdev_indirect_sync_obsolete(vd, tx);
|
|
|
|
/*
|
|
* If the vdev is indirect, it can't have dirty
|
|
* metaslabs or DTLs.
|
|
*/
|
|
if (vd->vdev_ops == &vdev_indirect_ops) {
|
|
ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
|
|
ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
|
|
dmu_tx_commit(tx);
|
|
return;
|
|
}
|
|
}
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
|
|
!vd->vdev_removing) {
|
|
ASSERT(vd == vd->vdev_top);
|
|
ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
|
|
vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
|
|
DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
|
|
ASSERT(vd->vdev_ms_array != 0);
|
|
vdev_config_dirty(vd);
|
|
}
|
|
|
|
while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
|
|
metaslab_sync(msp, txg);
|
|
(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
|
|
}
|
|
|
|
while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
|
|
vdev_dtl_sync(lvd, txg);
|
|
|
|
/*
|
|
* If this is an empty log device being removed, destroy the
|
|
* metadata associated with it.
|
|
*/
|
|
if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
|
|
vdev_remove_empty_log(vd, txg);
|
|
|
|
(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
/*
|
|
* Return the amount of space that should be (or was) allocated for the given
|
|
* psize (compressed block size) in the given TXG. Note that for expanded
|
|
* RAIDZ vdevs, the size allocated for older BP's may be larger. See
|
|
* vdev_raidz_asize().
|
|
*/
|
|
uint64_t
|
|
vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
|
|
{
|
|
return (vd->vdev_ops->vdev_op_asize(vd, psize, txg));
|
|
}
|
|
|
|
uint64_t
|
|
vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
|
|
{
|
|
return (vdev_psize_to_asize_txg(vd, psize, 0));
|
|
}
|
|
|
|
/*
|
|
* Mark the given vdev faulted. A faulted vdev behaves as if the device could
|
|
* not be opened, and no I/O is attempted.
|
|
*/
|
|
int
|
|
vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
|
|
{
|
|
vdev_t *vd, *tvd;
|
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
|
|
|
|
tvd = vd->vdev_top;
|
|
|
|
/*
|
|
* If user did a 'zpool offline -f' then make the fault persist across
|
|
* reboots.
|
|
*/
|
|
if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
|
|
/*
|
|
* There are two kinds of forced faults: temporary and
|
|
* persistent. Temporary faults go away at pool import, while
|
|
* persistent faults stay set. Both types of faults can be
|
|
* cleared with a zpool clear.
|
|
*
|
|
* We tell if a vdev is persistently faulted by looking at the
|
|
* ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
|
|
* import then it's a persistent fault. Otherwise, it's
|
|
* temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
|
|
* by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
|
|
* tells vdev_config_generate() (which gets run later) to set
|
|
* ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
|
|
*/
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
|
|
vd->vdev_tmpoffline = B_FALSE;
|
|
aux = VDEV_AUX_EXTERNAL;
|
|
} else {
|
|
vd->vdev_tmpoffline = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* We don't directly use the aux state here, but if we do a
|
|
* vdev_reopen(), we need this value to be present to remember why we
|
|
* were faulted.
|
|
*/
|
|
vd->vdev_label_aux = aux;
|
|
|
|
/*
|
|
* Faulted state takes precedence over degraded.
|
|
*/
|
|
vd->vdev_delayed_close = B_FALSE;
|
|
vd->vdev_faulted = 1ULL;
|
|
vd->vdev_degraded = 0ULL;
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
|
|
|
|
/*
|
|
* If this device has the only valid copy of the data, then
|
|
* back off and simply mark the vdev as degraded instead.
|
|
*/
|
|
if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
|
|
vd->vdev_degraded = 1ULL;
|
|
vd->vdev_faulted = 0ULL;
|
|
|
|
/*
|
|
* If we reopen the device and it's not dead, only then do we
|
|
* mark it degraded.
|
|
*/
|
|
vdev_reopen(tvd);
|
|
|
|
if (vdev_readable(vd))
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
|
|
}
|
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
|
}
|
|
|
|
/*
|
|
* Mark the given vdev degraded. A degraded vdev is purely an indication to the
|
|
* user that something is wrong. The vdev continues to operate as normal as far
|
|
* as I/O is concerned.
|
|
*/
|
|
int
|
|
vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
|
|
{
|
|
vdev_t *vd;
|
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
|
|
|
|
/*
|
|
* If the vdev is already faulted, then don't do anything.
|
|
*/
|
|
if (vd->vdev_faulted || vd->vdev_degraded)
|
|
return (spa_vdev_state_exit(spa, NULL, 0));
|
|
|
|
vd->vdev_degraded = 1ULL;
|
|
if (!vdev_is_dead(vd))
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
|
|
aux);
|
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
|
}
|
|
|
|
int
|
|
vdev_remove_wanted(spa_t *spa, uint64_t guid)
|
|
{
|
|
vdev_t *vd;
|
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
|
|
|
|
/*
|
|
* If the vdev is already removed, or expanding which can trigger
|
|
* repartition add/remove events, then don't do anything.
|
|
*/
|
|
if (vd->vdev_removed || vd->vdev_expanding)
|
|
return (spa_vdev_state_exit(spa, NULL, 0));
|
|
|
|
/*
|
|
* Confirm the vdev has been removed, otherwise don't do anything.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
|
|
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
|
|
|
|
vd->vdev_remove_wanted = B_TRUE;
|
|
spa_async_request(spa, SPA_ASYNC_REMOVE);
|
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
|
}
|
|
|
|
|
|
/*
|
|
* Online the given vdev.
|
|
*
|
|
* If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
|
|
* spare device should be detached when the device finishes resilvering.
|
|
* Second, the online should be treated like a 'test' online case, so no FMA
|
|
* events are generated if the device fails to open.
|
|
*/
|
|
int
|
|
vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
|
|
{
|
|
vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
|
|
boolean_t wasoffline;
|
|
vdev_state_t oldstate;
|
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
|
|
|
|
wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
|
|
oldstate = vd->vdev_state;
|
|
|
|
tvd = vd->vdev_top;
|
|
vd->vdev_offline = B_FALSE;
|
|
vd->vdev_tmpoffline = B_FALSE;
|
|
vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
|
|
vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
|
|
|
|
/* XXX - L2ARC 1.0 does not support expansion */
|
|
if (!vd->vdev_aux) {
|
|
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
|
|
pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
|
|
spa->spa_autoexpand);
|
|
vd->vdev_expansion_time = gethrestime_sec();
|
|
}
|
|
|
|
vdev_reopen(tvd);
|
|
vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
|
|
|
|
if (!vd->vdev_aux) {
|
|
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
|
|
pvd->vdev_expanding = B_FALSE;
|
|
}
|
|
|
|
if (newstate)
|
|
*newstate = vd->vdev_state;
|
|
if ((flags & ZFS_ONLINE_UNSPARE) &&
|
|
!vdev_is_dead(vd) && vd->vdev_parent &&
|
|
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
|
|
vd->vdev_parent->vdev_child[0] == vd)
|
|
vd->vdev_unspare = B_TRUE;
|
|
|
|
if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
|
|
|
|
/* XXX - L2ARC 1.0 does not support expansion */
|
|
if (vd->vdev_aux)
|
|
return (spa_vdev_state_exit(spa, vd, ENOTSUP));
|
|
spa->spa_ccw_fail_time = 0;
|
|
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
|
|
}
|
|
|
|
/* Restart initializing if necessary */
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
if (vdev_writeable(vd) &&
|
|
vd->vdev_initialize_thread == NULL &&
|
|
vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
|
|
(void) vdev_initialize(vd);
|
|
}
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
/*
|
|
* Restart trimming if necessary. We do not restart trimming for cache
|
|
* devices here. This is triggered by l2arc_rebuild_vdev()
|
|
* asynchronously for the whole device or in l2arc_evict() as it evicts
|
|
* space for upcoming writes.
|
|
*/
|
|
mutex_enter(&vd->vdev_trim_lock);
|
|
if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
|
|
vd->vdev_trim_thread == NULL &&
|
|
vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
|
|
(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
|
|
vd->vdev_trim_secure);
|
|
}
|
|
mutex_exit(&vd->vdev_trim_lock);
|
|
|
|
if (wasoffline ||
|
|
(oldstate < VDEV_STATE_DEGRADED &&
|
|
vd->vdev_state >= VDEV_STATE_DEGRADED)) {
|
|
spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
|
|
|
|
/*
|
|
* Asynchronously detach spare vdev if resilver or
|
|
* rebuild is not required
|
|
*/
|
|
if (vd->vdev_unspare &&
|
|
!dsl_scan_resilvering(spa->spa_dsl_pool) &&
|
|
!dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
|
|
!vdev_rebuild_active(tvd))
|
|
spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
|
|
}
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
|
}
|
|
|
|
static int
|
|
vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
|
|
{
|
|
vdev_t *vd, *tvd;
|
|
int error = 0;
|
|
uint64_t generation;
|
|
metaslab_group_t *mg;
|
|
|
|
top:
|
|
spa_vdev_state_enter(spa, SCL_ALLOC);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
|
|
|
|
if (vd->vdev_ops == &vdev_draid_spare_ops)
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
|
|
|
tvd = vd->vdev_top;
|
|
mg = tvd->vdev_mg;
|
|
generation = spa->spa_config_generation + 1;
|
|
|
|
/*
|
|
* If the device isn't already offline, try to offline it.
|
|
*/
|
|
if (!vd->vdev_offline) {
|
|
/*
|
|
* If this device has the only valid copy of some data,
|
|
* don't allow it to be offlined. Log devices are always
|
|
* expendable.
|
|
*/
|
|
if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
|
|
vdev_dtl_required(vd))
|
|
return (spa_vdev_state_exit(spa, NULL,
|
|
SET_ERROR(EBUSY)));
|
|
|
|
/*
|
|
* If the top-level is a slog and it has had allocations
|
|
* then proceed. We check that the vdev's metaslab group
|
|
* is not NULL since it's possible that we may have just
|
|
* added this vdev but not yet initialized its metaslabs.
|
|
*/
|
|
if (tvd->vdev_islog && mg != NULL) {
|
|
/*
|
|
* Prevent any future allocations.
|
|
*/
|
|
ASSERT3P(tvd->vdev_log_mg, ==, NULL);
|
|
metaslab_group_passivate(mg);
|
|
(void) spa_vdev_state_exit(spa, vd, 0);
|
|
|
|
error = spa_reset_logs(spa);
|
|
|
|
/*
|
|
* If the log device was successfully reset but has
|
|
* checkpointed data, do not offline it.
|
|
*/
|
|
if (error == 0 &&
|
|
tvd->vdev_checkpoint_sm != NULL) {
|
|
ASSERT3U(space_map_allocated(
|
|
tvd->vdev_checkpoint_sm), !=, 0);
|
|
error = ZFS_ERR_CHECKPOINT_EXISTS;
|
|
}
|
|
|
|
spa_vdev_state_enter(spa, SCL_ALLOC);
|
|
|
|
/*
|
|
* Check to see if the config has changed.
|
|
*/
|
|
if (error || generation != spa->spa_config_generation) {
|
|
metaslab_group_activate(mg);
|
|
if (error)
|
|
return (spa_vdev_state_exit(spa,
|
|
vd, error));
|
|
(void) spa_vdev_state_exit(spa, vd, 0);
|
|
goto top;
|
|
}
|
|
ASSERT0(tvd->vdev_stat.vs_alloc);
|
|
}
|
|
|
|
/*
|
|
* Offline this device and reopen its top-level vdev.
|
|
* If the top-level vdev is a log device then just offline
|
|
* it. Otherwise, if this action results in the top-level
|
|
* vdev becoming unusable, undo it and fail the request.
|
|
*/
|
|
vd->vdev_offline = B_TRUE;
|
|
vdev_reopen(tvd);
|
|
|
|
if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
|
|
vdev_is_dead(tvd)) {
|
|
vd->vdev_offline = B_FALSE;
|
|
vdev_reopen(tvd);
|
|
return (spa_vdev_state_exit(spa, NULL,
|
|
SET_ERROR(EBUSY)));
|
|
}
|
|
|
|
/*
|
|
* Add the device back into the metaslab rotor so that
|
|
* once we online the device it's open for business.
|
|
*/
|
|
if (tvd->vdev_islog && mg != NULL)
|
|
metaslab_group_activate(mg);
|
|
}
|
|
|
|
vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
|
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
|
}
|
|
|
|
int
|
|
vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
|
|
{
|
|
int error;
|
|
|
|
mutex_enter(&spa->spa_vdev_top_lock);
|
|
error = vdev_offline_locked(spa, guid, flags);
|
|
mutex_exit(&spa->spa_vdev_top_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Clear the error counts associated with this vdev. Unlike vdev_online() and
|
|
* vdev_offline(), we assume the spa config is locked. We also clear all
|
|
* children. If 'vd' is NULL, then the user wants to clear all vdevs.
|
|
*/
|
|
void
|
|
vdev_clear(spa_t *spa, vdev_t *vd)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
if (vd == NULL)
|
|
vd = rvd;
|
|
|
|
vd->vdev_stat.vs_read_errors = 0;
|
|
vd->vdev_stat.vs_write_errors = 0;
|
|
vd->vdev_stat.vs_checksum_errors = 0;
|
|
vd->vdev_stat.vs_dio_verify_errors = 0;
|
|
vd->vdev_stat.vs_slow_ios = 0;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_clear(spa, vd->vdev_child[c]);
|
|
|
|
/*
|
|
* It makes no sense to "clear" an indirect or removed vdev.
|
|
*/
|
|
if (!vdev_is_concrete(vd) || vd->vdev_removed)
|
|
return;
|
|
|
|
/*
|
|
* If we're in the FAULTED state or have experienced failed I/O, then
|
|
* clear the persistent state and attempt to reopen the device. We
|
|
* also mark the vdev config dirty, so that the new faulted state is
|
|
* written out to disk.
|
|
*/
|
|
if (vd->vdev_faulted || vd->vdev_degraded ||
|
|
!vdev_readable(vd) || !vdev_writeable(vd)) {
|
|
/*
|
|
* When reopening in response to a clear event, it may be due to
|
|
* a fmadm repair request. In this case, if the device is
|
|
* still broken, we want to still post the ereport again.
|
|
*/
|
|
vd->vdev_forcefault = B_TRUE;
|
|
|
|
vd->vdev_faulted = vd->vdev_degraded = 0ULL;
|
|
vd->vdev_cant_read = B_FALSE;
|
|
vd->vdev_cant_write = B_FALSE;
|
|
vd->vdev_stat.vs_aux = 0;
|
|
|
|
vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
|
|
|
|
vd->vdev_forcefault = B_FALSE;
|
|
|
|
if (vd != rvd && vdev_writeable(vd->vdev_top))
|
|
vdev_state_dirty(vd->vdev_top);
|
|
|
|
/* If a resilver isn't required, check if vdevs can be culled */
|
|
if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
|
|
!dsl_scan_resilvering(spa->spa_dsl_pool) &&
|
|
!dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
|
|
|
|
spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
|
|
}
|
|
|
|
/*
|
|
* When clearing a FMA-diagnosed fault, we always want to
|
|
* unspare the device, as we assume that the original spare was
|
|
* done in response to the FMA fault.
|
|
*/
|
|
if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
|
|
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
|
|
vd->vdev_parent->vdev_child[0] == vd)
|
|
vd->vdev_unspare = B_TRUE;
|
|
|
|
/* Clear recent error events cache (i.e. duplicate events tracking) */
|
|
zfs_ereport_clear(spa, vd);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_is_dead(vdev_t *vd)
|
|
{
|
|
/*
|
|
* Holes and missing devices are always considered "dead".
|
|
* This simplifies the code since we don't have to check for
|
|
* these types of devices in the various code paths.
|
|
* Instead we rely on the fact that we skip over dead devices
|
|
* before issuing I/O to them.
|
|
*/
|
|
return (vd->vdev_state < VDEV_STATE_DEGRADED ||
|
|
vd->vdev_ops == &vdev_hole_ops ||
|
|
vd->vdev_ops == &vdev_missing_ops);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_readable(vdev_t *vd)
|
|
{
|
|
return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_writeable(vdev_t *vd)
|
|
{
|
|
return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
|
|
vdev_is_concrete(vd));
|
|
}
|
|
|
|
boolean_t
|
|
vdev_allocatable(vdev_t *vd)
|
|
{
|
|
uint64_t state = vd->vdev_state;
|
|
|
|
/*
|
|
* We currently allow allocations from vdevs which may be in the
|
|
* process of reopening (i.e. VDEV_STATE_CLOSED). If the device
|
|
* fails to reopen then we'll catch it later when we're holding
|
|
* the proper locks. Note that we have to get the vdev state
|
|
* in a local variable because although it changes atomically,
|
|
* we're asking two separate questions about it.
|
|
*/
|
|
return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
|
|
!vd->vdev_cant_write && vdev_is_concrete(vd) &&
|
|
vd->vdev_mg->mg_initialized);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_accessible(vdev_t *vd, zio_t *zio)
|
|
{
|
|
ASSERT(zio->io_vd == vd);
|
|
|
|
if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
|
|
return (B_FALSE);
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
return (!vd->vdev_cant_read);
|
|
|
|
if (zio->io_type == ZIO_TYPE_WRITE)
|
|
return (!vd->vdev_cant_write);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
static void
|
|
vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
|
|
{
|
|
/*
|
|
* Exclude the dRAID spare when aggregating to avoid double counting
|
|
* the ops and bytes. These IOs are counted by the physical leaves.
|
|
*/
|
|
if (cvd->vdev_ops == &vdev_draid_spare_ops)
|
|
return;
|
|
|
|
for (int t = 0; t < VS_ZIO_TYPES; t++) {
|
|
vs->vs_ops[t] += cvs->vs_ops[t];
|
|
vs->vs_bytes[t] += cvs->vs_bytes[t];
|
|
}
|
|
|
|
cvs->vs_scan_removing = cvd->vdev_removing;
|
|
}
|
|
|
|
/*
|
|
* Get extended stats
|
|
*/
|
|
static void
|
|
vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
|
|
{
|
|
(void) cvd;
|
|
|
|
int t, b;
|
|
for (t = 0; t < ZIO_TYPES; t++) {
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
|
|
vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
|
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
|
|
vsx->vsx_total_histo[t][b] +=
|
|
cvsx->vsx_total_histo[t][b];
|
|
}
|
|
}
|
|
|
|
for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
|
|
vsx->vsx_queue_histo[t][b] +=
|
|
cvsx->vsx_queue_histo[t][b];
|
|
}
|
|
vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
|
|
vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
|
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
|
|
vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
|
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
|
|
vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
|
|
}
|
|
|
|
}
|
|
|
|
boolean_t
|
|
vdev_is_spacemap_addressable(vdev_t *vd)
|
|
{
|
|
if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* If double-word space map entries are not enabled we assume
|
|
* 47 bits of the space map entry are dedicated to the entry's
|
|
* offset (see SM_OFFSET_BITS in space_map.h). We then use that
|
|
* to calculate the maximum address that can be described by a
|
|
* space map entry for the given device.
|
|
*/
|
|
uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
|
|
|
|
if (shift >= 63) /* detect potential overflow */
|
|
return (B_TRUE);
|
|
|
|
return (vd->vdev_asize < (1ULL << shift));
|
|
}
|
|
|
|
/*
|
|
* Get statistics for the given vdev.
|
|
*/
|
|
static void
|
|
vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
|
|
{
|
|
int t;
|
|
/*
|
|
* If we're getting stats on the root vdev, aggregate the I/O counts
|
|
* over all top-level vdevs (i.e. the direct children of the root).
|
|
*/
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
if (vs) {
|
|
memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
|
|
memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
|
|
}
|
|
if (vsx)
|
|
memset(vsx, 0, sizeof (*vsx));
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
vdev_stat_t *cvs = &cvd->vdev_stat;
|
|
vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
|
|
|
|
vdev_get_stats_ex_impl(cvd, cvs, cvsx);
|
|
if (vs)
|
|
vdev_get_child_stat(cvd, vs, cvs);
|
|
if (vsx)
|
|
vdev_get_child_stat_ex(cvd, vsx, cvsx);
|
|
}
|
|
} else {
|
|
/*
|
|
* We're a leaf. Just copy our ZIO active queue stats in. The
|
|
* other leaf stats are updated in vdev_stat_update().
|
|
*/
|
|
if (!vsx)
|
|
return;
|
|
|
|
memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
|
|
|
|
for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
|
|
vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
|
|
vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
|
|
{
|
|
vdev_t *tvd = vd->vdev_top;
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
if (vs) {
|
|
memcpy(vs, &vd->vdev_stat, sizeof (*vs));
|
|
vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
|
|
vs->vs_state = vd->vdev_state;
|
|
vs->vs_rsize = vdev_get_min_asize(vd);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
vs->vs_pspace = vd->vdev_psize;
|
|
vs->vs_rsize += VDEV_LABEL_START_SIZE +
|
|
VDEV_LABEL_END_SIZE;
|
|
/*
|
|
* Report initializing progress. Since we don't
|
|
* have the initializing locks held, this is only
|
|
* an estimate (although a fairly accurate one).
|
|
*/
|
|
vs->vs_initialize_bytes_done =
|
|
vd->vdev_initialize_bytes_done;
|
|
vs->vs_initialize_bytes_est =
|
|
vd->vdev_initialize_bytes_est;
|
|
vs->vs_initialize_state = vd->vdev_initialize_state;
|
|
vs->vs_initialize_action_time =
|
|
vd->vdev_initialize_action_time;
|
|
|
|
/*
|
|
* Report manual TRIM progress. Since we don't have
|
|
* the manual TRIM locks held, this is only an
|
|
* estimate (although fairly accurate one).
|
|
*/
|
|
vs->vs_trim_notsup = !vd->vdev_has_trim;
|
|
vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
|
|
vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
|
|
vs->vs_trim_state = vd->vdev_trim_state;
|
|
vs->vs_trim_action_time = vd->vdev_trim_action_time;
|
|
|
|
/* Set when there is a deferred resilver. */
|
|
vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
|
|
}
|
|
|
|
/*
|
|
* Report expandable space on top-level, non-auxiliary devices
|
|
* only. The expandable space is reported in terms of metaslab
|
|
* sized units since that determines how much space the pool
|
|
* can expand.
|
|
*/
|
|
if (vd->vdev_aux == NULL && tvd != NULL) {
|
|
vs->vs_esize = P2ALIGN_TYPED(
|
|
vd->vdev_max_asize - vd->vdev_asize,
|
|
1ULL << tvd->vdev_ms_shift, uint64_t);
|
|
}
|
|
|
|
vs->vs_configured_ashift = vd->vdev_top != NULL
|
|
? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
|
|
vs->vs_logical_ashift = vd->vdev_logical_ashift;
|
|
if (vd->vdev_physical_ashift <= ASHIFT_MAX)
|
|
vs->vs_physical_ashift = vd->vdev_physical_ashift;
|
|
else
|
|
vs->vs_physical_ashift = 0;
|
|
|
|
/*
|
|
* Report fragmentation and rebuild progress for top-level,
|
|
* non-auxiliary, concrete devices.
|
|
*/
|
|
if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
|
|
vdev_is_concrete(vd)) {
|
|
/*
|
|
* The vdev fragmentation rating doesn't take into
|
|
* account the embedded slog metaslab (vdev_log_mg).
|
|
* Since it's only one metaslab, it would have a tiny
|
|
* impact on the overall fragmentation.
|
|
*/
|
|
vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
|
|
vd->vdev_mg->mg_fragmentation : 0;
|
|
}
|
|
vs->vs_noalloc = MAX(vd->vdev_noalloc,
|
|
tvd ? tvd->vdev_noalloc : 0);
|
|
}
|
|
|
|
vdev_get_stats_ex_impl(vd, vs, vsx);
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
}
|
|
|
|
void
|
|
vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
|
|
{
|
|
return (vdev_get_stats_ex(vd, vs, NULL));
|
|
}
|
|
|
|
void
|
|
vdev_clear_stats(vdev_t *vd)
|
|
{
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
vd->vdev_stat.vs_space = 0;
|
|
vd->vdev_stat.vs_dspace = 0;
|
|
vd->vdev_stat.vs_alloc = 0;
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
}
|
|
|
|
void
|
|
vdev_scan_stat_init(vdev_t *vd)
|
|
{
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
vdev_scan_stat_init(vd->vdev_child[c]);
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
vs->vs_scan_processed = 0;
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
}
|
|
|
|
void
|
|
vdev_stat_update(zio_t *zio, uint64_t psize)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
|
|
vdev_t *pvd;
|
|
uint64_t txg = zio->io_txg;
|
|
/* Suppress ASAN false positive */
|
|
#ifdef __SANITIZE_ADDRESS__
|
|
vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
|
|
vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
|
|
#else
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
|
|
#endif
|
|
zio_type_t type = zio->io_type;
|
|
int flags = zio->io_flags;
|
|
|
|
/*
|
|
* If this i/o is a gang leader, it didn't do any actual work.
|
|
*/
|
|
if (zio->io_gang_tree)
|
|
return;
|
|
|
|
if (zio->io_error == 0) {
|
|
/*
|
|
* If this is a root i/o, don't count it -- we've already
|
|
* counted the top-level vdevs, and vdev_get_stats() will
|
|
* aggregate them when asked. This reduces contention on
|
|
* the root vdev_stat_lock and implicitly handles blocks
|
|
* that compress away to holes, for which there is no i/o.
|
|
* (Holes never create vdev children, so all the counters
|
|
* remain zero, which is what we want.)
|
|
*
|
|
* Note: this only applies to successful i/o (io_error == 0)
|
|
* because unlike i/o counts, errors are not additive.
|
|
* When reading a ditto block, for example, failure of
|
|
* one top-level vdev does not imply a root-level error.
|
|
*/
|
|
if (vd == rvd)
|
|
return;
|
|
|
|
ASSERT(vd == zio->io_vd);
|
|
|
|
if (flags & ZIO_FLAG_IO_BYPASS)
|
|
return;
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
|
|
if (flags & ZIO_FLAG_IO_REPAIR) {
|
|
/*
|
|
* Repair is the result of a resilver issued by the
|
|
* scan thread (spa_sync).
|
|
*/
|
|
if (flags & ZIO_FLAG_SCAN_THREAD) {
|
|
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
|
|
dsl_scan_phys_t *scn_phys = &scn->scn_phys;
|
|
uint64_t *processed = &scn_phys->scn_processed;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
atomic_add_64(processed, psize);
|
|
vs->vs_scan_processed += psize;
|
|
}
|
|
|
|
/*
|
|
* Repair is the result of a rebuild issued by the
|
|
* rebuild thread (vdev_rebuild_thread). To avoid
|
|
* double counting repaired bytes the virtual dRAID
|
|
* spare vdev is excluded from the processed bytes.
|
|
*/
|
|
if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
|
|
vdev_t *tvd = vd->vdev_top;
|
|
vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
|
|
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
|
|
uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
vd->vdev_ops != &vdev_draid_spare_ops) {
|
|
atomic_add_64(rebuilt, psize);
|
|
}
|
|
vs->vs_rebuild_processed += psize;
|
|
}
|
|
|
|
if (flags & ZIO_FLAG_SELF_HEAL)
|
|
vs->vs_self_healed += psize;
|
|
}
|
|
|
|
/*
|
|
* The bytes/ops/histograms are recorded at the leaf level and
|
|
* aggregated into the higher level vdevs in vdev_get_stats().
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
|
|
zio_type_t vs_type = type;
|
|
zio_priority_t priority = zio->io_priority;
|
|
|
|
/*
|
|
* TRIM ops and bytes are reported to user space as
|
|
* ZIO_TYPE_FLUSH. This is done to preserve the
|
|
* vdev_stat_t structure layout for user space.
|
|
*/
|
|
if (type == ZIO_TYPE_TRIM)
|
|
vs_type = ZIO_TYPE_FLUSH;
|
|
|
|
/*
|
|
* Solely for the purposes of 'zpool iostat -lqrw'
|
|
* reporting use the priority to categorize the IO.
|
|
* Only the following are reported to user space:
|
|
*
|
|
* ZIO_PRIORITY_SYNC_READ,
|
|
* ZIO_PRIORITY_SYNC_WRITE,
|
|
* ZIO_PRIORITY_ASYNC_READ,
|
|
* ZIO_PRIORITY_ASYNC_WRITE,
|
|
* ZIO_PRIORITY_SCRUB,
|
|
* ZIO_PRIORITY_TRIM,
|
|
* ZIO_PRIORITY_REBUILD.
|
|
*/
|
|
if (priority == ZIO_PRIORITY_INITIALIZING) {
|
|
ASSERT3U(type, ==, ZIO_TYPE_WRITE);
|
|
priority = ZIO_PRIORITY_ASYNC_WRITE;
|
|
} else if (priority == ZIO_PRIORITY_REMOVAL) {
|
|
priority = ((type == ZIO_TYPE_WRITE) ?
|
|
ZIO_PRIORITY_ASYNC_WRITE :
|
|
ZIO_PRIORITY_ASYNC_READ);
|
|
}
|
|
|
|
vs->vs_ops[vs_type]++;
|
|
vs->vs_bytes[vs_type] += psize;
|
|
|
|
if (flags & ZIO_FLAG_DELEGATED) {
|
|
vsx->vsx_agg_histo[priority]
|
|
[RQ_HISTO(zio->io_size)]++;
|
|
} else {
|
|
vsx->vsx_ind_histo[priority]
|
|
[RQ_HISTO(zio->io_size)]++;
|
|
}
|
|
|
|
if (zio->io_delta && zio->io_delay) {
|
|
vsx->vsx_queue_histo[priority]
|
|
[L_HISTO(zio->io_delta - zio->io_delay)]++;
|
|
vsx->vsx_disk_histo[type]
|
|
[L_HISTO(zio->io_delay)]++;
|
|
vsx->vsx_total_histo[type]
|
|
[L_HISTO(zio->io_delta)]++;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
return;
|
|
}
|
|
|
|
if (flags & ZIO_FLAG_SPECULATIVE)
|
|
return;
|
|
|
|
/*
|
|
* If this is an I/O error that is going to be retried, then ignore the
|
|
* error. Otherwise, the user may interpret B_FAILFAST I/O errors as
|
|
* hard errors, when in reality they can happen for any number of
|
|
* innocuous reasons (bus resets, MPxIO link failure, etc).
|
|
*/
|
|
if (zio->io_error == EIO &&
|
|
!(zio->io_flags & ZIO_FLAG_IO_RETRY))
|
|
return;
|
|
|
|
/*
|
|
* Intent logs writes won't propagate their error to the root
|
|
* I/O so don't mark these types of failures as pool-level
|
|
* errors.
|
|
*/
|
|
if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
|
|
return;
|
|
|
|
if (type == ZIO_TYPE_WRITE && txg != 0 &&
|
|
(!(flags & ZIO_FLAG_IO_REPAIR) ||
|
|
(flags & ZIO_FLAG_SCAN_THREAD) ||
|
|
spa->spa_claiming)) {
|
|
/*
|
|
* This is either a normal write (not a repair), or it's
|
|
* a repair induced by the scrub thread, or it's a repair
|
|
* made by zil_claim() during spa_load() in the first txg.
|
|
* In the normal case, we commit the DTL change in the same
|
|
* txg as the block was born. In the scrub-induced repair
|
|
* case, we know that scrubs run in first-pass syncing context,
|
|
* so we commit the DTL change in spa_syncing_txg(spa).
|
|
* In the zil_claim() case, we commit in spa_first_txg(spa).
|
|
*
|
|
* We currently do not make DTL entries for failed spontaneous
|
|
* self-healing writes triggered by normal (non-scrubbing)
|
|
* reads, because we have no transactional context in which to
|
|
* do so -- and it's not clear that it'd be desirable anyway.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
uint64_t commit_txg = txg;
|
|
if (flags & ZIO_FLAG_SCAN_THREAD) {
|
|
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
|
|
ASSERT(spa_sync_pass(spa) == 1);
|
|
vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
|
|
commit_txg = spa_syncing_txg(spa);
|
|
} else if (spa->spa_claiming) {
|
|
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
|
|
commit_txg = spa_first_txg(spa);
|
|
}
|
|
ASSERT(commit_txg >= spa_syncing_txg(spa));
|
|
if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
|
|
return;
|
|
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
|
|
vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
|
|
vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
|
|
}
|
|
if (vd != rvd)
|
|
vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
|
|
}
|
|
}
|
|
|
|
int64_t
|
|
vdev_deflated_space(vdev_t *vd, int64_t space)
|
|
{
|
|
ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
|
|
ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
|
|
|
|
return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
|
|
}
|
|
|
|
/*
|
|
* Update the in-core space usage stats for this vdev, its metaslab class,
|
|
* and the root vdev.
|
|
*/
|
|
void
|
|
vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
|
|
int64_t space_delta)
|
|
{
|
|
(void) defer_delta;
|
|
int64_t dspace_delta;
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
/*
|
|
* Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
|
|
* factor. We must calculate this here and not at the root vdev
|
|
* because the root vdev's psize-to-asize is simply the max of its
|
|
* children's, thus not accurate enough for us.
|
|
*/
|
|
dspace_delta = vdev_deflated_space(vd, space_delta);
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
/* ensure we won't underflow */
|
|
if (alloc_delta < 0) {
|
|
ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
|
|
}
|
|
|
|
vd->vdev_stat.vs_alloc += alloc_delta;
|
|
vd->vdev_stat.vs_space += space_delta;
|
|
vd->vdev_stat.vs_dspace += dspace_delta;
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
|
|
/* every class but log contributes to root space stats */
|
|
if (vd->vdev_mg != NULL && !vd->vdev_islog) {
|
|
ASSERT(!vd->vdev_isl2cache);
|
|
mutex_enter(&rvd->vdev_stat_lock);
|
|
rvd->vdev_stat.vs_alloc += alloc_delta;
|
|
rvd->vdev_stat.vs_space += space_delta;
|
|
rvd->vdev_stat.vs_dspace += dspace_delta;
|
|
mutex_exit(&rvd->vdev_stat_lock);
|
|
}
|
|
/* Note: metaslab_class_space_update moved to metaslab_space_update */
|
|
}
|
|
|
|
/*
|
|
* Mark a top-level vdev's config as dirty, placing it on the dirty list
|
|
* so that it will be written out next time the vdev configuration is synced.
|
|
* If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
|
|
*/
|
|
void
|
|
vdev_config_dirty(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
int c;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
/*
|
|
* If this is an aux vdev (as with l2cache and spare devices), then we
|
|
* update the vdev config manually and set the sync flag.
|
|
*/
|
|
if (vd->vdev_aux != NULL) {
|
|
spa_aux_vdev_t *sav = vd->vdev_aux;
|
|
nvlist_t **aux;
|
|
uint_t naux;
|
|
|
|
for (c = 0; c < sav->sav_count; c++) {
|
|
if (sav->sav_vdevs[c] == vd)
|
|
break;
|
|
}
|
|
|
|
if (c == sav->sav_count) {
|
|
/*
|
|
* We're being removed. There's nothing more to do.
|
|
*/
|
|
ASSERT(sav->sav_sync == B_TRUE);
|
|
return;
|
|
}
|
|
|
|
sav->sav_sync = B_TRUE;
|
|
|
|
if (nvlist_lookup_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
|
|
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
|
|
}
|
|
|
|
ASSERT(c < naux);
|
|
|
|
/*
|
|
* Setting the nvlist in the middle if the array is a little
|
|
* sketchy, but it will work.
|
|
*/
|
|
nvlist_free(aux[c]);
|
|
aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The dirty list is protected by the SCL_CONFIG lock. The caller
|
|
* must either hold SCL_CONFIG as writer, or must be the sync thread
|
|
* (which holds SCL_CONFIG as reader). There's only one sync thread,
|
|
* so this is sufficient to ensure mutual exclusion.
|
|
*/
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
spa_config_held(spa, SCL_CONFIG, RW_READER)));
|
|
|
|
if (vd == rvd) {
|
|
for (c = 0; c < rvd->vdev_children; c++)
|
|
vdev_config_dirty(rvd->vdev_child[c]);
|
|
} else {
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
if (!list_link_active(&vd->vdev_config_dirty_node) &&
|
|
vdev_is_concrete(vd)) {
|
|
list_insert_head(&spa->spa_config_dirty_list, vd);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_config_clean(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
spa_config_held(spa, SCL_CONFIG, RW_READER)));
|
|
|
|
ASSERT(list_link_active(&vd->vdev_config_dirty_node));
|
|
list_remove(&spa->spa_config_dirty_list, vd);
|
|
}
|
|
|
|
/*
|
|
* Mark a top-level vdev's state as dirty, so that the next pass of
|
|
* spa_sync() can convert this into vdev_config_dirty(). We distinguish
|
|
* the state changes from larger config changes because they require
|
|
* much less locking, and are often needed for administrative actions.
|
|
*/
|
|
void
|
|
vdev_state_dirty(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
/*
|
|
* The state list is protected by the SCL_STATE lock. The caller
|
|
* must either hold SCL_STATE as writer, or must be the sync thread
|
|
* (which holds SCL_STATE as reader). There's only one sync thread,
|
|
* so this is sufficient to ensure mutual exclusion.
|
|
*/
|
|
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
spa_config_held(spa, SCL_STATE, RW_READER)));
|
|
|
|
if (!list_link_active(&vd->vdev_state_dirty_node) &&
|
|
vdev_is_concrete(vd))
|
|
list_insert_head(&spa->spa_state_dirty_list, vd);
|
|
}
|
|
|
|
void
|
|
vdev_state_clean(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
spa_config_held(spa, SCL_STATE, RW_READER)));
|
|
|
|
ASSERT(list_link_active(&vd->vdev_state_dirty_node));
|
|
list_remove(&spa->spa_state_dirty_list, vd);
|
|
}
|
|
|
|
/*
|
|
* Propagate vdev state up from children to parent.
|
|
*/
|
|
void
|
|
vdev_propagate_state(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
int degraded = 0, faulted = 0;
|
|
int corrupted = 0;
|
|
vdev_t *child;
|
|
|
|
if (vd->vdev_children > 0) {
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
child = vd->vdev_child[c];
|
|
|
|
/*
|
|
* Don't factor holes or indirect vdevs into the
|
|
* decision.
|
|
*/
|
|
if (!vdev_is_concrete(child))
|
|
continue;
|
|
|
|
if (!vdev_readable(child) ||
|
|
(!vdev_writeable(child) && spa_writeable(spa))) {
|
|
/*
|
|
* Root special: if there is a top-level log
|
|
* device, treat the root vdev as if it were
|
|
* degraded.
|
|
*/
|
|
if (child->vdev_islog && vd == rvd)
|
|
degraded++;
|
|
else
|
|
faulted++;
|
|
} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
|
|
degraded++;
|
|
}
|
|
|
|
if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
|
|
corrupted++;
|
|
}
|
|
|
|
vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
|
|
|
|
/*
|
|
* Root special: if there is a top-level vdev that cannot be
|
|
* opened due to corrupted metadata, then propagate the root
|
|
* vdev's aux state as 'corrupt' rather than 'insufficient
|
|
* replicas'.
|
|
*/
|
|
if (corrupted && vd == rvd &&
|
|
rvd->vdev_state == VDEV_STATE_CANT_OPEN)
|
|
vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
}
|
|
|
|
if (vd->vdev_parent)
|
|
vdev_propagate_state(vd->vdev_parent);
|
|
}
|
|
|
|
/*
|
|
* Set a vdev's state. If this is during an open, we don't update the parent
|
|
* state, because we're in the process of opening children depth-first.
|
|
* Otherwise, we propagate the change to the parent.
|
|
*
|
|
* If this routine places a device in a faulted state, an appropriate ereport is
|
|
* generated.
|
|
*/
|
|
void
|
|
vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
|
|
{
|
|
uint64_t save_state;
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
if (state == vd->vdev_state) {
|
|
/*
|
|
* Since vdev_offline() code path is already in an offline
|
|
* state we can miss a statechange event to OFFLINE. Check
|
|
* the previous state to catch this condition.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(state == VDEV_STATE_OFFLINE) &&
|
|
(vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
|
|
/* post an offline state change */
|
|
zfs_post_state_change(spa, vd, vd->vdev_prevstate);
|
|
}
|
|
vd->vdev_stat.vs_aux = aux;
|
|
return;
|
|
}
|
|
|
|
save_state = vd->vdev_state;
|
|
|
|
vd->vdev_state = state;
|
|
vd->vdev_stat.vs_aux = aux;
|
|
|
|
/*
|
|
* If we are setting the vdev state to anything but an open state, then
|
|
* always close the underlying device unless the device has requested
|
|
* a delayed close (i.e. we're about to remove or fault the device).
|
|
* Otherwise, we keep accessible but invalid devices open forever.
|
|
* We don't call vdev_close() itself, because that implies some extra
|
|
* checks (offline, etc) that we don't want here. This is limited to
|
|
* leaf devices, because otherwise closing the device will affect other
|
|
* children.
|
|
*/
|
|
if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
|
|
vd->vdev_ops->vdev_op_leaf)
|
|
vd->vdev_ops->vdev_op_close(vd);
|
|
|
|
if (vd->vdev_removed &&
|
|
state == VDEV_STATE_CANT_OPEN &&
|
|
(aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
|
|
/*
|
|
* If the previous state is set to VDEV_STATE_REMOVED, then this
|
|
* device was previously marked removed and someone attempted to
|
|
* reopen it. If this failed due to a nonexistent device, then
|
|
* keep the device in the REMOVED state. We also let this be if
|
|
* it is one of our special test online cases, which is only
|
|
* attempting to online the device and shouldn't generate an FMA
|
|
* fault.
|
|
*/
|
|
vd->vdev_state = VDEV_STATE_REMOVED;
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
|
|
} else if (state == VDEV_STATE_REMOVED) {
|
|
vd->vdev_removed = B_TRUE;
|
|
} else if (state == VDEV_STATE_CANT_OPEN) {
|
|
/*
|
|
* If we fail to open a vdev during an import or recovery, we
|
|
* mark it as "not available", which signifies that it was
|
|
* never there to begin with. Failure to open such a device
|
|
* is not considered an error.
|
|
*/
|
|
if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
|
|
spa_load_state(spa) == SPA_LOAD_RECOVER) &&
|
|
vd->vdev_ops->vdev_op_leaf)
|
|
vd->vdev_not_present = 1;
|
|
|
|
/*
|
|
* Post the appropriate ereport. If the 'prevstate' field is
|
|
* set to something other than VDEV_STATE_UNKNOWN, it indicates
|
|
* that this is part of a vdev_reopen(). In this case, we don't
|
|
* want to post the ereport if the device was already in the
|
|
* CANT_OPEN state beforehand.
|
|
*
|
|
* If the 'checkremove' flag is set, then this is an attempt to
|
|
* online the device in response to an insertion event. If we
|
|
* hit this case, then we have detected an insertion event for a
|
|
* faulted or offline device that wasn't in the removed state.
|
|
* In this scenario, we don't post an ereport because we are
|
|
* about to replace the device, or attempt an online with
|
|
* vdev_forcefault, which will generate the fault for us.
|
|
*/
|
|
if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
|
|
!vd->vdev_not_present && !vd->vdev_checkremove &&
|
|
vd != spa->spa_root_vdev) {
|
|
const char *class;
|
|
|
|
switch (aux) {
|
|
case VDEV_AUX_OPEN_FAILED:
|
|
class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
|
|
break;
|
|
case VDEV_AUX_CORRUPT_DATA:
|
|
class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
|
|
break;
|
|
case VDEV_AUX_NO_REPLICAS:
|
|
class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
|
|
break;
|
|
case VDEV_AUX_BAD_GUID_SUM:
|
|
class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
|
|
break;
|
|
case VDEV_AUX_TOO_SMALL:
|
|
class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
|
|
break;
|
|
case VDEV_AUX_BAD_LABEL:
|
|
class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
|
|
break;
|
|
case VDEV_AUX_BAD_ASHIFT:
|
|
class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
|
|
break;
|
|
default:
|
|
class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
|
|
}
|
|
|
|
(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
|
|
save_state);
|
|
}
|
|
|
|
/* Erase any notion of persistent removed state */
|
|
vd->vdev_removed = B_FALSE;
|
|
} else {
|
|
vd->vdev_removed = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Notify ZED of any significant state-change on a leaf vdev.
|
|
*
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
/* preserve original state from a vdev_reopen() */
|
|
if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
|
|
(vd->vdev_prevstate != vd->vdev_state) &&
|
|
(save_state <= VDEV_STATE_CLOSED))
|
|
save_state = vd->vdev_prevstate;
|
|
|
|
/* filter out state change due to initial vdev_open */
|
|
if (save_state > VDEV_STATE_CLOSED)
|
|
zfs_post_state_change(spa, vd, save_state);
|
|
}
|
|
|
|
if (!isopen && vd->vdev_parent)
|
|
vdev_propagate_state(vd->vdev_parent);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_children_are_offline(vdev_t *vd)
|
|
{
|
|
ASSERT(!vd->vdev_ops->vdev_op_leaf);
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
|
|
return (B_FALSE);
|
|
}
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Check the vdev configuration to ensure that it's capable of supporting
|
|
* a root pool. We do not support partial configuration.
|
|
*/
|
|
boolean_t
|
|
vdev_is_bootable(vdev_t *vd)
|
|
{
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
const char *vdev_type = vd->vdev_ops->vdev_op_type;
|
|
|
|
if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
|
|
return (B_FALSE);
|
|
}
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
if (!vdev_is_bootable(vd->vdev_child[c]))
|
|
return (B_FALSE);
|
|
}
|
|
return (B_TRUE);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_is_concrete(vdev_t *vd)
|
|
{
|
|
vdev_ops_t *ops = vd->vdev_ops;
|
|
if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
|
|
ops == &vdev_missing_ops || ops == &vdev_root_ops) {
|
|
return (B_FALSE);
|
|
} else {
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine if a log device has valid content. If the vdev was
|
|
* removed or faulted in the MOS config then we know that
|
|
* the content on the log device has already been written to the pool.
|
|
*/
|
|
boolean_t
|
|
vdev_log_state_valid(vdev_t *vd)
|
|
{
|
|
if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
|
|
!vd->vdev_removed)
|
|
return (B_TRUE);
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++)
|
|
if (vdev_log_state_valid(vd->vdev_child[c]))
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Expand a vdev if possible.
|
|
*/
|
|
void
|
|
vdev_expand(vdev_t *vd, uint64_t txg)
|
|
{
|
|
ASSERT(vd->vdev_top == vd);
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
vdev_set_deflate_ratio(vd);
|
|
|
|
if ((vd->vdev_spa->spa_raidz_expand == NULL ||
|
|
vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
|
|
(vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
|
|
vdev_is_concrete(vd)) {
|
|
vdev_metaslab_group_create(vd);
|
|
VERIFY(vdev_metaslab_init(vd, txg) == 0);
|
|
vdev_config_dirty(vd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Split a vdev.
|
|
*/
|
|
void
|
|
vdev_split(vdev_t *vd)
|
|
{
|
|
vdev_t *cvd, *pvd = vd->vdev_parent;
|
|
|
|
VERIFY3U(pvd->vdev_children, >, 1);
|
|
|
|
vdev_remove_child(pvd, vd);
|
|
vdev_compact_children(pvd);
|
|
|
|
ASSERT3P(pvd->vdev_child, !=, NULL);
|
|
|
|
cvd = pvd->vdev_child[0];
|
|
if (pvd->vdev_children == 1) {
|
|
vdev_remove_parent(cvd);
|
|
cvd->vdev_splitting = B_TRUE;
|
|
}
|
|
vdev_propagate_state(cvd);
|
|
}
|
|
|
|
void
|
|
vdev_deadman(vdev_t *vd, const char *tag)
|
|
{
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
vdev_deadman(cvd, tag);
|
|
}
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
if (vq->vq_active > 0) {
|
|
spa_t *spa = vd->vdev_spa;
|
|
zio_t *fio;
|
|
uint64_t delta;
|
|
|
|
zfs_dbgmsg("slow vdev: %s has %u active IOs",
|
|
vd->vdev_path, vq->vq_active);
|
|
|
|
/*
|
|
* Look at the head of all the pending queues,
|
|
* if any I/O has been outstanding for longer than
|
|
* the spa_deadman_synctime invoke the deadman logic.
|
|
*/
|
|
fio = list_head(&vq->vq_active_list);
|
|
delta = gethrtime() - fio->io_timestamp;
|
|
if (delta > spa_deadman_synctime(spa))
|
|
zio_deadman(fio, tag);
|
|
}
|
|
mutex_exit(&vq->vq_lock);
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_defer_resilver(vdev_t *vd)
|
|
{
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
vd->vdev_resilver_deferred = B_TRUE;
|
|
vd->vdev_spa->spa_resilver_deferred = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Clears the resilver deferred flag on all leaf devs under vd. Returns
|
|
* B_TRUE if we have devices that need to be resilvered and are available to
|
|
* accept resilver I/Os.
|
|
*/
|
|
boolean_t
|
|
vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
|
|
{
|
|
boolean_t resilver_needed = B_FALSE;
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
for (int c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
|
|
}
|
|
|
|
if (vd == spa->spa_root_vdev &&
|
|
spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
|
|
spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
|
|
vdev_config_dirty(vd);
|
|
spa->spa_resilver_deferred = B_FALSE;
|
|
return (resilver_needed);
|
|
}
|
|
|
|
if (!vdev_is_concrete(vd) || vd->vdev_aux ||
|
|
!vd->vdev_ops->vdev_op_leaf)
|
|
return (resilver_needed);
|
|
|
|
vd->vdev_resilver_deferred = B_FALSE;
|
|
|
|
return (!vdev_is_dead(vd) && !vd->vdev_offline &&
|
|
vdev_resilver_needed(vd, NULL, NULL));
|
|
}
|
|
|
|
boolean_t
|
|
vdev_xlate_is_empty(range_seg64_t *rs)
|
|
{
|
|
return (rs->rs_start == rs->rs_end);
|
|
}
|
|
|
|
/*
|
|
* Translate a logical range to the first contiguous physical range for the
|
|
* specified vdev_t. This function is initially called with a leaf vdev and
|
|
* will walk each parent vdev until it reaches a top-level vdev. Once the
|
|
* top-level is reached the physical range is initialized and the recursive
|
|
* function begins to unwind. As it unwinds it calls the parent's vdev
|
|
* specific translation function to do the real conversion.
|
|
*/
|
|
void
|
|
vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
|
|
range_seg64_t *physical_rs, range_seg64_t *remain_rs)
|
|
{
|
|
/*
|
|
* Walk up the vdev tree
|
|
*/
|
|
if (vd != vd->vdev_top) {
|
|
vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
|
|
remain_rs);
|
|
} else {
|
|
/*
|
|
* We've reached the top-level vdev, initialize the physical
|
|
* range to the logical range and set an empty remaining
|
|
* range then start to unwind.
|
|
*/
|
|
physical_rs->rs_start = logical_rs->rs_start;
|
|
physical_rs->rs_end = logical_rs->rs_end;
|
|
|
|
remain_rs->rs_start = logical_rs->rs_start;
|
|
remain_rs->rs_end = logical_rs->rs_start;
|
|
|
|
return;
|
|
}
|
|
|
|
vdev_t *pvd = vd->vdev_parent;
|
|
ASSERT3P(pvd, !=, NULL);
|
|
ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
|
|
|
|
/*
|
|
* As this recursive function unwinds, translate the logical
|
|
* range into its physical and any remaining components by calling
|
|
* the vdev specific translate function.
|
|
*/
|
|
range_seg64_t intermediate = { 0 };
|
|
pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
|
|
|
|
physical_rs->rs_start = intermediate.rs_start;
|
|
physical_rs->rs_end = intermediate.rs_end;
|
|
}
|
|
|
|
void
|
|
vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
|
|
vdev_xlate_func_t *func, void *arg)
|
|
{
|
|
range_seg64_t iter_rs = *logical_rs;
|
|
range_seg64_t physical_rs;
|
|
range_seg64_t remain_rs;
|
|
|
|
while (!vdev_xlate_is_empty(&iter_rs)) {
|
|
|
|
vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
|
|
|
|
/*
|
|
* With raidz and dRAID, it's possible that the logical range
|
|
* does not live on this leaf vdev. Only when there is a non-
|
|
* zero physical size call the provided function.
|
|
*/
|
|
if (!vdev_xlate_is_empty(&physical_rs))
|
|
func(arg, &physical_rs);
|
|
|
|
iter_rs = remain_rs;
|
|
}
|
|
}
|
|
|
|
static char *
|
|
vdev_name(vdev_t *vd, char *buf, int buflen)
|
|
{
|
|
if (vd->vdev_path == NULL) {
|
|
if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
|
|
strlcpy(buf, vd->vdev_spa->spa_name, buflen);
|
|
} else if (!vd->vdev_ops->vdev_op_leaf) {
|
|
snprintf(buf, buflen, "%s-%llu",
|
|
vd->vdev_ops->vdev_op_type,
|
|
(u_longlong_t)vd->vdev_id);
|
|
}
|
|
} else {
|
|
strlcpy(buf, vd->vdev_path, buflen);
|
|
}
|
|
return (buf);
|
|
}
|
|
|
|
/*
|
|
* Look at the vdev tree and determine whether any devices are currently being
|
|
* replaced.
|
|
*/
|
|
boolean_t
|
|
vdev_replace_in_progress(vdev_t *vdev)
|
|
{
|
|
ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
|
|
|
|
if (vdev->vdev_ops == &vdev_replacing_ops)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* A 'spare' vdev indicates that we have a replace in progress, unless
|
|
* it has exactly two children, and the second, the hot spare, has
|
|
* finished being resilvered.
|
|
*/
|
|
if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
|
|
!vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
|
|
return (B_TRUE);
|
|
|
|
for (int i = 0; i < vdev->vdev_children; i++) {
|
|
if (vdev_replace_in_progress(vdev->vdev_child[i]))
|
|
return (B_TRUE);
|
|
}
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Add a (source=src, propname=propval) list to an nvlist.
|
|
*/
|
|
static void
|
|
vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
|
|
uint64_t intval, zprop_source_t src)
|
|
{
|
|
nvlist_t *propval;
|
|
|
|
propval = fnvlist_alloc();
|
|
fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
|
|
|
|
if (strval != NULL)
|
|
fnvlist_add_string(propval, ZPROP_VALUE, strval);
|
|
else
|
|
fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
|
|
|
|
fnvlist_add_nvlist(nvl, propname, propval);
|
|
nvlist_free(propval);
|
|
}
|
|
|
|
static void
|
|
vdev_props_set_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
vdev_t *vd;
|
|
nvlist_t *nvp = arg;
|
|
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
nvpair_t *elem = NULL;
|
|
uint64_t vdev_guid;
|
|
uint64_t objid;
|
|
nvlist_t *nvprops;
|
|
|
|
vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
|
|
nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
|
|
vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
|
|
|
|
/* this vdev could get removed while waiting for this sync task */
|
|
if (vd == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Set vdev property values in the vdev props mos object.
|
|
*/
|
|
if (vd->vdev_root_zap != 0) {
|
|
objid = vd->vdev_root_zap;
|
|
} else if (vd->vdev_top_zap != 0) {
|
|
objid = vd->vdev_top_zap;
|
|
} else if (vd->vdev_leaf_zap != 0) {
|
|
objid = vd->vdev_leaf_zap;
|
|
} else {
|
|
panic("unexpected vdev type");
|
|
}
|
|
|
|
mutex_enter(&spa->spa_props_lock);
|
|
|
|
while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
|
|
uint64_t intval;
|
|
const char *strval;
|
|
vdev_prop_t prop;
|
|
const char *propname = nvpair_name(elem);
|
|
zprop_type_t proptype;
|
|
|
|
switch (prop = vdev_name_to_prop(propname)) {
|
|
case VDEV_PROP_USERPROP:
|
|
if (vdev_prop_user(propname)) {
|
|
strval = fnvpair_value_string(elem);
|
|
if (strlen(strval) == 0) {
|
|
/* remove the property if value == "" */
|
|
(void) zap_remove(mos, objid, propname,
|
|
tx);
|
|
} else {
|
|
VERIFY0(zap_update(mos, objid, propname,
|
|
1, strlen(strval) + 1, strval, tx));
|
|
}
|
|
spa_history_log_internal(spa, "vdev set", tx,
|
|
"vdev_guid=%llu: %s=%s",
|
|
(u_longlong_t)vdev_guid, nvpair_name(elem),
|
|
strval);
|
|
}
|
|
break;
|
|
default:
|
|
/* normalize the property name */
|
|
propname = vdev_prop_to_name(prop);
|
|
proptype = vdev_prop_get_type(prop);
|
|
|
|
if (nvpair_type(elem) == DATA_TYPE_STRING) {
|
|
ASSERT(proptype == PROP_TYPE_STRING);
|
|
strval = fnvpair_value_string(elem);
|
|
VERIFY0(zap_update(mos, objid, propname,
|
|
1, strlen(strval) + 1, strval, tx));
|
|
spa_history_log_internal(spa, "vdev set", tx,
|
|
"vdev_guid=%llu: %s=%s",
|
|
(u_longlong_t)vdev_guid, nvpair_name(elem),
|
|
strval);
|
|
} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
|
|
intval = fnvpair_value_uint64(elem);
|
|
|
|
if (proptype == PROP_TYPE_INDEX) {
|
|
const char *unused;
|
|
VERIFY0(vdev_prop_index_to_string(
|
|
prop, intval, &unused));
|
|
}
|
|
VERIFY0(zap_update(mos, objid, propname,
|
|
sizeof (uint64_t), 1, &intval, tx));
|
|
spa_history_log_internal(spa, "vdev set", tx,
|
|
"vdev_guid=%llu: %s=%lld",
|
|
(u_longlong_t)vdev_guid,
|
|
nvpair_name(elem), (longlong_t)intval);
|
|
} else {
|
|
panic("invalid vdev property type %u",
|
|
nvpair_type(elem));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
mutex_exit(&spa->spa_props_lock);
|
|
}
|
|
|
|
int
|
|
vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
nvpair_t *elem = NULL;
|
|
uint64_t vdev_guid;
|
|
nvlist_t *nvprops;
|
|
int error = 0;
|
|
|
|
ASSERT(vd != NULL);
|
|
|
|
/* Check that vdev has a zap we can use */
|
|
if (vd->vdev_root_zap == 0 &&
|
|
vd->vdev_top_zap == 0 &&
|
|
vd->vdev_leaf_zap == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
|
|
&vdev_guid) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
|
|
&nvprops) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
|
|
const char *propname = nvpair_name(elem);
|
|
vdev_prop_t prop = vdev_name_to_prop(propname);
|
|
uint64_t intval = 0;
|
|
const char *strval = NULL;
|
|
|
|
if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
|
|
error = EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
if (vdev_prop_readonly(prop)) {
|
|
error = EROFS;
|
|
goto end;
|
|
}
|
|
|
|
/* Special Processing */
|
|
switch (prop) {
|
|
case VDEV_PROP_PATH:
|
|
if (vd->vdev_path == NULL) {
|
|
error = EROFS;
|
|
break;
|
|
}
|
|
if (nvpair_value_string(elem, &strval) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
/* New path must start with /dev/ */
|
|
if (strncmp(strval, "/dev/", 5)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
error = spa_vdev_setpath(spa, vdev_guid, strval);
|
|
break;
|
|
case VDEV_PROP_ALLOCATING:
|
|
if (nvpair_value_uint64(elem, &intval) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (intval != vd->vdev_noalloc)
|
|
break;
|
|
if (intval == 0)
|
|
error = spa_vdev_noalloc(spa, vdev_guid);
|
|
else
|
|
error = spa_vdev_alloc(spa, vdev_guid);
|
|
break;
|
|
case VDEV_PROP_FAILFAST:
|
|
if (nvpair_value_uint64(elem, &intval) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
vd->vdev_failfast = intval & 1;
|
|
break;
|
|
case VDEV_PROP_CHECKSUM_N:
|
|
if (nvpair_value_uint64(elem, &intval) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
vd->vdev_checksum_n = intval;
|
|
break;
|
|
case VDEV_PROP_CHECKSUM_T:
|
|
if (nvpair_value_uint64(elem, &intval) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
vd->vdev_checksum_t = intval;
|
|
break;
|
|
case VDEV_PROP_IO_N:
|
|
if (nvpair_value_uint64(elem, &intval) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
vd->vdev_io_n = intval;
|
|
break;
|
|
case VDEV_PROP_IO_T:
|
|
if (nvpair_value_uint64(elem, &intval) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
vd->vdev_io_t = intval;
|
|
break;
|
|
case VDEV_PROP_SLOW_IO_N:
|
|
if (nvpair_value_uint64(elem, &intval) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
vd->vdev_slow_io_n = intval;
|
|
break;
|
|
case VDEV_PROP_SLOW_IO_T:
|
|
if (nvpair_value_uint64(elem, &intval) != 0) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
vd->vdev_slow_io_t = intval;
|
|
break;
|
|
default:
|
|
/* Most processing is done in vdev_props_set_sync */
|
|
break;
|
|
}
|
|
end:
|
|
if (error != 0) {
|
|
intval = error;
|
|
vdev_prop_add_list(outnvl, propname, strval, intval, 0);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
|
|
innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
|
|
}
|
|
|
|
int
|
|
vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
int err = 0;
|
|
uint64_t objid;
|
|
uint64_t vdev_guid;
|
|
nvpair_t *elem = NULL;
|
|
nvlist_t *nvprops = NULL;
|
|
uint64_t intval = 0;
|
|
char *strval = NULL;
|
|
const char *propname = NULL;
|
|
vdev_prop_t prop;
|
|
|
|
ASSERT(vd != NULL);
|
|
ASSERT(mos != NULL);
|
|
|
|
if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
|
|
&vdev_guid) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
|
|
|
|
if (vd->vdev_root_zap != 0) {
|
|
objid = vd->vdev_root_zap;
|
|
} else if (vd->vdev_top_zap != 0) {
|
|
objid = vd->vdev_top_zap;
|
|
} else if (vd->vdev_leaf_zap != 0) {
|
|
objid = vd->vdev_leaf_zap;
|
|
} else {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
ASSERT(objid != 0);
|
|
|
|
mutex_enter(&spa->spa_props_lock);
|
|
|
|
if (nvprops != NULL) {
|
|
char namebuf[64] = { 0 };
|
|
|
|
while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
|
|
intval = 0;
|
|
strval = NULL;
|
|
propname = nvpair_name(elem);
|
|
prop = vdev_name_to_prop(propname);
|
|
zprop_source_t src = ZPROP_SRC_DEFAULT;
|
|
uint64_t integer_size, num_integers;
|
|
|
|
switch (prop) {
|
|
/* Special Read-only Properties */
|
|
case VDEV_PROP_NAME:
|
|
strval = vdev_name(vd, namebuf,
|
|
sizeof (namebuf));
|
|
if (strval == NULL)
|
|
continue;
|
|
vdev_prop_add_list(outnvl, propname, strval, 0,
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_CAPACITY:
|
|
/* percent used */
|
|
intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
|
|
(vd->vdev_stat.vs_alloc * 100 /
|
|
vd->vdev_stat.vs_dspace);
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
intval, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_STATE:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_state, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_GUID:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_guid, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_ASIZE:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_asize, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_PSIZE:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_psize, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_ASHIFT:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_ashift, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_SIZE:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_FREE:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_dspace -
|
|
vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_ALLOCATED:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_EXPANDSZ:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_FRAGMENTATION:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_fragmentation,
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_PARITY:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vdev_get_nparity(vd), ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_PATH:
|
|
if (vd->vdev_path == NULL)
|
|
continue;
|
|
vdev_prop_add_list(outnvl, propname,
|
|
vd->vdev_path, 0, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_DEVID:
|
|
if (vd->vdev_devid == NULL)
|
|
continue;
|
|
vdev_prop_add_list(outnvl, propname,
|
|
vd->vdev_devid, 0, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_PHYS_PATH:
|
|
if (vd->vdev_physpath == NULL)
|
|
continue;
|
|
vdev_prop_add_list(outnvl, propname,
|
|
vd->vdev_physpath, 0, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_ENC_PATH:
|
|
if (vd->vdev_enc_sysfs_path == NULL)
|
|
continue;
|
|
vdev_prop_add_list(outnvl, propname,
|
|
vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_FRU:
|
|
if (vd->vdev_fru == NULL)
|
|
continue;
|
|
vdev_prop_add_list(outnvl, propname,
|
|
vd->vdev_fru, 0, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_PARENT:
|
|
if (vd->vdev_parent != NULL) {
|
|
strval = vdev_name(vd->vdev_parent,
|
|
namebuf, sizeof (namebuf));
|
|
vdev_prop_add_list(outnvl, propname,
|
|
strval, 0, ZPROP_SRC_NONE);
|
|
}
|
|
continue;
|
|
case VDEV_PROP_CHILDREN:
|
|
if (vd->vdev_children > 0)
|
|
strval = kmem_zalloc(ZAP_MAXVALUELEN,
|
|
KM_SLEEP);
|
|
for (uint64_t i = 0; i < vd->vdev_children;
|
|
i++) {
|
|
const char *vname;
|
|
|
|
vname = vdev_name(vd->vdev_child[i],
|
|
namebuf, sizeof (namebuf));
|
|
if (vname == NULL)
|
|
vname = "(unknown)";
|
|
if (strlen(strval) > 0)
|
|
strlcat(strval, ",",
|
|
ZAP_MAXVALUELEN);
|
|
strlcat(strval, vname, ZAP_MAXVALUELEN);
|
|
}
|
|
if (strval != NULL) {
|
|
vdev_prop_add_list(outnvl, propname,
|
|
strval, 0, ZPROP_SRC_NONE);
|
|
kmem_free(strval, ZAP_MAXVALUELEN);
|
|
}
|
|
continue;
|
|
case VDEV_PROP_NUMCHILDREN:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_children, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_READ_ERRORS:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_read_errors,
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_WRITE_ERRORS:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_write_errors,
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_CHECKSUM_ERRORS:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_checksum_errors,
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_INITIALIZE_ERRORS:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_initialize_errors,
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_TRIM_ERRORS:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_trim_errors,
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_SLOW_IOS:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_slow_ios,
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_OPS_NULL:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_OPS_READ:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_OPS_WRITE:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_OPS_FREE:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_OPS_CLAIM:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_OPS_TRIM:
|
|
/*
|
|
* TRIM ops and bytes are reported to user
|
|
* space as ZIO_TYPE_FLUSH. This is done to
|
|
* preserve the vdev_stat_t structure layout
|
|
* for user space.
|
|
*/
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_BYTES_NULL:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_BYTES_READ:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_BYTES_WRITE:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_BYTES_FREE:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_BYTES_CLAIM:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_BYTES_TRIM:
|
|
/*
|
|
* TRIM ops and bytes are reported to user
|
|
* space as ZIO_TYPE_FLUSH. This is done to
|
|
* preserve the vdev_stat_t structure layout
|
|
* for user space.
|
|
*/
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
|
|
ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_REMOVING:
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
vd->vdev_removing, ZPROP_SRC_NONE);
|
|
continue;
|
|
case VDEV_PROP_RAIDZ_EXPANDING:
|
|
/* Only expose this for raidz */
|
|
if (vd->vdev_ops == &vdev_raidz_ops) {
|
|
vdev_prop_add_list(outnvl, propname,
|
|
NULL, vd->vdev_rz_expanding,
|
|
ZPROP_SRC_NONE);
|
|
}
|
|
continue;
|
|
case VDEV_PROP_TRIM_SUPPORT:
|
|
/* only valid for leaf vdevs */
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
vdev_prop_add_list(outnvl, propname,
|
|
NULL, vd->vdev_has_trim,
|
|
ZPROP_SRC_NONE);
|
|
}
|
|
continue;
|
|
/* Numeric Properites */
|
|
case VDEV_PROP_ALLOCATING:
|
|
/* Leaf vdevs cannot have this property */
|
|
if (vd->vdev_mg == NULL &&
|
|
vd->vdev_top != NULL) {
|
|
src = ZPROP_SRC_NONE;
|
|
intval = ZPROP_BOOLEAN_NA;
|
|
} else {
|
|
err = vdev_prop_get_int(vd, prop,
|
|
&intval);
|
|
if (err && err != ENOENT)
|
|
break;
|
|
|
|
if (intval ==
|
|
vdev_prop_default_numeric(prop))
|
|
src = ZPROP_SRC_DEFAULT;
|
|
else
|
|
src = ZPROP_SRC_LOCAL;
|
|
}
|
|
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
intval, src);
|
|
break;
|
|
case VDEV_PROP_FAILFAST:
|
|
src = ZPROP_SRC_LOCAL;
|
|
strval = NULL;
|
|
|
|
err = zap_lookup(mos, objid, nvpair_name(elem),
|
|
sizeof (uint64_t), 1, &intval);
|
|
if (err == ENOENT) {
|
|
intval = vdev_prop_default_numeric(
|
|
prop);
|
|
err = 0;
|
|
} else if (err) {
|
|
break;
|
|
}
|
|
if (intval == vdev_prop_default_numeric(prop))
|
|
src = ZPROP_SRC_DEFAULT;
|
|
|
|
vdev_prop_add_list(outnvl, propname, strval,
|
|
intval, src);
|
|
break;
|
|
case VDEV_PROP_CHECKSUM_N:
|
|
case VDEV_PROP_CHECKSUM_T:
|
|
case VDEV_PROP_IO_N:
|
|
case VDEV_PROP_IO_T:
|
|
case VDEV_PROP_SLOW_IO_N:
|
|
case VDEV_PROP_SLOW_IO_T:
|
|
err = vdev_prop_get_int(vd, prop, &intval);
|
|
if (err && err != ENOENT)
|
|
break;
|
|
|
|
if (intval == vdev_prop_default_numeric(prop))
|
|
src = ZPROP_SRC_DEFAULT;
|
|
else
|
|
src = ZPROP_SRC_LOCAL;
|
|
|
|
vdev_prop_add_list(outnvl, propname, NULL,
|
|
intval, src);
|
|
break;
|
|
/* Text Properties */
|
|
case VDEV_PROP_COMMENT:
|
|
/* Exists in the ZAP below */
|
|
/* FALLTHRU */
|
|
case VDEV_PROP_USERPROP:
|
|
/* User Properites */
|
|
src = ZPROP_SRC_LOCAL;
|
|
|
|
err = zap_length(mos, objid, nvpair_name(elem),
|
|
&integer_size, &num_integers);
|
|
if (err)
|
|
break;
|
|
|
|
switch (integer_size) {
|
|
case 8:
|
|
/* User properties cannot be integers */
|
|
err = EINVAL;
|
|
break;
|
|
case 1:
|
|
/* string property */
|
|
strval = kmem_alloc(num_integers,
|
|
KM_SLEEP);
|
|
err = zap_lookup(mos, objid,
|
|
nvpair_name(elem), 1,
|
|
num_integers, strval);
|
|
if (err) {
|
|
kmem_free(strval,
|
|
num_integers);
|
|
break;
|
|
}
|
|
vdev_prop_add_list(outnvl, propname,
|
|
strval, 0, src);
|
|
kmem_free(strval, num_integers);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
err = ENOENT;
|
|
break;
|
|
}
|
|
if (err)
|
|
break;
|
|
}
|
|
} else {
|
|
/*
|
|
* Get all properties from the MOS vdev property object.
|
|
*/
|
|
zap_cursor_t zc;
|
|
zap_attribute_t za;
|
|
for (zap_cursor_init(&zc, mos, objid);
|
|
(err = zap_cursor_retrieve(&zc, &za)) == 0;
|
|
zap_cursor_advance(&zc)) {
|
|
intval = 0;
|
|
strval = NULL;
|
|
zprop_source_t src = ZPROP_SRC_DEFAULT;
|
|
propname = za.za_name;
|
|
|
|
switch (za.za_integer_length) {
|
|
case 8:
|
|
/* We do not allow integer user properties */
|
|
/* This is likely an internal value */
|
|
break;
|
|
case 1:
|
|
/* string property */
|
|
strval = kmem_alloc(za.za_num_integers,
|
|
KM_SLEEP);
|
|
err = zap_lookup(mos, objid, za.za_name, 1,
|
|
za.za_num_integers, strval);
|
|
if (err) {
|
|
kmem_free(strval, za.za_num_integers);
|
|
break;
|
|
}
|
|
vdev_prop_add_list(outnvl, propname, strval, 0,
|
|
src);
|
|
kmem_free(strval, za.za_num_integers);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
zap_cursor_fini(&zc);
|
|
}
|
|
|
|
mutex_exit(&spa->spa_props_lock);
|
|
if (err && err != ENOENT) {
|
|
return (err);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdev_fault);
|
|
EXPORT_SYMBOL(vdev_degrade);
|
|
EXPORT_SYMBOL(vdev_online);
|
|
EXPORT_SYMBOL(vdev_offline);
|
|
EXPORT_SYMBOL(vdev_clear);
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
|
|
"Target number of metaslabs per top-level vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
|
|
"Default lower limit for metaslab size");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
|
|
"Default upper limit for metaslab size");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
|
|
"Minimum number of metaslabs per top-level vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
|
|
"Practical upper limit of total metaslabs per top-level vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
|
|
"Rate limit slow IO (delay) events to this many per second");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
|
|
"Rate limit hung IO (deadman) events to this many per second");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
|
|
"Rate Direct I/O write verify events to this many per second");
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
|
|
"Direct I/O writes will perform for checksum verification before "
|
|
"commiting write");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
|
|
"Rate limit checksum events to this many checksum errors per second "
|
|
"(do not set below ZED threshold).");
|
|
/* END CSTYLED */
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
|
|
"Ignore errors during resilver/scrub");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
|
|
"Bypass vdev_validate()");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
|
|
"Disable cache flushes");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
|
|
"Minimum number of metaslabs required to dedicate one for log blocks");
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
|
|
param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
|
|
"Minimum ashift used when creating new top-level vdevs");
|
|
|
|
ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
|
|
param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
|
|
"Maximum ashift used when optimizing for logical -> physical sector "
|
|
"size on new top-level vdevs");
|
|
/* END CSTYLED */
|