mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 03:09:34 +03:00
1fde1e3720
Gcc -Wall warn: 'unused variable' Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
1457 lines
34 KiB
C
1457 lines
34 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zio.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/zap_impl.h>
|
|
#include <sys/zap_leaf.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/arc.h>
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/sunddi.h>
|
|
#endif
|
|
|
|
static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
|
|
|
|
uint64_t
|
|
zap_getflags(zap_t *zap)
|
|
{
|
|
if (zap->zap_ismicro)
|
|
return (0);
|
|
return (zap->zap_u.zap_fat.zap_phys->zap_flags);
|
|
}
|
|
|
|
int
|
|
zap_hashbits(zap_t *zap)
|
|
{
|
|
if (zap_getflags(zap) & ZAP_FLAG_HASH64)
|
|
return (48);
|
|
else
|
|
return (28);
|
|
}
|
|
|
|
uint32_t
|
|
zap_maxcd(zap_t *zap)
|
|
{
|
|
if (zap_getflags(zap) & ZAP_FLAG_HASH64)
|
|
return ((1<<16)-1);
|
|
else
|
|
return (-1U);
|
|
}
|
|
|
|
static uint64_t
|
|
zap_hash(zap_name_t *zn)
|
|
{
|
|
zap_t *zap = zn->zn_zap;
|
|
uint64_t h = 0;
|
|
|
|
if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
|
|
ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
|
|
h = *(uint64_t *)zn->zn_key_orig;
|
|
} else {
|
|
h = zap->zap_salt;
|
|
ASSERT(h != 0);
|
|
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
|
|
|
|
if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
|
|
int i;
|
|
const uint64_t *wp = zn->zn_key_norm;
|
|
|
|
ASSERT(zn->zn_key_intlen == 8);
|
|
for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
|
|
int j;
|
|
uint64_t word = *wp;
|
|
|
|
for (j = 0; j < zn->zn_key_intlen; j++) {
|
|
h = (h >> 8) ^
|
|
zfs_crc64_table[(h ^ word) & 0xFF];
|
|
word >>= NBBY;
|
|
}
|
|
}
|
|
} else {
|
|
int i, len;
|
|
const uint8_t *cp = zn->zn_key_norm;
|
|
|
|
/*
|
|
* We previously stored the terminating null on
|
|
* disk, but didn't hash it, so we need to
|
|
* continue to not hash it. (The
|
|
* zn_key_*_numints includes the terminating
|
|
* null for non-binary keys.)
|
|
*/
|
|
len = zn->zn_key_norm_numints - 1;
|
|
|
|
ASSERT(zn->zn_key_intlen == 1);
|
|
for (i = 0; i < len; cp++, i++) {
|
|
h = (h >> 8) ^
|
|
zfs_crc64_table[(h ^ *cp) & 0xFF];
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Don't use all 64 bits, since we need some in the cookie for
|
|
* the collision differentiator. We MUST use the high bits,
|
|
* since those are the ones that we first pay attention to when
|
|
* chosing the bucket.
|
|
*/
|
|
h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
|
|
|
|
return (h);
|
|
}
|
|
|
|
static int
|
|
zap_normalize(zap_t *zap, const char *name, char *namenorm)
|
|
{
|
|
size_t inlen, outlen;
|
|
int err;
|
|
|
|
ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
|
|
|
|
inlen = strlen(name) + 1;
|
|
outlen = ZAP_MAXNAMELEN;
|
|
|
|
err = 0;
|
|
(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
|
|
zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
|
|
U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
|
|
|
|
return (err);
|
|
}
|
|
|
|
boolean_t
|
|
zap_match(zap_name_t *zn, const char *matchname)
|
|
{
|
|
ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
|
|
|
|
if (zn->zn_matchtype == MT_FIRST) {
|
|
char norm[ZAP_MAXNAMELEN];
|
|
|
|
if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
|
|
return (B_FALSE);
|
|
|
|
return (strcmp(zn->zn_key_norm, norm) == 0);
|
|
} else {
|
|
/* MT_BEST or MT_EXACT */
|
|
return (strcmp(zn->zn_key_orig, matchname) == 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
zap_name_free(zap_name_t *zn)
|
|
{
|
|
kmem_free(zn, sizeof (zap_name_t));
|
|
}
|
|
|
|
zap_name_t *
|
|
zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
|
|
{
|
|
zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
|
|
|
|
zn->zn_zap = zap;
|
|
zn->zn_key_intlen = sizeof (*key);
|
|
zn->zn_key_orig = key;
|
|
zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
|
|
zn->zn_matchtype = mt;
|
|
if (zap->zap_normflags) {
|
|
if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
|
|
zap_name_free(zn);
|
|
return (NULL);
|
|
}
|
|
zn->zn_key_norm = zn->zn_normbuf;
|
|
zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
|
|
} else {
|
|
if (mt != MT_EXACT) {
|
|
zap_name_free(zn);
|
|
return (NULL);
|
|
}
|
|
zn->zn_key_norm = zn->zn_key_orig;
|
|
zn->zn_key_norm_numints = zn->zn_key_orig_numints;
|
|
}
|
|
|
|
zn->zn_hash = zap_hash(zn);
|
|
return (zn);
|
|
}
|
|
|
|
zap_name_t *
|
|
zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
|
|
{
|
|
zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
|
|
|
|
ASSERT(zap->zap_normflags == 0);
|
|
zn->zn_zap = zap;
|
|
zn->zn_key_intlen = sizeof (*key);
|
|
zn->zn_key_orig = zn->zn_key_norm = key;
|
|
zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
|
|
zn->zn_matchtype = MT_EXACT;
|
|
|
|
zn->zn_hash = zap_hash(zn);
|
|
return (zn);
|
|
}
|
|
|
|
static void
|
|
mzap_byteswap(mzap_phys_t *buf, size_t size)
|
|
{
|
|
int i, max;
|
|
buf->mz_block_type = BSWAP_64(buf->mz_block_type);
|
|
buf->mz_salt = BSWAP_64(buf->mz_salt);
|
|
buf->mz_normflags = BSWAP_64(buf->mz_normflags);
|
|
max = (size / MZAP_ENT_LEN) - 1;
|
|
for (i = 0; i < max; i++) {
|
|
buf->mz_chunk[i].mze_value =
|
|
BSWAP_64(buf->mz_chunk[i].mze_value);
|
|
buf->mz_chunk[i].mze_cd =
|
|
BSWAP_32(buf->mz_chunk[i].mze_cd);
|
|
}
|
|
}
|
|
|
|
void
|
|
zap_byteswap(void *buf, size_t size)
|
|
{
|
|
uint64_t block_type;
|
|
|
|
block_type = *(uint64_t *)buf;
|
|
|
|
if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
|
|
/* ASSERT(magic == ZAP_LEAF_MAGIC); */
|
|
mzap_byteswap(buf, size);
|
|
} else {
|
|
fzap_byteswap(buf, size);
|
|
}
|
|
}
|
|
|
|
static int
|
|
mze_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const mzap_ent_t *mze1 = arg1;
|
|
const mzap_ent_t *mze2 = arg2;
|
|
|
|
if (mze1->mze_hash > mze2->mze_hash)
|
|
return (+1);
|
|
if (mze1->mze_hash < mze2->mze_hash)
|
|
return (-1);
|
|
if (mze1->mze_cd > mze2->mze_cd)
|
|
return (+1);
|
|
if (mze1->mze_cd < mze2->mze_cd)
|
|
return (-1);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
mze_insert(zap_t *zap, int chunkid, uint64_t hash)
|
|
{
|
|
mzap_ent_t *mze;
|
|
|
|
ASSERT(zap->zap_ismicro);
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
|
|
mze->mze_chunkid = chunkid;
|
|
mze->mze_hash = hash;
|
|
mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
|
|
ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
|
|
avl_add(&zap->zap_m.zap_avl, mze);
|
|
}
|
|
|
|
static mzap_ent_t *
|
|
mze_find(zap_name_t *zn)
|
|
{
|
|
mzap_ent_t mze_tofind;
|
|
mzap_ent_t *mze;
|
|
avl_index_t idx;
|
|
avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
|
|
|
|
ASSERT(zn->zn_zap->zap_ismicro);
|
|
ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
|
|
|
|
mze_tofind.mze_hash = zn->zn_hash;
|
|
mze_tofind.mze_cd = 0;
|
|
|
|
again:
|
|
mze = avl_find(avl, &mze_tofind, &idx);
|
|
if (mze == NULL)
|
|
mze = avl_nearest(avl, idx, AVL_AFTER);
|
|
for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
|
|
ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
|
|
if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
|
|
return (mze);
|
|
}
|
|
if (zn->zn_matchtype == MT_BEST) {
|
|
zn->zn_matchtype = MT_FIRST;
|
|
goto again;
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static uint32_t
|
|
mze_find_unused_cd(zap_t *zap, uint64_t hash)
|
|
{
|
|
mzap_ent_t mze_tofind;
|
|
mzap_ent_t *mze;
|
|
avl_index_t idx;
|
|
avl_tree_t *avl = &zap->zap_m.zap_avl;
|
|
uint32_t cd;
|
|
|
|
ASSERT(zap->zap_ismicro);
|
|
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
|
|
|
|
mze_tofind.mze_hash = hash;
|
|
mze_tofind.mze_cd = 0;
|
|
|
|
cd = 0;
|
|
for (mze = avl_find(avl, &mze_tofind, &idx);
|
|
mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
|
|
if (mze->mze_cd != cd)
|
|
break;
|
|
cd++;
|
|
}
|
|
|
|
return (cd);
|
|
}
|
|
|
|
static void
|
|
mze_remove(zap_t *zap, mzap_ent_t *mze)
|
|
{
|
|
ASSERT(zap->zap_ismicro);
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
avl_remove(&zap->zap_m.zap_avl, mze);
|
|
kmem_free(mze, sizeof (mzap_ent_t));
|
|
}
|
|
|
|
static void
|
|
mze_destroy(zap_t *zap)
|
|
{
|
|
mzap_ent_t *mze;
|
|
void *avlcookie = NULL;
|
|
|
|
while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)))
|
|
kmem_free(mze, sizeof (mzap_ent_t));
|
|
avl_destroy(&zap->zap_m.zap_avl);
|
|
}
|
|
|
|
static zap_t *
|
|
mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
|
|
{
|
|
zap_t *winner;
|
|
zap_t *zap;
|
|
int i;
|
|
|
|
ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
|
|
|
|
zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
|
|
rw_init(&zap->zap_rwlock, 0, 0, 0);
|
|
rw_enter(&zap->zap_rwlock, RW_WRITER);
|
|
zap->zap_objset = os;
|
|
zap->zap_object = obj;
|
|
zap->zap_dbuf = db;
|
|
|
|
if (*(uint64_t *)db->db_data != ZBT_MICRO) {
|
|
mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
|
|
zap->zap_f.zap_block_shift = highbit(db->db_size) - 1;
|
|
} else {
|
|
zap->zap_ismicro = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Make sure that zap_ismicro is set before we let others see
|
|
* it, because zap_lockdir() checks zap_ismicro without the lock
|
|
* held.
|
|
*/
|
|
winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
|
|
|
|
if (winner != NULL) {
|
|
rw_exit(&zap->zap_rwlock);
|
|
rw_destroy(&zap->zap_rwlock);
|
|
if (!zap->zap_ismicro)
|
|
mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
|
|
kmem_free(zap, sizeof (zap_t));
|
|
return (winner);
|
|
}
|
|
|
|
if (zap->zap_ismicro) {
|
|
zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
|
|
zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
|
|
zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
|
|
avl_create(&zap->zap_m.zap_avl, mze_compare,
|
|
sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
|
|
|
|
for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
|
|
mzap_ent_phys_t *mze =
|
|
&zap->zap_m.zap_phys->mz_chunk[i];
|
|
if (mze->mze_name[0]) {
|
|
zap_name_t *zn;
|
|
|
|
zap->zap_m.zap_num_entries++;
|
|
zn = zap_name_alloc(zap, mze->mze_name,
|
|
MT_EXACT);
|
|
mze_insert(zap, i, zn->zn_hash);
|
|
zap_name_free(zn);
|
|
}
|
|
}
|
|
} else {
|
|
zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
|
|
zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
|
|
|
|
ASSERT3U(sizeof (struct zap_leaf_header), ==,
|
|
2*ZAP_LEAF_CHUNKSIZE);
|
|
|
|
/*
|
|
* The embedded pointer table should not overlap the
|
|
* other members.
|
|
*/
|
|
ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
|
|
&zap->zap_f.zap_phys->zap_salt);
|
|
|
|
/*
|
|
* The embedded pointer table should end at the end of
|
|
* the block
|
|
*/
|
|
ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
|
|
1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
|
|
(uintptr_t)zap->zap_f.zap_phys, ==,
|
|
zap->zap_dbuf->db_size);
|
|
}
|
|
rw_exit(&zap->zap_rwlock);
|
|
return (zap);
|
|
}
|
|
|
|
int
|
|
zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
|
|
krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
|
|
{
|
|
zap_t *zap;
|
|
dmu_buf_t *db;
|
|
krw_t lt;
|
|
int err;
|
|
|
|
*zapp = NULL;
|
|
|
|
err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
|
|
if (err)
|
|
return (err);
|
|
|
|
#ifdef ZFS_DEBUG
|
|
{
|
|
dmu_object_info_t doi;
|
|
dmu_object_info_from_db(db, &doi);
|
|
ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
|
|
}
|
|
#endif
|
|
|
|
zap = dmu_buf_get_user(db);
|
|
if (zap == NULL)
|
|
zap = mzap_open(os, obj, db);
|
|
|
|
/*
|
|
* We're checking zap_ismicro without the lock held, in order to
|
|
* tell what type of lock we want. Once we have some sort of
|
|
* lock, see if it really is the right type. In practice this
|
|
* can only be different if it was upgraded from micro to fat,
|
|
* and micro wanted WRITER but fat only needs READER.
|
|
*/
|
|
lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
|
|
rw_enter(&zap->zap_rwlock, lt);
|
|
if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
|
|
/* it was upgraded, now we only need reader */
|
|
ASSERT(lt == RW_WRITER);
|
|
ASSERT(RW_READER ==
|
|
(!zap->zap_ismicro && fatreader) ? RW_READER : lti);
|
|
rw_downgrade(&zap->zap_rwlock);
|
|
lt = RW_READER;
|
|
}
|
|
|
|
zap->zap_objset = os;
|
|
|
|
if (lt == RW_WRITER)
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
ASSERT3P(zap->zap_dbuf, ==, db);
|
|
|
|
ASSERT(!zap->zap_ismicro ||
|
|
zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
|
|
if (zap->zap_ismicro && tx && adding &&
|
|
zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
|
|
uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
|
|
if (newsz > MZAP_MAX_BLKSZ) {
|
|
dprintf("upgrading obj %llu: num_entries=%u\n",
|
|
obj, zap->zap_m.zap_num_entries);
|
|
*zapp = zap;
|
|
return (mzap_upgrade(zapp, tx, 0));
|
|
}
|
|
err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
|
|
ASSERT3U(err, ==, 0);
|
|
zap->zap_m.zap_num_chunks =
|
|
db->db_size / MZAP_ENT_LEN - 1;
|
|
}
|
|
|
|
*zapp = zap;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zap_unlockdir(zap_t *zap)
|
|
{
|
|
rw_exit(&zap->zap_rwlock);
|
|
dmu_buf_rele(zap->zap_dbuf, NULL);
|
|
}
|
|
|
|
static int
|
|
mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
|
|
{
|
|
mzap_phys_t *mzp;
|
|
int i, sz, nchunks;
|
|
int err = 0;
|
|
zap_t *zap = *zapp;
|
|
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
sz = zap->zap_dbuf->db_size;
|
|
mzp = kmem_alloc(sz, KM_SLEEP);
|
|
bcopy(zap->zap_dbuf->db_data, mzp, sz);
|
|
nchunks = zap->zap_m.zap_num_chunks;
|
|
|
|
if (!flags) {
|
|
err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
|
|
1ULL << fzap_default_block_shift, 0, tx);
|
|
if (err) {
|
|
kmem_free(mzp, sz);
|
|
return (err);
|
|
}
|
|
}
|
|
|
|
dprintf("upgrading obj=%llu with %u chunks\n",
|
|
zap->zap_object, nchunks);
|
|
/* XXX destroy the avl later, so we can use the stored hash value */
|
|
mze_destroy(zap);
|
|
|
|
fzap_upgrade(zap, tx, flags);
|
|
|
|
for (i = 0; i < nchunks; i++) {
|
|
mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
|
|
zap_name_t *zn;
|
|
if (mze->mze_name[0] == 0)
|
|
continue;
|
|
dprintf("adding %s=%llu\n",
|
|
mze->mze_name, mze->mze_value);
|
|
zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
|
|
err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
|
|
zap = zn->zn_zap; /* fzap_add_cd() may change zap */
|
|
zap_name_free(zn);
|
|
if (err)
|
|
break;
|
|
}
|
|
kmem_free(mzp, sz);
|
|
*zapp = zap;
|
|
return (err);
|
|
}
|
|
|
|
static void
|
|
mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
|
|
dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_t *db;
|
|
mzap_phys_t *zp;
|
|
|
|
VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
|
|
|
|
#ifdef ZFS_DEBUG
|
|
{
|
|
dmu_object_info_t doi;
|
|
dmu_object_info_from_db(db, &doi);
|
|
ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
|
|
}
|
|
#endif
|
|
|
|
dmu_buf_will_dirty(db, tx);
|
|
zp = db->db_data;
|
|
zp->mz_block_type = ZBT_MICRO;
|
|
zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
|
|
zp->mz_normflags = normflags;
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
if (flags != 0) {
|
|
zap_t *zap;
|
|
/* Only fat zap supports flags; upgrade immediately. */
|
|
VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
|
|
B_FALSE, B_FALSE, &zap));
|
|
VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
|
|
zap_unlockdir(zap);
|
|
}
|
|
}
|
|
|
|
int
|
|
zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_claim_norm(os, obj,
|
|
0, ot, bonustype, bonuslen, tx));
|
|
}
|
|
|
|
int
|
|
zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
|
|
dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
int err;
|
|
|
|
err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
|
|
if (err != 0)
|
|
return (err);
|
|
mzap_create_impl(os, obj, normflags, 0, tx);
|
|
return (0);
|
|
}
|
|
|
|
uint64_t
|
|
zap_create(objset_t *os, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
|
|
}
|
|
|
|
uint64_t
|
|
zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
|
|
|
|
mzap_create_impl(os, obj, normflags, 0, tx);
|
|
return (obj);
|
|
}
|
|
|
|
uint64_t
|
|
zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
|
|
dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
|
|
dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
|
|
{
|
|
uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
|
|
|
|
ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
|
|
leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
|
|
indirect_blockshift >= SPA_MINBLOCKSHIFT &&
|
|
indirect_blockshift <= SPA_MAXBLOCKSHIFT);
|
|
|
|
VERIFY(dmu_object_set_blocksize(os, obj,
|
|
1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
|
|
|
|
mzap_create_impl(os, obj, normflags, flags, tx);
|
|
return (obj);
|
|
}
|
|
|
|
int
|
|
zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
|
|
{
|
|
/*
|
|
* dmu_object_free will free the object number and free the
|
|
* data. Freeing the data will cause our pageout function to be
|
|
* called, which will destroy our data (zap_leaf_t's and zap_t).
|
|
*/
|
|
|
|
return (dmu_object_free(os, zapobj, tx));
|
|
}
|
|
|
|
_NOTE(ARGSUSED(0))
|
|
void
|
|
zap_evict(dmu_buf_t *db, void *vzap)
|
|
{
|
|
zap_t *zap = vzap;
|
|
|
|
rw_destroy(&zap->zap_rwlock);
|
|
|
|
if (zap->zap_ismicro)
|
|
mze_destroy(zap);
|
|
else
|
|
mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
|
|
|
|
kmem_free(zap, sizeof (zap_t));
|
|
}
|
|
|
|
int
|
|
zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_count(zap, count);
|
|
} else {
|
|
*count = zap->zap_m.zap_num_entries;
|
|
}
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* zn may be NULL; if not specified, it will be computed if needed.
|
|
* See also the comment above zap_entry_normalization_conflict().
|
|
*/
|
|
static boolean_t
|
|
mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
|
|
{
|
|
mzap_ent_t *other;
|
|
int direction = AVL_BEFORE;
|
|
boolean_t allocdzn = B_FALSE;
|
|
|
|
if (zap->zap_normflags == 0)
|
|
return (B_FALSE);
|
|
|
|
again:
|
|
for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
|
|
other && other->mze_hash == mze->mze_hash;
|
|
other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
|
|
|
|
if (zn == NULL) {
|
|
zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
|
|
MT_FIRST);
|
|
allocdzn = B_TRUE;
|
|
}
|
|
if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
|
|
if (allocdzn)
|
|
zap_name_free(zn);
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
|
|
if (direction == AVL_BEFORE) {
|
|
direction = AVL_AFTER;
|
|
goto again;
|
|
}
|
|
|
|
if (allocdzn)
|
|
zap_name_free(zn);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Routines for manipulating attributes.
|
|
*/
|
|
|
|
int
|
|
zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
|
|
uint64_t integer_size, uint64_t num_integers, void *buf)
|
|
{
|
|
return (zap_lookup_norm(os, zapobj, name, integer_size,
|
|
num_integers, buf, MT_EXACT, NULL, 0, NULL));
|
|
}
|
|
|
|
int
|
|
zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
|
|
uint64_t integer_size, uint64_t num_integers, void *buf,
|
|
matchtype_t mt, char *realname, int rn_len,
|
|
boolean_t *ncp)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
mzap_ent_t *mze;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, name, mt);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_lookup(zn, integer_size, num_integers, buf,
|
|
realname, rn_len, ncp);
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze == NULL) {
|
|
err = ENOENT;
|
|
} else {
|
|
if (num_integers < 1) {
|
|
err = EOVERFLOW;
|
|
} else if (integer_size != 8) {
|
|
err = EINVAL;
|
|
} else {
|
|
*(uint64_t *)buf =
|
|
MZE_PHYS(zap, mze)->mze_value;
|
|
(void) strlcpy(realname,
|
|
MZE_PHYS(zap, mze)->mze_name, rn_len);
|
|
if (ncp) {
|
|
*ncp = mzap_normalization_conflict(zap,
|
|
zn, mze);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
fzap_prefetch(zn);
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
err = fzap_lookup(zn, integer_size, num_integers, buf,
|
|
NULL, 0, NULL);
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_contains(objset_t *os, uint64_t zapobj, const char *name)
|
|
{
|
|
int err = (zap_lookup_norm(os, zapobj, name, 0,
|
|
0, NULL, MT_EXACT, NULL, 0, NULL));
|
|
if (err == EOVERFLOW || err == EINVAL)
|
|
err = 0; /* found, but skipped reading the value */
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_length(objset_t *os, uint64_t zapobj, const char *name,
|
|
uint64_t *integer_size, uint64_t *num_integers)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
mzap_ent_t *mze;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, name, MT_EXACT);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_length(zn, integer_size, num_integers);
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze == NULL) {
|
|
err = ENOENT;
|
|
} else {
|
|
if (integer_size)
|
|
*integer_size = 8;
|
|
if (num_integers)
|
|
*num_integers = 1;
|
|
}
|
|
}
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints, uint64_t *integer_size, uint64_t *num_integers)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
err = fzap_length(zn, integer_size, num_integers);
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
static void
|
|
mzap_addent(zap_name_t *zn, uint64_t value)
|
|
{
|
|
int i;
|
|
zap_t *zap = zn->zn_zap;
|
|
int start = zap->zap_m.zap_alloc_next;
|
|
uint32_t cd;
|
|
|
|
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
|
|
|
|
#ifdef ZFS_DEBUG
|
|
for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
|
|
ASSERTV(mzap_ent_phys_t *mze=&zap->zap_m.zap_phys->mz_chunk[i]);
|
|
ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
|
|
}
|
|
#endif
|
|
|
|
cd = mze_find_unused_cd(zap, zn->zn_hash);
|
|
/* given the limited size of the microzap, this can't happen */
|
|
ASSERT(cd < zap_maxcd(zap));
|
|
|
|
again:
|
|
for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
|
|
mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
|
|
if (mze->mze_name[0] == 0) {
|
|
mze->mze_value = value;
|
|
mze->mze_cd = cd;
|
|
(void) strcpy(mze->mze_name, zn->zn_key_orig);
|
|
zap->zap_m.zap_num_entries++;
|
|
zap->zap_m.zap_alloc_next = i+1;
|
|
if (zap->zap_m.zap_alloc_next ==
|
|
zap->zap_m.zap_num_chunks)
|
|
zap->zap_m.zap_alloc_next = 0;
|
|
mze_insert(zap, i, zn->zn_hash);
|
|
return;
|
|
}
|
|
}
|
|
if (start != 0) {
|
|
start = 0;
|
|
goto again;
|
|
}
|
|
ASSERT(!"out of entries!");
|
|
}
|
|
|
|
int
|
|
zap_add(objset_t *os, uint64_t zapobj, const char *key,
|
|
int integer_size, uint64_t num_integers,
|
|
const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
mzap_ent_t *mze;
|
|
const uint64_t *intval = val;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, key, MT_EXACT);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_add(zn, integer_size, num_integers, val, tx);
|
|
zap = zn->zn_zap; /* fzap_add() may change zap */
|
|
} else if (integer_size != 8 || num_integers != 1 ||
|
|
strlen(key) >= MZAP_NAME_LEN) {
|
|
err = mzap_upgrade(&zn->zn_zap, tx, 0);
|
|
if (err == 0)
|
|
err = fzap_add(zn, integer_size, num_integers, val, tx);
|
|
zap = zn->zn_zap; /* fzap_add() may change zap */
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze != NULL) {
|
|
err = EEXIST;
|
|
} else {
|
|
mzap_addent(zn, *intval);
|
|
}
|
|
}
|
|
ASSERT(zap == zn->zn_zap);
|
|
zap_name_free(zn);
|
|
if (zap != NULL) /* may be NULL if fzap_add() failed */
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints, int integer_size, uint64_t num_integers,
|
|
const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
err = fzap_add(zn, integer_size, num_integers, val, tx);
|
|
zap = zn->zn_zap; /* fzap_add() may change zap */
|
|
zap_name_free(zn);
|
|
if (zap != NULL) /* may be NULL if fzap_add() failed */
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_update(objset_t *os, uint64_t zapobj, const char *name,
|
|
int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
mzap_ent_t *mze;
|
|
const uint64_t *intval = val;
|
|
zap_name_t *zn;
|
|
int err;
|
|
|
|
#ifdef ZFS_DEBUG
|
|
uint64_t oldval;
|
|
|
|
/*
|
|
* If there is an old value, it shouldn't change across the
|
|
* lockdir (eg, due to bprewrite's xlation).
|
|
*/
|
|
if (integer_size == 8 && num_integers == 1)
|
|
(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
|
|
#endif
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, name, MT_EXACT);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_update(zn, integer_size, num_integers, val, tx);
|
|
zap = zn->zn_zap; /* fzap_update() may change zap */
|
|
} else if (integer_size != 8 || num_integers != 1 ||
|
|
strlen(name) >= MZAP_NAME_LEN) {
|
|
dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
|
|
zapobj, integer_size, num_integers, name);
|
|
err = mzap_upgrade(&zn->zn_zap, tx, 0);
|
|
if (err == 0)
|
|
err = fzap_update(zn, integer_size, num_integers,
|
|
val, tx);
|
|
zap = zn->zn_zap; /* fzap_update() may change zap */
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze != NULL) {
|
|
ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
|
|
MZE_PHYS(zap, mze)->mze_value = *intval;
|
|
} else {
|
|
mzap_addent(zn, *intval);
|
|
}
|
|
}
|
|
ASSERT(zap == zn->zn_zap);
|
|
zap_name_free(zn);
|
|
if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints,
|
|
int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
zap_name_t *zn;
|
|
int err;
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
err = fzap_update(zn, integer_size, num_integers, val, tx);
|
|
zap = zn->zn_zap; /* fzap_update() may change zap */
|
|
zap_name_free(zn);
|
|
if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
|
|
{
|
|
return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
|
|
}
|
|
|
|
int
|
|
zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
|
|
matchtype_t mt, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
mzap_ent_t *mze;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc(zap, name, mt);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
if (!zap->zap_ismicro) {
|
|
err = fzap_remove(zn, tx);
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze == NULL) {
|
|
err = ENOENT;
|
|
} else {
|
|
zap->zap_m.zap_num_entries--;
|
|
bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
|
|
sizeof (mzap_ent_phys_t));
|
|
mze_remove(zap, mze);
|
|
}
|
|
}
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
|
|
int key_numints, dmu_tx_t *tx)
|
|
{
|
|
zap_t *zap;
|
|
int err;
|
|
zap_name_t *zn;
|
|
|
|
err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
zn = zap_name_alloc_uint64(zap, key, key_numints);
|
|
if (zn == NULL) {
|
|
zap_unlockdir(zap);
|
|
return (ENOTSUP);
|
|
}
|
|
err = fzap_remove(zn, tx);
|
|
zap_name_free(zn);
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Routines for iterating over the attributes.
|
|
*/
|
|
|
|
void
|
|
zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
|
|
uint64_t serialized)
|
|
{
|
|
zc->zc_objset = os;
|
|
zc->zc_zap = NULL;
|
|
zc->zc_leaf = NULL;
|
|
zc->zc_zapobj = zapobj;
|
|
zc->zc_serialized = serialized;
|
|
zc->zc_hash = 0;
|
|
zc->zc_cd = 0;
|
|
}
|
|
|
|
void
|
|
zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
|
|
{
|
|
zap_cursor_init_serialized(zc, os, zapobj, 0);
|
|
}
|
|
|
|
void
|
|
zap_cursor_fini(zap_cursor_t *zc)
|
|
{
|
|
if (zc->zc_zap) {
|
|
rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
|
|
zap_unlockdir(zc->zc_zap);
|
|
zc->zc_zap = NULL;
|
|
}
|
|
if (zc->zc_leaf) {
|
|
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
|
|
zap_put_leaf(zc->zc_leaf);
|
|
zc->zc_leaf = NULL;
|
|
}
|
|
zc->zc_objset = NULL;
|
|
}
|
|
|
|
uint64_t
|
|
zap_cursor_serialize(zap_cursor_t *zc)
|
|
{
|
|
if (zc->zc_hash == -1ULL)
|
|
return (-1ULL);
|
|
if (zc->zc_zap == NULL)
|
|
return (zc->zc_serialized);
|
|
ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
|
|
ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
|
|
|
|
/*
|
|
* We want to keep the high 32 bits of the cursor zero if we can, so
|
|
* that 32-bit programs can access this. So usually use a small
|
|
* (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
|
|
* of the cursor.
|
|
*
|
|
* [ collision differentiator | zap_hashbits()-bit hash value ]
|
|
*/
|
|
return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
|
|
((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
|
|
}
|
|
|
|
int
|
|
zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
|
|
{
|
|
int err;
|
|
avl_index_t idx;
|
|
mzap_ent_t mze_tofind;
|
|
mzap_ent_t *mze;
|
|
|
|
if (zc->zc_hash == -1ULL)
|
|
return (ENOENT);
|
|
|
|
if (zc->zc_zap == NULL) {
|
|
int hb;
|
|
err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
|
|
RW_READER, TRUE, FALSE, &zc->zc_zap);
|
|
if (err)
|
|
return (err);
|
|
|
|
/*
|
|
* To support zap_cursor_init_serialized, advance, retrieve,
|
|
* we must add to the existing zc_cd, which may already
|
|
* be 1 due to the zap_cursor_advance.
|
|
*/
|
|
ASSERT(zc->zc_hash == 0);
|
|
hb = zap_hashbits(zc->zc_zap);
|
|
zc->zc_hash = zc->zc_serialized << (64 - hb);
|
|
zc->zc_cd += zc->zc_serialized >> hb;
|
|
if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
|
|
zc->zc_cd = 0;
|
|
} else {
|
|
rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
|
|
}
|
|
if (!zc->zc_zap->zap_ismicro) {
|
|
err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
|
|
} else {
|
|
err = ENOENT;
|
|
|
|
mze_tofind.mze_hash = zc->zc_hash;
|
|
mze_tofind.mze_cd = zc->zc_cd;
|
|
|
|
mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
|
|
if (mze == NULL) {
|
|
mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
|
|
idx, AVL_AFTER);
|
|
}
|
|
if (mze) {
|
|
mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
|
|
ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
|
|
za->za_normalization_conflict =
|
|
mzap_normalization_conflict(zc->zc_zap, NULL, mze);
|
|
za->za_integer_length = 8;
|
|
za->za_num_integers = 1;
|
|
za->za_first_integer = mzep->mze_value;
|
|
(void) strcpy(za->za_name, mzep->mze_name);
|
|
zc->zc_hash = mze->mze_hash;
|
|
zc->zc_cd = mze->mze_cd;
|
|
err = 0;
|
|
} else {
|
|
zc->zc_hash = -1ULL;
|
|
}
|
|
}
|
|
rw_exit(&zc->zc_zap->zap_rwlock);
|
|
return (err);
|
|
}
|
|
|
|
void
|
|
zap_cursor_advance(zap_cursor_t *zc)
|
|
{
|
|
if (zc->zc_hash == -1ULL)
|
|
return;
|
|
zc->zc_cd++;
|
|
}
|
|
|
|
int
|
|
zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt)
|
|
{
|
|
int err = 0;
|
|
mzap_ent_t *mze;
|
|
zap_name_t *zn;
|
|
|
|
if (zc->zc_zap == NULL) {
|
|
err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
|
|
RW_READER, TRUE, FALSE, &zc->zc_zap);
|
|
if (err)
|
|
return (err);
|
|
} else {
|
|
rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
|
|
}
|
|
|
|
zn = zap_name_alloc(zc->zc_zap, name, mt);
|
|
if (zn == NULL) {
|
|
rw_exit(&zc->zc_zap->zap_rwlock);
|
|
return (ENOTSUP);
|
|
}
|
|
|
|
if (!zc->zc_zap->zap_ismicro) {
|
|
err = fzap_cursor_move_to_key(zc, zn);
|
|
} else {
|
|
mze = mze_find(zn);
|
|
if (mze == NULL) {
|
|
err = ENOENT;
|
|
goto out;
|
|
}
|
|
zc->zc_hash = mze->mze_hash;
|
|
zc->zc_cd = mze->mze_cd;
|
|
}
|
|
|
|
out:
|
|
zap_name_free(zn);
|
|
rw_exit(&zc->zc_zap->zap_rwlock);
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
|
|
{
|
|
int err;
|
|
zap_t *zap;
|
|
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
|
|
bzero(zs, sizeof (zap_stats_t));
|
|
|
|
if (zap->zap_ismicro) {
|
|
zs->zs_blocksize = zap->zap_dbuf->db_size;
|
|
zs->zs_num_entries = zap->zap_m.zap_num_entries;
|
|
zs->zs_num_blocks = 1;
|
|
} else {
|
|
fzap_get_stats(zap, zs);
|
|
}
|
|
zap_unlockdir(zap);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
|
|
uint64_t *towrite, uint64_t *tooverwrite)
|
|
{
|
|
zap_t *zap;
|
|
int err = 0;
|
|
|
|
|
|
/*
|
|
* Since, we don't have a name, we cannot figure out which blocks will
|
|
* be affected in this operation. So, account for the worst case :
|
|
* - 3 blocks overwritten: target leaf, ptrtbl block, header block
|
|
* - 4 new blocks written if adding:
|
|
* - 2 blocks for possibly split leaves,
|
|
* - 2 grown ptrtbl blocks
|
|
*
|
|
* This also accomodates the case where an add operation to a fairly
|
|
* large microzap results in a promotion to fatzap.
|
|
*/
|
|
if (name == NULL) {
|
|
*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* We lock the zap with adding == FALSE. Because, if we pass
|
|
* the actual value of add, it could trigger a mzap_upgrade().
|
|
* At present we are just evaluating the possibility of this operation
|
|
* and hence we donot want to trigger an upgrade.
|
|
*/
|
|
err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
|
|
if (err)
|
|
return (err);
|
|
|
|
if (!zap->zap_ismicro) {
|
|
zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
|
|
if (zn) {
|
|
err = fzap_count_write(zn, add, towrite,
|
|
tooverwrite);
|
|
zap_name_free(zn);
|
|
} else {
|
|
/*
|
|
* We treat this case as similar to (name == NULL)
|
|
*/
|
|
*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
|
|
}
|
|
} else {
|
|
/*
|
|
* We are here if (name != NULL) and this is a micro-zap.
|
|
* We account for the header block depending on whether it
|
|
* is freeable.
|
|
*
|
|
* Incase of an add-operation it is hard to find out
|
|
* if this add will promote this microzap to fatzap.
|
|
* Hence, we consider the worst case and account for the
|
|
* blocks assuming this microzap would be promoted to a
|
|
* fatzap.
|
|
*
|
|
* 1 block overwritten : header block
|
|
* 4 new blocks written : 2 new split leaf, 2 grown
|
|
* ptrtbl blocks
|
|
*/
|
|
if (dmu_buf_freeable(zap->zap_dbuf))
|
|
*tooverwrite += SPA_MAXBLOCKSIZE;
|
|
else
|
|
*towrite += SPA_MAXBLOCKSIZE;
|
|
|
|
if (add) {
|
|
*towrite += 4 * SPA_MAXBLOCKSIZE;
|
|
}
|
|
}
|
|
|
|
zap_unlockdir(zap);
|
|
return (err);
|
|
}
|