mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-27 19:39:35 +03:00
ab8d9c1783
Various module parameters such as `zfs_arc_max` were originally `uint64_t` on OpenSolaris/Illumos, but were changed to `unsigned long` for Linux compatibility because Linux's kernel default module parameter implementation did not support 64-bit types on 32-bit platforms. This caused problems when porting OpenZFS to Windows because its LLP64 memory model made `unsigned long` a 32-bit type on 64-bit, which created the undesireable situation that parameters that should accept 64-bit values could not on 64-bit Windows. Upon inspection, it turns out that the Linux kernel module parameter interface is extensible, such that we are allowed to define our own types. Rather than maintaining the original type change via hacks to to continue shrinking module parameters on 32-bit Linux, we implement support for 64-bit module parameters on Linux. After doing a review of all 64-bit kernel parameters (found via the man page and also proposed changes by Andrew Innes), the kernel module parameters fell into a few groups: Parameters that were originally 64-bit on Illumos: * dbuf_cache_max_bytes * dbuf_metadata_cache_max_bytes * l2arc_feed_min_ms * l2arc_feed_secs * l2arc_headroom * l2arc_headroom_boost * l2arc_write_boost * l2arc_write_max * metaslab_aliquot * metaslab_force_ganging * zfetch_array_rd_sz * zfs_arc_max * zfs_arc_meta_limit * zfs_arc_meta_min * zfs_arc_min * zfs_async_block_max_blocks * zfs_condense_max_obsolete_bytes * zfs_condense_min_mapping_bytes * zfs_deadman_checktime_ms * zfs_deadman_synctime_ms * zfs_initialize_chunk_size * zfs_initialize_value * zfs_lua_max_instrlimit * zfs_lua_max_memlimit * zil_slog_bulk Parameters that were originally 32-bit on Illumos: * zfs_per_txg_dirty_frees_percent Parameters that were originally `ssize_t` on Illumos: * zfs_immediate_write_sz Note that `ssize_t` is `int32_t` on 32-bit and `int64_t` on 64-bit. It has been upgraded to 64-bit. Parameters that were `long`/`unsigned long` because of Linux/FreeBSD influence: * l2arc_rebuild_blocks_min_l2size * zfs_key_max_salt_uses * zfs_max_log_walking * zfs_max_logsm_summary_length * zfs_metaslab_max_size_cache_sec * zfs_min_metaslabs_to_flush * zfs_multihost_interval * zfs_unflushed_log_block_max * zfs_unflushed_log_block_min * zfs_unflushed_log_block_pct * zfs_unflushed_max_mem_amt * zfs_unflushed_max_mem_ppm New parameters that do not exist in Illumos: * l2arc_trim_ahead * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_arc_sys_free * zfs_deadman_ziotime_ms * zfs_delete_blocks * zfs_history_output_max * zfs_livelist_max_entries * zfs_max_async_dedup_frees * zfs_max_nvlist_src_size * zfs_rebuild_max_segment * zfs_rebuild_vdev_limit * zfs_unflushed_log_txg_max * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift * zfs_vnops_read_chunk_size * zvol_max_discard_blocks Rather than clutter the lists with commentary, the module parameters that need comments are repeated below. A few parameters were defined in Linux/FreeBSD specific code, where the use of ulong/long is not an issue for portability, so we leave them alone: * zfs_delete_blocks * zfs_key_max_salt_uses * zvol_max_discard_blocks The documentation for a few parameters was found to be incorrect: * zfs_deadman_checktime_ms - incorrectly documented as int * zfs_delete_blocks - not documented as Linux only * zfs_history_output_max - incorrectly documented as int * zfs_vnops_read_chunk_size - incorrectly documented as long * zvol_max_discard_blocks - incorrectly documented as ulong The documentation for these has been fixed, alongside the changes to document the switch to fixed width types. In addition, several kernel module parameters were percentages or held ashift values, so being 64-bit never made sense for them. They have been downgraded to 32-bit: * vdev_file_logical_ashift * vdev_file_physical_ashift * zfs_arc_dnode_limit_percent * zfs_arc_dnode_reduce_percent * zfs_arc_meta_limit_percent * zfs_per_txg_dirty_frees_percent * zfs_unflushed_log_block_pct * zfs_vdev_max_auto_ashift * zfs_vdev_min_auto_ashift Of special note are `zfs_vdev_max_auto_ashift` and `zfs_vdev_min_auto_ashift`, which were already defined as `uint64_t`, and passed to the kernel as `ulong`. This is inherently buggy on big endian 32-bit Linux, since the values would not be written to the correct locations. 32-bit FreeBSD was unaffected because its sysctl code correctly treated this as a `uint64_t`. Lastly, a code comment suggests that `zfs_arc_sys_free` is Linux-specific, but there is nothing to indicate to me that it is Linux-specific. Nothing was done about that. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Jorgen Lundman <lundman@lundman.net> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Original-patch-by: Andrew Innes <andrew.c12@gmail.com> Original-patch-by: Jorgen Lundman <lundman@lundman.net> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13984 Closes #14004
763 lines
22 KiB
C
763 lines
22 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2016, 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/vdev_initialize.h>
|
|
|
|
/*
|
|
* Value that is written to disk during initialization.
|
|
*/
|
|
static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
|
|
|
|
/* maximum number of I/Os outstanding per leaf vdev */
|
|
static const int zfs_initialize_limit = 1;
|
|
|
|
/* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
|
|
static uint64_t zfs_initialize_chunk_size = 1024 * 1024;
|
|
|
|
static boolean_t
|
|
vdev_initialize_should_stop(vdev_t *vd)
|
|
{
|
|
return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
|
|
vd->vdev_detached || vd->vdev_top->vdev_removing);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
/*
|
|
* We pass in the guid instead of the vdev_t since the vdev may
|
|
* have been freed prior to the sync task being processed. This
|
|
* happens when a vdev is detached as we call spa_config_vdev_exit(),
|
|
* stop the initializing thread, schedule the sync task, and free
|
|
* the vdev. Later when the scheduled sync task is invoked, it would
|
|
* find that the vdev has been freed.
|
|
*/
|
|
uint64_t guid = *(uint64_t *)arg;
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
kmem_free(arg, sizeof (uint64_t));
|
|
|
|
vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
|
|
if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
|
|
return;
|
|
|
|
uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
|
|
vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
|
|
|
|
VERIFY(vd->vdev_leaf_zap != 0);
|
|
|
|
objset_t *mos = vd->vdev_spa->spa_meta_objset;
|
|
|
|
if (last_offset > 0) {
|
|
vd->vdev_initialize_last_offset = last_offset;
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
|
|
sizeof (last_offset), 1, &last_offset, tx));
|
|
}
|
|
if (vd->vdev_initialize_action_time > 0) {
|
|
uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
|
|
1, &val, tx));
|
|
}
|
|
|
|
uint64_t initialize_state = vd->vdev_initialize_state;
|
|
VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
|
|
VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
|
|
&initialize_state, tx));
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
if (new_state == vd->vdev_initialize_state)
|
|
return;
|
|
|
|
/*
|
|
* Copy the vd's guid, this will be freed by the sync task.
|
|
*/
|
|
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
|
|
*guid = vd->vdev_guid;
|
|
|
|
/*
|
|
* If we're suspending, then preserving the original start time.
|
|
*/
|
|
if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
|
|
vd->vdev_initialize_action_time = gethrestime_sec();
|
|
}
|
|
|
|
vdev_initializing_state_t old_state = vd->vdev_initialize_state;
|
|
vd->vdev_initialize_state = new_state;
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
|
|
guid, tx);
|
|
|
|
switch (new_state) {
|
|
case VDEV_INITIALIZE_ACTIVE:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s activated", vd->vdev_path);
|
|
break;
|
|
case VDEV_INITIALIZE_SUSPENDED:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s suspended", vd->vdev_path);
|
|
break;
|
|
case VDEV_INITIALIZE_CANCELED:
|
|
if (old_state == VDEV_INITIALIZE_ACTIVE ||
|
|
old_state == VDEV_INITIALIZE_SUSPENDED)
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s canceled", vd->vdev_path);
|
|
break;
|
|
case VDEV_INITIALIZE_COMPLETE:
|
|
spa_history_log_internal(spa, "initialize", tx,
|
|
"vdev=%s complete", vd->vdev_path);
|
|
break;
|
|
default:
|
|
panic("invalid state %llu", (unsigned long long)new_state);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
if (new_state != VDEV_INITIALIZE_ACTIVE)
|
|
spa_notify_waiters(spa);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_cb(zio_t *zio)
|
|
{
|
|
vdev_t *vd = zio->io_vd;
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
|
|
/*
|
|
* The I/O failed because the vdev was unavailable; roll the
|
|
* last offset back. (This works because spa_sync waits on
|
|
* spa_txg_zio before it runs sync tasks.)
|
|
*/
|
|
uint64_t *off =
|
|
&vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
|
|
*off = MIN(*off, zio->io_offset);
|
|
} else {
|
|
/*
|
|
* Since initializing is best-effort, we ignore I/O errors and
|
|
* rely on vdev_probe to determine if the errors are more
|
|
* critical.
|
|
*/
|
|
if (zio->io_error != 0)
|
|
vd->vdev_stat.vs_initialize_errors++;
|
|
|
|
vd->vdev_initialize_bytes_done += zio->io_orig_size;
|
|
}
|
|
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
|
|
vd->vdev_initialize_inflight--;
|
|
cv_broadcast(&vd->vdev_initialize_io_cv);
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
|
}
|
|
|
|
/* Takes care of physical writing and limiting # of concurrent ZIOs. */
|
|
static int
|
|
vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
/* Limit inflight initializing I/Os */
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
|
|
cv_wait(&vd->vdev_initialize_io_cv,
|
|
&vd->vdev_initialize_io_lock);
|
|
}
|
|
vd->vdev_initialize_inflight++;
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
|
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
|
|
spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
|
|
uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
|
|
*guid = vd->vdev_guid;
|
|
|
|
/* This is the first write of this txg. */
|
|
dsl_sync_task_nowait(spa_get_dsl(spa),
|
|
vdev_initialize_zap_update_sync, guid, tx);
|
|
}
|
|
|
|
/*
|
|
* We know the vdev struct will still be around since all
|
|
* consumers of vdev_free must stop the initialization first.
|
|
*/
|
|
if (vdev_initialize_should_stop(vd)) {
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
ASSERT3U(vd->vdev_initialize_inflight, >, 0);
|
|
vd->vdev_initialize_inflight--;
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
dmu_tx_commit(tx);
|
|
return (SET_ERROR(EINTR));
|
|
}
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
|
|
zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
|
|
size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
|
|
ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
|
|
/* vdev_initialize_cb releases SCL_STATE_ALL */
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Callback to fill each ABD chunk with zfs_initialize_value. len must be
|
|
* divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
|
|
* allocation will guarantee these for us.
|
|
*/
|
|
static int
|
|
vdev_initialize_block_fill(void *buf, size_t len, void *unused)
|
|
{
|
|
(void) unused;
|
|
|
|
ASSERT0(len % sizeof (uint64_t));
|
|
for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
|
|
*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static abd_t *
|
|
vdev_initialize_block_alloc(void)
|
|
{
|
|
/* Allocate ABD for filler data */
|
|
abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
|
|
|
|
ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
|
|
(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
|
|
vdev_initialize_block_fill, NULL);
|
|
|
|
return (data);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_block_free(abd_t *data)
|
|
{
|
|
abd_free(data);
|
|
}
|
|
|
|
static int
|
|
vdev_initialize_ranges(vdev_t *vd, abd_t *data)
|
|
{
|
|
range_tree_t *rt = vd->vdev_initialize_tree;
|
|
zfs_btree_t *bt = &rt->rt_root;
|
|
zfs_btree_index_t where;
|
|
|
|
for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
|
|
rs = zfs_btree_next(bt, &where, &where)) {
|
|
uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
|
|
|
|
/* Split range into legally-sized physical chunks */
|
|
uint64_t writes_required =
|
|
((size - 1) / zfs_initialize_chunk_size) + 1;
|
|
|
|
for (uint64_t w = 0; w < writes_required; w++) {
|
|
int error;
|
|
|
|
error = vdev_initialize_write(vd,
|
|
VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
|
|
(w * zfs_initialize_chunk_size),
|
|
MIN(size - (w * zfs_initialize_chunk_size),
|
|
zfs_initialize_chunk_size), data);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
|
|
{
|
|
uint64_t *last_rs_end = (uint64_t *)arg;
|
|
|
|
if (physical_rs->rs_end > *last_rs_end)
|
|
*last_rs_end = physical_rs->rs_end;
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
|
|
{
|
|
vdev_t *vd = (vdev_t *)arg;
|
|
|
|
uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
|
|
vd->vdev_initialize_bytes_est += size;
|
|
|
|
if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
|
|
vd->vdev_initialize_bytes_done += size;
|
|
} else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
|
|
vd->vdev_initialize_last_offset < physical_rs->rs_end) {
|
|
vd->vdev_initialize_bytes_done +=
|
|
vd->vdev_initialize_last_offset - physical_rs->rs_start;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_calculate_progress(vdev_t *vd)
|
|
{
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
|
|
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
|
|
ASSERT(vd->vdev_leaf_zap != 0);
|
|
|
|
vd->vdev_initialize_bytes_est = 0;
|
|
vd->vdev_initialize_bytes_done = 0;
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
|
|
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
uint64_t ms_free = (msp->ms_size -
|
|
metaslab_allocated_space(msp)) /
|
|
vdev_get_ndisks(vd->vdev_top);
|
|
|
|
/*
|
|
* Convert the metaslab range to a physical range
|
|
* on our vdev. We use this to determine if we are
|
|
* in the middle of this metaslab range.
|
|
*/
|
|
range_seg64_t logical_rs, physical_rs, remain_rs;
|
|
logical_rs.rs_start = msp->ms_start;
|
|
logical_rs.rs_end = msp->ms_start + msp->ms_size;
|
|
|
|
/* Metaslab space after this offset has not been initialized */
|
|
vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
|
|
if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
|
|
vd->vdev_initialize_bytes_est += ms_free;
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
/* Metaslab space before this offset has been initialized */
|
|
uint64_t last_rs_end = physical_rs.rs_end;
|
|
if (!vdev_xlate_is_empty(&remain_rs)) {
|
|
vdev_xlate_walk(vd, &remain_rs,
|
|
vdev_initialize_xlate_last_rs_end, &last_rs_end);
|
|
}
|
|
|
|
if (vd->vdev_initialize_last_offset > last_rs_end) {
|
|
vd->vdev_initialize_bytes_done += ms_free;
|
|
vd->vdev_initialize_bytes_est += ms_free;
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we get here, we're in the middle of initializing this
|
|
* metaslab. Load it and walk the free tree for more accurate
|
|
* progress estimation.
|
|
*/
|
|
VERIFY0(metaslab_load(msp));
|
|
|
|
zfs_btree_index_t where;
|
|
range_tree_t *rt = msp->ms_allocatable;
|
|
for (range_seg_t *rs =
|
|
zfs_btree_first(&rt->rt_root, &where); rs;
|
|
rs = zfs_btree_next(&rt->rt_root, &where,
|
|
&where)) {
|
|
logical_rs.rs_start = rs_get_start(rs, rt);
|
|
logical_rs.rs_end = rs_get_end(rs, rt);
|
|
|
|
vdev_xlate_walk(vd, &logical_rs,
|
|
vdev_initialize_xlate_progress, vd);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vdev_initialize_load(vdev_t *vd)
|
|
{
|
|
int err = 0;
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
|
|
spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
|
|
ASSERT(vd->vdev_leaf_zap != 0);
|
|
|
|
if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
|
|
vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
|
|
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
|
|
sizeof (vd->vdev_initialize_last_offset), 1,
|
|
&vd->vdev_initialize_last_offset);
|
|
if (err == ENOENT) {
|
|
vd->vdev_initialize_last_offset = 0;
|
|
err = 0;
|
|
}
|
|
}
|
|
|
|
vdev_initialize_calculate_progress(vd);
|
|
return (err);
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
|
|
{
|
|
vdev_t *vd = arg;
|
|
|
|
/* Only add segments that we have not visited yet */
|
|
if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
|
|
return;
|
|
|
|
/* Pick up where we left off mid-range. */
|
|
if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
|
|
zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
|
|
"(%llu, %llu)", vd->vdev_path,
|
|
(u_longlong_t)physical_rs->rs_start,
|
|
(u_longlong_t)physical_rs->rs_end,
|
|
(u_longlong_t)vd->vdev_initialize_last_offset,
|
|
(u_longlong_t)physical_rs->rs_end);
|
|
ASSERT3U(physical_rs->rs_end, >,
|
|
vd->vdev_initialize_last_offset);
|
|
physical_rs->rs_start = vd->vdev_initialize_last_offset;
|
|
}
|
|
|
|
ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
|
|
|
|
range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
|
|
physical_rs->rs_end - physical_rs->rs_start);
|
|
}
|
|
|
|
/*
|
|
* Convert the logical range into a physical range and add it to our
|
|
* avl tree.
|
|
*/
|
|
static void
|
|
vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
vdev_t *vd = arg;
|
|
range_seg64_t logical_rs;
|
|
logical_rs.rs_start = start;
|
|
logical_rs.rs_end = start + size;
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
|
|
}
|
|
|
|
static __attribute__((noreturn)) void
|
|
vdev_initialize_thread(void *arg)
|
|
{
|
|
vdev_t *vd = arg;
|
|
spa_t *spa = vd->vdev_spa;
|
|
int error = 0;
|
|
uint64_t ms_count = 0;
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
vd->vdev_initialize_last_offset = 0;
|
|
VERIFY0(vdev_initialize_load(vd));
|
|
|
|
abd_t *deadbeef = vdev_initialize_block_alloc();
|
|
|
|
vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
|
|
0, 0);
|
|
|
|
for (uint64_t i = 0; !vd->vdev_detached &&
|
|
i < vd->vdev_top->vdev_ms_count; i++) {
|
|
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
|
|
boolean_t unload_when_done = B_FALSE;
|
|
|
|
/*
|
|
* If we've expanded the top-level vdev or it's our
|
|
* first pass, calculate our progress.
|
|
*/
|
|
if (vd->vdev_top->vdev_ms_count != ms_count) {
|
|
vdev_initialize_calculate_progress(vd);
|
|
ms_count = vd->vdev_top->vdev_ms_count;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
metaslab_disable(msp);
|
|
mutex_enter(&msp->ms_lock);
|
|
if (!msp->ms_loaded && !msp->ms_loading)
|
|
unload_when_done = B_TRUE;
|
|
VERIFY0(metaslab_load(msp));
|
|
|
|
range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
|
|
vd);
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
error = vdev_initialize_ranges(vd, deadbeef);
|
|
metaslab_enable(msp, B_TRUE, unload_when_done);
|
|
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
|
|
|
range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
|
mutex_enter(&vd->vdev_initialize_io_lock);
|
|
while (vd->vdev_initialize_inflight > 0) {
|
|
cv_wait(&vd->vdev_initialize_io_cv,
|
|
&vd->vdev_initialize_io_lock);
|
|
}
|
|
mutex_exit(&vd->vdev_initialize_io_lock);
|
|
|
|
range_tree_destroy(vd->vdev_initialize_tree);
|
|
vdev_initialize_block_free(deadbeef);
|
|
vd->vdev_initialize_tree = NULL;
|
|
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
if (!vd->vdev_initialize_exit_wanted) {
|
|
if (vdev_writeable(vd)) {
|
|
vdev_initialize_change_state(vd,
|
|
VDEV_INITIALIZE_COMPLETE);
|
|
} else if (vd->vdev_faulted) {
|
|
vdev_initialize_change_state(vd,
|
|
VDEV_INITIALIZE_CANCELED);
|
|
}
|
|
}
|
|
ASSERT(vd->vdev_initialize_thread != NULL ||
|
|
vd->vdev_initialize_inflight == 0);
|
|
|
|
/*
|
|
* Drop the vdev_initialize_lock while we sync out the
|
|
* txg since it's possible that a device might be trying to
|
|
* come online and must check to see if it needs to restart an
|
|
* initialization. That thread will be holding the spa_config_lock
|
|
* which would prevent the txg_wait_synced from completing.
|
|
*/
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
|
|
vd->vdev_initialize_thread = NULL;
|
|
cv_broadcast(&vd->vdev_initialize_cv);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
|
|
thread_exit();
|
|
}
|
|
|
|
/*
|
|
* Initiates a device. Caller must hold vdev_initialize_lock.
|
|
* Device must be a leaf and not already be initializing.
|
|
*/
|
|
void
|
|
vdev_initialize(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
|
|
ASSERT(!vd->vdev_detached);
|
|
ASSERT(!vd->vdev_initialize_exit_wanted);
|
|
ASSERT(!vd->vdev_top->vdev_removing);
|
|
|
|
vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
|
|
vd->vdev_initialize_thread = thread_create(NULL, 0,
|
|
vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
|
|
}
|
|
|
|
/*
|
|
* Wait for the initialize thread to be terminated (cancelled or stopped).
|
|
*/
|
|
static void
|
|
vdev_initialize_stop_wait_impl(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
|
|
while (vd->vdev_initialize_thread != NULL)
|
|
cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
|
|
|
|
ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
|
|
vd->vdev_initialize_exit_wanted = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Wait for vdev initialize threads which were either to cleanly exit.
|
|
*/
|
|
void
|
|
vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
|
|
{
|
|
(void) spa;
|
|
vdev_t *vd;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
while ((vd = list_remove_head(vd_list)) != NULL) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
vdev_initialize_stop_wait_impl(vd);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop initializing a device, with the resultant initializing state being
|
|
* tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
|
|
* a list_t is provided the stopping vdev is inserted in to the list. Callers
|
|
* are then required to call vdev_initialize_stop_wait() to block for all the
|
|
* initialization threads to exit. The caller must hold vdev_initialize_lock
|
|
* and must not be writing to the spa config, as the initializing thread may
|
|
* try to enter the config as a reader before exiting.
|
|
*/
|
|
void
|
|
vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
|
|
list_t *vd_list)
|
|
{
|
|
ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
|
|
ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
ASSERT(vdev_is_concrete(vd));
|
|
|
|
/*
|
|
* Allow cancel requests to proceed even if the initialize thread
|
|
* has stopped.
|
|
*/
|
|
if (vd->vdev_initialize_thread == NULL &&
|
|
tgt_state != VDEV_INITIALIZE_CANCELED) {
|
|
return;
|
|
}
|
|
|
|
vdev_initialize_change_state(vd, tgt_state);
|
|
vd->vdev_initialize_exit_wanted = B_TRUE;
|
|
|
|
if (vd_list == NULL) {
|
|
vdev_initialize_stop_wait_impl(vd);
|
|
} else {
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
list_insert_tail(vd_list, vd);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
|
|
list_t *vd_list)
|
|
{
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
vdev_initialize_stop(vd, tgt_state, vd_list);
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
return;
|
|
}
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
|
|
vd_list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convenience function to stop initializing of a vdev tree and set all
|
|
* initialize thread pointers to NULL.
|
|
*/
|
|
void
|
|
vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
list_t vd_list;
|
|
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
list_create(&vd_list, sizeof (vdev_t),
|
|
offsetof(vdev_t, vdev_initialize_node));
|
|
|
|
vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
|
|
vdev_initialize_stop_wait(spa, &vd_list);
|
|
|
|
if (vd->vdev_spa->spa_sync_on) {
|
|
/* Make sure that our state has been synced to disk */
|
|
txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
|
|
}
|
|
|
|
list_destroy(&vd_list);
|
|
}
|
|
|
|
void
|
|
vdev_initialize_restart(vdev_t *vd)
|
|
{
|
|
ASSERT(MUTEX_HELD(&spa_namespace_lock));
|
|
ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
|
|
|
|
if (vd->vdev_leaf_zap != 0) {
|
|
mutex_enter(&vd->vdev_initialize_lock);
|
|
uint64_t initialize_state = VDEV_INITIALIZE_NONE;
|
|
int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
|
|
sizeof (initialize_state), 1, &initialize_state);
|
|
ASSERT(err == 0 || err == ENOENT);
|
|
vd->vdev_initialize_state = initialize_state;
|
|
|
|
uint64_t timestamp = 0;
|
|
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
|
|
sizeof (timestamp), 1, ×tamp);
|
|
ASSERT(err == 0 || err == ENOENT);
|
|
vd->vdev_initialize_action_time = timestamp;
|
|
|
|
if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
|
|
vd->vdev_offline) {
|
|
/* load progress for reporting, but don't resume */
|
|
VERIFY0(vdev_initialize_load(vd));
|
|
} else if (vd->vdev_initialize_state ==
|
|
VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
|
|
!vd->vdev_top->vdev_removing &&
|
|
vd->vdev_initialize_thread == NULL) {
|
|
vdev_initialize(vd);
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_initialize_lock);
|
|
}
|
|
|
|
for (uint64_t i = 0; i < vd->vdev_children; i++) {
|
|
vdev_initialize_restart(vd->vdev_child[i]);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(vdev_initialize);
|
|
EXPORT_SYMBOL(vdev_initialize_stop);
|
|
EXPORT_SYMBOL(vdev_initialize_stop_all);
|
|
EXPORT_SYMBOL(vdev_initialize_stop_wait);
|
|
EXPORT_SYMBOL(vdev_initialize_restart);
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW,
|
|
"Value written during zpool initialize");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW,
|
|
"Size in bytes of writes by zpool initialize");
|